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Abstract. When multiple agents are in a shared environment, there usually exist

constraints among the possible actions of these agents. A distributed constraint

satisfaction problem (distributed CSP) is a problem to �nd a consistent combination

of actions that satis�es these inter-agent constraints. Various application problems

in multi-agent systems can be formalized as distributed CSPs. This paper gives an

overview of the existing research on distributed CSPs. First, we briey describe the

problem formalization and algorithms of normal, centralized CSPs. Then, we show

the problem formalization and several MAS application problems of distributed

CSPs. Furthermore, we describe a series of algorithms for solving distributed CSPs,

i.e., the asynchronous backtracking, the asynchronous weak-commitment search, the

distributed breakout, and distributed consistency algorithms. Finally, we show two

extensions of the basic problem formalization of distributed CSPs, i.e., handling

multiple local variables, and dealing with over-constrained problems.
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1. Introduction

A Constraint satisfaction problem (CSP) is a problem to �nd a con-

sistent assignment of values to variables. A typical example of a CSP

is a puzzle called n-queens. The objective is to place n chess queens

on a board with n � n squares so that these queens do not threaten

each other (Figure 1). A problem of this kind is called a constraint

satisfaction problem since the objective is to �nd a con�guration that

satis�es the given conditions (constraints). Even though the de�nition

of a CSP is very simple, a surprisingly wide variety of AI problems can

be formalized as CSPs. Therefore, the research on CSP has a long and

distinguished history in AI [15].

A distributed CSP is a CSP in which variables and constraints

are distributed among multiple automated agents. Various applica-

tion problems in Multi-agent Systems (MAS) that are concerned with

�nding a consistent combination of agent actions (e.g., distributed re-

source allocation problems [4], distributed scheduling problems [21],
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Figure 1. Example of a Constraint Satisfaction Problem (4-queens)

distributed interpretation tasks [16], and multi-agent truth mainte-

nance tasks [13]) can be formalized as distributed CSPs. Therefore,

we can consider distributed algorithms for solving distributed CSPs as

an important infrastructure in MAS.

This paper gives an overview of the existing research on distributed

CSPs. First, we show the problem de�nition of a normal, centralized

CSP and algorithms for solving CSPs (Section 2). Next, we show the

problem de�nition of distributed CSPs (Section 3). Then, we describe

several MAS application problems that can be formalized as distributed

CSPs (Section 4). Next, we show a series of algorithms for solving

distributed CSPs (Section 5). Then, we show the way for extending the

basic problem formalization of distributed CSPs, i.e., handling multiple

local variables, and dealing with over-constrained problems (Section 6).

Finally, we compare the e�ciency of these algorithms (Section 7).

2. Constraint Satisfaction Problem

2.1. Problem Definition

Formally, a CSP consists of n variables x1; x2; : : : ; xn, whose values are

taken from �nite, discrete domains D1;D2; : : : ; Dn, respectively, and a

set of constraints on their values. In general, a constraint is de�ned by

a predicate. That is, the constraint pk(xk1; : : : ; xkj) is a predicate that

is de�ned on the Cartesian product Dk1 � : : : � Dkj . This predicate

is true i� the value assignment of these variables satis�es this con-

straint. Solving a CSP is equivalent to �nding an assignment of values

to all variables such that all constraints are satis�ed. Since constraint

satisfaction is NP-complete in general, a trial-and-error exploration of

alternatives is inevitable.

Note that there is no restriction about the form of the predicate.

It can be a mathematical or logical formula, or any arbitrary relation

yokoo.tex; 28/03/2000; 14:12; p.1



3

de�ned by a tuple of variable values. In particular, we sometimes use a

prohibited combination of variable values for representing a constraint.

This type of constraint is called a nogood.

For example, in the 4-queens problem, it is obvious that only one

queen can be placed in each row (or each column). Therefore, we can

formalize this problem as a CSP, in which there are four variables

x1; x2; x3, and x4, each of which corresponds to the position of a queen

in each row. The domain of a variable is f1; 2; 3; 4g. A solution is a

combination of the values of these variables. The constraints that the

queens do not threaten each other can be represented as predicates,

e.g., a constraint between xi and xj can be represented as xi 6= xj ^

j i� j j6=j xi � xj j.

2.2. Algorithms for Solving CSPs

Algorithms for solving CSPs can be divided into two groups, i.e., search

algorithms and consistency algorithms. The search algorithms for solv-

ing CSPs can be further divided into two groups, i.e., backtracking

algorithms and iterative improvement algorithms.

2.2.1. Backtracking

A backtracking algorithm is a basic, systematic search algorithm for

solving CSPs. In this algorithm, a value assignment to a subset of

variables that satis�es all of the constraints within the subset is con-

structed. This value assignment is called a partial solution. A partial

solution is expanded by adding new variables one by one, until it

becomes a complete solution. When for one variable, no value satis-

�es all of the constraints with the partial solution, the value of the

most recently added variable to the partial solution is changed. This

operation is called backtracking. Although backtracking is a simple

depth-�rst tree search algorithm, many issues must be considered to

improve e�ciency. For example, the order of selecting variables and

values greatly a�ects the e�ciency of the algorithm. Various heuristics

have been developed during the long history of CSP studies.

A value-ordering heuristic called min-conict heuristic [17] is a very

successful one among these heuristics. In the min-conict backtracking,

each variable has a tentative initial value. The tentative initial value

is revised when the variable is added to the partial solution. Since

it is a backtracking algorithm, the revised value must satisfy all of

the constraints with the variables in the partial solution. If there exist

multiple values that satisfy all constraints with the partial solution, we

choose the one that satis�es as many constraints with tentative initial

values as possible.
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2.2.2. Iterative Improvement

In iterative improvement algorithms, as in the min-conict backtrack-

ing, all variables have tentative initial values. However, no consistent

partial solution is constructed. A awed solution that contains all vari-

ables is revised by using hill-climbing search. The min-conict heuristic

can be used for guiding the search process, i.e., a variable value is

changed so that the number of constraint violations is minimized.

