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Abstract

The area of learning in multi-agent systems is today one of the most

fertile grounds for interaction between game theory and artificial intelli-

gence. We focus on the foundational questions in this interdisciplinary

area, and identify several distinct agendas that ought to, we argue, be

separated. The goal of this article is to start a discussion in the research

community that will result in firmer foundations for the area.1

1 Introduction

The topic of learning in multi-agent systems, or multi-agent learning (MAL
henceforth), has a long history in game theory, almost as long as the history
of game theory itself.2 As early as 1951, fictitious play [Brown, 1951] was pro-
posed as a learning algorithm for computing equilibria in games and there have
been proposals for how to evaluate the success of learning rules going back to
[Hannan, 1957] and [Blackwell, 1956]. Since that time hundreds, if not thou-
sands, of articles have been published on the topic, and at least two books
([Fudenberg and Levine, 1998] and [Young, 2004]).

In Artificial Intelligence (AI) the history of single-agent learning is as rich if
not richer, with thousands of articles, many books, and some very compelling
applications in a variety of fields (for some examples see [Kaelbling et al., 1996],
[Mitchell, 1997], or [Sutton and Barto, 1998]). While it is only in recent years

1This article has a long history and owes many debts. A first version was presented at
the NIPS workshop, Multi-Agent Learning: Theory and Practice, in 2002. A later version
was presented at the AAAI Fall Symposium in 2004 [Shoham et al., 2004]. Over time it has
gradually evolved into the current form, as a result of our own work in the area as well as the
feedback of many colleagues. We thank them all collectively, with special thanks to members of
the multi-agent group at Stanford in the past three years. Rakesh Vohra and Michael Wellman
provided detailed comments on the latest draft which resulted in substantive improvements,
although we alone are responsible for the views put forward. This work was supported by
NSF ITR grant IIS-0205633 and DARPA grant HR0011-05-1.

2Another more recent term for the area within game theory is interactive learning.
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that AI has branched into the multi-agent aspects of learning, it has done so
with something of a vengeance. If in 2003 one could describe the AI literature
on MAL by enumerating the relevant articles, today this is no longer possible.
The leading conferences routinely feature articles on MAL, as do the journals.3

While the AI literature maintains a certain flavor that distinguishes it from
the game theoretic literature, the commonalities are greater than the differences.
Indeed, alongside the area of mechanism design, and perhaps the computational
questions surrounding solution concepts such as the Nash equilibrium, MAL is
today arguably one of the most fertile interaction grounds between computer
science and game theory.

The MAL research in both fields has produced some inspiring results. We
will not repeat them here, since we cannot be comprehensive in this arti-
cle, but nothing we say subsequently should be interpreted as belittling the
achievements in the area. Yet alongside these successes there are some in-
dications that it could be useful to take a step back and ask a few basic
questions about the area of MAL. One surface indication is the presence of
quite a number of frustrating dead ends. For example, the AI literature at-
tempting to extend Bellman-style single-agent reinforcement learning techniques
(in particular, Q-learning [Watkins and Dayan, 1992]) to the multi-agent set-
ting, has fared well in zero-sum repeated games (e.g., [Littman, 1994] and
[Littman and Szepesvari, 1996]) as well as common-payoff (or ‘team’) repeated
games (e.g., [Claus and Boutilier, 1998], [Kapetanakis and Kudenko, 2004], and
[Wang and Sandholm, 2002]), but less well in general-sum stochastic games
(e.g., [Hu and Wellman, 1998], [Littman, 2001] and [Greenwald and Hall, 2003])
(for the reader unfamiliar with this line of work, we cover it briefly in Section 4).
Indeed, upon close examination, it becomes clear that the very foundations of
MAL could benefit from explicit discussion. What exact question or questions
is MAL addressing? What are the yardsticks by which to measure answers to
these questions? The present article focuses on these foundational questions.

To start with the punch line, following an extensive look at the literature we
have reached two conclusions:

• There are several different agendas being pursued in the MAL literature.
They are often left implicit and conflated; the result is that it is hard to
evaluate and compare results.

• We ourselves can identify and make sense of five distinct research agendas.

Not all work in the field falls into one of the five agendas we identify. This
is not necessarily a critique of work that doesn’t; it simply means that one
must identify yet other well-motivated and well defined problems addressed
by that work. We expect that as a result of our throwing down the gauntlet
additional such problems will be defined, but also that some past work will

3We acknowledge a simplification of history here. There is definitely MAL work in AI that
predates the last few years, though the relative deluge is indeed recent. Similarly, we focus
on AI since this is where most of the action is these days, but there are also other areas in
computer science that feature MAL material; we mean to include that literature here as well.
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be re-evaluated and reconstructed. Certainly we hope that future work will
always be conducted and evaluated against well-defined criteria, guided by this
article and the discussion engendered by it among our colleagues in AI and game
theory. In general we view this article not as a final statement but as the start
of a discussion.

