
Title: Learning Drifting Negotiations

Fabrício Enembreck
1
, Bráulio Coelho Ávila

1, Edson E. Scalabrin
1
, Jean-Paul Barthès

2

1PUCPR, Pontifical Catholic University of Paraná
PPGIA, Graduate Program on Applied Computer Science

R. Imaculada Conceição, 1155
Curitiba PR – Brazil

Phone/Fax: + 55 41 3271-1669
{fabricio,avila,scalabrin}@ppgia.pucpr.br

2UTC- Université de Technologie de Compiègne

UMR CNRS HEUDIASYC - Centre de Recherches Royallieu
BP 20529 - 60200 Compiègne, France

Phone/Fax : + 33 (0)3 44 23 44 77
barthes@utc.fr

$EVWUDFW�
�

In this work we propose the use of drift detection techniques for learning offer policies in

multi-issue bilateral negotiation. Several proposals aiming at the development of DGDSWLYH�
WUDGLQJ� DJHQWV have been made. Such agents are capable of learning their competitors’

utility values and functions, thereby obtaining better results in negotiation. However,

learning mechanisms they generally used disregard possible changes in a competitor’s

offer/counter-offer policy. In that case, the agent performance may decrease drastically.

The agent then needs to restart the learning process, as the model previously learned is no

longer valid. Drift detection techniques can be used to detect changes in the current offer

model and quickly update it. In this work we demonstrate with simulated data that drift

detection algorithms can be used to build adaptive trading agents and that they offer a

number of advantages over other techniques. The results obtained with the IB3 algorithm

(Instance-based) show that the agent performance can be rapidly recovered when changes

interesting to the competitor are abrupt, moderate or gradual.

���,QWURGXFWLRQ�

In a negotiation process, two or more players exchange offers and counter-offers

concerning goods, resources or services needed for achieving a goal. It follows that some

degree of learning skills is fundamental to the improvement in negotiation strategies. For

example, one might consider the following scenario: Anna needs to insure her flat. The

policy cost is calculated on the following items: (i) fire (10%), (ii) natural disasters (10%)

and (iii) burglary (80%). However, she is not aware of this scheme, for it is part of the

internal strategy of the insurance company. Despite that, after several interactions with the

insurance company, she notices that the capital covered for robbery has a significant impact

on the total cost. Based on such findings, she decides to drastically reduce coverage against

burglary for her building is fairly secure. Such a decision allows her to save a great deal of

money. The following year, Anna asks for the renewal of her policy under the same

conditions, however her bank account reveals she was charged twice the amount of the

previous year. Outraged, she goes to the insurance company and is informed that there is

nothing else she can do, since the policy has already been processed and bank charges have

already been programmed. To explain the amount she was charged, the company states that

there are a number of weather phenomena (heavy rains and hurricanes) that are predicted

for the coming year, which changes the weight of natural disasters from 10% to 60% of the

policy cost.

This scenario indicates two important impacts of learning on negotiation: (i) learning

allows discovering negotiation strategies that can bring important benefits (Anna saved a

considerable amount of money when she paid for her first insurance policy); and (ii) the

concepts acquired in a negotiation may become obsolete and have undesirable effects

(Anna spent a great deal of money in the renewal of her insurance policy), thereby raising

the need for a mechanism to detect and automatically update such concepts. Such an issue

can be tackled with adaptive intelligent agents.

Researches on models and applications of negotiation using (human or computer) agents

are quite frequent. According to Faratin et al. (1998), negotiation is a process whereby two

or more agents are required to come to a decision in order to resolve a conflict. When both

agents are involved in transactions to attain a common goal one talks of &RRSHUDWLYH�
1HJRWLDWLRQ. A negotiation mechanism is composed of two main elements: the QHJRWLDWLRQ�
SURWRFRO and the QHJRWLDWLRQ�VWUDWHJ\. The negotiation protocol defines the meaning of each

interaction among agents, what can be done and which sequences of actions may be taken

(Fátima et al, 2004). The negotiation strategy is usually composed of a set of plans that

must be pursued by an agent so it can achieve its goals. Negotiation processes can be used

in a variety of domains involoving distributed problem solving. Within an environment

with limited resources like e-commerce, negotiations between customer and supplier agents

can lead to coordinated forms of allocating and saving resources, meeting values that

mutually satisfy each agent in the supply chain. Whenever there are multiple criteria for

evaluating offers and counter-offers in a negotiation process (which is the case in the

previous scenario), the process is said to be multi-issue.

A number of projects have been carried aiming at developing intelligent trading agents for

learning their competitors’ preferences, functions or utility values. Usually, this information

is private to each agent involved in the negotiation process and its discovery increases the

probability of optimizing resources and obtaining advantages. Thus, probabilistic

algorithms (Zeng and Sycara, 1998) (Buffet and Spencer, 2005), reinforcement learning

(Huang and Lin, 2005), genetic algorithms (Lau, 2005) or kernel density estimation

(Coehoorn and Jennings, 2004) have been studied. Nonetheless, most proposed algorithms

do not satisfy some of the constraints inherent to the problem of discovering offer policies

in negotiation: (i) the learning process must be efficient, allowing to propose values

satisfying the trading agents after a few interactions only; (ii) it must also be

computationally efficient, as the agent has limited processing and response time

capabilities; (iii) the learning algorithm must be capable of learning complex relationships

among offers once it faces a multi-issue negotiation; therefore, algorithms that perform

local searches may miss important relationships among attributes of offers; (iv) the learning

process must be incremental, because besides the limited number of observations, an agent

function and utility values may be modified during the negotiation process, and there can

be interferences from external factors as well. In this work we concentrate particularly on

the latter problem, proposing the use of GULIW�GHWHFWLRQ� WHFKQLTXHV for online, incremental

learning of a trading agent offer policies. This allows an agent to automatically detect

changes in its opponent’ s negotiation strategies. We start from the idea that the negotiation

process is bilateral and multi-issue.