Since these algorithms are hill-climbing search algorithms, occasion-

ally they will be trapped in local-minima. Local-minima are states that

violate some constraints, but the number of constraint violations cannot

be decreased by changing any single variable value. Various methods

have been proposed for escaping from local-minima. For example, in

the breakout algorithm [18], a weight is de�ned for each constraint

(the initial weight is 1). The summation of the weights of violated

constraints is used as an evaluation value. When trapped in a local-

minimum, the breakout algorithm increases the weights of violated

constraints in the current state by 1 so that the evaluation value of

the current state becomes larger than those of the neighboring states.

In iterative improvement algorithms, a mistake can be revised with-

out conducting an exhaustive search, that is, the same variable can be

revised again and again. Therefore, these algorithms can be e�cient,

but their completeness cannot be guaranteed.

There exist several hybrid-type algorithms of backtracking and it-

erative improvement. For example, the weak-commitment search algo-

rithm [24] is based on the min-conict backtracking. However, in this

algorithm, when for one variable no value satis�es all of the constraints

with the partial solution, instead of changing one variable value, the

whole partial solution is abandoned. The search process is restarted

using the current value assignments as new tentative initial values. This

algorithm is similar to iterative improvement type algorithms since the

new tentative initial values are usually better than the initial values in

the previous iteration.

2.2.3. Consistency Algorithms

Consistency algorithms [15] are preprocessing algorithms that reduce

futile backtracking. Consistency algorithms can be classi�ed by the

notion of k-consistency [8]. A CSP is k-consistent i� given any instan-

tiation of any k� 1 variables satisfying all the constraints among those

variables, it is possible to �nd an instantiation of any kth variable

such that the k values satisfy all the constraints among them. If there

are n variables in a CSP and the CSP is k-consistent for all k � n,

then a solution can be obtained immediately without any backtracking.

However, achieving such a high degree of consistency requires too many
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computational costs, so we must �nd an appropriate combination of

consistency algorithms and backtracking so that the total search costs

are minimized.

For further readings on CSPs, Tsang's textbook [22] on constraint

satisfaction covers topics from basic concepts to recent research results.

There are several concise overviews of constraint satisfaction problems,

such as [6, 15].

3. Problem De�nition of Distributed CSP

A distributed CSP is a CSP in which the variables and constraints are

distributed among automated agents. Finding a value assignment to

variables that satis�es inter-agent constraints can be viewed as achiev-

ing coherence or consistency among agents. Achieving coherence or

consistency is one of the main research topics in MAS. As described in

Section 4, various application problems in MAS can be formalized as

distributed CSPs, by extracting the essential part of the problems. Once

we formalize our problem as a distributed CSP, we don't have to develop

the algorithms for solving it from scratch, since various algorithms for

solving distributed CSPs have been developed.

We assume the following communication model.

� Agents communicate by sending messages. An agent can send

messages to other agents i� the agent knows the addresses of the

agents.

� The delay in delivering a message is �nite, though random. For the

transmission between any pair of agents, messages are received in

the order in which they were sent.

Each agent has some variables and tries to determine their val-

ues. However, there exist inter-agent constraints, and the value assign-

ment must satisfy these inter-agent constraints. Formally, there exist m

agents 1; 2; : : : ; m. Each variable xj belongs to one agent i (this relation

is represented as belongs(xj; i)). Constraints are also distributed among

agents. The fact that an agent l knows a constraint predicate pk is

represented as known(pk; l).

We say that a Distributed CSP is solved i� the following conditions

are satis�ed.

� 8 i, 8xj where belongs(xj ; i), the value of xj is assigned to dj,

and 8 l, 8pk where known(pk; l), pk is true under the assignment

xj = dj .
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It must be noted that although algorithms for solving distributed

CSPs seem similar to parallel/distributed processing methods for solv-

ing CSPs [3, 30], the research motivations are fundamentally di�erent1.

The primary concern in parallel/distributed processing is e�ciency, and

we can choose any type of parallel/distributed computer architecture

for solving a given problem e�ciently.

In contrast, in a distributed CSP, there already exists a situation

where knowledge about the problem (i.e., variables and constraints) is

distributed among automated agents. For example, when each agent

is designed/owned by a di�erent person/organization, there already

exist multiple agents, each of which has di�erent and partial knowledge

about the global problem. Therefore, the main research issue is how to

reach a solution from this given situation. If all knowledge about the

problem can be gathered into a single agent, this agent can solve the

problem alone by using normal centralized constraint satisfaction algo-

rithms. However, collecting all information about a problem requires

not only the communication costs but also the costs of translating one's

knowledge into an exchangeable format. Furthermore, in some applica-

tion problems, gathering all information to one agent is undesirable or

impossible for security/privacy reasons. In such cases, multiple agents

have to solve the problem without centralizing all information.

4. Application Problems of Distributed CSPs

Various application problems in MAS can be formalized as distributed

CSPs. For example, a multi-agent truth maintenance system [13] is a

distributed version of a truth maintenance system [7]. In this system,

there exist multiple agents, each of which has its own truth maintenance

system (Figure 2). Each agent has uncertain data that can be IN or

OUT, i.e., believed or not believed, and each shares some data with

other agents. Each agent must determine the label of its data consis-

tently, and shared data must have the same label. The multi-agent

truth maintenance task can be formalized as a distributed CSP, where

a piece of uncertain data is a variable whose value can be IN or OUT,

and dependencies are constraints. For example, in Figure 2, we can

represent the dependencies as nogoods, such as f(y, IN), (has-wing,

OUT)g, f(mammal, IN), (bird, IN)g, f(bird, IN),(penguin, OUT),(y,

OUT)g, etc.