In order to get to the punch line outlined above, we proceed as follows. In
the next section we define the formal setting on which we focus. In Section 3
we illustrate why the question of learning in multi-agent settings is inherently
more complex than in the single-agent setting, and why it places a stress on
basic game theoretic notions. In Section 4 we provide some concrete examples
of MAL approaches from both game theory and AI. This is anything but a
comprehensive coverage of the area, and the selection is not a value judgment.
Our intention is to anchor the discussion in something concrete for the benefit
of the reader who is not familiar with the area, and – within the formal confines
we discuss in Section 2 – the examples span the space of MAL reasonably well.
In Section 5 we identify five different agendas that we see (usually) implicit in
the literature, and which we argue should be made explicit and teased apart.
We end in Section 6 with a summary of the main points made in this article.

A final remark is in order. The reader may find some of the material in the
next three sections basic or obvious; different readers will probably find different
parts so. We don’t mean to insult anyone’s intelligence, but we err on the side
of explicitness for two reasons. First, this article is addressed to at least two
different communities with somewhat different backgrounds. Second, our goal
is to contribute to the clarification of foundational issues; we don’t want to be
guilty of vagueness ourselves.

2 The formal setting

We will couch our discussion in the formal setting of stochastic games (aka
Markov games). Most of the MAL literature adopts this setting, and indeed
most of it focuses on the even more narrow class of repeated games. Furthermore,
stochastic games also generalize Markov Decision Problems (MDPs), the setting
from which much of the relevant learning literature in AI originates. These are
defined as follows.

A stochastic game can be represented as a tuple: (N,S, ~A, ~R, T ). N is a set

of agents indexed 1, . . . , n. S is a set of n-agent stage games. ~A = A1, . . . , An,
with Ai the set of actions (or pure strategies) of agent i (note that we assume the
agent has the same strategy space in all games; this is a notational convenience,
but not a substantive restriction). ~R = R1, . . . , Rn, with Ri : S× ~A→ R giving

the immediate reward function of agent i for stage game S. T : S × ~A→ Π(S)
is a stochastic transition function, specifying the probability of the next stage
game to be played based on the game just played and the actions taken in it.

We also need to define a way for each agent to aggregate the set of immediate
rewards received in each state. For finitely repeated games we can simply use
the sum or average, while for infinite games the most common approaches are to
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use either the limit average or the sum of discounted awards
∑

∞

t=1 δtrt, where
rt is the reward received at time t.

A repeated game is a stochastic game with only one stage game, while an
MDP is a stochastic game with only one agent.

While most of the MAL literature lives happily in this setting, we would
be remiss not to acknowledge the literature that does not. Certainly one could
discuss learning in the context of extensive-form games of incomplete and/or
imperfect information (cf. [Jehiel and Samet, 2001]). We don’t dwell on those
since it would distract from the main discussion, and since the lessons we draw
from our setting will apply there as well.

Although we will not specifically include them, we also intend our comments
to apply at a general level to large population games and evolutionary models,
and particularly replicator dynamics (RD) [Schuster and Sigmund, 1983] and
evolutionary stable strategies (ESS) [Smith, 1982]. These are defined as follows.
The replicator dynamic model assumes a population of homogenous agents each
of which continuously plays a two-player game against every other agent. For-
mally the setting can be expressed as a tuple (A, ~P0, R). A is the set of possible
pure strategies/actions for the agents indexed 1, . . . ,m. P0 is the initial distri-
bution of agents across possible strategies,

∑m
i=1 P0(i) = 1. R : A × A → R

is the immediate reward function for each agent with R(a, a′) giving the re-
ward for an agent playing strategy a against another agent playing strategy
a′. The population then changes proportions according to how the reward for
each strategy compares to the average reward: dt(Pt(a)) = Pt(a)[ut(a) − u∗

t ],
where ut(a) =

∑
a′ Pt(a

′)R(a, a′) and u∗

t =
∑

a Pt(a)ut(a). A strategy a is then
defined to be an evolutionary stable strategy if and only if for some ǫ > 0 and
for all other strategies a′, R(a, (1− ǫ)a + ǫa′) > R(a′, (1− ǫ)a + ǫa′).

As the names suggest, one way to interpret these settings is as building
on population genetics, that is, as representing a large population undergoing
frequent pairwise interactions. An alternative interpretation however is as a
repeated game between two agents, with the distribution of strategies in the
population representing the agent’s mixed strategy (in the homogenous defini-
tion above the two agents have the same mixed strategy, but there exist more
general definitions with more than two agents and with non-identical strategies).
The second interpretation reduces the setting to the one we discuss. The first
bears more discussion, and we do it briefly in Section 4.

And so we stay with the framework of stochastic games. What is there
to learn in these games? Here we need to be explicit about some aspects of
stochastic games that were glossed over so far. Do the agents know the stochastic
game, including the stage games and the transition probabilities? If not, do they
at least know the specific game being played at each stage, or only the actions
available to them? What do they see after each stage game has been played
– only their own rewards, or also the actions played by the other agent(s)?
Do they perhaps magically see the other agent(s)’ mixed strategy in the stage
game? And so on.