Drift detection (Helmbold and Long, 1994) (Gama et al, 2004) is a widely researched

problem in the machine learning community. Through simulations, we demonstrate in this

work that drift detection techniques are potentially useful for discovery of offer policies in

negotiation.

The drift detection techniques studied in this work are derived from instance-based

learning. It can be verified in (Aha et al, 1991) that someof the proposed algorithms make

rather efficient use of processing time and memory space, and can be easily implemented.

We chose the IB3 algorithm proposed by Aha, because according to the author it shows

reasonable robustness against noise and irrelevant attributes. Such characteristics are

important for negotiation, as agents can distinguish real changes from noise besides the

possibility of exploring relationships amongst the various offer issues. Updating is also a

low cost process in the algorithm, which allows making rapid decisions and identifying

changes in an agent offer policies. Therefore, our goal consists in proposing a technique

that allows an agent to identify changes in negotiation policy of a competitor agent and to

classify an arbitrary offer as either interesting or not.

In the following section we discuss some ideas related to offer policy learning, as well as

the most important issues related to this problem. We characterize the proposed problem as

a drift detection approach by discussing its most relevant theoretic aspects in Section 3. We

present our technique in Section 4 and discuss experimental results in Section 5. Our

conclusions are given in Section 6.

���2IIHU�3ROLF\�/HDUQLQJ�DQG�5HODWHG�:RUN�
�
With the growth of Internet and the democratization of technology, it can be observed that

the number of service and product suppliers, and, specially, potential customers grows

exponentially every year. Nevertheless, technology must favor the establishment of

relationships amongst such players in a way that both customers and suppliers achieve their

goals, like minimizing costs, acquiring goods safely, guaranteeing a large number of

customers, or resolving problems of demand and stock. One way of favoring the growth of

such alternatives for business employs trading agents. Trading agents can play the role of

customers or suppliers depending on the context. The automatic discovery of offer policies

in negotiations is a fundamental issue for the evolution of e-commerce technologies, as

trading agents must participate in negotiations and business transactions in order to

maximize resources in favor of some customer or supplier. A trading agent must implement

at least two main components: an LQWHUDFWLRQ� SURWRFRO and a QHJRWLDWLRQ� PRGHO. The

interaction protocol defines the meaning of each interaction between agents, what can be

done and which sequences of actions should be employed (Fátima et al., 2004). The

negotiation model comprises the description of the offers and issues, determining value

domains for issues and, more importantly, a reasoning model, usually based on a utility

model. The reasoning model allows the agent to reason about offers and counter-offers

(Faratin et al., 1998), thereby defining specific priorities and behaviors. In recent years

some researchers have proposed intelligent trading agents provided with an extra module

composed of a learning model allowing the agent to learn their competitors’ utility

function. That function helps the agent to define its own goals so as to produce offers that

satisfy its needs more quickly. For instance, one could considered, a buyer agent that needs

to receive a large quantity of an arbitrary product immediately. If few suppliers are known

to be capable of guaranteeing the volume to be delivered, the vendor may guarantee

immediate delivery at a high price, provided that it is not higher than the competitors’ price.

Of course it depends on knowing the customers’ limitations, which generally is confidential

information. That information can be discovered by observing similar behaviors in previous

negotiations using pattern recognition techniques and machine learning. Several projects

with that goal have been proposed. Genetic algorithms have been used by Gerding and

Bragt (2003) and Lau (2005) in attempts to find the best offer and counter-offer policy.

However, such techniques are hardly ever applicable to e-business due to the complexity of

the involved calculations. Probabilistic techniques based on Bayes model have also been

used with relative success in (Zeng and Sycara, 1998) or (Buffet and Spencer, 2005). The

proposed solutions however, suffer from problems related to the distribution of data, which

is rarely known, and the volume of data, which is usually insufficient for the discovery of

effective probability functions. Moreover, a pre-existing dataset is rarely available to the

estimation of probabilities D�SULRUL. Orthogonal polynomials have been used for estimating

the utility functions in trading agents by (Saha et al., 2005). Nonetheless, even for limited

negotiation spaces, this technique needs a large number of interactions to discover efficient

utility functions. Coehoorn and Jennings (2004) have proposed a technique based on kernel

density estimation to discover the weights of each competitor’ s issue. Based on such

weights, the authors used the algorithm proposed in (Fatarin et al., 2002) to estimate trade-

offs that satisfy the agents involved in the negotiation.

