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Abstract

Cooperative multi-agent systems are ones in which several agents attempt, through their interaction, to jointly
solve tasks or to maximize utility. Due to the interactions among the agents, multi-agent problem complexity can
rise rapidly with the number of agents or their behavioral sophistication. The challenge this presents to the task
of programming solutions to multi-agent systems problems has spawned increasing interest in machine learning
techniques to automate the search and optimization process.

We provide a broad survey of the cooperative multi-agent learning literature. Previous surveys of this area have
largely focused on issues common to specific subareas (for example, reinforcement learning or robotics). In this
survey we attempt to draw from multi-agent learning work in aspectrum of areas, including reinforcement learning,
evolutionary computation, game theory, complex systems, agent modeling, and robotics.

We find that this broad view leads to a division of the work intotwo categories, each with its own special is-
sues: applying a single learner to discover joint solutionsto multi-agent problems (team learning), or using multiple
simultaneous learners, often one per agent (concurrent learning). Additionally, we discuss direct and indirect commu-
nication in connection with learning, plus open issues in task decomposition, scalability, and adaptive dynamics. We
conclude with a presentation of multi-agent learning problem domains, and a list of multi-agent learning resources.

1 Introduction

In recent years there has been increased interest in decentralized approaches to solving complex real-world problems.
Many such approaches fall into the area ofdistributed systems,where a number of entities work together to coopera-
tively solve problems. The combination of distributed systems and artificial intelligence (AI) is collectively known as
distributed artificial intelligence(DAI). Traditionally, DAI is divided into two areas. The first area,distributed problem
solving, is usually concerned with the decomposition and distribution of a problem solving process among multiple
slave nodes, and the collective construction of a solution to the problem. The second class of approaches,multi-agent
systems(MAS), emphasizes the joint behaviors of agents with some degree of autonomy and the complexities arising
from their interactions.

In this survey, we will focus on the application ofmachine learningto problems in the MAS area. Machine
learning explores ways to automate the inductive process: getting a machine agent to discover on its own, often through
repeated trials, how to solve a given task or to minimize error. Machine learning has proven a popular approach to
solving multi-agent systems problems because the inherentcomplexity of many such problems can make solutions
by hand prohibitively difficult. Automation is attractive.We will specifically focus on problem domains in which the
multiple agents arecooperatingto solve a joint task or to maximize utility; as opposed tocompetingwith one another.
We call this specific subdomain of interestcooperative multi-agent learning. Despite the relative youth of the field,
the number of cooperative multi-agent learning papers is large, and we hope that this survey will prove helpful in
navigating the current body of work.

1.1 Multi-Agent Systems

The termsagentandmulti-agentare not well-defined in the community; we offer our own, admittedly broad, defini-
tions of the concepts here as we intend to use them later in thesurvey. Anagentis a computational mechanism that

1



1 INTRODUCTION 2

exhibits a high degree of autonomy, performing actions in its environment based on information (sensors, feedback)
received from the environment. Amulti-agentenvironment is one in which there is more than one agent, where they
interact with one another, and further, where there are constraints on that environment such that agents may not at any
given time knoweverythingabout the world that other agents know (including the internal states of the other agents
themselves).

These constraints are, we argue, important to the notion of the multi-agent system problem definition. Otherwise,
the distributed “agents” can act in sync, knowing exactly what situation the other agents are in and what behavior they
will pursue. This “omniscience” permits the agents to act asif they were really mere appendages of a single master
controller. Additionally, if the domain requires no interaction at all, then it may be decomposed into separate, fully
independent tasks each solvable by a single agent.

Consider the application of cooperative foraging, where multiple robot agents are tasked to discover rock samples
and bring them back to specific places. We will return to this example throughout the paper. In its simplest form, this is
a problem domain which could be solved by a single robot, and multiple (totally independent) robots merely parallelize
the effort. The problem becomes more complex when the robotscan, through their interactions, gradually suggest to
one another good regions to forage. Additionally, if all robots instantaneously know of all rock discoveries, and
further know where the other robots will choose to forage, they could be coded to operate identically to a basic master-
slave configuration. As Jennings et al. [131] suggest, few real-world problem domains permit such reductions to
single-agent equivalence: most feature agents with incomplete information about the environment, lack of centralized
control, decentralized and distributed information, and asynchronous computation.

Depending on their interest, several authors have provideddifferent taxonomies for MAS applications. For exam-
ple, Dudek et al. [71] classify swarm robotics applicationsaccording to team size, range, communication topology
and throughput, team composition and reconfigurability, and the processing ability of individual agents. In a collec-
tion describing the application of Distributed Artificial Intelligence to industry, Van Dyke Parunak [273] differentiates
betweenagent characteristics(team heterogeneity, control architectures, input/output abilities) andsystem character-
istics(for example, communication settings). Stone and Veloso [255] explicitly distinguish among four groups divided
by heterogeneity versus homogeneity and by communication versus lack thereof. Last, Weiß [285, 287] and Huhns
and Singh [123] characterize multi-agent systems based on types of environments, agents, and inter-agent interactions.

1.2 Multi-Agent Learning

Much of the multi-agent learning literature has sprung fromhistorically somewhat separate communities — notably
reinforcement learning and dynamic programming, robotics, evolutionary computation, and complex systems. Ex-
isting surveys of the work have likewise tended to define multi-agent learning is ways special to these communities.
Instead, we begin this survey by defining multi-agent learning broadly: it is the application of machine learning to
problems involving multiple agents.

We think that there are two features of multi-agent learningwhich merit its study as a field separate from ordinary
machine learning. First, because multi-agent learning deals with problem domains involving multiple agents, the
search space involved can be unusually large; and due to the interaction of those agents, small changes in learned
behaviors can often result in unpredictable changes in the resulting macro-level (“emergent”) properties of the multi-
agent group as a whole. Second, multi-agent learningmayinvolvemultiple learners, each learning and adapting in the
context of others; this introduces game-theoretic issues to the learning process which are not yet fully understood.

Except for section 3.2.3, the survey primarily covers topics of interest tocooperativemulti-agent learning. While
one might define cooperative domains restrictively in termsof joint shared reward, much of the literature tends to use a
much broader notion of cooperation, particularly with the introduction of credit assignment (discussed later). As such,
we feel that cooperative multi-agent learning should be loosely defined in terms of theintentof the experimenter. If
the design of the problem and the learning system is constructed so as to (hopefully) encourage cooperation among
the agents, then this is sufficient, even if in the end they fail to do so.

One large class of learning in multi-agent systems that we will ignore in this survey involves situations where a
single agent learns while the other agents’ behaviors are fixed. An example of such situations is presented in [96].
This is single-agent learning: there is only one learner, and the behaviors are plugged into only one agent, rather than
distributed into multiple agents.
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1.3 Machine Learning Methods

There are three main approaches to learning:supervised, unsupervised, andreward-based1 learning. These methods
are distinguished by what kind of feedback the critic provides to the learner. In supervised learning, the critic provides
the correct output. In unsupervised learning, no feedback is provided at all. In reward-based learning, the critic
provides a quality assessment (the “reward”) of the learner’s output.

Because of the inherent complexity in the interactions of multiple agents, various machine learning methods —
notably supervised learning methods — are not easily applied to the problem because they typically assume a critic
that can provide the agents with the “correct” behavior for agiven situation (a notable exception involving teaching
in the context of mutual supervised learners is presented in[83, 88, 302]). Thus the very large majority of papers
in this field have used reward-based methods. The reward-based learning literature may be approximately divided
into two subsets:reinforcement learningmethods which estimate value functions; andstochastic searchmethods
such as evolutionary computation, simulated annealing, and stochastic hill-climbing, which directly learn behaviors
without appealing to value functions. In the stochastic search literature, most multi-agent discussion concentrateson
evolutionary computation. The similarities between thesetwo classes of learning mechanisms permit a rich infusion
of ideas from one to the other: the bucket-brigade algorithm[115], the Samuel system [97], and the recent Stochastic
Direct Reinforcement policy gradient algorithm [172].