In general, games may be known or not, play may be observable or not, and
so on. We will focus on known, fully observable games, where the other agent’s
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strategy (or agents’ strategies) is not known a priori (though in some case there
is a prior distribution over it). In our restricted setting there two possible things
to learn. First, the agent can learn the opponent’s (or opponents’) strategy (or
strategies), so that the agent can then devise a best (or at least a good) response.
Alternatively, the agent can learn a strategy of his own that does well against
the opponents, without explicitly learning the opponent’s strategy. The first is
sometimes called model-based learning, and the second model-free learning.

In broader settings there is more to learn. In particular, with unknown
games, one can learn the game itself. Some will argue the restricted setting is not
a true learning setting, but (a) much of the current work on MAL, particularly
in game theory, takes place in this setting, and (b) the foundational issues we
wish to tackle surface already here. In particular, our comments are intended
to also apply to the work in the AI literature on games with unknown payoffs,
work which builds on the success of learning in unknown MDPs. We will have
more to say about the nature of ‘learning’ in the setting of stochastic games in
the following sections.

3 On some special characteristics of multi-agent
learning

Before launching into specifics, we wish to highlight the special nature of MAL.
There are two messages we would like to get across, one aimed at AI researchers
specifically and one more broadly. Both lessons can be gleaned from simple and
well-known examples.

Left Right

Up 1, 0 3, 2

Down 2, 1 4, 0

Figure 1: Stackelberg stage game: The payoff for the row player is given first
in each cell, with the payoff for the column player following.

Consider the game described in Figure 1. In this game the row player has a
strictly dominant strategy, Down, and so seemingly there is not much more to
say about this game. But now imagine a repeated version of this game. If the
row player indeed repeatedly plays Down, assuming the column player is paying
any attention, he (the column player) will start responding with Left, and the
two will end up with a repeated (Down,Left) play. If, however, the row player
starts repeatedly playing Up, and again assuming the column player is awake, he
may instead start responding by playing Right, and the two players will end up
with a repeated (Up,Right) play. The lesson from this is simple yet profound:
In a multi-agent setting one cannot separate learning from teaching. In this
example, by playing his dominated strategy, the row player taught the column
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player to play in a way that benefits both. Indeed, for this reason it might be
more appropriate to speak more neutrally about multi-agent adaptation rather
than learning. We will not fight this linguistic battle, but the point remains im-
portant, especially for computer scientists who are less accustomed to thinking
about interactive considerations than game theorists. In particular, it follows
there is no a priori reason to expect that machine learning techniques that have
proved successful in AI for single-agent settings will also prove relevant in the
multi-agent setting.

The second lesson we draw from the well-known game of Rochambeau, or
Rock-Paper-Scissors, given in Figure 2.

Rock Paper Scissors

Rock 0, 0 −1, 1 1,−1

Paper −1, 1 0, 0 1,−1

Scissors −1, 1 1,−1 0, 0

Figure 2: Rock-Paper-Scissors

As is well known, this zero-sum game has a unique Nash equilibrium in
which each player randomizes uniformly among the three strategies. One could
conclude that there is not much more to say about the game. But suppose you
entered a Rochambeau tournament. Would you simply adopt the equilibrium
strategy?

If you did, you would not win the competition. This is no idle specula-
tion; such competitions take place routinely. For example, starting in 2002, the
World Rock Papers Scissors Society (WRPS) standardized a set of rules for in-
ternational play and has overseen annual International World Championships as
well as many regional and national events throughout the year. These champi-
onships have been attended by players from around the world and have attracted
widespread international media attention. The winners are never equilibrium
players. For example, on October 25th, 2005, 495 people entered the compe-
tition in Toronto from countries as diverse as Norway, Northern Ireland, the
Cayman Islands, Australia, New Zealand and the UK. The winner was Toronto
Lawyer Andrew Bergel, who beat Californian Stan Long in the finals. His strat-
egy? “[I] read the minds of my competitors and figure out what they were
thinking. I don’t believe in planning your throws before you meet your oppo-
nent.”

These tournaments of course are not a perfect match with the formal model
of repeated games. However, we include the example not only for entertainment
value. The rules of the RPS tournaments call for ‘matches’ between players,
each match consisting of several ‘games’, where a game is a single play of RPS.
The early matches adopted a “best of three of three” format, meaning that the
player who wins a best of three set garners one point and requires two points to
take the match. The Semi-Finals and the Final Match used the “best of three
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of five” format, meaning that the player who wins a best of three set garners
one point and requires three points to take the match. And so the competition
really consisted of a series of repeated games, some of them longer than others.4

Entertainment aside, what do we learn from this? We believe that this is
a cautioning tale regarding the predictive or prescriptive role of equilibria in
complex games, and in particular in repeated games. There are many examples
of games with complex strategy spaces, in which equilibrium analysis plays little
or no role – including familiar parlor games, or the Trading Agent Competition
(TAC), a computerized trading competition5. The strategy space in a repeated
game (or more generally a stochastic game) is immense – all mappings from
past history to mixed strategies in the stage game. In such complex games it
is not reasonable to expect that players contemplate the entire strategy space
– their own or that of the opponent(s). Thus, (e.g., Nash) equilibria don’t play
here as great a predictive or prescriptive role.