Although some of the cited projects gave satisfactory results, they do not consider an

important aspect of negotiation: there are various cases where the negotiation process

cannot be modeled as a stationary function, but as one under the influence of factors that

may or may not be related to the negotiation itself. This means that agent utility values and

functions may change in time, for example due to its poor performance or because of the

occurrence of unexpected events, alien to the negotiation environment. As an example, a

sudden lack of raw material for a supplier will seriously affect the way its sales agent

negotiates with customers. Likewise, a customer who notices his income is decreasing in

time may gradually alter his offer policies in order to reduce the need for immediate capital.

Such characteristics make most learning methods that we mentioned inappropriate since

they are unable to adapt the learned model to changes dynamically. The agents must,

therefore, restart the learning process after a long period during which their performance is

poor and does not reflect the brand new competitor’ s negotiation model. The identification

of changes in concept descriptions is a task known as GULIW� GHWHFWLRQ (Schlimmer and

Granger, 1986) (Helmbold and Long, 1994) in Machine Learning (Mitchell, 1997). In this

work, we focused on detection of changes in negotiation policies by describing how GULIW�
GHWHFWLRQ algorithms can contribute to the solution of this problem. Next section discusses

the main concepts related to this subject.

���'ULIW�'HWHFWLRQ�
�
In this section, we present the drift detection problem and discuss some algorithms used for

solving it.

����'ULIW�'HWHFWLRQ�'HILQLWLRQ�
�
In domains where the environment constantly changes or data is continually produced,

dynamic learning techniques need to be used as soon as the target-concepts of the algorithm

change as time elapses. Such modifications may be abrupt or occur slowly. Nevertheless,

most machine learning and data mining algorithms assume that training sets are generated

according to a stationary distribution of a probability function. Those algorithms are,

therefore, incapable of handling the problem we want to solve. Gama et al. (2004) mention

other problems that involve detection of changes in target-concepts like biomedical and

industrial processes monitoring, fault detection and diagnostic, or complex security

systems.

Detecting changes while learning dynamic class models is the problem known as drift

detection (Kilter and Maloof, 2005) (Stanley, 2003). The following paragraphs characterize

the concept of drift detection as described by Stanley (2003).

For simplicity, we defined as a FRQFHSW a normal disjunctive formula that relates a set of

qualitative variables like Price ∈ {very_low, low, normal, high, very_high}. Thus, a

FRQFHSW may be described as, for instance, “Price = (very low or low) and Quality = high.”

With such a description one can easily verify whether an instance is covered by an arbitrary

concept by checking if the conditions in the corresponding concept description are satisfied

by that instance. Drift detection may be defined as a modification in the current concept. In

order to illustrate such modification we need a couple of concepts. Let $ and % be two

concepts and i1 to in a set of instances. Until reaching instance ix, the current concept $ is

stable. After a certain number [past ix, the concept % takes the role of current concept.

The change from concept $ to concept % is smoothly taking place between instances ix and

ix+ x as shown Figure 1.

Concept A Concept B
i1 ix ix+ x

Drifting Zone

in

Concept A Concept B
i1 ix ix+ x

Drifting Zone

in
Figure 1. Drifting from A to B.

When [= 1, an abrupt change from $ to % is said to have occurred. On the other hand,

when [> 1, there exists a drifting zone and the modification proceeds gradually. The

drifting zone can be modeled as a probability function which defines the dominance of

concept $ over %. Thus, p(A) = and p(B) = 1 – . In order to measure the probability of

concept $ in an arbitrary ic ∈ {ix , ix+1 , ... , ix+ x} one needs to use = (F - [) / [� The

equation establishes that the probability of occurrence of a concept $ decreases linearly as

the probability of % increases.

����&RQVLGHUDWLRQV�IRU�&RQFHSW�'ULIW�
�
 A concept drift technique must include three main goals: (i) rapid detection of

concept drift, (ii) distinguishing concept drift from noise; and (iii) recognizing and dealing

with recurring contexts. Rapidly detecting a concept change in data is essential. Such a

feature enables actions to be selected in a way that minimizes the negative impact caused in

the system by mistaken actions. Put simply, that means lesser instances will be incorrectly

classified by the system, thereby lesser mistakes will be done. On the other hand, some

systems may receive noisy perceptions due to faults in the input or monitoring devices, or

due to partial representations of the environment. Such changes consist of anomalies that

must be identified without, however, modifying concepts acquired by the system during the

learning process. The work done by (TSymbal, 2004) or (Stanley, 2003) mentions such

need. Another important aspect of concept drift techniques lies in the ability to identify

recurring concepts, i.e., concepts that alternate between valid and invalid states with some

degree of regularity. There are several domains where concepts are naturally recurring, for

instance, the cycle of seasons through a year (spring, summer, fall and winter). Recurring

concepts directly affect current prediction parameters. They can be stored and reused in

future situations. By acting in such a way, the system does not need to repeat the learning

process for a previously learned concept; it only needs to identify the valid recurring

concept, saving resources, reducing response time and possibly increasing its utility.

����8SGDWLQJ�7HFKQLTXHV�
�
In several application domains, data is continuously generated and stored. Moreover, a

system for administration of critical situations continuously acts according to input data.

Consider for example a network of atmospheric radars that monitor an arbitrary region in

order to predict destructive electrical storms. Data transmission frequencies are about

hundredths of seconds. Within such an environment, the number of concepts (atmospheric

conditions) is limited, while time and confidence in decision making are critical. Therefore,

an issue must be considered: how to guarantee that the prediction model of the system will

always be up-to-date? To let a system have its concepts continuously providing a consistent

representation of data, the use of techniques for online (incremental) learning is

recommended. In this case, concepts are only modified; no concept is reconstructed.