1
Of course, even the research motivations are di�erent, the same algorithm might

be useful for both. However, as far as the authors' know, existing parallel/distributed

processing methods for solving CSPs are not suitable for distributed CSPs, since they

usually require some global knowledge/control among agents.
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Figure 2. Multi-agent Truth Maintenance System

Another class of problems that can be formalized as a distributed

CSP is resource allocation problems. If the problem is allocating tasks

or resources to agents and there exist inter-agent constraints, such

a problem can be formalized as a distributed CSP by viewing each

task or resource as a variable and the possible assignments as values.

For example, the multi-stage negotiation protocol [4] deals with the

case in which tasks are not independent and there are several ways to

perform a task (plans). The goal of the multi-stage negotiation is to

�nd the combination of plans which enables all tasks can be executed

simultaneously.

We show the example problem of a communication network used in

the multi-stage negotiation protocol in Figure 3. This communication

network consists of multiple communication sites (e.g., A-1, B-2), and

communication links (e.g., L-5, L-11). These sites are geographically

divided into several regions (e.g., A, B), and each region is controlled by

di�erent agents. These agents try to establish communication channels

according to connection requests (goals) under the capacity constraints

of communication links. Each agent recognizes a part of a global plan

for establishing a channel called a plan fragment. For example, let us

assume one goal is connecting A-1 and D-1. Agent A recognizes two

plan fragments 1A and 2A, where 1A uses L-1 and L-2, and 2A uses

L-1 and L-12. Such a problem can be easily formalized as distributed

CSPs, namely, each agent has a variable that represents each goal, and

possible values of the variable are plan fragments.

Also, in [11], a multi-agent model for resource allocation problems

was developed. In this formalization, there are task agents and resource

agents, and these agents cooperatively allocate shared resources with a

limited capacity. Such problems also can be formalized as distributed

CSPs. However, in this case, a task agent that has a variable/task does
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Figure 3. Distributed Resource Allocation Problem

not have knowledge about the constraints associated with its variable.

Therefore, a task agent must communicate with constraint agents to

�nd out whether the related constraints are satis�ed or not.

Time-tabling tasks are another class of application problems that

can be formalized as distributed CSPs. For example, the nurse time-

tabling task described in [20] involves assigning nurses to shifts in each

department of a hospital. Although the time-table of each department is

basically independent, there exist inter-agent constraints involving the

transportation of nurses. In this work, a real-life problem with 10 de-

partments, 20 nurses in each department, and 100 weekly assignments

was solved using distributed CSP techniques.

Many other application problems that are concerned with �nding

a consistent combination of agent actions/decisions (e.g., distributed

scheduling [14, 21] and distributed interpretation problems [16]) can

be formalized as distributed CSPs.

5. Algorithms for Solving Distributed CSPs

In this section, we make the following assumptions for simplicity in

describing the algorithms.

1. Each agent has exactly one variable.

2. All constraints are binary.

3. Each agent knows all constraint predicates relevant to its variable.
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Relaxing assumptions 2 and 3 to general cases is relatively straight-

forward. We show how to deal with the case where an agent has multiple

local variables in Section 6.1. In the following, we use the same identi�er

xi to represent an agent and its variable. We assume that each agent

(and its variable) has a unique identi�er. For an agent xi, we call a

set of agents, each of which is directly connected to xi by a link, as

neighbors of xi.

We show the classi�cation of the search algorithms described in this

paper (Table I). These algorithms are classi�ed by the basic algorithm

that is based on (backtracking, iterative improvement, and hybrid),

and the type of problems it mainly deals with (distributed CSPs with

a single local variable, multiple local variables, and distributed partial

CSPs). These algorithms will be described in the following two sections.

Table I. Algorithms for Solving Distributed CSPs

single multiple partial

backtracking asynchronous BT asynchronous IR

(Section 5.1) (Section 6.2.3)

Iterative distributed breakout iterative DB

Improvement (Section 5.3) (Section 6.2.2)

asynchronous WS agent-ordering AWS

hybrid (Section 5.2) variable-ordering AWS

(Section 6.1)

5.1. Asynchronous Backtracking

5.1.1. Algorithm

The asynchronous backtracking algorithm [26, 27] is a distributed,

asynchronous version of a backtracking algorithm. The main message

types communicated among agents are ok? messages to communicate

the current value, and nogood messages to communicate a new con-

straint. The procedures executed at agent xi after receiving an ok?mes-

sage and a nogoodmessage are described in Figure 4 (i) and Figure 4 (ii),

respectively.

In the asynchronous backtracking algorithm, the priority order of

variables/agents is determined, and each agent communicates its ten-

tative value assignment to neighboring agents via ok? messages. Each

agent maintains the current value assignment of other agents from its

viewpoint called agent view. The priority order is determined by the
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alphabetical order of the variable identi�ers, i.e., preceding variables in

alphabetical order have higher priority. An agent changes its assignment

if its current value assignment is not consistent with the assignments

of higher priority agents. If there exists no value that is consistent with

the higher priority agents, the agent generates a new constraint (called

a nogood), and communicates the nogood to a higher priority agent

(Figure 4 (iii)); thus the higher priority agent changes its value.

A nogood is a subset of an agent view, where the agent is not able to

�nd any consistent value with the subset. Ideally, the nogood generated

in (Figure 4 (iii)) should be minimal, i.e., no subset of them should

be a nogood. However, since �nding minimal nogoods requires certain

computation costs, an agent can make do with non-minimal nogoods.

In the simplest case, it can use the whole agent view as a nogood.