Our cautioning words should be viewed as countering the default blind adop-
tion of equilibria as the driving concept in complex games, but not as a sweeping
statement against the relevance of equilibria in some cases. The simpler the
stage game, and the longer its repetition, the more instructive are the equilib-
ria. Indeed, despite our example above, we do believe that if only two players
play a repeated RPS game for long enough, they will tend to converge to the
equilibrium strategy (this is particularly true of computer programs, that don’t
share the human difficulty with throwing a mental die). Even in more complex
games there are examples where computer calculation of approximate equilibria
within a restricted strategy space provided valuable guidance in constructing
effective strategies. This includes the game of Poker ([Koller and Pfeffer, 1997]
and [Billings et al., 2003]), and even, as an exception to the general rule we
mentioned, one program that competed in the Trading Agent Competition
[Cheng et al., 2005]. Our point has only been that in the context of complex
games, so-called “bounded rationality”, or the deviation from the ideal behavior
of omniscient agents, is not an esoteric phenomenon to be brushed aside.

4 A (very partial) sample of MAL work

To make the discussion concrete, it is useful to look at MAL work over the
years. The selection that follows is representative but very partial; no value

4We do acknowledge some degree of humor in the example. The detailed rules in
http://www.rpschamps.com/rules.html make for additional entertaining reading; of note is
the restriction of the strategy space to Rock, Papers and Scissors, and explicitly ruling out
others: “Any use of Dynamite, Bird, Well, Spock, Water, Match, Fire, God, Lightning,
Bomb, Texas Longhorn, or other non-sanctioned throws, will result in automatic disqualifica-
tion.” The overview of the RPS society and its tournaments is adapted from the inimitable
Wikipedia, the collaborative online encyclopedia, as available on January 2, 2006. Wikipedia
goes on to list the champions since 2002; we note without comment that they are all male
Torontonians. The results of the specific competition cited are drawn from the online edition
of the Boise Weekly dated November 2, 2005. The Boise Weekly starts the piece with “If it
weren’t true, we wouldn’t report on it”.

5http://tac.eecs.umich.edu
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judgment or other bias are intended by this selection. The reader familiar with
the literature may wish to skip to Section 4.3, where we make some general
subjective comments.

Unless we indicate otherwise, our examples are drawn from the special case
of repeated, two-person games (as opposed to stochastic, n-player games). We
do this both for ease of exposition, and because the bulk of the literature indeed
focuses on this special case.

We divide the coverage into three parts: techniques, results, and commen-
tary.

4.1 Some MAL techniques

We will discuss three classes of techniques – one representative of work in game
theory, one more typical of work in AI, and one that seems to have drawn equal
attention from both communities.

4.1.1 Model-based approaches

The first approach to learning we discuss, which is common in the game theory
literature, is the model-based one. It adopts the following general scheme:

1. Start with some model of the opponent’s strategy.

2. Compute and play the best response.

3. Observe the opponent’s play and update your model of her strategy.

4. Goto step 2.

Among the earliest, and probably the best-known, instance of this scheme
is fictitious play [Brown, 1951]. The model is simply a count of the plays by
the opponent in the past. The opponent is assumed to be playing a stationary
strategy, and the observed frequencies are taken to represent the opponent’s
mixed strategy. Thus after five repetitions of the Rochambeau game in which
the opponent played (R,S, P,R, P ), the current model of her mixed strategy is
(R = .4, P = .4, S = .2).

There exist many variants of the general scheme, for example those in which
one does not play the exact best response in step 2. This is typically accom-
plished by assigning a probability of playing each pure strategy, assigning the
best response the highest probability, but allowing some chance of playing any of
the strategies. A number of proposals have been made of different ways to assign
these probabilities such as smooth fictitious play [Fudenberg and Kreps, 1993]
and exponential fictitious play [Fudenberg and Levine, 1995].

A more sophisticated version of the same scheme is seen in rational learning
[Kalai and Lehrer, 1993]. The model is a distribution over the repeated-game
strategies. One starts with some prior distribution; for example, in a repeated
Rochambeau game, the prior could state that with probability .5 the opponent
repeatedly plays the equilibrium strategy of the stage game, and, for all k > 1,
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with probability 2−k she plays R k times and then reverts to the repeated
equilibrium strategy. After each play, the model is updated to be the poste-
rior obtained by Bayesian conditioning of the previous model. For instance, in
our example, after the first non-R play of the opponent, the posterior places
probability 1 on the repeated equilibrium play.