Modifications of concepts should permit a new observation to be correctly classified. On

the other hand, a procedure for off-line (batch) learning would not be suitable, since it

would require the system to store a great number of instances before starting a new

execution of the learning algorithm. During the learning process (which may be slow),

instances may be incorrectly classified, as the system operates with an obsolete model.

 Some systems also need user interaction to support the update process. For instance,

when a tool for detection of unsolicited electronic messages (SPAM) intercepts a suspicious

message, the system asks the user to indicate whether or not that message constitutes

SPAM. Without explicit user feedback, the system is unable to update its knowledge base,

which might result in incorrect classification of messages, leting unsolicited messages come

through.

����'HWHFWLQJ�&RQFHSW�'ULIW�

Numerous methods have been proposed to deal with the drift detection problem in machine

learning. They can be categorized according to their training features as either online or

batch. An online learning method modifies its models whenever a new example is

observed. On the other hand, a batch method processes a whole dataset once, updating its

data models periodically. Online learning is particularly interesting to this work, since we

need to consider that offers/counter-offers are received and used in the negotiation. The

most ubiquitously widespread drift detection techniques are (i) windowing, (ii) example

weighing, according to their age or utility, and (iii) example selection. According to Gama

et al. (2004), techniques that deal with drift detection can still be split into two other

categories: (i) techniques that adapt the classifier at regular intervals without verifying

whether any changes have occurred; or (ii) techniques that detect changes beforehand and

then adapt their corresponding classifiers to them. Examples of the former are windowing

and example weighing. The hypothesis whereby the importance of an example decreases

with time is the foundation of the example weighing technique. It can also be used as a tool

to select the most relevant examples. More sophisticated techniques overcome some the

mentioned problems by generating and maintaining a set of classifiers (Kolter, 2005)

(Stanley, 2003). Some of them are described in the following sections.

:LQGRZLQJ�
�
Whenever a time window is used, the classifier is reconstructed from the examples within

such a window. The complexity of this technique lies on identifying the proper size of the

temporal window: excessively small ones ensure rapid adaptation, but cannot identify

relationships among variables due to the partitioned view of data, whereas extremely big

ones produce good classifiers for stable zones to the detriment of losing the capacity for

identifying changes quickly. If some change is detected at any instant of the monitoring

phase, some actions may be triggered in order to let the classifier adapt accordingly. For

instance, modifying the window size in order to accommodate the set of examples affected

by that change will do that. In addition, the window size may be reduced upon the detection

of a change and enlarged while no change is observed.

 The windowing technique obeys the following principle: a storage area (or buffer),

called :LQGRZ, is created to serve as a container for the N most recent observed instances.

The learning algorithm uses the N instances in the window to learn the current data model.

The window size may be fixed or variable. An advantage for the variable one is that it may

adjust the number of instances that will be used in the pattern discovery process as a

function of the stability of the data distribution. For instance, when the distribution of data

undergoes a stable period, i.e., when no concept change has been observed recently, the

bigger the window, the better will be the model generated by the algorithm to represent it.

Conversely, when the distribution undergoes a transitional period, the smaller the window,

the better will be the system performance, as instances display significant variations to one

another [Klinkenberg and Renz, 1998].

 In [Stanley, 2003] a comparative study on windowing is presented along with other

strategies for detection of concept drift. In the study, the authors experienced difficulties in

their attempt to automatically adjust the window size. All strategies imply a slow change in

window size, which requires the algorithm to experience over relatively long periods with a

high error rate in classifications [Klinkenberg and Renz, 1998].

(UURU�(VWLPDWLRQ�

 The strategy for error estimation consists in using the error rate of the algorithm on

the instances received by the system to identify concept changes. As shown Figure 2, this

strategy employs two thresholds, namely Warning Level and Drift Level. Such thresholds

are used by the concept drift detection algorithm to indicate that the error rate for

classification lies within an interval that denotes a possible concept change. Thus, when the

error rate overtakes the Warning Level, additional instances are stored in a buffer. When

the error rate reaches the Drift Level, current concepts need to be updated and the learning

algorithm starts. All the instances stored from the instant when the Warning Level was

overtaken until the one when the Drift Level was reached become the training dataset for

the algorithm [Maloof, 2002].

)LJXUH�����&ODVVLILFDWLRQ�(UURU � �

 Figure 3 shows the variation in error rate through time in a test database where

several different concepts define the distribution of data. Upon each concept change, a

detection occurs and the system immediately updates its model. Each peak on the chart

represents a concept change, though it can be easily noticed that the error rate is rapidly

reduced, indicating that the strategy responds adequately to the concept change.

)LJXUH���±�(UURU�UDWH�WKURXJK�WLPH � �

&RQFHSW�'ULIW�&RPLWWHH��&'&��

 The CDC [Stanley, 2003] is an alternative for algorithms that use time windows.

These algorithms require heuristics to decide when window sizes should be altered,

whereas CDC does not. The CDC algorithm relies on a poll to detect the Concept Drift and

update concepts.

