:

March

26, 2009 9:25 WSPC/INSTRUCTION FILE

earningNegotiationPolicies-v1

International Journal on Artificial Intelligence Tools
© World Scientific Publishing Company

LEARNING NEGOTIATION POLICIES USING ENSEMBLE-BASED
DRIFT DETECTION TECHNIQUES

FABRICIO ENEMBRECK

PUCPR - Pontificia Universidade Catélica do Parana
Graduate Program on Computer Science
Rua Imaculada Concei¢ao, 1155
BP 80.215-901 Curitiba - PR - Brazil
fabricio@ppgia.pucpr.br

CESAR AUGUSTO TACLA

UTFPR - Universidade Federal Tecnoldgica do Parand
Graduate Program on Electrical Engineering and Industrial Informatics
Curitiba - PR - Brazil
tacla@Qutfpr.edu.br

JEAN-PAUL BARTHES

UTC - Université de Technologie de Compiegne
Centre de Recherches Royallieu
60200 Compiégne - France
barthes@Qutc.fr

Received (Day Month Year)
Revised (Day Month Year)
Accepted (Day Month Year)

In this work we compare drift detection techniques and we show how they can improve
the performance of trade agents in multi-issue bilateral dynamic negotiations. In a dy-
namic negotiation the utility values and functions of trade agents can change on the fly.
Intelligent trade agents must identify and take such drift in the competitors into account
changing also the offer policies to improve the global utility throughout the negotiation.
However, traditional learning mechanisms disregard possible changes in a competitor’s
offer/counter-offer policy. In that case, the agent performance may decrease drastically.
In our approach, a trade agent has a staff of weighted learner agents used to predict
interesting offers. The staff uses the Dynamic Weighted Majority (DWM) algorithm to
adapt itself creating, deleting and adapting staff members. The results obtained with the
IB3 (Instance-based) learners and IB3-DWM learners show that ensemble methods like
DWM are suitable for correctly identifying changes in agent negotiations.

Keywords: Dynamic Negotiation; Ensemble-based Drift Detection; Learning Agents

1. Introduction

Electronic negotiation is an active research area, with many models proposed. Ac-
cording to Faratin et al. °, negotiation is a process whereby two or more agents are

:

March

26, 2009 9:25 WSPC/INSTRUCTION FILE

earningNegotiationPolicies-v1

2 Fabricio Enembreck, Cesar Augusto Tacla and Jean-Paul André Barthés

required to come to a decision in order to resolve a conflict. When both agents are
involved in transactions to attain a common goal one talks of Cooperative Negotia-
tion. Negotiation processes can be used in a variety of domains involving distributed
problem solving. Within an environment with limited resources like e-commerce, ne-
gotiations between customer and supplier agents can lead to coordinated forms of
allocating and saving resources, meeting values that mutually satisfy each agent in
the supply chain.

Whenever there are multiple criteria for evaluating offers and counter-offers in
a negotiation process, the process is said to be multi-issue. A number of projects
have been carried aiming at developing intelligent trading agents for learning their
competitors’ preferences, functions or utility values 2 3 9 15, Utility values are usu-
ally calculated using private functions that quantify the level of interest an offer can
represent to the agent. Therefore, the estimation of such functions by the competi-
tors can maximize the global negotiation utility, optimizing resources and obtaining
higher utility values for specific agents. Consider, for instance a product provider
who has problems in his supply chain. If this is discovered by clients, then they
can ask for a discount because the delivery delay is bound to increase. Of course
such information is not public but an adaptive agent can discover it by itself, be-
cause throughout the iterations with the supplier it realizes that the delivery delay
has a higher impact on the supplier utility. In this case, delivery delay becomes an
important issue in the negotiation. We can observe that such changes can occur
dynamically and they have to be detected on the fly.

In a previous paper 4
satisfy an important constraint inherent to the problem of discovering offer policies

we proposed the use of a drift detection algorithm to

in negotiation: the learning process must be incremental, because besides the limited
number of observations, the agent function and utility values may be modified
during the negotiation process, and there may be interferences from external factors
as well.

In this paper, our main focus is on a methodology to develop adaptive trade
agents using ensemble-based drift detection techniques. We believe that such a tech-
nique constitutes an innovative solution to the proposed problem. We are not, how-
ever, interested in proposing and/or using complex methods of negotiation, since
our objective is to propose a generic technique that can be used with any negotiation
model. In addition, the use of a specific utility model might introduce biased results,
rendering it invalid for other negotiation models. We propose a generic technique
allowing an agent to identify changes in a competitor’s negotiation policy, classify-
ing an offer as either possibly interesting or non-interesting to its competitor, using
a staff of learning agents. We propose an interaction protocol between agents, and
compare the technique using IB3 as a base learning algorithm !, starting from the
idea that the negotiation process is bilateral and multi-issue.

In the following section we discuss some ideas related to offer policy learning,
as well as the most important issues related to this problem. We characterize the
proposed problem as a drift detection approach by discussing its most relevant

:

March

26, 2009 9:25 WSPC/INSTRUCTION FILE

earningNegotiationPolicies-v1

Learning Negotiation Policies using Ensemble-Based Drift Detection Techniques 3

theoretic aspects in Section 3. We present our technique in Section 4 and discuss
experimental results in Section 5. Our conclusions are given in Section 6.

2. Negotiation and Learning

With the growth of Internet and the democratization of technology, it can be ob-
served that the number of service and product suppliers, and, specially, potential
customers grows exponentially every year. Nevertheless, technology must favor the
establishment of relationships amongst such players in a way that both customers
and suppliers can achieve their goals, like minimizing costs, acquiring goods safely,
guaranteeing a large number of customers, or solving problems of demand and stock.
One way of favoring the growth of such business alternatives employs trading agents.
Trading agents can play the role of customers or suppliers depending on the context.
Automatic discovery of offer policies in negotiation is a fundamental issue for the
evolution of e-commerce technologies, as trading agents participate in negotiations
and business transactions in order to maximize resources in favor of some customer
or supplier.

A trading agent must implement at least two main components: an interaction
protocol and a negotiation model. The interaction protocol defines the meaning of
each interaction between agents, what can be done and which sequences of actions
should be employed 7. The negotiation model comprises the description of the offers
and issues, determining value domains for issues and, more importantly, a reason-
ing model, usually based on a utility model. The reasoning model allows the agent
to reason about offers and counter-offers °, thereby defining specific priorities and
behaviors. In recent years some researchers have proposed intelligent trading agents
equipped with an extra module composed of a learning model allowing the agent to
learn their competitors’ utility function. The module helps the agent to define its
own goals and to produce offers that satisfy its needs more quickly. For instance,
consider a buyer agent that needs to receive a large quantity of an arbitrary product
immediately. If few suppliers are known to be capable of guaranteeing the volume
to be delivered, the vendor may guarantee immediate delivery at a high price, pro-
vided that it is not higher than the competitors’ price. Of course, the offer depends
on knowing the customers’ limitations, which generally is confidential information.
That piece of information can be discovered by observing similar behaviors in previ-
ous negotiations using pattern recognition techniques and machine learning. Several
projects with that goal have been proposed.