Reinforcement Learning Reinforcement learning (RL) methods are particularly useful in domains where reinforce-
ment2 information (expressed as penalties or rewards) is provided after a sequence of actions performed in the envi-
ronment. Q-Learning and Temporal-Difference (TD(λ)) Learning are two common RL methods; the former learns
the utility of performing actions in states, while the latter usually learns the utility of being in the states themselves.
Reinforcement learning methods are inspired by dynamic programming concepts and define formulas for updating the
expected utilities and for using them for the exploration ofthe state space. The update is often a weighted sum of the
current value, the reinforcement obtained when performingan action, and the expected utility of the next state reached
after the action is performed. While exploring, deterministic strategies may choose the most promising action to be
performed in each state (according to the expected utilities). Other stochastic techniques may lead to better exploration
of the state space. Reinforcement learning methods have theoretical proofs of convergence; unfortunately, such con-
vergence assumptions do not hold for some real-world applications, including many multi-agent systems problems.
For more information on reinforcement learning techniques, [11, 135, 260] are good starting points.

Evolutionary Computation Evolutionary Computation (EC) (orEvolutionary Algorithms(EAs)) is a family of
techniques in which abstract Darwinian models of evolutionare applied to refine populations of candidate solutions
(known as “individuals”) to a given problem. An evolutionary algorithm begins with an initial population of randomly-
generated individuals. Each member of this population is then evaluated and assigned a fitness (a quality assessment).
The EA then uses a fitness-oriented procedure to select, breed, and mutate individuals to produce children which are
then added to the population, replacing older individuals.One evaluation, selection, and breeding cycle is known
as ageneration. Successive generations continue to refine the population until time is exhausted or a sufficiently fit
individual is discovered. Evolutionary computation methods includegenetic algorithms(GA) andevolution strategies
(ES), both of which are usually applied to the search of multidimensional parameter spaces; andgenetic programming
(GP), which concerns itself with evolving actual computer programs. There are many sources of additional information
on EC; good choices include [6, 63, 64, 81, 87, 114, 141, 164].

Coevolutionary algorithms (CEAs) represent a natural approach to applying evolutionary computation to refine
multi-agent behaviors. In a CEA, the fitness of an individualis based on its interaction with other individuals in the
population: thus the fitness assessment is context-sensitive and subjective. Incompetitivecoevolution, individuals ben-
efit at the expense of their peers; but incooperativecoevolution, individuals succeed or fail together in collaboration.

1Some of the literature calls this “reinforcement learning”. Confusingly, that term is used in two different ways: the general category of learning
based on rewards or quality assessments as feedback; and a specific family of learning algorithms related to dynamic programming (including
Q-learning, Sarsa, Temporal Difference Learning, etc.). To avoid confusion, we use “reward-based learning” for the former, and “reinforcement
learning” for latter. The term “reward” is admittedly problematic though, as there exist “negative rewards” (punishments).

2The previous footnote notwithstanding, in this survey, we use the termsrewardandreinforcementinterchangeably to denote the information
the agents receive from the environment as a consequence of their actions.
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A standard approach to applying cooperative coevolutionary algorithms (or CCEAs) to an optimization problem starts
by decomposing the problem representation into subcomponents, then assigning each subcomponent to a separate
population of individuals [205, 206, 207, 208].

1.4 Survey Structure and Taxonomy

We believe there are two major categories of cooperative multi-agent learning approaches. The first one, which we
termteam learning, applies a single learner to search for behaviors for the entire team of agents. Such approaches are
more along the lines of traditional machine learning methods, but they may have scalability problems as the number
of agents is increased. A second category of techniques,concurrent learning, uses multiple concurrent learning
processes. Rather than learning behaviors for the entire team, concurrent learning approaches typically employ a
learner for each team member, in the hope that this reduces the joint space by projecting it intoN separate spaces.
However, the presence of multiple concurrent learners makes the environment non-stationary, which is a violation of
the assumptions behind most traditional machine learning techniques. For this reason, concurrent learning requires
new (or significantly modified versions of) machine learningmethods.

To illustrate the difference between the two, consider again the cooperative foraging scenario, where the task is to
maximize the number of items gathered from the environment.A team learning approach employs a single learner
to iteratively improve the “team behavior” — which consistsof all foragers — using the totality of items gathered
as a performance measure. The concurrent learning approachallows each forager to modify its own behavior via
the forager’sown learning process. However, the performance measure must now be apportioned among the various
foragers (for example, dividing the team reward equally among the team members, or based on individual merits —
exactly how many items each forager gathered). The foragingagents will improve their behaviors independent of one
another, but have little or no control over how the others decide to behave.

The survey continues in the next Section with a presentationof research in team learning. When a single learner
is employed, most research has focused on therepresentationof candidate solutions that the learner is developing: in
particular, the degree of heterogeneity among the team members. The section after this discusses concurrent learning.
Research in concurrent learning has broken down along different lines than that in team learning, primarily because of
the effect of multiple learners. We divide concurrent learning research into credit assignment, analysis of the dynamics
of the learning process, and modeling other agents in order to better cooperate with them. In Section 4 we discuss inter-
agent communication and how it may be applied to the multi-agent learning process. We follow this with a discussion
in Section 5 of three areas in multi-agent learning (scalability, adaptive dynamics, and problem decomposition) which
we feel present large open research questions that have so far been insufficiently addressed by the community. The
remaining sections provide a list of multi-agent problem domains, a collection of available resources, and the paper’s
conclusion and suggestions for scaling up multi-agent learning problems.

2 Team Learning

In team learning, there is a single learner involved: but this learner is discovering a set of behaviors for a team of
agents, rather than a single agent. This lacks the game-theoretic aspect of multiple learners, but still poses challenges
because as agents interact with one another, the joint behavior can be unexpected. This notion is often dubbed the
emergent complexityof the multi-agent system.

Team learning is an easy approach to multi-agent learning because its single learned can use standard single-agent
machine learning techniques. This sidesteps the difficulties arising from the co-adaptation of several learners that we
will later encounter in concurrent learning approaches. Another advantage of a single learner is that it is concerned with
the performance of the entire team, and not with that of individual agents. For this reason, team learning approaches
may (and usually do) ignore inter-agent credit assignment —discussed later — which is usually difficult to compute.

Team learning has some disadvantages as well. A major problem with team learning is the large state space for
the learning process. For example, if agent A can be in any of 100 states and agent B can be in any of another 100
states, the team formed from the two agents can be in as many as10,000 states. This explosion in the state space size
can be overwhelming for learning methods that explore the space of state utilities (such as reinforcement learning),
but it may not so drastically affect techniques that explorethe space of behaviors (such as evolutionary computation)
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[127, 220, 221, 237]. A second disadvantage is the centralization of the learning algorithm: all resources need to be
available in the single place where all computation is performed. This can be burdensome in domains where data is
inherently distributed.

Team learning may be divided into two categories:homogeneousandheterogeneousteam learning. Homogeneous
learners develop a single agent behavior which is used by every agent on the team. Heterogeneous team learners can
develop a unique behavior for each agent. Heterogeneous learners must cope with a larger search space, but hold the
promise of better solutions through agent specialization.There exist approaches in the middle-ground between these
two categories: for example, dividing the team into squads,with squadmates sharing the same behavior. We will refer
to these ashybrid team learning methods.

Consider a possible application of a team learning approachto the cooperative foraging scenario described earlier.
The single learning process is concerned with improving theforaging performance of the entire team of agents. As
such, it needs to somehow encode how each agent will behave inany situation it may encounter. As there may be
manyagents, the encoding may occupya lot of memory. Heterogeneous team learning approaches may thusdemand
a very small number of agents. Yet it may be helpful for some agents to act as scouts, while the other agents carry the
items as fast as possible. Homogeneous learners cannot readily discover such spacialization, though a hybrid method
could.

Choosing among these approaches depends on whether specialists are needed in the team or not. Experiments
conducted by Balch [8], Bongard [21] and Potter et al. [209] address exactly this issue (though some of them use
concurrent learning approaches). Balch [8] suggests that domains where single agents can perform well (for example,
foraging) are particularly suited for homogeneous learning, while domains that require task specialization (such as
robotic soccer) are more suitable for heterogeneous approaches. His argument is bolstered by Bongard [21], who
hypothesizes that heterogeneity may be better in inherently decomposable domains. Potter et al. [209] suggest that
domain difficulty is not a determinant factor in selecting a heterogeneous approach. They experiment with increasingly
difficult versions of a multi-agent herding domain obtainedby adding predators, and argue that increasing the number
of different skills required to solve the domain is a determinant factor.