It must be noted that since each agent acts asynchronously and con-

currently and agents communicate by sending messages, the agent view

may contain obsolete information. Even if xi's agent view says that

xj 's current assignment is 1, xj may already have changed its value.

Therefore, if xi does not have a consistent value with the higher prior-

ity agents according to its agent view, we cannot use a simple control

method such as xi orders a higher priority agent to change its value,

since the agent view may be obsolete. Therefore, each agent needs to

generate and communicate a new nogood, and the receiver of the new

nogood must check whether the nogood is actually violated based on

its own agent view.

The completeness of the algorithm (i.e., always �nds a solution if

one exists, and terminates if no solution exists) is guaranteed [27]. The

outline of the proof is as follows. First, we can show that agent x1,

which has the highest priority, never falls into an in�nite processing

loop. Then, assuming that agents x1 to xk�1 (k > 2) are in a stable

state, we can show that agent xk never falls into an in�nite processing

loop. Therefore, we can prove that the agents never fall into an in�nite

processing loop by using mathematical induction.

5.1.2. Example

We show an example of an algorithm execution in Figure 5. In Fig-

ure 5 (a), after receiving ok? messages from x1 and x2, the agent view

of x3 will be f(x1; 1); (x2; 2)g. Since there is no possible value for x3
consistent with this agent view, a new nogood f(x1; 1); (x2; 2)g is gen-

erated. x3 chooses the lowest priority agent in the nogood, i.e., x2,

and sends a nogood message. After receiving this nogood message, x2
records it. This nogood, f(x1; 1); (x2; 2)g, contains agent x1, which is

not a neighbor of x2. Therefore, a new link must be added between

x1 and x2. x2 requests x1 to send x1's value to x2, adds (x1; 1) to

yokoo.tex; 28/03/2000; 14:12; p.9
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when received (ok?, (xj, dj)) do | (i)

revise agent view;

check agent view;

end do;

when received (nogood, xj, nogood) do | (ii)

record nogood as a new constraint;

when nogood contains an agent xk that is not its neighbor

do request xk to add xi as a neighbor,

and add xk to its neighbors; end do;

old value  current value; check agent view;

when old value = current value do

send (ok?, (xj , current value)) to xj; end do; end do;

procedure check agent view

when agent view and current value are not consistent do

if no value in Di is consistent with agent view then backtrack;

else select d 2 Di where agent view and d are consistent;

current value  d;

send (ok?, (xi, d)) to neighbors; end if; end do;

procedure backtrack

generate a nogood V | (iii)

when V is an empty nogood do

broadcast to other agents that there is no solution,

terminate this algorithm; end do;

select (xj; dj) where xj has the lowest priority in a nogood;

send (nogood, xi, V ) to xj ;

remove (xj ; dj) from agent view;

check agent view;

Figure 4. Procedures for Receiving Messages (Asynchronous Backtracking)

its agent view (Figure 5 (b)), and checks whether its value is consis-

tent with the agent view. The agent view f(x1; 1)g and the assignment

(x2; 2) violate the received nogood f(x1; 1); (x2; 2)g. However, there is

no other possible value for x2. Therefore, x2 generates a new nogood

f(x1; 1)g, and sends a nogood message to x1 (Figure 5 (c)).
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{1, 2}

(b)

X1

X3
{1, 2}

{2}
X2

(nogood,
   {(X1, 1),(X2, 2)})

new link{1, 2}

agent_view
   {(X1, 1)}

add neighbor request

Figure 5. Example of an Algorithm Execution (Asynchronous Backtracking)

5.2. Asynchronous Weak-commitment Search

5.2.1. Algorithm

One limitation of the asynchronous backtracking algorithm is that the

agent/variable ordering is statically determined. If the value selection

of a higher priority agent is bad, the lower priority agents need to per-

form an exhaustive search to revise the bad decision. The asynchronous

weak-commitment search algorithm [25, 27] introduces the min-conict

heuristic to reduce the risk of making bad decisions. Furthermore, the

agent ordering is dynamically changed so that a bad decision can be

revised without performing an exhaustive search.
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In Figure 6, the procedure executed at agent xi for checking agent view

is described (other procedures are basically identical to those for the

asynchronous backtracking algorithm). The di�erences between this

procedure and that for the asynchronous backtracking algorithm are

as follows.

� A priority value is determined for each variable, and the priority

value is communicated through the ok? message. The priority or-

der is determined by the communicated priority values, i.e., the

variable/agent with a larger priority value has higher priority (ties

are broken using the alphabetical order).

� If the current value is not consistent with the agent view, i.e., some

constraint with variables of higher priority agents is not satis-

�ed, the agent changes its value using the min-conict heuristic

(Figure 6 (i)).

� When xi cannot �nd a consistent value with its agent view, xi
sends nogood messages to other agents, and increases its priority

value (Figure 6 (ii)). If xi cannot generate a new nogood, xi will

not change its priority value but will wait for the next message.

This procedure is needed to guarantee the completeness of the

algorithm.

The completeness of the algorithm is guaranteed. An overview of the

proof is as follows. The priority values are changed if and only if a new

nogood is found. Since the number of possible nogoods is �nite, the pri-

ority values cannot be changed in�nitely. Therefore, after a certain time

point, the priority values will be stable. If the priority values are sta-

ble, the asynchronous weak-commitment search algorithm is basically

identical to the asynchronous backtracking algorithm. Since the asyn-

chronous backtracking is guaranteed to be complete, the asynchronous

weak-commitment search algorithm is also complete.

Note that the completeness of the algorithm is guaranteed by the

fact that the agents record all nogoods found so far. In practice, we can

restrict the number of recorded nogoods, i.e., each agent records only

a �xed number of the most recently found nogoods.