 Consider a committee &, comprising Q hypotheses, where each hypothesis is a

decision-tree built upon all instances it knows (V �). An incoming instance is evaluated by

1 Extracted from [Gama et al., 2004]

each hypothesis; the ones that incorrectly classify the instance have their weights reduced

until they are removed from the committee and replaced by new hypotheses. Initially, & is

empty (no hypotheses). Whenever a new instance arrives, if the number of hypotheses in

the committee is less than a maximum Q, a new member is added to it. The newly created

member K � initializes its set V � with the current instance only. Thus, upon the arrival of the

second instance, the committee & contains the hypothesis K � only, whose training set is V � ,
which holds the instance L � .
 At the time the instance L � arrives, a new member K � is added to the committee and

its training set V � is composed of the instance L � only. At this moment, the committee has

two hypotheses:

� K � , with V � comprised of {L � , L� }

� K � , with V� consisting of the instance L � {L � }

Members are added to the committee until the maximum number of members (Q) is

reached. For the committee members (hypotheses) to be evaluated, each of them must vote

on test instances that are derived from the current distribution (target concept). The weight

of each vote is equal to the performance of the corresponding member over the last P

training instances. For this reason, members whose recent performances have been

satisfactory participate with votes of higher weight. When a member’ s performance falls

beneath a threshold W, it is replaced by a brand new one that has no knowledge of past

instances. Therefore, the committee will always be representing the current distribution of

data.

 In periods of stability, the oldest members are more reliable, though when there are

transitions between concepts, members are constantly being replaced. When a new member

is added to the committee, it does not contain enough instances to gain considerable weight

for its vote; therefore, it must achieve a certain degree of maturity before it can vote and be

replaced (if necessary) by a new member. Such a mature age is reached when the member

has already observed P instances throughout its existence. Before that, its vote weight is 0

(zero). The work of Stanley [2003] describes the CDC algorithm in details.

It is possible to consider that CDC uses pseudo time windows, as each member is

trained with an instance set different from the ones that the other members use. This

characteristic allows CDC to exhibit good performances in both gradual and abrupt

&RQFHSW�'ULIW. It should be emphasized that, in the latter case, usually almost all members

are replaced, while in the former case they are replaced gradually. Such behaviors make the

algorithm noise tolerant and efficient for the detection of &RQFHSW�'ULIW.

,QVWDQFH�%DVHG�&RQFHSW�'ULIW�'HWHFWLRQ�

In this work we use a well-known drift detection algorithm: the IB3 algorithm, proposed by

Aha (1991). As stated by the author, the algorithm presents a relative robustness against

noise and irrelevant attributes. Such characteristics are quite valuable in negotiation, as

agents can distinguish real changes from noise besides the possibility of exploring

relationships amongst the various offer issues. Updating is a low cost process in that

algorithm, which enables responsiveness for decisions and thus detection of changes in an

agent’ s offer policies. IB3 is a member of the instance-based algorithms family. IB1

corresponds to the standard nearest neighbor algorithm. Although instance-based learning

algorithms are capable of reproducing complex discriminating functions, they usually

require massive memory resources and processing time for the classification process due to

the need to compare and contrast the instance to be classified with all available instances.

IB2 attempts to reduce the problem by introducing a criterion for the storage of a new

instance. When a new instance is classified, its storage in the concept description is only

performed if its classification was incorrect, otherwise it is discarded. Although saving

memory and processing resources, experiments have shown that IB2 is fairly sensitive to

noise in data. IB3 has evolved from IB2. Experiments demonstrated that the method is

quite robust when applied to data with such characteristics.

IB3 maintains a classification record with each and every instance stored. This record

quantifies the classification rate of an instance, i.e., the accuracy rate of the instance in

cases where it has been used to classify a new one. That information is used to estimate its

future precision. The algorithm also uses a significance test to determine whether an

instance either should be relevant for future classifications or constitutes noise. In the latter

case, it is discarded. The algorithm stores an instance if its precision is significantly higher

than the observed frequency of its class, and removes it if its precision is significantly

lower. A detailed description of the algorithm can be found in (Aha, 1991).

���'ULIW�'HWHFWLRQ�IRU�'ULIWLQJ�1HJRWLDWLRQ�
�
In this work we propose using drift detection to discover negotiation policies without the

need of the best available algorithm. We believe that such a technique constitutes an

innovative solution to the proposed problem. We are not, however, interested in proposing

and/or using complex methods of negotiation, since our objective is to propose a generic

technique that can be used with any negotiation model. In addition, the use of a specific

utility model might introduce biased results, rendering it invalid for other negotiation

models. We propose a generic technique allowing an agent to identify changes in a

competitor’ s negotiation policy, classifying an offer as either possibly interesting or non-

interesting to its competitor. This partial information may be used along with a strategy for

exploring the space of possible offers in order to discover an interesting offer and to lead

the agent to a better negotiation. Figure 4 shows the integration of the proposed drift

detection model. Upon receiving an offer/counter-offer, the agent classifies it as interesting

in case it has been accepted by the corresponding peer and non-interesting otherwise. Based

on that offer, a classified instance is then constructed and transferred to the drift detection

module, where it can be stored in the concept description database or rejected. Next, the

negotiation module generates an offer/counter-offer that is iteratively classified in the drift

detection module. As soon as an offer/counter-offer is classified as interesting, the iterative

process ends and the offer is delivered to the peer agent.