4.1.2 Model-free approaches

An entirely different approach that has been commonly pursued in the AI lit-
erature [Kaelbling et al., 1996], is the model-free one, which avoids building an
explicit model of the opponent’s strategy. Instead, over time one learns how well
one’s own various possible actions fare. This work takes place under the general
heading of reinforcement learning6, and most approaches have their roots in the
Bellman equations [Bellman, 1957]. The basic algorithm for solving for the best
policy in a known MDP starts by initializing a value function, V0 : S → R, with
a value for each state in the MDP. The value function can then be iteratively
updated using the Bellman equation:

Vk+1 ← R(s) + γmaxa

∑

s′

T (s, a, s′)Vk(s′)

The optimal policy can then be obtained by selecting the action, a, at each
state, s, that maximizes the expected value:

∑
s′ T (s, a, s′)Vk(s′). Much of the

work in AI has focused strategies for rapid convergence, on very large MDPs, and
in particular on unknown and partially observable MDPs. While this is not our
focus, we do briefly discuss the unknown case, since this is where the literature
leading to many of the current approaches for stochastic games originated.

For MDPs with unknown reward and transition functions, the Q-learning
algorithm [Watkins and Dayan, 1992] can be used to compute an optimal policy.

Q(s, a) ← (1− αt)Q(s, a) + αt[R(s, a) + γV (s′)]

V (s) ← max
a∈A

Q(s, a)

As is well known, with certain assumptions about the way in which actions
are selected at each state over time and constraints on the learning rate schedule,
αt, Q-learning can be shown to converge to the optimal value function V ∗.

The Q-learning algorithm can be extended to the multi-agent stochastic
game setting by having each agent simply ignore the other agents and pretend
that the environment is passive:

Qi(s, ai) ← (1− αt)Qi(s, ai) + αt[Ri(s,~a) + γVi(s
′)]

Vi(s) ← max
ai∈Ai

Qi(s, ai)

6We note that the term is used somewhat differently in the game theory literature.
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Several authors have tested variations of the basic Q-learning algorithm for
MAL (e.g., [Sen et al., 1994]). However, this approach ignores the multi-agent
nature of the setting entirely. The Q-values are updated without regard for
the actions selected by the other agents. While this can be justified when the
opponents’ distributions of actions are stationary, it can fail when an opponent
may adapt its choice of actions based on the past history of the game.

A first step in addressing this problem is to define the Q-values as a function
of all the agents’ actions:

Qi(s,~a) ← (1− α)Qi(s,~a) + α[Ri(s,~a) + γVi(s
′)]

We are however left with the question of how to update V , given the more
complex nature of the Q-values.

For (by definition, two-player) zero-sum SGs, Littman suggests the minimax-
Q learning algorithm, in which V is updated with the minimax of the Q val-
ues [Littman, 1994]:

V1(s) ← max
P1∈Π(A1)

min
a2∈A2

∑

a1∈A1

P1(a1)Q1(s, (a1, a2)).

Later work (such as the joint-action learners in [Claus and Boutilier, 1998]
and the Friend-or-Foe Q algorithm in [Littman, 2001]) proposed other update
rules for the Q and V functions focusing on the special case of common-payoff
(or ‘team’) games. A stage game is common-payoff if at each outcome all agents
receive the same payoff. The payoff is in general different in different outcomes,
and thus the agents’ problem is that of coordination; indeed these are also called
games of pure coordination.

The work on zero-sum and common-payoff games continues to be refined and
extended (e.g., [Kearns and Singh, 1998], [Brafman and Tennenholtz, 2000],
[Lauer and Riedmiller, 2000], and [Wang and Sandholm, 2002]). Much of this
work has concentrated on provably optimal tradeoffs between exploration and
exploitation in unknown, zero-sum games; this is a fascinating topic, but not
germane to our focus. More relevant are the most recent efforts in this line of
research to extend the “Bellman heritage” to general-sum games (e.g., Nash-
Q by [Hu and Wellman, 2003] and CE-Q by [Greenwald and Hall, 2003]). We
do not cover these for two reasons: The description is more involved, and the
results have been less satisfactory; more on the latter below.

4.1.3 Regret minimization approaches

Our third and final example of prior work in MAL is no-regret learning. It
is an interesting example for two reasons. First, it has some unique proper-
ties that distinguish it from the work above. Second, both the AI and game
theory communities appear to have converged on it independently. The basic

10



idea goes back to early work on how to evaluate the success of learning rules
[Hannan, 1957] and [Blackwell, 1956], and has since been extended and redis-
covered numerous times over the years under the names of universal consis-
tency, no-regret learning, and the Bayes envelope (see [Foster and Vohra, 1999]
for an overview of this history). We will describe the algorithm proposed in
[Hart and Mas-Colell, 2000] as a representative of this body of work. We start
by defining the regret, rt

i(aj , si) of agent i for playing the sequence of actions si

instead of playing action aj , given that the opponents played the sequence s−i.

rt
i(aj , si|s−i) =

t∑

k=1

R(aj , s
k
−i)−R(sk

i , sk
−i)

The agent then selects each of its actions with probability proportional to
max(rt

i(aj , si), 0) at each time step t + 1.
Recently, these ideas have also been adopted by researchers in the computer

science community (e.g., [Freund and Schapire, 1995], [Jafari et al., 2001], and
[Zinkevich, 2003]).