2.1 Homogeneous Team Learning

In homogeneous team learning, all agents are assigned identical behaviors, even though the agents may not be identical
(for example, different agents may take a different amount of time to complete the same task). Because all agents
have the same behavior, the search space for the learning process is drastically reduced. The appropriateness of
homogeneous learning depends on the problem: some problemsdo not require agent specialization to achieve good
performance. For other problem domains, particularly oneswith very large numbers of agents (“swarms”), the search
space is simply too large to use heterogeneous learning, even if heterogeneity would ultimately yield the best results.
Many homogeneous team learning papers are concerned with communication issues; we discuss such literature in
Section 4.

In a straightforward example of successful homogeneous team learning, Haynes et al. [103], Haynes and Sen
[104], Haynes et al. [109, 110, 111] evolved behaviors for a predator-prey pursuit domain. When using fixed algorithms
for the prey behavior, the authors report results competitive with the best human-coded greedy predator algorithms:
but when competitively coevolving the prey and predator behaviors (see Section 3.2.3), the learner discovered a prey
that evades all previously reported hand-coded, greedy, and evolved predators.

Agents can act heterogeneously even in homogeneous team learning, if the homogeneous behavior specifies sub-
behaviors that differ based an agent’s initial condition (location etc.) or its relationship with other agents (“always
follow agent 2”). For example, Quinn et al. [213] investigate the use of evolutionary computation techniques for a
team formation problem. Three agents start from random positions but close enough to sense one another. They are
required to move the team centroid a specific distance while avoiding collisions and remaining within sensor range.
Quinn et al. investigate the roles of team members by removing the agents one at a time. They conclude that the rear
agent is essential to sustain locomotion, but it is not essential to the other two agents’ ability to maintain formation.The
middle agent is needed to keep the two others within sensor range, and the front agent is crucial to team formation.
Therefore, even though the agents are homogeneous, they specialize (based on their relative positions) to perform
better as a team.

Salustowicz et al. [220, 221] compare different machine learning methods applied to homogeneous learning (the
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EC-related PIPE and CO-PIPE algorithms versus Q-learning with all agents using the same Q-table). They argue that
Q-learning has serious problems, attributed by the authorsto the algorithm’s need to search for a value function. On the
other hand, both PIPE and CO-PIPE search directly in the policy space and show good performance. A contradicting
result is reported in [301], where a variation of Q-learningoutperforms the methods earlier reported in [220, 221].

A cellular automaton (CA) is an oft-overlooked paradigm forhomogeneous team learning (only a few CA papers
examine heterogeneous agents). A CA consists of a neighborhood (often a row or grid) of agents, each with its
own internal state, plus a state-update agent behavior (therule) applied to all the agents synchronously. This rule is
usually based on the current states of an agent’s neighbors.CAs have many of the hallmarks of a multi-agent system:
interactions and communications are local, and behaviors are performed independently. A good survey of existing
work in learning cellular automata rules is presented in [167].

One common CA problem, the Majority (or Density) Classification task, asks for an update rule which — given
initial configurations of agents, each agent with an internal state of 1 or 0 — correctly classifies as many of them
as possible based on whether the initial configuration had more 1’s than 0’s or more 0’s than 1’s. This is done by
repeatedly applying the update rule for someN iterations; if the agents have converged to all 1’s, the ruleis said
to have classified the initial configuration as majority-1’s(similarly for 0’s). If it has not converged, the rule has
not classified the initial configuration. The goal is to discover a rule which classifies most configurations correctly
given specific standard settings (in terms of number of agents, size of neighborhood, etc). Due to the complexity
of the emergent behavior, it is exceptionally difficult to create good performing solutions for this problem by hand.
The best human-coded result, of 82.178% accuracy, was proposed by Das et al. [60]. Much better results have been
produced with evolutionary computation methods: Andre et al. [2] report a rule with accuracy 82.326% using genetic
programming. Several authors, including Juille and Pollack [134], Pagie and Mitchell [186], Werfel et al. [291],
suggest that coevolution3 might perform well in this problem domain; at present the best known result, with accuracy
86.3%, was obtained via coevolution [134].

2.2 Heterogeneous Team Learning

In heterogeneous team learning, the team is composed of agents with different behaviors, with a single learner trying
to improve the team as a whole. This approach allows for more diversity in the team at the cost of increasing the search
space [89]. The bulk of research in heterogeneous team learning has concerned itself with the requirement for or the
emergence of specialists.

Luke and Spector [153] investigate possible alternatives for evolving teams of agents. In their experiments, Luke
and Spector compare homogeneity, heterogeneity with restricted breeding (agents could only breed with like agents
from other teams), and heterogeneity with no breeding restrictions. The authors suggest that the restricted breeding
works better than having no restrictions for heterogeneousteams, which may imply that the specialization allowed by
the heterogeneous team representation conflicts with the inter-agent genotype mixture allowed by the free interbreed-
ing. Similarly, Andre and Teller [3] apply genetic programming to develop a team of soccer playing agents for the
RoboCup simulator. The individuals encode eleven different behaviors (one for each player). Andre and Teller men-
tion that the crossover operator (between teams of agents) was most successful when performing restricted breeding.

Haynes and Sen [106, 108, 112] investigate the evolution of homogeneous and heterogeneous teams for the
predator-prey pursuit domain. The authors present severalcrossover operators that may promote the appearance
of specialists within the teams. The results indicate that team heterogeneity can significantly help despite apparent
domain homogeneity. The authors suggest that this may be dueto deadlocks generated by identical behaviors of ho-
mogeneous agents when positioned in the same location. Haynes and Sen report that the most successful crossover
operator allows arbitrary crossover operations between behaviors for different agents, a result contradicting Andreand
Teller [3] and Luke and Spector [153].

So-called “one-population” coevolution can be used with heterogeneous team learning in an unusual way: a single
population is evolved using an ordinary evolutionary algorithm, but agents are tested by teaming them up with partners

3The papers refer to a particular case of coevolution, namelycompetitive coevolution, and a special setting containingtwo subpopulations. The
first subpopulation consists of candidate solutions for theproblem (in this case, behaviors for the CA agents). The second subpopulation contains
possible test cases — initial configurations that the candidate solutions should solve. Candidate solutions in the firstsubpopulation are considered
better fit when solving more test cases existing in the secondsubpopulation; meanwhile, the fitness of a test case is basedon how many candidate
solutions it stumps.
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chosen at random from the same population, to form a heterogeneous team [41, 211]. Quinn shows a situation where
this method outperforms a homogeneous team learning approach. Similarly, Miconi [165] evaluates an individual by
forming a team from the population, then comparing how much worse the team performs when the individual is not in
it. Miconi reports the appearance of squads and “subspecies” when using this method. It is not clear, however, where
one-population cooperative coevolution should be categorized. It is clearly a single learner (one EC population), yet
the team is formed from separately-learned teammates, and the method exhibits many of the game-theoretic oddities
discussed in the Concurrent Learning Sections, particularly Section 3.2.3.

2.3 Hybrid Team Learning

In hybrid team learning, the set of agents is split into several squads, with each agent belonging to only one squad. All
agents in a squad have the same behavior. One extreme (a single squad), is equivalent to homogeneous team learning,
while the other extreme (one agent per squad) is equivalent to heterogeneous team learning. Hybrid team learning thus
permits the experimenter to achieve some of the advantages of each method.

Luke [151], Luke et al. [152] focus on evolving soccer teams for the RoboCup competition, and they mention that
the limited amount of time available before the competitiondiminished the probability of obtaining good heteroge-
neous teams. Instead, they compare the fully homogeneous results with a hybrid combination that divides the team
into six squads of one or two agents each, and then evolves sixbehaviors, one per squad. The authors report that
homogeneous teams performed better than the hybrid approach, but mention that the latter exhibited initial offensive-
defensive squad specialization and suggest that hybrid teams might have outperformed the homogeneous ones given
more time.