Genetic algorithms have been used by Gerding and Bragt ? and Lau
attempt to find the best offer and counter-offer policy. However, such techniques are
hardly applicable to e-business due to the complexity of the required calculations.
Probabilistic techniques based on Bayes model have also been used with relative
27 or 2. The proposed solutions however, suffer from problems related to
the distribution of data, which is rarely known, and the volume of data, which is
usually insufficient for the discovery of effective probability functions. Moreover, a

15 ip an

success in

:

March

26, 2009 9:25 WSPC/INSTRUCTION FILE

earningNegotiationPolicies-v1

4 Fabricio Enembreck, Cesar Augusto Tacla and Jean-Paul André Barthés

pre-existing dataset is rarely available to estimate probabilities a priori. Orthogonal
polynomials have been used for estimating the utility functions in trading agents
by '®. Nonetheless, even for limited negotiation spaces, this technique needs a large
number of interactions to discover efficient utility functions. Coehoorn and Jennings
3 have proposed a technique based on kernel density estimation to discover the
weights of each competitor’s issue. Based on such weights, the authors used the
algorithm proposed in ¢ to estimate trade-offs that satisfy the agents involved in
the negotiation.

Although some of the cited projects gave satisfactory results, they do not con-
sider an important aspect of negotiation: there are various cases where the nego-
tiation process cannot be modelled as a stationary function, but as one under the
influence of factors that may or may not be related to the negotiation itself. This
means that agent utility values and functions may change in time, for example due
to its poor performance or because of the occurrence of unexpected events, unrelated
to the negotiation environment. As an example, a sudden lack of raw material for a
supplier will seriously affect the way its sales agent negotiates with customers. Like-
wise, a customer who notices that his income is decreasing in time may gradually
alter his offer policies in order to reduce the need for immediate capital. Such char-
acteristics make most of the learning methods we mentioned inappropriate, since
they are unable to adapt the learned model to changes dynamically . Therefore, the
agents must restart the learning process after a long period of time during which
their performance is poor and does not reflect the brand new competitor’s negotia-
tion model. The identification of changes in concept descriptions is a task known as
drift detection ° 19 in Machine Learning '7. In this work, we focused on detection
of changes in negotiation policies by describing how drift detection algorithms can
contribute to the solution of this problem. Next section discusses the main concepts
related to this subject.

3. Drift Detection

In this section, we present the drift detection problem and discuss some algorithms
used for solving it.

3.1. Drift Detection Definition

In domains where the environment constantly changes or data is continually pro-
duced, dynamic learning techniques need to be used as soon as the target-concepts of
the algorithm change as time elapses. Such modifications may be abrupt or may oc-
cur slowly. Nevertheless, most machine learning and data mining algorithms assume
that training sets are generated according to a stationary distribution of a proba-
bility function. Those algorithms are, therefore, incapable of handling the problem
we want to solve. Gama et al. 8 mention other problems that involve detection of
changes in target-concepts like biomedical and industrial processes monitoring, fault
detection and diagnostic, or complex security systems.

:

March

26, 2009 9:25 WSPC/INSTRUCTION FILE

earningNegotiationPolicies-v1

Learning Negotiation Policies using Ensemble-Based Drift Detection Techniques 5

Detecting changes while learning dynamic class models is the problem known
as drift detection '* 22. The following paragraphs characterize the concept of drift
detection as described by Stanley 22.

For simplicity, we defined as a concept a normal disjunctive formula that relates
a set of qualitative variables like Price and Quality € {very_low, low, normal, high,
very_high}. Thus, a concept may be described as, for instance, Price € {very_low,
low} and Quality € {high}. With such a description one can easily verify whether
an instance is covered by an arbitrary concept, by checking if the conditions in the
corresponding concept description are satisfied. Drift detection may be defined as
a modification in the current concept. In order to illustrate such a modification we
need a couple more concepts. Let A and B be two concepts and i; € 7 an instance.
Until reaching instance i,, the current concept A is stable. After a certain number
Ax past i, the concept B takes the role of current concept. The change from concept
A to concept B is taking place smoothly between instances i, and i,4a, as shown
Figure 1.

ConceptA q---2HHNGZONE - concept B
b J 1. “

l1 k(|x+Ax In

Fig. 1. Drifting from A to B (extracted from 4).

When Az = 1, an abrupt change from A to B is said to have occurred. On the
other hand, when Az > 1, there exists a drifting zone and the modification proceeds
gradually. The drifting zone can be modeled as a probability function a that defines
the dominance of concept A over B. Thus, p(A) = a and p(B) = 1 — a. In order
to measure the probability of concept A in an arbitrary ic € {iz, %41, - lotAz}
one needs to use a = (¢ — x)/Az. The equation establishes that the probability of
occurrence of a concept A decreases linearly as the probability of B increases.

3.2. Considerations for Concept Drift

A concept drift technique must include three main goals: (i) rapid detection of
concept drift, (ii) distinguishing concept drift from noise; and (iii) recognizing and
dealing with recurring contexts. Rapidly detecting a concept change in data is es-
sential. Such a feature enables actions to be selected in a way that minimizes the
negative impact caused in the system by wrong actions. To put it simply, less in-
stances will be incorrectly classified by the system, thereby less mistakes will be
done. On the other hand, some systems may receive noisy data due to faults in the
input or monitoring devices, or due to partial representations of the environment.
Such changes consist of anomalies that must be identified without, however, modify-
ing concepts acquired by the system during the learning process. The work done by
24 or 22 mentions such a need. Another important aspect of concept drift techniques
lies in the ability to identify recurring concepts, i.e., concepts that alternate between

:

March

26, 2009 9:25 WSPC/INSTRUCTION FILE

earningNegotiationPolicies-v1

6 Fabricio Enembreck, Cesar Augusto Tacla and Jean-Paul André Barthés

valid and invalid states with some degree of regularity. There are several domains
where concepts are naturally recurring, for instance, the cycle of seasons through
a year (spring, summer, fall and winter). Recurring concepts directly affect current
prediction parameters. They can be stored and reused for future situations. By so
acting, the system need not repeat the learning process for a previously learned con-
cept; it only needs to identify the valid recurring concept, saving resources, reducing
response time and possibly increasing its utility.

3.3. Updating Techniques

In several application domains, data is continuously generated and stored. More-
over, a system for administration of critical situations continuously acts according
to input data. Consider for example a network of atmospheric radars that monitor
an arbitrary region in order to predict destructive electrical storms. Data transmis-
sion frequencies are about hundredths of seconds. Within such an environment, the
number of concepts (atmospheric conditions) is limited, while delay and confidence
in decision making are critical. Therefore, an issue must be considered: how to guar-
antee that the prediction model of the system will always be up-to-date? To let a
system have its concepts continuously provide a consistent representation of data,
the use of techniques for online (incremental) learning is recommended. In this case,
concepts are only modified; no concept is reconstructed. Modifications of concepts
should permit a new observation to be correctly classified. On the other hand, a
procedure for off-line (batch) learning would not be suitable, since it would require
that the system store a great number of instances before starting a new execution
of the learning algorithm. During the learning process (that may be slow), instances
may be incorrectly classified, as the system operates with an obsolete model.