5.2.2. Example

An execution of the algorithm is illustrated using the distributed 4-

queens problem. The initial values are shown in Figure 7 (a). Agents

communicate these values with each other. The values within paren-

theses represent the priority values. The initial priority values are 0.

Since the priority values are equal, the priority order is determined by
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procedure check agent view

when agent view and current value are not consistent do

if no value in Di is consistent with agent view then backtrack;

else select d 2 Di where agent view and d are consistent

and d minimizes the number of constraint violations

with lower priority agents; | (i)

current value  d;

send (ok?, (xi, d, current priority)) to neighbors;

end if; end do;

procedure backtrack

generate a nogood V ;

when V is an empty nogood do

broadcast to other agents that there is no solution,

terminate this algorithm; end do;

when V is a new nogood do | (ii)

send V to the agents in the nogood;

current priority  1 + pmax,

where pmax is the maximal priority value of neighbors;

select d 2 Di where agent view and d are consistent,

and d minimizes the number of constraint violations

with lower priority agents;

current value  d;

send (ok?, (xi, d, current priority)) to neighbors; end do;

Figure 6. Procedure for Checking agent view (Asynchronous Weak-commitment

Search)

the alphabetical order of the identi�ers. Therefore, only the value of x4
is not consistent with its agent view.

Since there is no consistent value, x4 sends nogood messages and in-

creases its priority value. In this case, the value minimizing the number

of constraint violations is 3, since it conicts with x3 only. Therefore,

x4 selects 3 and sends ok? messages to the other agents (Figure 7 (b)).

Then, x3 tries to change its value. Since there is no consistent value, x3
sends nogood messages, and increases its priority value. In this case, the

value that minimizes the number of constraint violations is 1 or 2. In

this example, x3 selects 1 and sends ok? messages to the other agents

(Figure 7 (c)). After that, x1 changes its value to 2, and a solution is

obtained (Figure 7 (d)).
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x1
x2
x3
x4

(0)

(a) (b) (c) (d)

(0)
(0)
(0)

(0)
(0)
(0)
(1)

(0)
(0)
(2)
(1)

(0)
(0)
(2)
(1)

Figure 7. Example of an Algorithm Execution (Asynchronous Weak-commitment

Search)

In the distributed 4-queens problem, there exists no solution when

x1's value is 1. We can see that the bad decision of x1 (assigning its

value to 1) can be revised without an exhaustive search.

5.3. Distributed Breakout Algorithm

5.3.1. Algorithm

As described in Section 2.2.2, in the breakout algorithm, a weight is

de�ned for each constraint, and the summation of the weights of con-

straint violating pairs is used as an evaluation value. The basic ideas

for implementing the distributed version of the breakout algorithm are

as follows.

� To guarantee that the evaluation value is improved, neighboring

agents exchange values of possible improvements, and only the

agent that can maximally improve the evaluation value is given the

right to change its value. Note that if two agents are not neighbors,

it is possible for them to change their values concurrently.

� Instead of detecting the fact that agents as a whole are trapped

in a local-minimum (which requires global communication among

agents), each agent detects the fact that it is in a quasi-local-

minimum, which is a weaker condition than a local-minimum and

can be detected via local communications.

In this algorithm, two kinds of messages (ok? and improve) are

communicated among neighbors. The procedures executed at agent

xi when receiving ok? and improve messages are shown in Figure 9.

The agent alternates between the wait ok? mode (Figure 9 (i)) and

the wait improve mode (Figure 9 (ii)). The improve message is used to

communicate the possible improvement of the evaluation value.

We de�ne the fact that agent xi is in a quasi-local-minimum as

follows.

� xi is violating some constraint, and the possible improvement of

xi and all of xi's neighbors is 0.
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x1

x2

x3 x4

x5

x6

Figure 8. Example of a Distributed Graph-coloring Problem

It is obvious that if the current situation is a real local-minimum,

each of the constraint-violating agents is in a quasi-local-minimum,

but not vice versa. For example, Figure 8 shows one instance of a

distributed graph-coloring problem, in which six agents exist. Each

agent tries to determine its color so that neighbors do not have the

same color (possible colors are white and black). Although x1 is in a

quasi-local-minimum, this situation is not a real local-minimum since

x5 can improve the evaluation value.

5.3.2. Example

We show an example of the algorithm execution in Figure 10. We

assume that initial values are chosen as in Figure 10 (a). Each agent

communicates this initial value via ok? messages. After receiving ok?

messages from all of its neighbors, each agent calculates current eval

and my improve, and exchanges improve messages. Initially, all weights

are equal to 1. In the initial state, the improvements of all agents are

equal to 0. Therefore, the weights of constraints (nogoods), f(x1,white),

(x6,white)g, f(x2, black), (x5, black)g, and f(x3, white), (x4, white)g,

are increased by 1 (Figure 10 (b)).

Then, the improvements of x1; x3; x4, and x6 are 1, and the improve-

ments of x2 and x5 are 0. The agents that have the right to change their

values are x1 and x3 (each of which precedes in alphabetical order

within its own neighborhood). These agents change their value from

white to black (Figure 10 (c)). Then, the improvement of x2 is 4, while

the improvements of the other agents are 0. Therefore, x2 changes its

value to white, and all constraints are satis�ed (Figure 10 (d)).