If accepted(offer) then
Class(offer) = interesting

Else
Class(offer) = non_interesting

EndIf

offer Drif Detection
Module

instance Concept
Description
Database

Negotiation
Module

new offer new offer
classified

interesting
offer

Buyer

instance
If accepted(offer) then

Class(offer) = interesting
Else

Class(offer) = non_interesting
EndIf

offer Drif Detection
Module

instance Concept
Description
Database

Negotiation
Module

new offer new offer
classified

interesting
offer

Buyer

instance

Figure 4. Architecture of an Adaptive Trading Agent.

�
����'HILQLQJ�WKH�2IIHU�6SDFH�

To illustrate the technique we need to define the offer space. For the sake of simplicity, we

defined issues as qualitative variables. They may or may not be ordered. Table 1 presents

each of the issues used in this work.

Table 1. Description of Issues.

Issue Domain
Color [black, blue, cyan, brown, red, green, yellow, magenta]
Price [very_low, low, normal, high, very_high, quite_high,

enormous, non_salable]
Payment [0, 30, 60, 90, 120, 150, 180, 210, 240]

Amount [very_low, low, normal, high, very_high, quite_high,
enormous, non_ensured]

Delivery_Delay [very_low, low, normal, high, very_high]

����'HILQLQJ�&RQFHSWV�
�
To contextualize the definition of concepts we employed a bilateral negotiation between a

buyer and a sales agent. The former will always attempt to predict whether an arbitrary

instance constructed upon an offer will be either interesting or non-interesting to the latter.

We have defined some hypothetical, disjunct concepts that a vendor can use and whose

definitions the buyer must discover. Table 2 illustrates such a sequence of concepts, that

represents an abrupt drift.

Table 2. Description of 5 concepts.
Concept ID Description of an interesting offer Concept Description

1 (Price = normal DQG Amount =
large) RU

(Color = brown DQG Price =
very_low DQG Delivery_Delay =

long)

An offer is judged interesting in case its
price is normal and the amount of the
desired product is large. However, a
problem in the production line that handles
brown products requires the vendor to
reduce price for delivery delays will
probably be too long.

2 (Price = high DQG Amount =
very_large DQG Delivery_Delay =

very_short)

Suppliers face difficulties in providing raw
materials to the company and production
has thereby fallen drastically. This lack of
product requires the company to penalize
customers who buy large quantities and
need them immediately, with a rise in prices
for delivery under such conditions.

3 (Price = very_low DQG Payment = 0
and Amount = large)

RU�
(Color = red DQG Price = low DQG

Payment = 30)

Important customers have declared
incapacity to honor big contracts and the
company needs capital to continue
operations. Therefore the company will
sharply reduce prices of all products for
large quantity orders and cash payment.
Nevertheless, product red is marginally on
demand, which prevents its price from
falling too much. To compensate that, the
company decides to extend its payment
delay to 30 days.

4 (Color = black DQG Payment = 90
DQG Delivery_Delay = very_short)

RU�

(Color = magenta DQG Price = high
DQG Delivery_Delay = very_short)

The company maintains large amounts of
product black, implying high costs of
storage and logistics. The company then
extends the payment delay for that product,
guaranteeing immediate delivery. Product
magenta is now made of imported raw
material, having its cost increased.

 Nonetheless, there is also a large amount of
this product in stock that needs to be sold
quickly.

5 (Color = blue DQG Payment = 60
DQG Amount = little DQG
Delivery_Delay = normal)

RU�

(Color = cyan DQG Amount =
little DQG Delivery_Delay =

normal)

Big investors are now endowing the
company, increasing its capital resources. It
then starts to aggressively position itself to
gain market share by popularizing some of
its products. The company guarantees long
payment delays for products blue and cyan,
even for small quantity orders.

����6LPXODWLQJ�1HJRWLDWLRQ�
�
Considering the definitions of concepts in the previous section, we used a procedure for

generating instances similar to the Stagger system (Wider and Kubat, 1996) and used in

(Stanley, 2003) and (Gama et al., 2004). For each concept, 100 instances are generated and

used to assess the precision of the system. Next, an arbitrary number of training instances [

is generated. The drift detection model then receives one training instance at a time and is

assessed on the test set. We determined that a training or test instance can have its class

labeled as interesting or non-interesting. This procedure is illustrated Figure 5.

Foreach concept F ∈ [1,...,C] do
generate test instances according to concept F
Foreach instance L ∈ [1,...,[] do

learn L with the drift detection approach
evaluate the performance over test instances

endForeach
endForeach

Figure 5. An abrupt drift detection evaluation algorithm.
�
Concept drifts can also occur moderately. In this case, each successor concept maintains

some degree of similarity to the previous one. To illustrate this situation we defined a total

of 8 concepts that are described in Table 3. For the definition of such concepts we used the

attributes 'HOLYHU\B'HOD\ that is constant, and $PRXQW only. This sequence of concepts can

illustrate, for example, the constant increase in the vendor’ s capacity of production.

Consequently, the vendor is capable of increasing the amount of products delivered with

short delay.

Table 3. Moderate Drift Concepts.