Some systems also need user interaction to support the update process. For
instance, when a tool for detection of unsolicited electronic messages (SPAM) inter-
cepts a suspicious message, the system asks the user to indicate whether or not that
message is SPAM. Without explicit user feedback, the system is unable to update
its knowledge base, which might result in incorrect classification of messages, letting
unsolicited messages come through.

3.4. Detecting Concept Drift

Numerous methods have been proposed to deal with the drift detection problem in
machine learning. They can be categorized according to their training features as
either online or batch. An online learning method modifies its models whenever a
new example is observed. On the other hand, a batch method processes a whole
dataset once, updating its data models periodically. Online learning is particularly
interesting to this work, since we need to consider that offers/counter-offers are
received and used during negotiation. The most ubiquitously widespread drift de-
tection techniques are (i) windowing; (ii) example weighting, according to their age
or utility; and (iii) example selection. According to Gama et al. (2004), techniques

:

March

26, 2009 9:25 WSPC/INSTRUCTION FILE

earningNegotiationPolicies-v1

Learning Negotiation Policies using Ensemble-Based Drift Detection Techniques 7

that deal with drift detection can still be split into two other categories: (a) tech-
niques that adapt the classifier at regular intervals without verifying whether any
changes have occurred; or (b) techniques that detect changes beforehand and then
adapt their corresponding classifiers to them. Examples of the former are window-
ing and example weighing. The hypothesis whereby the importance of an example
decreases with time is the foundation of the example weighing technique. It can
also be used as a tool to select the most relevant examples (iii). More sophisticated
techniques overcome the drift detection problem by generating and maintaining a
set of classifiers ' 22, Some of them are described in the following sections.

3.4.1. Windowing

Whenever a time window is used, the classifier is reconstructed from the examples
within such a window. The complexity of this technique lies on identifying the proper
size of the temporal window: excessively small windows ensure rapid adaptation,
but cannot identify relationships among variables due to the partitioned view of
data; whereas extremely large ones produce good classifiers for stable zones but
loose the capacity for identifying changes quickly. If some change is detected at any
instant of the monitoring phase, some actions may be triggered in order to let the
classifier adapt accordingly. For instance, modifying the window size in order to
accommodate the set of examples affected by that change will do that. In addition,
the window size may be reduced upon the detection of a change and enlarged when
no change is observed.

The windowing technique obeys the following principle: a storage area (or
buffer), called Window, is created to serve as a container for the N most recent
observed instances. The learning algorithm uses the N instances in the window to
learn the current data model. The window size may be fixed or variable. An ad-
vantage for the variable one is that it may adjust the number of instances that will
be used in the pattern discovery process as a function of the stability of the data
distribution. For instance, when the distribution of data undergoes a stable period,
i.e., when no concept change has been observed recently, the bigger the window, the
better the model generated by the algorithm to represent it. Conversely, when the
distribution undergoes a transitional period, the smaller the window, the better the
system performance, as instances display significant variations to one another 2.

In 22 a comparative study on windowing is presented along with other strategies
for detection of concept drift. In the study, the authors experienced difficulties in
their attempt to automatically adjust the window size. All strategies imply a slow
change in window size, which requires the algorithm to experiment over relatively
long periods with a high error rate in classifications 2.

:

March

26, 2009 9:25 WSPC/INSTRUCTION FILE

earningNegotiationPolicies-v1

8 Fabricio Enembreck, Cesar Augusto Tacla and Jean-Paul André Barthés

3.4.2. Ezxample Selection by Error Estimation

The strategy for error estimation consists in using the error rate of the algorithm
on the instances received by the system to identify concept changes. This strategy
employs two thresholds, namely Warning Level and Drift Level. Such thresholds
are used by the concept drift detection algorithm to indicate that the error rate for
classification lies within an interval that denotes a possible concept change. Thus,
when the error rate overtakes the Warning Level, additional instances are stored
in a buffer. When the error rate reaches the Drift Level, current concepts need to
be updated and the learning algorithm starts. All the instances stored from the
instant when the Warning Level was overtaken until the one when the Drift Level
was reached become the training dataset for the algorithm 6.

3.4.3. Instance-Based Concept Drift Detection

In this work we use a well-known drift detection algorithm: the IB3 algorithm, pro-
posed by Aha (1991). As stated by the author, the algorithm presents a relative
robustness against noise and irrelevant attributes. Such characteristics are quite
valuable in negotiation, as agents can distinguish real changes from noise besides
the possibility of exploring relationships amongst the various offer issues. Updating
is a low cost process in that algorithm, which enables responsiveness for decisions
and thus detection of changes in an agent offer policies. IB3 is a member of the
instance-based algorithms family. IB1 corresponds to the standard nearest neighbor
algorithm. Although instance-based learning algorithms are capable of reproducing
complex discriminating functions, they usually require massive memory resources
and high processing time for the classification process due to the need to compare
and contrast the instance to be classified with all available instances. IB2 attempts
to reduce the problem by introducing a criterion for the storage of a new instance.
When a new instance is classified, its storage in the concept description is only per-
formed if its classification was incorrect, otherwise it is discarded. Although IB2 is
saving memory and processing resources, experiments have shown that IB2 is fairly
sensitive to noise in data. IB3 has evolved from IB2. Experiments demonstrated
that the method is quite robust when applied to data with such characteristics. IB3
maintains a classification record with each and every instance stored. This record
quantifies the classification rate of an instance, i.e., the accuracy rate of the in-
stance in cases where it has been used to classify a new one. That information is
used to estimate its future precision. The algorithm also uses a significance test to
determine whether an instance either should be relevant for future classifications
or represents noise. In the latter case, it is discarded. The algorithm stores an in-
stance if its precision is significantly higher than the observed frequency of its class,
and removes it if its precision is significantly lower. A detailed description of the
algorithm can be found in '. The main idea of IB3 is used in the Flora family of
algorithms 2°. Florad saves a record of classification for any descriptor represented
by a pair <Attribute,Value>. The algorithm maintains three sets of descriptors:

:

March

26, 2009 9:25 WSPC/INSTRUCTION FILE

earningNegotiationPolicies-v1

Learning Negotiation Policies using Ensemble-Based Drift Detection Techniques 9

ADES (Accepted DEScriptors) matching only positive examples; NDES (NEgative
DEScriptors) matching only negative examples and PDES (Potential DEScriptors),
matching positive and negative examples but are too general. The statistical tests
of IB3 are used to decide in which set a descriptor ought to be stored. The records
are updated whenever a new training instance arrives.

3.4.4. Ensemble-Based Concept Drift Techniques

The CDC 22 is an alternative for algorithms that use time windows. These algo-
rithms require heuristics to decide when window sizes should be altered, whereas
CDC does not. The CDC algorithm relies on a poll to detect the Concept Drift
and to update concepts. Consider a committee C', comprising n hypotheses, where
each hypothesis is a decision-tree built upon all instances it knows (s;). An incom-
ing instance is evaluated by each hypothesis; the ones that incorrectly classify the
instance have their weights reduced until they are removed from the committee and
replaced by new hypotheses. Initially, C' is empty (no hypotheses). Whenever a new
instance arrives, if the number of hypotheses in the committee is less than a maxi-
mum 7, a new member is added to it. The newly created member h; initializes its
set s; with the current instance only. Thus, upon the arrival of the second instance,
the committee C' contains the hypothesis h; only, whose training set is sy, which
holds the instance i1. At the time the instance is arrives, a new member ho is added
to the committee and its training set ss is composed of the instance io only. At this
moment, the committee has two hypotheses:

e hy: with s; comprising {i1,i2};
o hy: with sp comprising {i2}.