5.4. Distributed Consistency Algorithm

Achieving 2-consistency by multiple agents is relatively straightfor-

ward, since the algorithm can be achieved by the iteration of local

processes. In [19], a distributed system that achieves arc-consistency

for resource allocation tasks was developed. This system also main-
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wait ok? mode | (i)

when received (ok?, xj, dj) do

add (xj , dj) to agent view;

when received ok? messages from all neighbors do

send improve;

goto wait improve mode; end do;

goto wait ok mode; end do;

procedure send improve

current eval  evaluation value of current value;

my improve  possible maximal improvement;

new value  the value which gives the maximal improvement;

send (improve, xi, my improve, current eval) to neighbors;

wait improve? mode | (ii)

when received (improve, xj, improve, eval) do

record this message;

when received improve? messages from all neighbors do

send ok; clear agent view;

goto wait ok mode; end do;

goto wait improve mode; end do;

procedure send ok

when its improvement is largest among neighbors do

current value  new value; end do;

when it is in a quasi-local-minimum do

increase the weights of constraint violations; end do;

send (ok?, xi, current value) to neighbors;

Figure 9. Procedures for Receiving Messages (Distributed Breakout)

x1

x2

x3 x4

x5

x6

(a) (b)

2x1

x2

x3 x4

x5

x6
2

2 2

2 2

(d)

x1

x2

x3 x4

x5

x6

(c)

x1

x2

x3 x4

x5

x6

2 2

Figure 10. Example of Algorithm Execution (Distributed Breakout)
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tains arc-consistency, i.e., it can re-achieve arc-consistency after dy-

namic changes in variables/values/constraints with a small amount of

computational e�ort by utilizing dependencies.

Also, a higher degree of consistency can be achieved using the hyper-

resolution-based consistency algorithm [5]. In [29], a distributed con-

sistency algorithm that achieves k-consistency is described. In this

algorithm, agents communicates nogoods among themselves, and gener-

ate new nogoods whose length are less than k using the hyper-resolution

rule.

6. Extensions of Problem Formalization

6.1. Handling Multiple Local Variables

So far, we assume that each agent has only one local variable. Al-

though the developed algorithms can be applied to the situation where

one agent has multiple local variables by the following methods, both

methods are neither e�cient nor scalable to large problems.

Method 1: each agent �nds all solutions to its local problem �rst.

By �nding all solutions, the given problem can be re-formalized

as a distributed CSP, in which each agent has one local variable

whose domain is a set of obtained local solutions. Then, agents

can apply algorithms for the case of a single local variable. The

drawback of this method is that when a local problem becomes

large and complex, �nding all the solutions of a local problem

becomes virtually impossible.

Method 2: an agent creates multiple virtual agents, each of which

corresponds to one local variable, and simulates the activities of

these virtual agents.

For example, if agent k has two local variables xi; xj, we assume

that there exist two virtual agents, each of which corresponds to

either xi or xj. Then, agent k simulates the concurrent activities of

these two virtual agents. In this case, each agent does not have to

predetermine all the local solutions. However, since communicating

with other agents is usually more expensive than performing local

computations, it is wasteful to simulate the activities of multiple

virtual agents without distinguishing the communications between

virtual agents within a single real agent, and the communications

between real agents.

In [1], prioritization among agents was introduced to handle multiple

local variables (we call this algorithm agent-ordering AWS). In this
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algorithm, each agent tries to �nd a local solution that is consistent

with the local solutions of higher priority agents. If there exists no

such local solution, backtracking or modi�cation of the prioritization

occurs. Various heuristics for determining good ordering among agents

were examined in [1]. This approach is similar to method 1 described

above, except that each agent searches for its local solutions only as

required, instead of �nding all solutions in advance.

In [28], an extension of the asynchronous weak-commitment search

algorithm that can handle multiple local variables (variable-ordering

AWS) was developed. Although this algorithm is similar to method 2,

it has the following characteristics.

� An agent sequentially changes the values of its local variables. More

speci�cally, it selects a variable xk that has the highest priority

among variables that are violating constraints with higher priority

variables, and modi�es xk's value so that constraints with higher

priority variables are satis�ed.

� If there exists no value that satis�es all constraints with higher

priority variables, the agent increases xk's priority value.

� By iterating the above procedures, when all local variables satisfy

constraints with higher priority variables, the agent sends changes

to related agents.

Each variable must satisfy constraints with higher priority variables.

Therefore, changing the value of a lower priority variable before the

value of a higher priority variable is �xed is usually wasteful. Accord-

ingly, an agent changes the value of the highest priority variable �rst.

Also, by sending messages to other agents only when an agent �nds a

consistent local solution, agents can reduce the number of interactions

among themselves. By using this algorithm, if the local solution selected

by a higher priority agent is bad, a lower priority agent does not have

to exhaustively search its local problem. It simply increases the priority

values of certain variables that violate constraints with the bad local

solution.

6.2. Distributed Partial Constraint Satisfaction

Many application problems in MAS that can be formalized as dis-

tributed CSPs might be over-constrained, i.e., a problem instance has

too many constraints and there exists no solution that satis�es all

constraints completely. In that case, the distributed constraint satis-

faction algorithms described in Section 5 fail to provide any useful

information, i.e., if the algorithm is complete, it simply reports that
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the problem has no solution, and if the algorithm is incomplete, it

never terminates. However, in many application problems, we would

rather have an incomplete solution that satis�es as many constraints

as possible.

For example, in a distributed resource allocation problem [4], agents

try to �nd the combination of plans that enables all agents' tasks to

be executed under resource constraints. If agents need to perform their

tasks with scarce resources, the problem instance can be mapped into

an over-constrained distributed CSP. For such a problem instance, we

want to know how the instance should be modi�ed in order to make it

solvable.

Furthermore, in a distributed interpretation problem [16], each agent

is assigned a task to interpret a part of sensor data. The goal of agents

is to �nd a globally consistent interpretation by communicating their

local interpretations. If some agents make incorrect interpretations due

to noisy sensors, the problem instance can be over-constrained. For

such a problem instance, we would like to get an approximate solution.