Note that the application of approaches based on regret minimization has
been restricted to the case of repeated games. The difficulties of extending this
concept to stochastic games are discussed in [Mannor and Shimkin, 2003].

4.2 Some typical results

One sees at least three kinds of results in the literature regarding the learning
algorithms presented above, and others like them. These are:

1. Convergence of the strategy profile to an (e.g., Nash) equilibrium of the
stage game in self play (that is, when all agents adopt the learning proce-
dure under consideration).

2. Successful learning of an opponent’s strategy (or opponents’ strategies).

3. Obtaining payoffs that exceed a specified threshold.

Each of these types comes in many flavors; here are some examples. The
first type is perhaps the most common in the literature, in both game theory
and AI. For example, while fictitious play does not in general converge to a
Nash equilibrium of the stage game, the distribution of its play can be shown
to converge to an equilibrium in zero-sum games [Robinson, 1951], 2x2 games
with generic payoffs [Miyasawa, 1961], or games that can be solved by iterated
elimination of strictly dominated strategies [Nachbar, 1990].

Similarly in AI, in [Littman and Szepesvari, 1996] minimax-Q learning is
proven to converge in the limit to the correct Q-values for any zero-sum game,
guaranteeing convergence to a Nash equilibrium in self-play. This result makes
the standard assumptions of infinite exploration and the conditions on learn-
ing rates used in proofs of convergence for single-agent Q-learning. Claus
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and Boutilier [Claus and Boutilier, 1998] conjecture that both single-agent Q-
learners and the belief-based joint action learners they proposed converge to
an equilibrium in common payoff games under the conditions of self-play and
decreasing exploration, but do not offer a formal proof. Friend-or-Foe Q and
Nash-Q were both shown to converge to a Nash equilibrium in a set of games
that are a slight generalization on the set of zero-sum and common payoff games.

Rational learning exemplifies results of the second type. The convergence
shown is to correct beliefs about the opponent’s repeated game strategy; thus it
follows that, since each agent adopts a best response to their beliefs about the
other agent, in the limit the agents will converge to a Nash equilibrium of the
repeated game. This is an impressive result, but it is limited by two factors; the
convergence depends on a very strong assumption of absolute continuity, and
the beliefs converged to are only correct with respect to the aspects of history
that are observable given the strategies of the agents. This is an involved topic,
and the reader is referred to the literature for more details.

The literature on no-regret learning provides an example of the third type
of result, and has perhaps been the most explicit about criteria for evaluating
learning rules. For example, in [Fudenberg and Levine, 1995] two criteria are
suggested. The first is that the learning rule be ‘safe’, which is defined as
the requirement that the learning rule guarantee at least the minimax payoff
of the game. (The minimax payoff is the maximum expected value a player
can guarantee against any possible opponent.) The second criterion is that the
rule should be ‘consistent’. In order to be ‘consistent’, the learning rule must
guarantee that it does at least as well as the best response to the empirical
distribution of play when playing against an opponent whose play is governed
by independent draws from a fixed distribution. They then define ‘universal
consistency’ as the requirement that a learning rule do at least as well as the
best response to the empirical distribution regardless of the actual strategy the
opponent is employing (this implies both safety and consistency) and show that
a modification of the fictitious play algorithm achieves this requirement. In
[Fudenberg and Levine, 1998] they strengthen their requirement by requiring
that the learning rule also adapt to simple patterns in the play of its opponent.
The requirement of ‘universal consistency’ is in fact equivalent to requiring
that an algorithm exhibit no-regret, generally defined as follows, against all
opponents.

∀ǫ > 0, (limt→inf [
1

t
max
aj∈Ai

rt
i(aj , si|s−i)] < ǫ)

In both game theory and artificial intelligence, a large number of algorithms
have been show to satisfy universal consistency or no-regret requirements. In
addition, recent work [Bowling, 2005] has tried to combine these criteria result-
ing in GIGA-WoLF, a no-regret algorithm that provably achieves convergence
to a Nash equilibrium in self-play for games with two players and two actions per
player. Meanwhile, the regret matching algorithm [Hart and Mas-Colell, 2000]
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described earlier guarantees that the empirical distributions of play converge to
the set of correlated equilibria of the game.

Other recent work by [Banerjee and Peng, 2005] has addressed concerns with
only requiring guarantees about the behavior in the limit. Their algorithm
is guaranteed to achieve ǫ-no-regret payoff guarantees with small polynomial
bounds on time and uses only the agent’s ability to observe what payoff it
receives for each action.

4.3 Some observations and questions

We have so far described the work without comment; here we take a step back
and ask some questions about this representative work.