Members are added to the committee until the maximum number of members
(n) is reached. For the committee members (hypotheses) to be evaluated, each of
them must vote on test instances that are derived from the current distribution
(target concept). The weight of each vote is equal to the performance of the cor-
responding member over the last m training instances. For this reason, members
whose recent performance has been satisfactory participate with votes having higher
weight. When a member’s performance falls beneath a threshold ¢, it is replaced by
a brand new one that has no knowledge of past instances. Therefore, the committee
will always be representing the current distribution of data. In periods of stability,
the oldest members are more reliable, though when there are transitions between
concepts, members are constantly being replaced. When a new member is added to
the committee, there are not enough instances to gain considerable weight for its
vote; therefore, it must reach a certain degree of maturity before it can vote and be
replaced (if necessary) by a new member. Such a mature age is reached when the
member has already observed m instances throughout its existence. Before that, its
vote weight is 0 (zero). The work of Stanley 22 describes the CDC algorithm in de-
tails. It is possible to consider that CDC uses pseudo time windows, as each member

:

March

26, 2009 9:25 WSPC/INSTRUCTION FILE

earningNegotiationPolicies-v1

10 Fabricio Enembreck, Cesar Augusto Tacla and Jean-Paul André Barthés

is trained with a set of instances different from the ones used by the other members.
This characteristic allows CDC to exhibit good performances in both gradual and
abrupt Concept Drift. It should be emphasized that, in the latter case, almost all
members are usually replaced, while in the former case they are replaced gradually.
Such behaviors make the algorithm noise tolerant and efficient for the detection of
Concept Drift.

SEA (Stream Ensemble Algorithm) 23 induces an ensemble of decision trees from
data streams and explicitly addresses concept drift. SEA generates decision trees
from small blocks of data read sequentially. The maximal number of classifiers is
fixed. Whenever such a number is reached, new classifiers can be generated if they
satisfy some quality criterion. Generally a new classifier is added to the ensemble if
it improves the performance of the ensemble. On the other hand, the addition of new
classifiers causes the deletion of others, keeping the size of the ensemble constant.
The quality of a candidate classifier or committee member is improved whenever a
validation instance is correctly classified or goes down otherwise. Some heuristics are
used to calculate rewards or punishments. If an instance is easy to classify (most
members of the ensemble classify it correctly) or impossible to classify (there is
no correct predictions), rewards or punishments are minimal. On the other side, if
the members have heterogeneous opinions, then rewards and punishments are high.
Simple majority vote is used to classify an instance. Experiments have shown that
SEA generates ensembles whose performance is comparable to a single decision tree
generated from all the training data. Besides, it identifies drift situations correctly.
Recent works suggest that ensembles formed of weighted members are preferable in
domains with concept drift. The DWM (Dynamic Weighted Majority) 3, AddExp
14 and KBS-Stream (Knowledge-Based Sampling-Stream) 2° 2! systems take into
account the weight of the base classifiers for voting, returning the class with the
highest accumulated weight.

DWM reduces the weight of an expert (base classifier) by a constant multi-
plicative whenever it makes a false prediction. The global prediction is determined
summing the weights for the classes. If it is incorrect, then a new expert is created
with a weight of one. The algorithm normalizes expert weights by scaling them such
that the highest weight is 1. The algorithm also removes experts with weights less
than a threshold. Finally, the training instance is passed to each expert for indi-
vidual learning. We can see that DWM generates a variable number of classifiers.
Experiments presented in '3 show that for the Stagger concepts 2> DWM reaches
100% of accuracy using Naive Bayes as the base learning algorithm.

AddExpert is very similar to DWM algorithm but the authors propose two
different criteria for pruning (deletion of an expert): Oldest First and Weakest F'irst.
Whenever the maximal number K of experts is reached, Oldest First removes the
oldest expert before creating a new one. On the other hand, when a new expert
is added to the ensemble, if the number of experts is greater than K, Weakest
First removes the expert with the lowest weight before adding a new member.
Unfortunately, the number of classifiers created with such simple approaches can be

:

March

26, 2009 9:25 WSPC/INSTRUCTION FILE

earningNegotiationPolicies-v1

Learning Negotiation Policies using Ensemble-Based Drift Detection Techniques 11

prohibitive and can cause the algorithm to be much slower than a single learner. On
the other hand, the main idea of KBS-Stream is to use the KBS boosting algorithm
20 for the generation of samples with weighted instances and weighted classifiers.
The training set sizes effectively used for each model are determined dynamically by
the algorithm. In order to process a new batch of data two ensemble variants have
been used. The first one appends the current batch to the cache used for training in
the last iteration, refining the last base model. The second one adds a new model,
trained using the latest batch of data. Only the ensemble variant performing better
on the next batch is kept. The second step is to foresee a re-computation phase
in which base model performances are updated with respect to the current data
distribution. The authors argue that KBS-Stream adapts very early and quickly to
different kinds of concept drift, although a comparative study with other ensemble-
based concept drift has not been done.

4. Ensemble-based Drift Detection for Drifting Negotiation

We believe that ensemble-based drift detection techniques satisfy important con-
straints inherent to the problem of learning offer policies, such as effectiveness,
efficiency, complexity and, mainly, changes in the agent behaviors. Such features
may be used along with a strategy for exploring the space of possible offers in order
to discover an interesting offer and to let the agent better negotiate. Furthermore,
the results presented in ' and * motivated us to study the behavior of DWM when
IB3 is used as the base learning algorithm.

Figure 2 shows the architecture of an adaptive trade agent proposed in . Upon
receiving an offer/counter-offer, the agent classifies it as interesting in case it has
been accepted by the corresponding peer and non-interesting otherwise. Based on
that offer, a training instance is then generated and transferred to the drift detection
module, where it may be stored in the concept description database or rejected. A
training instance may be rejected if the learning module (drift module) can predict
its class properly. Otherwise, the drift module must change the current concept
description such that the new description is able to classify the instance properly.
Next, the negotiation module generates repeatedly offers/counter-offers until one
of them is classified as interesting by the drift detection module. As soon as an
offer /counter-offer is classified as interesting, the iterative process ends and the
offer is sent to the peer agent.

The technique presented in 4 has shown good results but we believe that it can
be improved with an ensemble-based drift detection technique. In such an approach,
the trade agent has specialized learning agents responsible to learn cooperatively the
data distribution and values for interesting/non-interesting offers. The architecture
proposed is shown Figure 3.