Hara and Nagao [101] present an innovative method for hybridgroup learning. Faced with the
specialization/search-space trade-off inherent in heterogeneity, the authors suggest an automated grouping technique
called Automatically Defined Groups (ADG). They apply it successfully to a simple load transportation problem and
to a modified tile-world domain. In ADG, the team of agents is composed of several groups of homogeneous agents
(similar to [151, 152]); however, ADG automatically discovers the optimum number of groups and their compositions.
A similar approach is reported in [21], where GP individualscontain partitioning instructions used for the creation of
squads.

3 Concurrent Learning

The most common alternative to team learning in cooperativemulti-agent systems isconcurrent learning, where
multiple learning processes attempt to improve parts of theteam. Typically each agent has it own unique learning
process to modify its behavior. There are other degrees of granularity of course: the team may be divided into
“squads”, each with its own learner, for example. However, we are not aware of any concurrent learning literature
which assigns learners to anything but individual agents.

Concurrent learning and team learning each have their champions and detractors. Bull and Fogarty [40] and Iba
[125, 126] present experiments where concurrent learning outperforms both homogeneous and heterogeneous team
learning, while Miconi [166] reports that team learning is preferable in certain conditions. When then would each
method be preferred over the other? Jansen and Wiegand [130]argue that concurrent learning may be preferable
in those domains for which some decomposition is possible and helpful, and when it is useful to focus on each
subproblem to some degree independently of the others. The reason for this is that concurrent learning projects the
large joint team search space onto separate, smaller individual search spaces. If the problem can be decomposed such
that individual agent behaviors are relatively disjoint, then this can result in a dramatic reduction in search space and
in computational complexity. A second, related advantage is that breaking the learning process into smaller chunks
permits more flexibility in the use of computational resources to learn each process because they may, at least partly,
be learned independently of one another.

The central challenge for concurrent learning is that each learner is adapting its behaviors in the context of other co-
adapting learners over which it has no control. In single-agent scenarios (where standard machine learning techniques
may be applicable), a learner explores its environment, andwhile doing so, improves its behavior. Things change
with multiple learners: as the agents learn, they modify their behaviors, which in turn can ruin other agents’ learned
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behaviors by making obsolete the assumptions on which they are based [223, 282]. One simplistic approach to deal
with this co-adaptation is to treat the other learners as part of a dynamic environment to which the given learner must
adapt. This idea was used in early multi-agent learning literature [228, 229, 312]. But things are more complicated
in concurrent learning: the other agents are not merely changing, but are in fact co-adapting to the original learner’s
adaptationto them. Therefore, the agents’ adaptation to the environment can change the environment itself in a way
that makes that very adaptation invalid. This is a significant violation of the basic assumptions behind most traditional
machine learning techniques.

Concurrent learning literature breaks down along different lines than team learning literature. Since each agent is
free to learn separately, heterogeneity versus homogeneity has been considered an emergent aspect rather than a design
decision in concurrent learning (for example, Balch [7, 9] argues that the more local a reinforcement signal, the more
homogeneous the final team). We argue that there are instead three main thrusts of research in the area of concurrent
learning. First, there is thecredit assignmentproblem, which deals with how to apportion the reward obtained at a
team level to the individual learners. Second, there are challenges in thedynamics of learning. Such research aims to
understand the impact of co-adaptation on the learning processes. Third, some work has been done onmodeling other
agentsin order to improve the interactions (and collaboration) with them.

3.1 Credit Assignment

When dealing with multiple learners, one is faced with the task of divvying up among them the reward received
through their joint actions. The simplest solution is to split the team reward equally among each of the learners, or in
a larger sense, divide the reward such that whenever a learner’s reward increases (or decreases),all learners’ rewards
increase (decrease). This credit assignment approach is usually termedglobal reward.

There are many situations where it might be desirable to assign credit in a different fashion, however. Clearly
if certain learners’ agents did the lion’s share of the task,it might be helpful to specially reward those learners for
their actions, or to punish others for laziness. Similarly,Wolpert and Tumer [304] argue that global reward does
not scale well to increasingly difficult problems because the learners do not have sufficient feedback tailored to their
own specific actions. In other situations credit assignmentmustbe done differently because global reward cannot
be efficiently computed, particularly in distributed computation environments. For example, in a robotics foraging
domain, it may not be easy to globally gather the informationabout all items discovered and foraged.

If we’re not to equally divide the team reward among the agents, what options are there, and how do they impact
on learning? One extreme is to assess each agent’s performance based solely on its individual behavior. This approach
discourages laziness because it rewards agents only for those tasks they have actually accomplished. However, agents
do not have any rational incentive to help other agents, and greedy behaviors may develop. We call this approachlocal
reward.

Balch [7, 9] experiments with different credit assignment policies to explain when one works better than the others.
He argues that local reward leads to faster learning rates, but not necessarily to better results than global reward. For
one problem (foraging), local reward produces better results, while in another (soccer) global reward is better. The
author suggests that using local reward increases the homogeneity of the learned teams. This in turn suggests that the
choice of credit assignment strategy should depend on the desired degree of specialization.

Mataric [159] argues that agents’ separate learning processes can be improved by combining individual local
reinforcement with types ofsocial reinforcement. One such reward,observational reinforcement, is obtained by
observing other agents and imitating their behaviors; thismay improve the overall team behavior by reproducing rare
behaviors. Agents additionally receive smallvicarious reinforcementswhenever other agents are directly rewarded;
the purpose of this type of social reinforcement is to spreadindividual rewards to other agents, and thus balance
between local and global rewards. Mataric shows that a weighted combination of these components, together with
local reward, has better results in a foraging application.

Chang et al. [49] take a different approach to credit assignment: each agent assumes the observed reward signal is a
sum of the agent’s direct contribution and some random Markov process that estimates the contributions of teammates.
The agent may therefore employ a Kalman filter to separate thetwo terms and compute the agent’s true contribution to
the global reward. The authors show that reward filtering provides a better feedback for learning in simple cooperative
multi-agent domains. Rather than apportion rewards to an agent based on its contribution to the team, one might instead
apportion reward based on how the team would have fared had the agent never existed. Tumer et al. [270], Wolpert
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and Tumer [304] call this theWonderful Life Utility, and argue that it is better than both local and global reward,
particularly when scaling to large numbers of agents.

Tangamchit et al. [266] take a different tack to credit assignment, arguing that averaging rewards over sequences
of tasks is better than discounting rewards (making immediate rewards more important than future ones) in many
multi-agent scenarios. The authors set up an experiment involving two robots learning to work together: one robot
ideally handing off items to the other, which in turn carriesthem to a final destination. Discounting rewards results in
the first robot receiving significantly less reward the the second one. The authors show that collaboration is achieved
only when robots are rewarded based on a non-discounted global reward averaged over time.

The wide variety of credit assignment methods have a significant impact on our coverage of research in the dy-
namics of learning, which follows in the next section. Our initial focus will be on the study of concurrent learning
processes in fully cooperative scenarios, where global reward is used. But as just mentioned, global reward may
not always work best for concurrent learning agents: instead, various other schemes have been proposed. However
these credit assignment schemes may run counter the researchers’ intention for the agents to cooperate, resulting in
dynamics resembling general-sum or even competitive games, which we also discuss in the next section.

To understand why credit assignment policies can complicate the dynamics of learning, suppose two foraging
agents are rewarded solely based on the speed at which they are gathering items. A narrow bridge separates the source
of items from the location where items are to be deposited. Ifboth robots arrive at the bridge at the same time, what is
the rational thing for them to do? If they have a local credit assignment procedure, neither is willing to let the other go
first: that would cost time and would decrease an agent’s own credit. This is reminiscent of social scientists’ notion of
being in the individual interest of none, but in the collective interest of all [146].

3.2 The Dynamics of Learning

When applying single-agent learning to stationary environments, the agent experiments with different behaviors until
hopefully discovering a globally optimal behavior. In dynamic environments, the agent may at best try to keep up with
the changes in the environment and constantly track the shifting optimal behavior. Things are even more complicated
in multi-agent systems, where the agents may adaptively change each others’ learning environments.