Our first comment concerns the settings in which the results are presented.
While the learning procedures apply broadly, the results for the most part focus
on self play (that is, when all agents adopt the learning procedure under con-
sideration). They also tend to focus on games with only two agents. Why does
most of the work have this particular focus? Is it technical convenience, or is
learning among more than two agents, or among agents using different learning
procedures, less relevant for some reason?

Our second comment pertains to the nature of the results. With the ex-
ception of the work on no-regret learning, the results we described investigate
convergence to equilibrium play of the stage game (albeit with various twists).
Is this the pertinent yardstick? If the process (say of self play between two
agents) does not converge to equilibrium play, should we be disturbed? More
generally, and again with the exception of no-regret learning, the work focuses
on the play to which the agents converge, not on the payoffs they obtain. Which
is the right focus?

No-regret learning is distinguished by its starting with criteria for successful
learning, rather than a learning procedure. The question one might ask is
whether the particular criteria are adequate. In particular, the requirement of
consistency ignores the basic lesson regarding learning-vs.-teaching discussed in
Section 3. By measuring the performance only against stationary opponents,
we do not allow for the possibility of teaching opponents. Thus, for example, in
an infinitely repeated Prisoners’ Dilemma game, no-regret dictates the strategy
of always defecting, precluding the possibility of cooperation (for example, by
the mutually reinforcing Tit-For-Tat strategies).

Our goal here is not to critique the existing work, but rather to shine a
spotlight on the assumptions that have been made, and ask some questions
that get at the basic issues addressed, questions which we feel have not been
discussed as clearly and as explicitly as they deserve. In the next section we
propose an organized way of thinking about these questions.
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5 Five distinct agendas in multi-agent learning

After examining the MAL literature – the work surveyed here and much else –
we have reached the conclusion that there are several distinct agendas at play,
which are often left implicit and conflated. We believe that a prerequisite for
success in the field is to be very explicit about the problem being addressed. We
ourselves can identify five distinct possible goals of MAL research. There may
well be others, but these are the ones we can identify. They each have a clear
motivation and a success criterion that will allow researchers to evaluate new
contributions, even if people’s judgments may diverge regarding their relative
importance or success to date. They can be caricatured as follows:

1. Computational

2. Descriptive

3. Normative

4. Prescriptive, cooperative

5. Prescriptive, non-cooperative

We can now consider each of the five in turn.
The first agenda is computational in nature. It views learning algorithms as

an iterative way to compute properties of the game, such as solution concepts.
As an example, fictitious play was originally proposed as a way of computing
a sample Nash equilibrium for zero-sum games [Brown, 1951], and replicator
dynamics has been proposed for computing a sample Nash equilibrium in sym-
metric games. Other adaptive procedures have been proposed more recently
for computing other solution concepts (for example, computing equilibria in
local-effect games [Leyton-Brown and Tennenholtz, 2003]). These tend not to
be the most efficient computation methods, but they do sometimes constitute
quick-and-dirty methods that can easily be understood and implemented.

The second agenda is descriptive – it asks how natural agents learn in the
context of other learners. The goal here is to investigate formal models of learn-
ing that agree with people’s behavior (typically, in laboratory experiments), or
possibly with the behaviors of other agents (for example, animals or organiza-
tions). This same agenda could also be taken to apply to large-population mod-
els, if those are indeed interpreted as representing populations. This problem is
clearly an important one, and when taken seriously calls for strong justification
of the learning dynamics being studied. One approach is to apply the experi-
mental methodology of the social sciences. There are several good examples of
this approach in economics and game theory, for example [Erev and Roth, 1998]
and [Camerer et al., 2002]. There could be other supports for studying a given
learning process. For example, to the extent that one accepts the Bayesian
model as at least an idealized model of human decision making, one could jus-
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tify Kalai and Lehrer’s model of rational learning.7 However, it seems to us that
sometimes there is a rush to investigate the convergence properties, motivated
by the wish to anchor the central notion of game theory in some process, at
the expense of motivating that process rigorously.8 In this connection see also
a recent critique [Rubinstein, 2005] of some work carried out more generally in
behavioral economics.

The centrality of equilibria in game theory underlies the third agenda we
identify in MAL, which for lack of a better term we called normative, and
which focuses on determining which sets of learning rules are in equilibrium
with each other. More precisely, we ask which repeated-game strategies are in
equilibrium; it just so happens that in repeated games, most strategies embody
a learning rule of some sort. For example, we can ask whether fictitious play
and Q-learning, appropriately initialized, are in equilibrium with each other in
a repeated Prisoner’s Dilemma game. Although one might expect that game
theory purists might flock to this approach, there are very few examples of it.
In fact, the only example we know originates in AI rather than game theory
[Brafman and Tennenholtz, 2002], and it is explicitly rejected by at least some
game theorists [Fudenberg and Kreps, 1993]. We consider it a legitimate nor-
mative theory. Its practicality depends on the complexity of the stage game
being played and the length of play; in this connection see our discussion of the
problematic role of equilibria in Section 3.