In this section, we �rst show a general framework for dealing with

over-constrained distributed CSPs called distributed partial CSPs. Then,

we describe two subclasses of distributed partial CSPs, i.e., distributed

maximal CSPs, where each agent tries to �nd the variable values that

minimize the maximal number of violated constraints over agents, and

distributed hierarchical CSPs, where each agent tries to �nd the variable

values that minimize the maximal degree of importance of violated

constraints over agents.

6.2.1. Problem Formalization

Intuitively, in a distributed partial CSP, agents try to �nd a solvable dis-

tributed CSP and its solution by relaxing an original over-constrained

distributed CSP. How much the original problem is relaxed is measured

by a globally de�ned function (global distance function). Agents prefer

the problem closer to the original problem, and in some case they want

to make the relaxation minimal.

A distributed partial CSP can be formalized using terms in a partial

CSP, which has been presented in [9] for dealing with over-constrained

centralized CSPs. It can be de�ned using the following components:

� a set of agents, A = f1; 2; : : : ;mg,

� h(Pi; Ui); (PSi;�);Mii for each agent i,

� (G; (N;S)).
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For each agent i, Pi is an original CSP (a part of an original distributed

CSP), and Ui is a set of universes
2, i.e., a set of potential values for each

variable in Pi. Furthermore, PSi is a set of (relaxed) CSPs including

Pi, and � is a partial order over PSi. Also, Mi is a locally-de�ned

distance function over the problem space.G is a global distance function

over distributed problem spaces, and (N;S) are necessary and su�cient

bounds on the global distance between the original distributed CSP (a

set of Pis of all agents) and some solvable distributed CSP (a set of

solvable CSPs of all agents, each of which comes from PSi).

A solution to a distributed partial CSP is a combination of a solvable

distributed CSP and its solution, where the global distance between an

original distributed CSP and the solvable distributed CSP is less than

N . Any solution to a distributed partial CSP will su�ce if the global

distance between an original distributed CSP and the solvable dis-

tributed CSP is not more than S. An optimal solution to a distributed

partial CSP is a solution in which the global distance between an

original distributed CSP and the solvable distributed CSP is minimal.

This general model can be specialized in various ways. In this paper,

we are going to show two subclasses of problems: distributed maximal

CSPs and distributed hierarchical CSPs.

6.2.2. Distributed Maximal CSP

A distributed maximal CSP is a problem where each agent tries to

�nd the variable values that minimize the maximal number of violated

constraints over agents. This problem corresponds to �nding an optimal

solution for the following distributed partial CSP.

� For each agent i, PSi is made up of all possible CSPs that can be

obtained by removing constraints from Pi.

� For each agent i, a distance di between Pi and a CSP in PSi is

measured as the number of constraints removed.

� A global distance is measured as maxi2A di.

When each agent tries to satisfy as many of its own constraints as

possible, this solution criterion can be considered a reasonable compro-

mise among agents, since the number of the constraint violations in the

worst agent is minimized.

Two algorithms for solving distributed maximal CSPs were pre-

sented in [12]. One is the synchronous branch and bound algorithm,

2
A universe is used for relaxing a problem by enlarging a variable domain. As

noted in [9], all kinds of relaxation of a CSP can be expressed in terms of relaxing

a constraint (enlarging permitted values for variables) by introducing a universe.
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and the other is the iterative distributed breakout algorithm. The syn-

chronous branch and bound algorithm is a very simple algorithm that

simulates branch and bound operations in a distributed environment.

Since it systematically searches in a distributed problem space in a

sequential manner, it is guaranteed to be complete. On the other hand,

the obvious drawbacks of this algorithm are that agents must act

in a prede�ned sequential order, and global knowledge is required to

determine such a sequential order.

The iterative distributed breakout algorithm repeatedly applies the

distributed breakout algorithm to distributed CSPs. At the �rst stage

of the iteration, an agent sets a predetermined uniform value, ub, to

its target distance and starts the distributed breakout algorithm. This

distributed breakout algorithm is modi�ed so that an agent can detect

the fact that all agents reach the state where the number of violated

constraints is less than the current target distance, i.e., ub. By detecting

this fact, an agent decreases the current target distance, propagates the

new target distance to all agents using improve messages, and moves

to the next stage. At the next stage, where all agents know the new

target distance, the distributed breakout algorithm is started again for

the new target distance. The agents continue this iteration until the

value of the target distance becomes zero.

In the iterative distributed breakout algorithm, agents perform con-

straint checking and value changing in parallel. Thus, this algorithm

can be more e�cient than the synchronous branch and bound algo-

rithm. However, this algorithm is not complete, i.e., it may fail to �nd

an optimal solution because the distributed breakout algorithm at a

certain stage may fail to �nd a solution.

In [10], a multi-agent model for solving maximal CSPs was devel-

oped. This model is an extension of the multi-agent model for the

resource allocation problem described in Section 4. In this model, each

variable performs its own simulated annealing process combined with

the min-conict heuristic.

6.2.3. Distributed Hierarchical CSP

A distributed hierarchical CSP is a problem where each agent tries to

�nd the variable values that minimize the maximal importance level

of violated constraints over agents. In this problem, each constraint is

labeled a positive integer called importance value, which represents the

importance of the constraint. A constraint with a larger importance

value is considered more important.

A distributed hierarchical CSP corresponds to �nding an optimal

solution to the following distributed partial CSP.
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� For each agent i, PSi is made up of fP 0

i ; P
1

i ; P
2

i ; : : :g, where P
�
i is

a CSP that is obtained from Pi by removing every constraint with

an importance value of � or less.

� For each agent i, a distance di between Pi and P
�
i is de�ned as �.

� A global distance is measured as maxi2A di.

This solution criterion can be considered another reasonable compro-

mise among agents.