The range of tools to model and analyze the dynamics of concurrent learners is unfortunately very limited. Many
such tools are particularly suited to only certain learningmethods, and only a few offer a common framework for
multiple learning techniques. Evolutionary game theory isthe main tool in this second category, and it was successfully
used to study the properties of cooperative coevolution [78, 296], to visualize basins of attraction to Nash equilibria
for cooperative coevolution [191], and to study trajectories of concurrent Q-learning processes [271, 263]. Another
tool for modeling and predicting the dynamics of concurrentmulti-agent learners was recently proposed in Vidal and
Durfee [276, 277]. The system uses parameters such as rate ofbehavior change per agent, learning and retention rates,
and the rate at which other agents are learning. Combining this information permits approximating the error in the
agents’ decision function during the learning process.

Many studies in concurrent learning have investigated the problem from a game-theoretic perspective (for example,
[82]). An important concept in such investigations is that of a Nash equilibrium, which is a joint strategy (one strategy
for each agent) such that no single agent has any rational incentive (in terms of better reward) to change its strategy
away from the equilibrium. As the learners do not usually have control over each others’ behaviors, creating alliances
to escape this equilibrium is not trivial. For this reason, many concurrent learning methods will converge to Nash
equilibria, even if such equilibria correspond to suboptimal team behaviors.

In a fully-cooperative scenario with only global reward (Section 3.2.1), the rewards received by agents are cor-
related, and so increasing one’s reward implies increasingeverybody else’s reward. In such cases, it is relatively
straightforward to check that the concurrent learning approach has converged to the globally optimal Nash equilib-
rium. Section 3.2.2 covers learning in more general settings where the relationship among rewards received by learn-
ers is less clear. Such research is particularly apropos to learning in combination with non-global credit assignment
schemes. The extreme of such environments includes competing scenarios, where rewards for learners are inversely
correlated — this is the focus of Section 3.2.3.
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3.2.1 Fully Cooperative Scenarios

A “fully cooperative” scenario employs a global reward scheme to divvy reinforcement equally among all agents. In
such environments, proof of convergence to global Nash equilibria is relatively straightforward, and there has been a
significant amount of research in the area. The research focuses on repeated and stochastic games, described below.

A repeated game consists of a series of interactions among two or more agents. After each interaction, each
agent may receive some reward (or punishment). Reinforcements for interactions are independent of any previous
interactions. Claus and Boutilier [51] propose two benchmark games (climb andpenalty) and show that convergence
to global optimum is not always achieved in these games even if each agent can immediately perceive the actions of all
other agents in the environment. This result is disturbing,given the fact that usually agents do not have suchcomplete
informationabout the team and the environment.

Lauer and Riedmiller [142] suggest updating an agent’s policy (Q-values) by estimating the likely best coopera-
tion possible for the agent’s action, and prove that this will converge to the optimum in deterministic repeated games.
Kapetanakis and Kudenko [136, 137] point out possible flaws in Lauer’s approach when dealing with stochastic envi-
ronments, and present a modified exploration strategy that improves cooperation under these new conditions. Brafman
and Tennenholtz [31] introduce a stochastic sampling technique that is guaranteed to converge to optimal Nash equi-
libria. The algorithm is polynomial in the number of actionsof the agents, but it assumesa priori coordination of
the agents’ learning processes: the agents agree to a joint exploration phase of some length, then agree to a joint
exploitation phase (where each agent settles on the behavior that yielded maximum reward).

Stochastic games are an extension of repeated games where atany point in time the game is in somestate. The
game transitions to a new state based on a stochastic function of the old state and the interactions among the agents
in the old state. Reinforcements are based both on the interactions of the agents and on the current state value. With
a single state, a stochastic game reduces to a repeated game;with a single agent, a stochastic game reduces to a
Markov decision process. Most learning approaches in stochastic games target general-sum stochastic games; they
will be presented in the next section. In contrast, Wang and Sandholm [279] present theOptimal Adaptive Learning
algorithm, which is guaranteed to converge to optimal Nash equilibria if there are a finite number of actions and
states. The algorithm creates “virtual games” for each state in order to eliminate suboptimal Nash equilibria. This
is to our knowledge the only algorithm guaranteed to find the global optimum in fully cooperative stochastic games.
Unfortunately, the optimality guarantees comes at a cost inscalability: the number of virtual games that need to be
solved is exponential in the number of agents.

Partially observable Markov decision processes (POMDPs) extend stochastic games by adding constraints on
the agents’ ability to observe the state of the environment.The task of finding the optimal policies in POMDPs is
PSPACE-complete [193], it becomes NEXP-complete for decentralized POMDPs [18]. Peshkin et al. [200] investigate
a distributed reinforcement learning approach to partially observable fully cooperative stochastic games, and show
that their algorithm converges to local optima that may not necessarily be Nash equilibria. Another approach involves
agents adapting one at a time while keeping fixed the policiesof all other agents; in combination with dynamic
programming, this can lead to exponential speedups [180].

Cooperative coevolutionary algorithms may be used to learnsolutions to repeated and stochastic games. CCEAs
were originally proposed as ways to (possibly automatically) decompose problems and to concurrently search for
solutions to such subproblems [205, 206]. Some work has alsobeen done in tuning parameters of the system in order
to increase the performance of the algorithm [38, 39, 297]. Recent work has analyzed the conditions under which
coevolutionary systems gravitate towards Nash equilibriarather than providing globally optimal solutions for the team
as a whole [296, 298, 299]. Panait et al. [190, 191, 192] pointout that such standard coevolutionary approaches, when
applied to cooperative problem domains, are sometimes driven bybalanceconsiderations rather than performance.
That is, agents tend to co-adapt to one another (including very poor collaborators) rather than trying to optimize their
performance with the rational ideal collaborating agents.Panaitet al show that evaluating an agent in the context of
agents chosen as estimates of its best possible collaborators yields significantly improved results over the standard
coevolutionary approach.

But choosing such estimates is non-trivial. One way to attack the problem is to test individuals in the context of
well-known “good partners” from previous experience. In [90, 210], a coevolutionary algorithm is augmented with a
“hall of fame” repository consisting of theN best teams discovered so far. Individuals are evaluated by pairing them up
with teammates chosen from this hall of fame; this approach generally outperforms ordinary cooperative coevolution
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methods. A related approach is reported in [19], where learners periodically provide representative behaviors for the
other learners to use for training.

3.2.2 General Sum Games

Due to unequal-share credit assignment, increasing the reward of an agent may not necessarily result in increasing the
reward of all its teammates. Indeed, such credit assignmentcan inadvertently create highly non-cooperative scenar-
ios. For such reasons, general sum games are applicable to the cooperative learning paradigm, even though in some
situations such games may not be in any way cooperative. Following the early work of Littman [147], there has been
significant recent research in concurrent (and not necessarily cooperative) learning for general-sum stochastic games.
Some work has applied Q-learning to extensive-form games [268] where players alternate in performing actions; but
most work in the area has instead been in normal-form games where players act simultaneously.

Bowling and Veloso [26] examine a number of game theory and reinforcement learning approaches to stochastic
games, and describe the differences in the assumptions theymake. Hu and Wellman [119] (revised and extended
by Bowling [24], Hu and Wellman [121]) introduce a distributed reinforcement learning algorithm where agents do
not learn just a single table of Q-values, but also tables forall other agents. This extra information is used later
to approximate the actions of the other agents. Nagayuki et al. [178] present an alternative approach where agents
approximate the policies, rather than the tables of Q-values, of the other agents. Suematsu and Hayashi [258] point
out that the algorithm of Hu and Wellman does not adapt to the other agent’s policy, but only tries to converge to
Nash equilibria. In the case when the other agent has a fixed policy, reaching a Nash equilibrium may be impossible.
They then introduce the EXORL algorithm which learns optimal response policies to both adaptive and fixed policies
of the other agent. Littman [148] introduces the Friend-or-Foe Q-learning algorithm to find either a coordination
equilibrium (with cooperative agents) or an adversarial one (with competitive agents). Greenwald and Hall [95]
introduce Correlated-Q — a learning algorithm based on the “correlated equilibrium” solution concept (which assumes
additional coordination among agents via a mechanism to specify what action each agent should play).

Bowling and Veloso [27] describe two desirable properties for learning agents, namely rationality (the agent should
converge optimally when the other agents have converged to stationary strategies) and convergence (under specified
conditions, all agents should converge to stationary strategies). They then present a learning algorithm that exhibits
these two properties. Bowling and Veloso [28] investigate the existence of equilibria points for agents with limitations
which may prevent them from reaching optimality. Bowling and Veloso [29] also introduce the WoLF algorithm (Win
or Learn Fast), which varies the learning rate from small andcautious values when winning, to large and aggressive
values when losing to the other agents.