The last two agendas are prescriptive; they ask how agents should learn.
The first of these involves distributed control in dynamic systems. There is
sometimes a need or desire to decentralize the control of a system operating
in a dynamic environment, and in this case the local controllers must adapt
to each other’s choices. This direction, which is most naturally modelled as
a repeated or stochastic common-payoff (or ‘team’) game, has attracted much
attention in AI in recent years. Proposed approaches can be evaluated based
on the value achieved by the joint policy and the resources required, whether
in terms of computation, communication, or time required to learn the policy.
In this case there is rarely a role for equilibrium analysis; the agents have no
freedom to deviate from the prescribed algorithm. Examples of this work include
[Guestrin et al., 2001], [Claus and Boutilier, 1998], and [Chang et al., 2004] to
name a small sample. Researchers interested in this agenda have access to a
large body of existing work both within AI and other fields such as control
theory and distributed computing.

In our final agenda, termed ‘prescriptive, non-cooperative’, we ask how an
agent should act to obtain high reward in the repeated (and more generally,
stochastic) game. It thus retains the design stance of AI, asking how to design
an optimal (or at least effective) agent for a given environment. It just so hap-

7Although this is beyond the scope of this article, we note that the question of whether
one can justify the Bayesian approach in an interactive setting goes beyond the familiar con-
travening experimental data; even the axiomatic justification of the expected-utility approach
does not extend naturally to the multi-agent case.

8It has been noted that game theory is somewhat unusual in having the notion of an
equilibrium without associated dynamics that give rise to the equilibrium.[Arrow, 1986]
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pens that this environment is characterized by the types of agents inhabiting it,
agents who may do some learning of their own. The objective of this agenda is
to identify effective strategies for environments of interest. An effective strategy
is one that achieves a high reward in its environment, where one of the main
characteristics of this environment is the selected class of possible opponents.
This class of opponents should itself be motivated as being reasonable and con-
taining opponents of interest. Convergence to an equilibrium is not a goal in
and of itself.

There are various possible instantiations of the term ‘high reward’. One
example is the no-regret line of work which we discussed. It clearly defines
what it means for a reward to be high enough (namely, to exhibit no regret); we
also discussed the limitations of this criterion. A more recent example, this one
from AI, is [Bowling and Veloso, 2001]. This work puts forward two criteria
for any learning algorithm in a multi-agent setting: (1) The learning should
always converge to a stationary policy, and (2) if the opponent converges to
a stationary policy, the algorithm must converge to a best response. There
are possible critiques of these precise criteria. They can be too weak since in
many cases of interest the opponents will not converge on a stationary strategy.
And they can be too strong since attaining a precise best response, without a
constraint on the opponent’s strategy, is not feasible. But this work, to our
knowledge, marks the first time a formal criterion was put forward in AI.

A third example of the last agenda is our own work in recent years. In
[Powers and Shoham, 2005b] we define a criterion parameterized by a class of
‘target opponents’; with this parameter we make three requirements of any
learning algorithm: (1) (Targeted optimality) The algorithm must achieve an
ǫ-optimal payoff against any ‘target opponent’, (2) (Safety) The algorithm must
achieve at least the payoff of the security level strategy minus ǫ against any other
opponent, and (3) (Auto-compatibility) The algorithm must perform well in self-
play (the precise technical condition is omitted here). We then demonstrate an
algorithm that provably meets these criteria when the target set is the set of
stationary opponents in general-sum two-player repeated games. More recent
work has extended these results to handle opponents whose play is conditional
on the recent history of the game [Powers and Shoham, 2005a] and settings with
more than two players [Vu et al., 2006].

6 Summary

In this article we have made the following points:

1. Learning in MAS is conceptually, not only technically, challenging.

2. One needs to be crystal clear about the problem being addressed and the
associated evaluation criteria.

3. For the field to advance one cannot simply define arbitrary learning strate-
gies, and analyze whether the resulting dynamics converge in certain cases
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to a Nash equilibrium or some other solution concept of the stage game.
This in and of itself is not well motivated.

4. We have identified five coherent agendas.

5. Not all work in the field falls into one of these buckets. This means
that either we need more buckets, or some work needs to be revisited or
reconstructed so as to be well grounded.

There is one last point we would like to make, which didn’t have a natural
home in the previous sections, but which in our view is important. It regards
evaluation methodology. We have focused throughout the article on formal
criteria, and indeed believe these to be essential. However, as is well known
in computer science, many algorithms that meet formal criteria fail in prac-
tice, and vice versa. And so we advocate complementing the formal evaluation
with an experimental one. We ourselves have always included a comprehen-
sive bake-off between our proposed algorithms and the other leading contenders
across a broad range of games. The algorithms we coded ourselves; the games
were drawn from GAMUT, an existing testbed (see [Nudelman et al., 2004] and
http://gamut.stanford.edu). GAMUT is available to the community at large.
It would be useful to have a learning-algorithm repository as well.

To conclude, we re-emphasize the statement made at the beginning: This
article is meant to be the beginning of a discussion in the field, not its end.
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