In the proposed architecture a trade agent has an ensemble of learners that
discover patterns from accepted or rejected offers throughout past negotiations.
This makes the trade agent simpler because it is just specialized in negotiation and

March 26, 2009 9:25 WSPC/INSTRUCTION FILE
earningNegotiationPolicies-v1

12 Fabricio Enembreck, Cesar Augusto Tacla and Jean-Paul André Barthés

| f acce pted(offer) then
Class(offer) = interestin i
P = e ? instance .| Drif Detection instance |Concept
Class(offer) = non_interesting Module
Endlf
»
new offer new offer
4 classified
@ teresting | N'iﬁDSalt‘C'”
offer oaule
Buyer
Fig. 2. Architecture of an Adaptive Trading Agent.
Expert Expert Expert
1 2 - - = N
Leaming
Manager
instance/ new offer
new offer classified
If accepted(offer)then
- Class(offer) = interesting inst. L X
@-2U1ED Else instance eaming
Class(offer) = non_interesting Interface
Endl f
»
new offer ot foer
<+ Classified
@ interesting | Nlidgootdlglheon
offer
Buyer

Fig. 3. Architecture for a trade MAS.

generation of offers. The learning manager agent coordinates the learning process
and classifies offers as interesting or non-interesting. This information is used by
the trade agent for directing its answer policy.

Currently, a learning manager uses the DWM 13 algorithm to coordinate Ex-
pert Agents. Such a distributed implementation improves the use of resources lke
memory and processing power, because Experts can be distributed in different ma-
chines. During the execution of incremental learning algorithms each expert keeps

:

March

26, 2009 9:25 WSPC/INSTRUCTION FILE

earningNegotiationPolicies-v1

Learning Negotiation Policies using Ensemble-Based Drift Detection Techniques 13

a database of instances of varying sizes. Besides, the classification can be very time
consuming. When implementing a distributed architecture for concept drift, we indi-
rectly reduce scalability problems. However, we need a well structured coordination
protocol for the collective learning. The protocol is presented Figure 4.

The protocol developed here is based on the DWM (Dynamic Weighted Ma-
jority) algorithm proposed by Kolter and Maloof 3. There are two use cases: the
first one for learning and the second, for classifying. A classification is performed
whenever the trade agent must do an offer. It will try to always propose offers that
the manager classifies as “interesting” for the opponent agent. If an offer is classified
as “non-interesting” it is rejected and the trade agent should generate another can-
didate offer. The “getGlobalPrediction” method does a weighted voting, returning
the class with highest weight. The weight of a class is the sum of the expert weights
that voted on it. The most important variables for the learning use case are the
following:

e z[i]: feature vector of a learning instance ;

e y[i]: the class (interesting/non-interesting) of the instance i;
e Beta: a constant for decreasing weights of experts (0 < Beta < 1);
e Teta: a threshold for deleting experts;

e ¢[j]: an expert j;

e wle]: the weight of expert e;

e ufc]: the weight of a class ¢;

e gp: global prediction (cooperative prediction);

e [p: local prediction (prediction of a specific expert);

e p: a period of time;

e o[k]: an offer k.

Whenever a learnt instance arrives the manager initializes the classes weights
with 0 and interacts with each expert j asking the class for the instance. If the
returned class is not y; and it is time to learn (i mod p = 0) the weight of expert
j is decreased (w[j] = w[j] * Beta). Then the classification weight for each class
is calculated and the best class (higher weight) is found (global prediction). The
weight for each expert is normalized (greater weight must be 1.0) if it is time to learn.
Then the experts with a weight less than Teta are deleted. If the global prediction
is not correct a new expert is created with weight 1. Finally, the manager sends the
instance to the experts for learning.

The interaction protocol of Figure 4 generates a reputation model for a set of
experts e. The reputation of an expert e[j] is represented by a weight w[j]. The size
of e varies depending on the performance of the experts. When w[j] < Teta then
e[j] is deleted. In fact, all the experts are evaluated when a new training instance
arrives. If an expert e[j] does a wrong prediction w[j] is decreased. When a period
of time is reached, the expert weights are normalized and weak experts are removed.
In this case, if the global prediction is wrong, there are not enough current experts
and a new expert e[j + 1] is created and w[j + 1] = 0. Furthermore, the remaining

March 26, 2009 9:25 WSPC/INSTRUCTION FILE
earningNegotiationPolicies-v1

14 Fabricio Enembreck, Cesar Augusto Tacla and Jean-Paul André Barthés

a:Trade h: Manager

| 1: firstExampleToTrain@ i =1]) | ssiantens
L

1.1:e[j=1] = Expenti[i=1])

efi=1]: Expert

first expert
L p

s
"
)

2: nextExampleToTraini + 1)) is the weight vector class k. |

L
i 2.1 u[] = initializeWeightClasses()

|
|
}
loop [for each expertj] |
]

2.2: classify([i]) »
gl

|
2.3/ [Ip ==y[i] and i mod p = 0] updadeClassifiereightie[j]) |

p=time p’eriod N < |w(j] = beta*w[j]where betais
'|the factor for decreasing weights
o A) and w(]j] is the weight for expert
2.4: updatePrediction¥Weight(e[j)

o (ullpl=ullp] +wlj]where lpis [T

R e | L . - ~[urk]= 0 forany kwhere u[k] jl

N e
local prediction class name

2.5:gp = hestClass(u)

A7

alt [imodp=0]
2.6:w = normalizeWeights(w)

==gdestroy=>
2.7-A: [threshaold < teta] ~Expert)

2.7-B: continue) %

[op==y[i]]

T
|
|
f
I
I
|
I
I
I
|
|

1]

h 4

i

alt

z<create=»
2.8 Expent@(i])

ej+1] : Expert

2.9: updadeClassifiereight(efj + 1], 1.0)

1

loop [for each expertj]

2.10: train((i)

loop [far each offer k]
3. ap = classifierNewOffer(o[k])

3.1: gp = getGlohalPrediction()
- gp = global prediction

Fig. 4. Interaction Protocol for ensemble-based concept drift problem.

March 26, 2009 9:25 WSPC/INSTRUCTION FILE
earningNegotiationPolicies-v1

Learning Negotiation Policies using Ensemble-Based Drift Detection Techniques 15

experts update local models with the current training instance.

We can observe that such a protocol is generic and different learning algorithms
can be used by the experts. In this work we decided to implement homogeneous ex-
perts (all of them use IB3) to have a fair comparison with the simple IB3. Otherwise,
we could not have analyzed the effectiveness of our approach.

The last loop of the protocol corresponds to the interaction between the Negoti-
ation Model and the Learning Interface. The Learning Manager uses the reputation
model generated previously to classify an offer generated by the Negotiation Model.
They interact repeatedly until an offer is classified as interesting. The negotiation
model then uses such an offer to answer the competitor trade agent. The number
of interactions between Negotiation Model and Learning Interface depends on the
negotiation tactics. Well-known tactics can be imitative, time dependent or resource
dependent ®. However, in this paper we do not study the use of such techniques,
focusing only on the learning issue. Again, the introduction of specific tactics for the
generation of candidate offers could produce biased results. We assume that results
free of bias can be generated through random offers.