In [182], two agents with two actions each participate in a repeated game with two Nash equilibria. In one Nash
equilibrium, one agent receives more reward than the other agent, while in the other Nash equilibrium the situation is
reversed. The authors propose a “homo-equalis” reinforcement approach, where communication is used to alternate
between the two unfair optimal points in order to fairly share the rewards received by the two agents. Peeters et al.
[199] describe an extension of the algorithm for games with multiple states.

3.2.3 Related Pathologies from Competitive Learning

Though this survey focuses on cooperative multi-agent learning, many pathologies in competitive learning environ-
ments arise from similar dynamics, and so are worthwhile mentioning as hints into difficulties that may plague learning
in cooperative scenarios as well. Competitive learning pits two or more agents against one another, hopefully estab-
lishing a beneficial “arms race” among them. For example, if two agents learn to play one another at chess, it may be
desirable for both to learn at about the same pace, creating agradual ramping up of difficulty. This has often been used
in the context of a single learner playing a multi-agent gameagainst itself [4]. The most famous examples of this are
learned Backgammon [202, 203, 267] and Checkers [80, 222]. Other games have included Tic-Tac-Toe [4], Mancala
[61], Othello [241], Go [149], Chess [138, 269], Poker [139], Blackjack [261], Nim and 3D Tic-TacToe [219], and
Tag [215]. Some domains contain a mixture of competition andcooperation. For example, Luke [151] evolves a team
of players for a soccer domain: the players need to cooperateas a team, but also compete against an opposing team.

Competitive learning can of course also be done with multiple learners, each co-adapting to the others. But the
intended outcome is usually different. Instead of learningto compete against like foes, multi-learner scenarios usually
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try to discover a solution which is robust over a wide range ofproblem test cases. Thus one target learner discovers
the solutions, while a competing learner co-adaptively adjusts the set of test cases. This is sometimes known as
“host-parasite” coevolution. Examples include sorting networks [113] and predator-prey scenarios [52, 102].

However, if unchecked, one learner can come to dominate the other learner. In this situation, no one receives
sufficient feedback to improve— no matter what the dominant learner does, it always wins, and no matter what the
subjugated learner(s) do, they always lose. This is usuallytermedloss of gradient[203, 280], and it is closely related
to “laziness” and similar pathologies in cooperation. For example, Wiegand and Sarma [300] investigate the behavior
of cooperative coevolution in a domain that provides different learning opportunities to different agents (one agent
may learn faster than the other). The authors’ spatially embedded CCEAs (which place constraints on the learners’
interactions) may better cope with the loss of gradient created by these asymmetries.

It is also difficult to monitor progress in competitive coevolution. Consider again our chess players: they initially
draw most of the games, while later on, the first agent defeatsthe other one. What does that tell us? We’re tempted
to say the first agent learned to play better. However, it may be that the first player has not changed at all, but rather
that the second managed to decrease its playing ability. Thefirst agent might in fact have gottenworseat chess, yet
the second agent decreased in performanceeven more. This phenomenon is known as theRed-Queen4 effect[52]. A
related question concerns cooperative multi-agent learning when a local reward credit assignment is used: while each
learner improves with respect to its own individual reward,are there any guarantees that the entire team of agents is
improving as well?

Last, competition can result incyclic behaviors, where agents circle about one another due to non-transitive
relationships between agent interactions. For example, inthe rock-scissors-paper game, Agent A picks Rock and
Agent B picks Paper. Agent A then adapts to Scissors, causingAgent B to adapt to Rock. Then Agent A adapts
to Paper, Agent B adapts to Scissors, and Agent A adaptsagain to Rock. If a multi-agent environment is fraught
with such non-transitive cycles, competing agents may be caught in them, rather than building the desired arms race
[52, 77, 219, 280]. Luke and Wiegand [155] cite (harsh) conditions under which single-learner coevolution can be
rid of these difficulties. Popovici and DeJong [204] argue that criteria used to analyze single-agent domains may be
insufficient for classifying, at a high-level, the dynamicssuch environments will incur.

3.3 Teammate Modeling

A final area of research in concurrent learning is teammate modeling: learning about other agents in the environment
so as to make good guesses of their expected behavior, and to act accordingly (to cooperate with them more effectively,
for example). Such an approach is used by Boutilier [22] and Chalkiadakis and Boutilier [47], who employ a Bayesian
learning method for updating models of other agents. Based on these models, agents may estimate the current behavior
of other agents and try to better cooperate with them. Suryadi and Gmytrasiewicz [259] present a similar agent
modeling approach consisting of learning the beliefs, capabilities and preferences of teammates. As the correct model
cannot usually be computed, the system stores a set of such models together with their probability of being correct,
given the observed behaviors of the other agents.

As other agents are likely modelingyou, modelingthemin turn brings up the spectre of infinite recursion: “Agent
A is doing X because it thinks that agent B thinks that agent A thinks that agent B thinks that ...” This must be
rationally sorted out in finite time. Vidal and Durfee [275] categorize agents based on the complexity they assume for
their teammates. A 0-level agent believes that none of its teammates is performing any learning activity and it does not
consider their changing behaviors as “adaptive” in its model. A 1-level agent models its teammates as 0-level agents.
In general, an N-level agent models its teammates as (N-1)-level agents.

Mundhe and Sen [176] investigate the use of 0-level, 1-leveland 2-level modeling agents. The authors report a very
good performance for the 0-level learners, suggesting thatfor some domains teammate modeling may not be necessary.
Similar results showing good coordination without modeling other agents are reported in [238, 239], where two robots
learn to cooperatively push a box without either being awareof the other’s presence. Banerjee et al. [10], Mukherjee
and Sen [173] present experiments in which 1-level agents model each others’ action probability distributions; this
produces a form of mutual trust. Tambe [264] briefly discusses the benefits of modeling other agents and recursively

4The name refers to Lewis Carroll’sThrough the Looking Glass, where the Red Queen constantly runs because “it takes all the running you can
do to keep in the same place”.
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tracking their decisions (either for individual agents, orfor groups of agents). Benefits from modeling agents in other
purely competitive settings are also reported in [272, 45].

When dealing with larger numbers of teammates, a simpler modeling approach is to presume that the entire team
consists of agents identical to the modeling agent. Haynes et al. [103], Haynes and Sen [105, 107] use this approach
complemented with a case-based learning mechanism for dealing with exceptions from this assumed behavior.

Hu and Wellman [118], Wellman and Hu [290] suggest that when learning models of other agents in a multi-agent
learning scenario, the resulting behaviors are highly sensitive to the agents’ initial beliefs. Depending on these initial
beliefs, the final performance may be better or evenworsethan when no teammate modeling is performed— agent
modeling may prevent agents from converging to optimal behaviors. A similar conclusion is reported by Hu and
Wellman [120]: the authors suggest that the best policy for creating learning agents is tominimizethe assumptions
about the other agents’ policies. An alternative is to automatically discover if the other agents in the environment are
cooperating with you, competing with you, or are in some other relationship to you. Sekaran and Sen [233], Sen and
Sekaran [236] investigate the application of reciprocity concepts to multi-agent domains where not enough information
on the intentions of other agents is knowna priori. They apply a stochastic decision-making algorithm that encourages
reciprocity among agents while avoiding being taken advantage of by unfriendly agents. The authors show that those
agents that prefer not to cooperate end up with worse performance. Nowak and Sigmund [181] mention two types
of reciprocity: direct (agent A helps another agent B and so expects B to help him in the future) andindirect (an
agent helps another in return for future help from other agents). Such reciprocity improves an agent’s “reputation”.
They argue that a necessary condition for cooperation is that the “degree of acquaintanceship” (the probability that
an agent knows another agent’s reputation) should exceed the ratio of cost of altruistic help relative to the benefit to
the recipient. Similar analysis can be done without the needto model reputationper se: Ito [129] pitted game-players
against one another, where each agent had access to a historyof his opponent’s previous actions against other players.