Concept ID Description of an interesting offer
1 (Delivery_Delay = very_low DQG Amount = very_little)
2 (Delivery_Delay = very_low DQG Amount = little)
3 (Delivery_Delay = very_low DQG Amount = normal)
4 (Delivery_Delay = very_low DQG Amount = large)
5 (Delivery_Delay = very_low DQG Amount = quite_large)
6 (Delivery_Delay = very_low DQG Amount = very_large)
7 (Delivery_Delay = very_low DQG Amount = enormous)
8 (Delivery_Delay = very_low DQG Amount = non_ensured)

We also used two concepts $ and % to simulate a gradual concept change in the sales agent.

Both concepts are displayed in Table 4. The procedure for gradual drifting generation was

described in Section 3.1.

Table 4. Concepts used for gradual drifting.
Concept ID Description of an interesting offer

A (Color = blue DQG Delivery_Delay = very_short)
B (Color = black DQG Price = high)

RU�
(Color = magenta DQG Payment = 0)

�
�
���([SHULPHQWV�
�
The experiments we performed show the results of the IB3 algorithm applied to the

concepts described in the previous section. The average results obtained with 20 iterations

are discussed in this section. Initially, IB3 was evaluated on the existence of abrupt drifts.

We fixed the number of instances x = 50 to use with each concept. Figure 6 illustrates the

obtained results.

����� 	�
����� � � �

� �

� �

� �

� �

� �
� ����� � ��!�"��

$%
&' (
')
*

Figure 6. Results of abrupt drift concepts.

It is also noticeable that the detection of drifts occurs quite quickly, usually in less the 10

iterations for each new concept. Another remarkable feature is the performance of the first

concept, that was just moderate, probably for more iterations it would have been necessary

so that the IB3 algorithm had constructed an adequate representation for concept 1. Such a

behavior tends to be exhibited by IB3 due to its conservative model, adopted to prevent the

algorithm from learning inaccurate relationships from noisy data.

Results obtained from data with moderate drift shown Figure 7 are quite encouraging. One

can clearly notice that falls in performance caused by changes are much less than those

identified Figure 6 (less than 10% on average). This behavior results from similarities

among the produced concepts. One can also notice an increase in precision for each concept

in comparison with its previous peer. However, the increase in precision occurs more

slowly than it did when changes were abrupt. As concept descriptions learned by the

algorithm present a reasonable performance the algorithm reacts more carefully in order not

to remove instances whose absence might decrease the precision of the current model, once

the stored instances present good classification accuracy. On the other hand, when the

performance is deficient (in case of abrupt changes), performance in the classification of

Concept 1 Concept 2 Concept 3 Concept 4 Concept 5

stored concepts tends to be rather poor and the algorithm executes frequent modifications in

the set of instances that form the concept description.

Figure 7. Results of Moderate Drift.

We conducted experiments to assess the impact of gradual drift between a couple of

concepts $ and % in a number of instants during the learning process of the buyer agent.

Both $ and % were randomly generated. The first experiment aimed at measuring the

influence of drift at the beginning of the agent learning process. Figure 8 shows the results

obtained with a drift zone ranging from 50 to 150. In this case, the agent performance is

minimally affected by changes, maintaining an ascending learning bias. Figure 9 shows

that, when the agent has an already consolidated concept description, a short drift (between

150 and 200) only provokes a moderate oscillation. Figures 10 and 11 show that long drift

periods tend to attenuate performance oscillations, while maintaining an average

performance comparable to the one observed before the start of the drift period (ix). After

the drift period, the tendency for increase in performance can still be amplified, provided

that a large number of instances remain available.

Concept 1 Concept 2 Concept 3 Concept 4 Concept 5 Concept 6 Concept 7 Concept 8

+-, .�/�0�.21435, 6 7 8:9�;-<>=�;4;-<?=�;�;

@BA
@B@
CDA
CD@
EBA
EB@
FBA

A @BA GHABA GH@BA IDABA
J KDLBM NDK�OBPL

Q RS
TU VU W
X

Figure 8. Gradual Drift with drifting zone ∈

[50,…,150].

Y[Z \4]�^�\`_ abZ c d e�f g4hjikg�hjikg�h

lBm

lBl

nDm

nDl

oBm

oBl

m lBm pHmDm pHlDm qDmDm
r sBtBu v�sDwDxt

y z{
|} ~} �
�

Figure 9. Gradual Drift with drifting zone ∈

[150,…,200].
Y[Z \4]�^�\`_ abZ c d e�f g4hji�f g4hji�f�g�h

lBm�� mBm
lBl�� mBm
nDm�� mBm
nDl�� mBm
oBm�� mBm
oBl�� mBm
�Bm�� mBm

m pHlDm �BmDm �DlDm
r sBtBu v�sDwDxt

y z{
|} ~} �
�

Figure 10. Gradual Drift with drifting zone ∈

[150,…,300].

Y[Z \4]�^�\`_ abZ c d e�f g4hji�f g4hji��4h�h

lBm�� mBm
lBl�� mBm
nDm�� mBm
nDl�� mBm
oBm�� mBm
oBl�� mBm
�Bm�� mBm

m pHlDm �BmDm �DlDm nDmDm
r sBtBu v�sDwDxt

y z{
|} ~} �
�

Figure 11. Gradual Drift with drifting zone ∈

[150,…,300] with many instances.

We can state that considering the experiments that have been conducted, algorithms with

drift detection capacities could be successfully used to learn offer policies, since results of

all experiments show that the learning curve may suffer interferences, though it always

maintains an ascending bias. In some cases, detection of changes is quite fast and the agent

performance increases quickly.