4.1. Offer Space

To illustrate the technique we need to define the offer space. For the sake of sim-
plicity, we defined issues as qualitative variables. They may or may not be ordered.
In this section we use the offer definitions proposed in 4. Table 1 presents each of
the issues used in this work.

Table 1. Description of Issues.

Issue Domain
Color [black, blue, cyan, brown, red, green, yellow, magenta]
Price [very_low, low, normal, high, very_high, quite_high, enormous, non_salable]
Payment [0, 30, 60, 90, 120, 150, 180, 210, 240]
Amount [very_low, low, normal, high, very_high, quite_high, enormous, non_ensured|
Delivery_Delay [very_low, low, normal, high, very_high]

4.2. Offer Policies

To contextualize the definition of concepts we employed a bilateral negotiation be-
tween a buyer and a sales agent. The former will always attempt to predict whether
an arbitrary instance constructed upon an offer will be either interesting or non-
interesting to the latter.

Definition(Concept). Henceforward, in this paper a concept is the de-
scription of an interesting offer. Whenever such a description is not valid
for an offer, this offer is classified as non-interesting.

:

March

26, 2009 9:25 WSPC/INSTRUCTION FILE

earningNegotiationPolicies-v1

16 Fabricio Enembreck, Cesar Augusto Tacla and Jean-Paul André Barthés

4.3. Simulating Negotiation

We consider that a vendor agent starts a negotiation with a specific definition for
an interesting offer (concept). On the other hand, the buyer agent tries to discover
such a definition. As the time goes by, the vendor drifts to another concept and
the previous definition learned by the buyer is no longer valid. Thus the buyer is
supposed to adapt the current definition to the new one.

Considering the definitions of concepts in the previous section, we used a proce-
dure for generating instances similar to the Stagger system 2° and used in 22, 13, 8,
14 and 4. We determined that a training or test instance can have its class labelled
as interesting or non-interesting. First, a set of test instances is generated. They
are used to assess the system accuracy. The Equation 1 is used to calculate the
system accuracy. TP (True Positives) and FN (False Negatives) are the number of
interesting and non-interesting offers classified properly respectively and T is the
instances test set. In the experiments the size of T is 100.

TP+ FN
—) X

T 100 (1)

accuracy(c,i) =

For each concept (¢), an arbitrary number of training instances z (e.g. 50) is

generated. The drift detection model then receives one training instance at a time

(i) and is assessed on the test set. The procedure described in the last paragraphs
is illustrated in Figure 5.

Foreach concept ¢ € [1,...,C] do
generate test instances according to concept ¢
Foreach instance i [1,...,x] do
leam / with the drift detection approach
evaluate the performance over test instances
endForeach
endForeach

Fig. 5. An drift detection evaluation algorithm.

We have defined some hypothetical, disjunct concepts that a vendor can use
and whose definitions the buyer must discover. Table 2 illustrates such a sequence
of concepts, that represents an abrupt drift.

Concept drifts can also occur moderately. In this case, each successor concept
maintains some degree of similarity to the previous one. To illustrate this situation
we defined eight concepts described in Table 3. For the definition of such concepts
we used the attributes Delivery_Delay that is constant, and Amount only. This
sequence of concepts can illustrate, for example, the constant increase in the vendor’s
capacity of production. Consequently, the vendor is capable of increasing the amount
of products delivered with short delay.

We also used two concepts A and B to simulate a gradual concept change in
the sales agent. Both concepts are displayed in Table 4. The procedure for gradual

L;M arch 26,

2009 9:25 WSPC/INSTRUCTION FILE

earningNegotiationPolicies-v1

Learning Negotiation Policies using Ensemble-Based Drift Detection Techniques 17

Table 2. Conceptual Description of Interesting Offers for Abrupt Drift.

Concept ID Description
(Price = normal and Amount = large)
1 or
(Color = brown and Price = very_-low and Delivery_Delay = long)
(Price = high and Amount = very_large)
2 and
(Delivery_Delay = very_short)
(Price = very_low and Payment = 0 and Amount = large)
3 or
(Color = red and Price = low and Payment = 30)
(Color = black and Payment = 90 and Delivery_Delay = very_short)
4 or
(Color = magenta and Price = high and Delivery_Delay = very_short)
(Color = blue and Payment = 60 and Amount = little and Delivery_Delay = normal)
5 or

(Color = cyan and Amount = little and Delivery_Delay = normal)

Table 3. Conceptual Description of Interesting Offers for Moderate Drift.

Concept ID Description of an interesting offer
1 (Delivery-Delay = very_-low and Amount = very_little)
2 (Delivery_Delay = very_low and Amount = little)
3 (Delivery_Delay = very_low and Amount = normal)
4 (Delivery_Delay = very_low and Amount = large)
5 (Delivery_-Delay = very_-low and Amount = quite_large)
6 (Delivery_-Delay = very_-low and Amount = very_large)
7 (Delivery-Delay = very_-low and Amount = enormous)
8 (Delivery_Delay = very_low and Amount = non_ensured)

drifting generation was described in Section 3.1.

Table 4. Conceptual Description of Interesting Offers for Gradual
Drift.

Concept ID Description of an interesting offer
A (Color = blue and Delivery_Delay = very_short)
(Color = black and Price = high)
B or

(Color = magenta and Payment = 0)

5. Experiments

The experiments we performed show the accuracy of the IB3 algorithm and the
IB3-DWM algorithms applied to the concepts described in the previous section. The
average results obtained with 20 iterations are discussed in this section. Initially, the
systems were evaluated on the existence of abrupt drifts. We fixed the number of
instances x = 50 to use with each concept. Figure 6 illustrates the obtained results.

It is also noticeable that the detection of drifts occurs quite rapidly in both
systems, usually in less the 10 iterations for each new concept. Another remarkable

:

March 26, 2009 9:25 WSPC/INSTRUCTION FILE
earningNegotiationPolicies-v1

18 Fabricio Enembreck, Cesar Augusto Tacla and Jean-Paul André Barthés

feature is the performance of the first concept that was just moderate; probably a
greater number of iterations would have been necessary so that the IB3 algorithm
could have constructed an adequate representation for concept 1. Such a behavior
tends to be exhibited by IB3 due to its conservative model, adopted to prevent the
algorithm from learning inaccurate relationships from noisy data. However we can
clearly observe the improvement of performance thanks to the DWM coordination
protocol. DWM improves the performance of IB3 for any concept significantly. On
the other hand, such an improvement has a computational cost, since a number of
experts is generated. Figure 7 shows the evolution in terms of number of experts.

AbuptDit | e B3
——— 1B 3-DWM
95 Concept 1 Concept 2 s Concept 3 Concept 4 Concept 5
A
f f \1‘1‘}‘ o f - Y
______ ‘ P Il‘
k \'r ------ i3 fkﬂ[
| o g
‘ll - }! r _______
Il_'. ‘I‘} S
F f
i{ |
101 151 20
Instances

Fig. 6. Results of abrupt drift concepts.

& M
o 20] ,\\\\
&
%
& 151
5
8 101
£
H]
Z 5]

0 Concept 1 Concept 2 Concept 3 Concept 4 Concept 5
1 51 101 151 201
Instances

Fig. 7. Number of experts generated with abrupt concepts.