We conclude this section with work in agent modeling under communication. Ohko et al. [184] use a communica-
tion protocol for agents to subcontract subtasks to other agents. In their approach, each agent tries to decompose tasks
into simpler subtasks and broadcasts announcements about the subtasks to all other agents in order to find “contrac-
tors” who can solve them more easily. When agents are capableof learning about other agents’ task-solving abilities,
communication is reduced from broadcasting to everyone to communicating exact messages to only those agents that
have high probabilities to win the bids for those tasks. A related approach is presented in [37, 36]: here, Bayesian
learning is used to incrementally update models of other agents to reduce communication load by anticipating their
future actions based on their previous ones. Case-based learning has also been used to develop successful joint plans
based on one’s historical expectations of other agents’ actions [83].

4 Learning and Communication

For some problems communication is a necessity; for others,communication may nonetheless increase agent per-
formance. We definecommunicationas altering the state of the environment such that other agents can perceive the
modification and decode information from it. Among other reasons, agents communicate in order to coordinate more
effectively, to distribute more accurate models of the environment, and to learn subtask solutions from one another.

But are communicating agents reallymulti-agent?Stone and Veloso [255] argue that unrestricted communication
reduces a multi-agent system to something isomorphic to a single-agent system. They do this by noting that without
restrictions, the agents can send complete external state information to a “central agent”, and to execute its commands
in lock-step, in essence acting as effectors for the centralagent. A central agent is not even necessary: as long as agents
can receive all the information they need to known about the current states of all the other agents, they can make inde-
pendent decisions knowing exactly what the other agents will do, in essence enabling a “central controller” on-board
each individual agent, picking the proper sub-action for the full joint action. Thus we feel that a true multi-agent prob-
lem necessitates restrictions on communication. At any rate, while full, unrestricted communication can orthogonalize
the learning problem into a basic single-agent problem, such an approach requires very fast communication of large
amounts of information. Real-time applications instead place considerable restrictions on communication, in terms of
both throughput and latency. Unfortunately, learning is a challenging issue in itself, and difficulties associated with
it often resulted in a simplified approach to communication,usually neglecting costs of communication with other
agents. We feel further research needs to address the issue of using selective communication only when necessary.
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Explicit communication can also significantly increase thelearning method’s search space, both by increasing the
size of the external state available to the agent (it now knows state information communicated from other agents), and
by increasing the agent’s available choices (perhaps by adding a “communicate with agenti” action). As noted in [73],
this increase in search space can hamper learning an optimalbehavior by more than communication itself may help.
Thus even when communication is required for optimal performance, for many applications the learning method must
disregard communication, or hard-code it, in order to simplify the learning process. For example, when learning in a
predator-prey pursuit domain, Luke and Spector [153] assume that predators can sense each other’s position no matter
what distance separates them, and Berenji and Vengerov [17]use a blackboard communication scheme to allow agents
to know of other agents’ locations.

4.1 Direct Communication

Many agent communication techniques employ, or assume, an external communication method by which agents may
share information with one another. The method may be constrained in terms of throughput, latency, locality, agent
class, etc. Examples of direct communication include shared blackboards, signaling, and message-passing. The
literature has examined both hard-coded communication methods and learned communication methods, and their
effects on cooperative learning overall.

Tan [265] suggests that cooperating learners can use communication in a variety of ways in order to improve
team performance. For example, agents can inform others of their current state by sharing immediate sensor infor-
mation. Another approach is for agents to share informationabout past experiences in the form of episodes (se-
quences of〈state,action, reward〉 previously encountered by the agent) that others may not have experienced yet.
Yet another alternative is for agents to share knowledge related to their current policies (for example, in the form of
〈state,action,utility〉 for cooperating reinforcement learning agents).

Some research, particularly in reinforcement learning, has simply presumed that the agents have access to a joint
utility table or to a joint policy table to which each may contribute in turn, even though the agents are separate
learners. For example, Berenji and Vengerov [16] investigate a cooperative learning setting where multiple agents
employ communication to use and update the same policy. Berenji and Vengerov suggest that the simultaneous update
of a central policy reduces early tendencies for convergence to suboptimal behaviors. We argue that this is an implicit
hard-coded communication procedure: the learners are teaching each other learned information.

Much of the remaining research provides the agents with a communication channel but does not hard-code its
purpose. In a simple situation, agents’ vocabulary may consist of a single signal detectable by other agents [278]. In
other work (for example [309]) mobile robots in a cooperative movement task are endowed with a fixed but undefined
communication vocabulary. The robots learn to associate meanings with words in various trials. When circumstances
change, the robots learn to adjust their communication language as appropriate. A similar approach is reported in
[133] to learn a language for communication in a predator-prey domain. The authors use a blackboard communication
scheme and present a rule for determining a pessimistic estimate on the minimum language size that should be used
for multi-agent problems. Steels [246] reports the emergence of a spontaneous coherent lexicon that may adapt to
cope with new meanings during the lifetime of the agents. Steels and Kaplan [251] continue this investigation to show
that agents are able to create general words through collective agreement on their meanings and coverage. Similar
approaches to evolving communication languages are presented in [42, 62, 225, 245, 247, 248, 249, 250, 302].

Many such methods provide an incentive to the agents to communicate (perhaps by sharing the resulting reward).
However, Ackley and Littman [1] show that reward incentivesare not necessary for the agents to communicate:
instead, agents learn to communicate even when the agents receive no benefit from this action.

4.2 Indirect Communication

We define indirect communication methods as those which involve theimplicit transfer of information from agent to
agent through modification of the world environment. Examples of indirect communication include: leaving footsteps
in snow, leaving a trail of bread crumbs in order to find one’s way back home, and providing hints through the
placement of objects in the environment (perhaps includingthe agent’s body itself).

Much of the indirect communication literature has drawn inspiration from social insects’ use of pheromones to
mark trails or to recruit other agents for tasks [116]. Pheromones are chemical compounds whose presence and
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concentration can be sensed by fellow insects [20], and likemany other media for indirect communication, pheromones
can last a long time in the environment, though they may diffuse or evaporate. In some sense, pheromone deposits may
be viewed as a large blackboard or state-utility table shared by all the agents; but they are different in that pheromones
can only be detected locally.

Several pheromone-based learning algorithms have been proposed for foraging problem domains. A series of
reinforcement learning algorithms have adopted a fixed pheromone laying procedure, and use current pheromone
amounts for additional sensor information while exploringthe space or while updating the state-action utility es-
timates [143, 168, 169, 170, 171]. Evolutionary computation techniques have also been applied to learn explo-
ration/exploitation strategies using pheromones deposited by hard-coded mechanisms. For example, Sauter et al.
[226, 227] show how EC can be used to tune an agent policy in an application involving multiple digital pheromones.
A similar idea applied to network routing is presented in [294].

Another research direction is concerned with studying whether agents can learn not only to use pheromone infor-
mation but to deposit the pheromones in a rational manner. This question was first examined in AntFarm, a system
that combines communication via pheromones and evolutionary computation [54, 53]. AntFarm ants use a single
pheromone to mark trails toward food sources, but use a compass to point themselves along the shortest path back
to the nest. Panait and Luke [187, 188, 189] present a relatedalgorithm that exhibits good performance at various
foraging tasks in the presence of obstacles. This algorithmuses multiple pheromones, and in doing so it eliminates
the explicit requirement for ants to precisely know the direction towards the nest from any point. Rather, ants use
pheromone information to guide themselves to the food source and back to the nest. The authors note a hill-climbing
effect that leads to straight (and locally optimal) paths, and demonstrate both hard-coded and learned foraging behav-
iors which build these paths.

Werger and Mataric [292] present another approach to indirect communication among agents: using the agents’
body positions themselves to convey meaning. The authors present a foraging application where a number of robots
need to collect items and deposit them at a pre-specified location. The robots use their bodies to mark the path for
other robots to follow. In some sense, the robots’ bodies areacting essentially as a pheromone trail for the other
robots. Quinn [212] argues that this is a form of communication by citing Wilson’s statement that communication “is
neither the signal by itself, nor the response, [but] instead the relationship between the two” [303]. This definition
suggests that a shared dedicated channel is not necessary for communication. In his study, Quinn investigates the
evolution of strategies in a two-agent collaborative-movement domain and reports that robots were able to coordinate
by communicating their adopted roles of leader or follower via sequences of moves. For example, after initial phases
of alignment, the robots use rotation and oscillatory back-and-forth movements to decide who leads the way and who
follows.