���&RQFOXVLRQV�

In this work, we demonstrated that algorithms developed for concept drift detection can be

successfully used in bilateral and multi-issue negotiations. Recall that our goal was not to

propose an integrated model of negotiation (see Section 4), but to show that drift detection

techniques satisfy important constraints inherent to the problem of learning offer policies,

such as effectiveness, efficiency, complexity and, mainly, changes in the agent behaviors.

Experiments performed on simulated concepts of negotiation showed that the IB3

algorithm can detect changes rapidly and update an agent concept description in order to

improve its performance even with a few iterations only. We started from the idea that a

negotiation model could exploit the drift model to generate offers that are interesting for

both agents involved in the negotiation process, and, as a result, the agent performance in

the negotiation process should be proportional to the one obtained by the drift detection

model.

In future work, we intend to employ techniques such as the ones described in this work to

improve existing negotiation models, similarly to what has been proposed by Coehoorn and

Jennings (2005). Once a complete negotiation model is built, we will be capable of

assessing the utility values obtained by agents that use different drift detection algorithms.

An interesting alternative consists in employing techniques based on ensembles and

committees, such as those described by Stanley (2003) and Kolter and Maloof (2005). In

spite of a higher computation cost, such techniques can produce fairly satisfactory results

for the detection of different sorts of concept drifts.

5HIHUHQFHV�

Aha, D.W., Kibler, D., Albert, M.K. 1991. Instance-based Learning Algorithms, Machine

Learning. 6(1), pp. 37-66.

Buffet, S., Spencer, B. 2005. Learning Opponents’ Preference in Multi-Object Automated

Negotiation, Proc. of International Conference on Electronic Commerce’ 05, pp. 300-305,

Xi’ an, China.

Coehoorn, R. M., Jennings, N. R. 2004. Learning an Opponent’ s Preferences to Make

Effective Multi-Issue Negotiation Trade-Offs, Proc. of the Sixth International Conference

on Electronic Commerce, pp. 59-68.

Faratin, T., Sierra, C., Jennings, N. R. 1998. Negotiation decision functions for autonomous

agents, Robotics and Autonomous Systems, Vol 24, N 3-4, pp 159-182.

Faratin, T., Sierra, C., Jennings, N. R., 2002. Using similarity criteria to make issue

tradeoffs in automated negotiations, Artificial Intelligence, n. 142 vol, 2, pp. 205-237.

Fatima, S., Wooldridge, M. and Jennings, N. 2004. An agenda-based framework for multi-

issue negotiation. Artifcial Intelligence, 152:1, n. 45.

Gama, J., Medas, P., Castillo, G., Rodrigues, P. 2004. Learning with Drift Detection, Proc.

of the 17th Brazilian Symposium on Artificial Intelligence – SBIA’ 04, LNAI 3171, Ana

L.C. Bazzan and Sofiane Labidi (eds.), Springer, pp.286-295, Brazil. ISBN 3-540-23237-0

Gerding E., Bragt, D. van, 2003. Multi-issue negotiation processes by evolutionary

simulation, validation and social extensions. Computation Economics, n. 22, vol. 1, pp. 39-

63.

Helmbold, D. P., Long, P. M. 1994. Tracking drifting concepts by minimizing

disagreements. Machine Learning, 14(1):27-46.

Huang, S., Lin, F., 2005. Designing Intelligent Sales-agent for Online Selling, Proc. of the

International Conference on Eletronic Commerce, pp.279-286, Xi’ an, China.

Klinkenberg, R, Renz, I. Adaptive Information Filtering: Learning in the Presence of

Concept Drifts. AAAI-98/ICML-98. 1998.

Kolter, J. Z., Maloof, M., A. 2005. Using additive expert Ensembles to Cope with Concept

Drift, 22nd. International. Conference on Machine Learning, Germany.

Lau, R. Y. K. 2005. Adaptive Negotiation Agents for E-business, International Conference

on Eletronic Commerce, pp. 271-278, Xi’ an, China.

Maloof, M. Incremental Learning with Partial Instance Memory. XIII International

Symposium on Methodologies for Intelligent Systems. Lyon, France. 2002.

Mitchell, T. 1997. Machine learning. New York: McGraw Hill.

Saha, S., Biswas, A., Sen, S. 2005. Modeling Opponent Decision in Repeated One-shot

Negotiations, Int. Conference on Autonomous Agents and Multi-Agent Systems –

AAMAS’ 05, pp. 397-403.

Schlimmer, J., Granger, R. 1986. Beyond incremental processing: Tracking concept drift.

Proceedings of the 5th. AAAI Conference, pp. 502-507, AAAI Press.

Stanley, K. O. 2003. Learning Concept Drift with a Committee of Decision Trees,

University of Texas, Department of Computer Sciences Technical Report AI-03-302,

September.

Tsymbal, A. The problem of concept drift: definitions and related work. 2004.

Widmer, G., Kubat, M. 1996. Learning in the presence of concept drift and hidden

contexts. Machine Learning, n. 23, vol 1, pp. 69-101.

Zeng, D., Sycara, K. 1998. Bayesian learning in negotiation, International Journal on

Human-Computer Studies, 48:125-141.