Results obtained from data with moderate drift shown Figure 8 are quite en-
couraging. One can clearly notice that falls in performance caused by changes are

:

March

26, 2009 9:25 WSPC/INSTRUCTION FILE

earningNegotiationPolicies-v1

Learning Negotiation Policies using Ensemble-Based Drift Detection Techniques 19

much less than those identified Figure 6 (less than 10% on average). This behavior
results from similarities among the produced concepts. One can also notice an in-
crease in precision for each concept in comparison with its previous peer. However,
the increase in precision occurs more slowly than it did when changes were abrupt.
As concept descriptions learnt by the algorithm present a reasonable performance
the algorithm reacts more smoothly in order not to remove instances whose absence
might decrease the precision of the current model, once the stored instances present
good classification accuracy. On the other hand, when the performance is deficient
(in case of abrupt changes), performance in the classification of stored concepts
tends to be rather poor and the algorithm executes frequent modifications in the
set of instances that form the concept description. We can observe a great improve-
ment with DWM experts. For most concepts, the prediction accuracy is in between
90% and 95%.

Moderate Drit [B3
——— 1B 3-DW¥WM
95 ™ o 2
Concept 1 r A P"‘I‘ ' J-H"'”‘ r.-'u""’ _L‘\) ‘.-"r‘"‘ \/ _uw"‘hq" Wj/';w"‘-,""ﬂ
W LY LA At | o G 1
] l"""nl L ‘L"rw'_lq ‘\‘H 'f‘- SO0 : J\‘ L \(‘I o]‘.f % d .- g
E 754 | fu‘u ﬂJ F
=] o 8 frfl | \I‘
< T |
65
55 2 - Concept 2 | Concept 3 | Concept 4 Concept § Concept 6 Concept 7 | Concept 8
1 51 1m 151 2m 251 3am 351
Instances

Fig. 8. Results of Moderate Drift.

Figure 9 presents the number of experts generated throughout learning. We
can observe that the number of experts goes down after the concept 5, starting
about 22 experts and finishing with 15 experts. We conducted experiments to assess
the impact of gradual drift between a couple of concepts A and B in a number
of instants during the learning process of the buyer agent. Both A and B were
randomly generated. The first experiment aimed at measuring the influence of drift
at the beginning of the agent learning process.

Figure 10 shows the results obtained with a drift zone ranging from 50 to 150. In
this case, the agent performance is minimally affected by changes, maintaining an
ascending learning bias. DWM outperforms again IB3 for any concept, however we
can observe in the drift zone that DWM detects drifts more slowly. This happens
because changes in the committee of experts are motivated by repetitive rewards
and punishments stimulations. Thus, they can take a long period to be done.

Another observation is the stability of the number of experts for concept B. In

:

March 26, 2009 9:25 WSPC/INSTRUCTION FILE
earningNegotiationPolicies-v1

20 Fabricio Enembreck, Cesar Augusto Tacla and Jean-Paul André Barthés

Concept 1 | Concept 2 | Concept 3 | Concept 4 Concept 5§ | Concept 6 | Concept 7 | Concept 8
= /Wm&\“ m’\-—__\d

15 /_/ N

Number of Experts

1 51 10 151 2m 251 3 351
Instances

Fig. 9. Number of experts with moderate drift.

spite of the stabilization of the number of experts (around 18 in Figure 11), the
accuracy is improved, showing that the system is learning the concept B properly.
Comparing the results from the three types of drift (abrupt, moderate and gradual)
we observe that the difference between the two algorithms is minimal for gradual
drift. Theoretically, this type of drift is the easiest to learn because data distribution
suffers a tiny change each time and no advanced techniques for detecting changes

are necessary.

Gradual Deift e B3
——— 1B 3-DWM
95
Concept & Drift Zone ConceptB .,
85

Accuracy

1 51 101
Instances

Fig. 10. Gradual Drift with drift zone € |50, 100].

We can state that considering the experiments that have been conducted, al-
gorithms with drift detection capacities could be successfully used to learn offer
policies, since results of all experiments show that the learning curve may suffer
interferences, though it always maintains an ascending bias. In most cases, detec-
tion of changes is quite fast and the agent performance increases quickly. Such a

:

March

26, 2009 9:25 WSPC/INSTRUCTION FILE

earningNegotiationPolicies-v1

Learning Negotiation Policies using Ensemble-Based Drift Detection Techniques 21

25
Concept & Drift Zone Concept B
w 20
| e e ——
&
%
& 154
]
& 10
£
H
Z 5]
0
1 a1 101
Instances

Fig. 11. Number of experts with gradual drift.

behavior makes the technique useful in most real negotiations scenarios involving
human, automated or hybrid negotiations. We believe this is the stronger point of
our technique.

Ensemble-based drift detection techniques are supposed to raise the accuracy of
simpler drift detection techniques. In the experiments carried out, the DWM tech-
nique outperformed IB3 in all cases. This is to be expected because ensemble-based
techniques use much more information (a number of experts) to make decisions and
are less sensitive to the bias of a single classifier.

An interesting behavior observed in the experiments (Figures 7 and 9) is that
the number of experts tends to decrease after a maximum value. This happens
because ensemble-based algorithms use the diversity of classifiers to cover different
regions of the tuple space. To profit of maximal performance, the experts have to
be complementary. Thus, a number of experts is needed to cover a large region of
the tuple space. When enough region is covered, some classifiers become useless,
because they represent regions already covered by other experts. This explains why
the number of experts decreases.

The number of needed experts is strongly related to the tuple space size and
to the data distribution. For large tuple space, more experts are needed. However,
depending on the hidden relationships between variables this rule might not be
true in all cases and even small tuples spaces might require a lot of experts. Since
the data distribution generation algorithm is the same for all the experiments, the
curves displaying the number of experts tend to be similar. In the case of Figure 11
the number of experts would probably start to decrease around the 200" training
instance. Therefore different data sets can require a different number of classifiers,
even if the same ensemble-based algorithm is used.

We could observe quite good results regarding the moderate and gradual drift
modes. This is an important point because a negotiator rarely changes his mind
drastically. On the other hand, it can make small changes in his goals very often.

:

March

26, 2009 9:25 WSPC/INSTRUCTION FILE

earningNegotiationPolicies-v1

22 Fabricio Enembreck, Cesar Augusto Tacla and Jean-Paul André Barthés

Consider, for instance, a student who wants to buy a car. He is probably interested
on a small or cheap car. However, as his earnings increases, the requirements for a
new car changes slowly.

6. Conclusions

In this work, we demonstrated that ensemble-based algorithms developed for con-
cept drift detection can be successfully used in bilateral and multi-issue negotiations.
Recall that our goal was not to propose an integrated model of negotiation (see
Section 4), but to show that ensemble drift detection techniques satisfy important
constraints inherent to the problem of learning offer policies, such as effectiveness,
efficiency, complexity and, mainly, changes in the agent behaviors. When build-
ing trading agents for dynamic environments, developers should consider ensemble-
based drift detection techniques using a staff of learner agents.