A simple algorithm for solving distributed hierarchical CSPs, called

the asynchronous incremental relaxation algorithm, was presented in

[23]. This algorithm repeatedly applies the asynchronous backtracking

algorithm to distributed hierarchical CSPs in the following way.

In the �rst stage, agents try to solve an original distributed CSP,

in which all agents have all constraints, by using the asynchronous

backtracking algorithm. If the problem is solved, it is not an over-

constrained situation and a distributed hierarchical CSP is optimally

solved. If the problem is found to be over-constrained (this fact can be

identi�ed by the agent that produces an empty nogood), agents need

to give up constraints that are less important than a certain threshold.

This threshold is e�ciently calculated using the importance values of

constraints that cause the empty nogood. At the next stage, agents

again apply the asynchronous backtracking algorithm to the relaxed

distributed CSP. If it is solved, the optimal solution of the distributed

hierarchical CSP is found; otherwise, further relaxation occurs in the

same way. Agents continue this process until a solution is found for

some relaxed distributed CSP.

If the number of possible importance values is �nite, this algorithm

is guaranteed to be complete because the asynchronous backtracking

algorithm at each stage is complete.

7. Comparison of Distributed CSP Algorithms

In this section, we compare the search algorithms for solving distributed

CSPs with a single local variable, i.e., the asynchronous backtracking,

the asynchronous weak-commitment search, and distributed breakout

algorithm. We evaluate the e�ciency of algorithms by a discrete event

simulation, where each agent maintains its own simulated clock. An

agent's time is incremented by one simulated time unit whenever it

performs one cycle of computation. One cycle consists of reading all

incoming messages, performing local computation, and then sending

messages. We assume that a message issued at time t is available to

yokoo.tex; 28/03/2000; 14:12; p.22



24

the recipient at time t+1. We analyze the performance in terms of the

number of cycles required to solve the problem. One cycle corresponds

to a series of agent actions, in which an agent recognizes the state of

the world, then decides its response to that state, and communicates

its decisions.

We �rst show evaluation results using distributed graph-coloring

problems, where the number of variables/agents n = 60; 90, and 120,

and the number of constraints m = n� 2, and the number of possible

colors is 3. We generated 10 di�erent problems, and for each problem,

10 trials with di�erent initial values were performed (100 trials in all).

We set the limit for the number of cycles at 1,000, and terminated the

algorithm if this limit was exceeded; we counted the result as 1,000.

We show the average of required cycles, and the ratio of problems

completed successfully to the total number of problems in Table II.

Clearly, the asynchronous weak-commitment search outperforms the

asynchronous backtracking, since in the asynchronous weak-commitment

search, a mistake can be revised without conducting an exhaustive

search.

Table II. Comparison between Asynchronous Backtracking and Asynchronous

Weak-commitment Search (\sparse" Problems)

Algorithm n

60 90 120

asynchronous ratio 13% 0% 0%

backtracking cycles 917.4 | |

asynchronous ratio 100% 100% 100%

weak-commitment search cycles 59.4 70.1 106.4

Then, we compare the asynchronous weak-commitment search and

the distributed breakout. Table III shows the results where the number

of variables/agents n = 90; 120, and 150, and the number of constraints

m = n� 2, and the number of possible colors is 3. Table IV shows the

results where the number of constraints m = n�2:7. When m = n�2,

we can assume that constraints among agents are rather sparse. The

setting where m = n�2:7 has been identi�ed as a critical setting which

produces particularly di�cult, phase-transition problems in [2].

We can see that the distributed breakout outperforms the asyn-

chronous weak-commitment search when problem instances are crit-

ically di�cult. In the distributed breakout, each mode (wait ok? or

wait improve) requires one cycle. Therefore, each agent can change its

value at most once in two cycles, while in the asynchronous weak-
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commitment search algorithm, each agent can change its value at every

cycle. When a problem is critically di�cult, it is worthwhile to in-

troduce more control among agents, and change their values more

cautiously.

Table III. Comparison between Asynchronous Weak-commitment Search and

Distributed Breakout (\sparse" Problems)

Algorithm n

90 120 150

distributed ratio 100% 100% 100%

breakout cycles 150.8 210.1 278.8

asynchronous ratio 100% 100% 100%

weak-commitment search cycles 70.1 106.4 159.2

Table IV. Comparison between Asynchronous Weak-commitment Search and

Distributed Breakout (\critical" Problems)

Algorithm n

90 120 150

distributed ratio 100% 100% 100%

breakout cycles 517.1 866.4 1175.5

asynchronous ratio 97% 65% 29%

weak-commitment search cycles 1869.6 6428.4 8249.5

8. Conclusions and Future Issues

This paper provided an overview of the existing research on distributed

CSPs. We described the problem de�nition of distributed CSP, and

showed several MAS application problems that can be formalized as

distributed CSPs. Furthermore, we described a series of algorithms for

solving distributed CSPs.

There are many remaining research issues concerning distributed

CSPs, including the following items.

� Much more work is needed to develop better algorithms, espe-

cially for multiple local variables and distributed partial constraint

satisfaction problems.
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� For centralized CSPs, it is well known that the most di�cult

problem instances are in the phase-transition region [2], where

the provability that a problem instance has a solution is about

0.5. On the other hand, we don't have a clear idea about what

kinds of problem instances of distributed CSPs would be most

di�cult when a problem has multiple local variables. More theo-

retical/experimental work is needed to identify how the ratio of

inter/intra constraints would a�ect the problem di�culty.

� We cannot expect that a single algorithm can e�ciently solve all

types of problems. More theoretical/experimental evaluations are

needed to clarify the characteristics of algorithms.

� In MAS application problems, it is common that the problem set-

ting (environment) changes dynamically, and agents must make

their decisions under real-time constraints. Dynamic/real-time as-

pects should be incorporated into the distributed CSP formaliza-

tion.
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