Experiments performed on simulated concepts of negotiation showed that the
interaction protocol developed based on DWM outperforms the IB3 algorithm and
detects changes rapidly. It can be used to update an agent concept description in
order to improve its performance even with a few iterations only. In that case,
learning is carried out by an ensemble of distributed learning agents. We started
from the idea that a negotiation model could exploit the drift model to generate
offers that are interesting for both agents involved in the negotiation process, and,
as a result, the agent performance in the negotiation process should be proportional
to the one obtained by the drift detection model.

In future work, we intend to employ techniques such as the ones described in this
work to improve existing negotiation models, similarly to what has been proposed
by Coehoorn and Jennings 3. Once a complete negotiation model is built, we will
be capable of assessing the utility values obtained by agents that use different drift
detection algorithms. Finally, in spite of a higher computation cost, ensemble-based
techniques can produce fairly satisfactory results for the detection of different types
of concept drifts.

Acknowledgements

This research was funded by Pontifical Catholic University of Parana. We thank
Diogo Domanski and Richardson Ribeiro for comments and time spent with the
discussions.

References

1. D. W. Aha, D. Kibler and M. K. Albert, Instance-based Learning Algorithms, Machine
Learning, n. 6, v. 1, pp. 37-66, 1991.

2. S. Buffet and B. Spencer, Learning Opponents’ Preference in Multi- Object Automated
Negotiation Proc. of International Conference on Electronic Commerce’05, pp. 300-305,
Xi’an, China, 2005.

:

March

26, 2009 9:25 WSPC/INSTRUCTION FILE

earningNegotiationPolicies-v1

Learning Negotiation Policies using Ensemble-Based Drift Detection Techniques 23

3. R. M. Coehoorn and N. R. Jennings, Learning an Opponent’s Preferences to Make
Effective Multi-Issue Negotiation Trade-Offs, Proc. of the Sixth International Conference
on Electronic Commerce, pp. 59-68, 2004.

4. F. Enembreck, F., B. C. Avila, E. E. Scalabrin and J-P. A. Barthes, Drifting Negoti-
ations, Applied Artificial Intelligence, Taylor & Francis, pp. 861-881, v. 21, n. 9, 2007.
ISSN: 1087-6545

5. T. Faratin, C. Sierra and N. R. Jennings, Negotiation decision functions for autonomous
agents, Robotics and Autonomous Systems, v. 24, n. 3-4, pp. 159-182, 1998.

6. T. Faratin, C. Sierra and N. R. Jennings, Using similarity criteria to make issue tradeoffs
in automated negotiations, Artificial Intelligence, n. 142, v. 2, pp. 205-237, 2002.

7. S. Fatima, M. Woodridge and N. Jennings, An agenda-based framework for multi-issue
negotiation, Artifcial Intelligence, n. 152, v. 1, 2004.

8. L. Gama, P. Medas, G. Castillo and P. Rodrigues, Learning with Drift Detection, Proc.
of the 17th Brazilian Symposium on Artificial Intelligence - SBIA’04, LNAI 3171, Ana
L.C. Bazzan and Sofiane Labidi (eds.), 2004. ISBN 3-540-23237-0

9. E. Gerding and D. van Bragt, Multi-issue negotiation processes by evolutionary simu-
lation, validation and social extensions, Computation Economics, n. 22, v. 1 pp. 39-63,
2003.

10. D. P. Helmbold and P. M. Long, Tracking drifting concepts by minimizing disagree-
ments, Machine Learning, n. 14, v. 1, pp. 27-46, 1994.

11. S. Huang and F. Lin, Designing Intelligent Sales-agent for Online Selling, Proc. of the
International Conference on Eletronic Commerce, pp. 279-286, Xi’an, China, 2005.

12. R. Klinkenberg and I. Renz, Adaptive Information Filtering: Learning in the Presence
of Concept Drifts, ICML-98, pp. 33-40, 1998.

13. J. Kolter and M. A. Maloof, Dynamic Weighted Majority: A New Ensemble Method
for Tracking Concept Drift, Proc. of 3th International IEEE Conference on Data Mining,
pp. 123-130. IEEE Press, 2003.

14. J. Kolter and M. A. Maloof, Using additive expert Ensembles to Cope with Concept
Drift, 22th. International Conference on Machine Learning, ACM Press, pp. 449-456,
Germany, 2005. ISBN:1-59593-180-5

15. R. Y. K. Lau, Adaptive Negotiation Agents for E-business, International Conference
on Eletronic Commerce, pp. 271-278, Xi’an, China, 2005.

16. M. Maloof, Incremental Learning with Partial Instance Memory, Artificial Intelligence,
v. 154, n. 1-2, pp. 95-126, 2004. ISSN:0004-3702.

17. T. Mitchell, Machine learning, McGraw Hill, 1997.

18. S. Saha, A. Biswas S. and Sen, Modeling Opponent Decision in Repeated One-shot
Negotiations, Int. Conference on Autonomous Agents and Multi-Agent Systems - AA-
MAS’05, pp. 397-403, 2005.

19. J. Schlimmer and R. Granger, Beyond incremental processing: Tracking concept drift,
Proceedings of the 5th. AAATI Conference, AAAI Press, pp. 502-507, 1986.

20. M. Scholz, and R. Klinkenberg, An Ensemble Classifier for Drifting Concepts, Proceed-
ings of the Second International Workshop on Knowledge Discovery in Data Streams, J.
Gama and L. S. Aguilar-Ruiz (eds), pp. 53-64, Porto, Portugal, 2005.

21. M. Scholz, and R. Klinkenberg, Boosting Classifiers for Drifting Concepts, Intelligent
Data Analysis (IDA), Special Issue on Knowledge Discovery from Data Streams, pp.
3-28, IOS Press, v. 11, n. 1, 2007.

22. K. O. Stanley, Learning Concept Drift with a Committee of Decision Trees, Depart-
ment of Computer Sciences, University of Texas at Austin, Technical Report AI-03-302,
September, 2003.

23. W. N. Street and Y. Kim, Streaming Ensemble Algorithm (SEA) for Large-Scale

:

March

26, 2009 9:25 WSPC/INSTRUCTION FILE

earningNegotiationPolicies-v1

24 Fabricio Enembreck, Cesar Augusto Tacla and Jean-Paul André Barthés

Classification, Proceedings of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM Press, pp. 377-382, 2001. ISBN:1-58113-
391-X

24. A. Tsymbal, The problem of concept drift: definitions and related work, Technical
Report TCD-CS-2004-15, Department of Computer Science, Trinity College Dublin,
Ireland, April 2004. http://citeseer.ist.psu.edu/tsymbal04problem.html.

25. G. Widmer and M. Kubat, Learning in the presence of concept drift and hidden
contexts, Machine Learning, n. 23, v. 1, pp. 69-101, 1996.

26. R. Kohavi, Bottom-Up Induction of Oblivious Read-Once Decision Graphs: Strengths
and Limitations, Proceedings of the European conference on Machine Learning, pp.
154-169, 1994. ISBN:3-540-57868-4

27. D. Zeng and K. Sycara, Bayesian learning in negotiation, International Journal on
Human-Computer Studies, v. 48, n. 1, pp. 125-141, 1998. ISSN:1071-5819