5 Major Open Topics

Multi-agent learning is a new field and as such its open research issues are still very much in flux. Here, we single
out three issues we observed recurring while surveying pastliterature. We believe that these specific areas have
proven themselves important open questions to tackle in order to make multi-agent learning more broadly successful
as a technique. These issues arise from themulti in multi-agent learning, and may eventually require new learning
methods special to multiple agents, as opposed to the more conventional single-agent learning methods (case-based
learning, reinforcement learning, traditional evolutionary computation) now common in the field.

5.1 Scalability

Scalability is a problem for many learning techniques, but especially so for multi-agent learning. The dimensionality
of the search space grows rapidly with the number and complexity of agent behaviors, the number of agents involved,
and the size of the network of interactions between them. This search space grows so rapidly that we believe one
cannot learn the entire joint behavior of a large, heterogeneous, strongly intercommunicating multi-agent system.
Effective learning in an area this complex requires some degree of sacrifice: either by isolating the learned behaviors
among individual agents, by reducing the heterogeneity of the agents, or by reducing the complexity of the agent’s
capabilities. Techniques such as learning hybrid teams, decomposing behaviors, or partially restricting the locality of
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reinforcement provide promising solutions in this direction, but it is not well understood under which constraints and
for which problem domains these restricted methods will work best.

We believe multi-agent learning techniques should be evaluated especially carefully with respect to their scalability.
For example, it is not unusual (on the contrary, it is widely practiced) for concurrent learning techniques to be studied
in two-agent scenarios, for the environment to be stateless(no history of past interactions is necessary), and for each
agent to have only two or three actions to choose from. But when scaled up to dozens or hundreds of agents, to
stochastic environments with partially-observable states, and to many more available actions, current methods seem
likely to fail. This is of course not just a cooperative learning problem. Recent research by Sturtevant and Korf [256] in
the area of search in competitive games has shown that mini-max and alpha-beta pruning are ineffective at significantly
reducing the search for games with more than two players.

These simple scenarios have also presumed so trivial an environment that it is straightforward to identify the
resulting outcome of the interactions of specific agents andtheir behaviors. But as problem complexity increases, it
gives rise to the spectre ofemergent behavior, where the global effects of simple per-agent behaviors cannot be readily
predicted. This is an area of considerable study and excitement in the artificial life community: but we view it as a
major problem for machine learning. To what degree does emergent behavior prevent the solution space from being
smooth? If small perturbations in agent behavior result in radical swings in emergent behavior, can learning methods
be expected to scale well at all in this environment? These questions have not been well studied.

5.2 Adaptive Dynamics and Nash Equilibria

Multi-agent systems are typically dynamic environments, with multiple learning agents vying for resources and tasks.
This dynamism presents a unique challenge not normally found in single-agent learning: as the agents learn, their
adaptation to one another changes the world scenario. How doagents learn in an environment where the goalposts
are constantly and adaptively being moved? As mentioned before, this co-adaptation of learners to one another leads
to a violation of a fundamental assumption of most machine learning techniques; for this reason, entirely new multi-
agent learning algorithms may be required to deal with this issue. This is exacerbated by credit assignment schemes,
which while often important, can convert an ordinary cooperative scenario into a general-sum or even (inadvertently)
competitive environment.

This constant “moving the goalposts” presents a challenge to finding optimal behaviors. In many cases the learning
methods may converge not to optima but to suboptimal Nash equilibria, if they converge at all. While avoiding
convergence to suboptimal Nash equilibria has become a focus in coevolution [192, 296], we are concerned that much
of the concurrent learning literature has merely satisfied itself to demonstrate convergence to Nash equilibria rather
than to optima. A notable exception worth following is presented by Chalkiadakis and Boutilier [47], where costs are
associated with exploration to balance its potential risksand benefits.

We echo opinions from [146, 240] and express our concern withthe use of Nash equilibria in cooperative multi-
agent learning. Such “rational” convergence to equilibriamay well be movement away from globallyteam-optimal
solutions [146]. As mentioned earlier, optimism about partners seems better than rationality alone for learners con-
cerned with team optimality [51, 142, 136, 192]. Shoham et al. [240] also point out that learning techniques that
specifically target Nash equilibria have problems coordinating when multiple optimal equilibria exist.

We argue that, in the context of cooperative agents, the requirement of rationality should be secondary to that of
optimal team behavior. In the context of the Prisoner’s Dilemma (Section 6.2) as a model for acooperativegame, it is
clearly irrational for agents to choose lower payoffs just because they are afraid of being stumped by other agents. We
believe that rational agents may learn better if they trust that their teammates share a common goal of achieving better
team behavior.

5.3 Problem Decomposition

The state space of a large, joint multi-agent task can be overwhelming. An obvious way to tackle this is to use domain
knowledge to simplify the state space, often by providing a smaller set of more “powerful” actions customized for the
problem domain. For example, Mataric [162, 160] applies Q learning to select from hand-coded reactive behaviors
such asavoid, head-home, searchor dispersefor robot foraging tasks. An alternative has been to reduce complexity
by heuristically decomposing the problem, and hence the joint behavior, into separate, simpler behaviors for the agents
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to learn. Such decomposition may be done at various levels (decomposing team behaviors into sub-behaviors for each
agent; decomposing an agents’ behavior into sub-behaviors; etc.), and the behaviors may be learned independently,
iteratively (each depending on the earlier one), or in a bottom-up fashion (learning simple behaviors, then grouping
into “complex” behaviors).

One approach to such decomposition is to learn basic behaviors first, then set them in stone and learn more complex
behaviors based on them. This method is commonly known aslayered learning, and was proposed by Stone [252,
253] and successfully applied to robotic soccer. Further applications of the technique are reported by Gustafson
[99], Gustafson and Hsu [100], Hsu and Gustafson [117], Whiteson and Stone [295] in keep-away soccer. Another
approach,shaping, gradually changes the reward function from favoring easier behaviors to favoring more complex
ones based on those easy behaviors. Balch [9] uses a shaped reinforcement reward function (earlier suggested by
Mataric [161]) which depends on the number of partial steps fulfilled towards accomplishing the joint task. Balch
shows that using a shaped reward leads to similar results to using a local reward, but in a significantly shorter time.
A related method,fitness switching, adaptively changes the reward function to emphasize thosebehaviors the agents
have made the least progress [311].

Shaping, layered learning, and fitness switching, are not multi-agent learning techniques, but they have often
been applied in such a context. Less work has been done on formal methods for decomposing tasks (and behaviors)
into subtasks (sub-behaviors) appropriate for multi-agent solutions, how agents’ sub-behaviors interact, and how and
when the learning of these sub-behaviors may be parallelized. Consider robot soccer as an example: while it is true
that agents must learn to acquire a ball and to kick it before they can learn to pass the ball, their counterparts must
also have learned to receive the ball, and to ramp up difficulty, opponents may simultaneously co-adaptively learn
to intercept the ball. Few papers have examined how to form these “decomposition dependency graphs”, much less
have the learning system develop them automatically. Yet toparallelize the learning process, to simplify the search
space, and to produce more robust multi-agent behaviors, understanding these interactions is important. One notable
exception: Guestrin et al. [98] note that in many domains theactions of some agents may be independent. Taking
advantage of this, they suggest partially decomposing the joint Q-values of agents based on acoordination graphthat
heuristically spells out which agents must interact in order to solve the problem. This partial decomposition permits
a heuristic middle-ground between learning a full joint utility table and learning separate independent tables. Also,
Makar et al. [157], Ghavamzadeh and Mahadevan [84] suggest adifferent hierarchical approach to simplifying the
inter-agent coordination task, where agents coordinate their high-level behaviors, rather than each primitive action
they may perform.

6 Problem Domains and Applications

Despite the relative young age of the field, the multi-agent systems area contains a very large number of problem
domains. The list in this survey is far from complete, but it contains many of the common problems. The problem
domains are divided into three classes: embodied agents, game-theoretic environments, and applications to real-world
problems.

6.1 Embodied Agents

The cost of robots has decreased significantly, making it feasible to purchase and use several (tens, hundreds, or even
thousands of) robots for a variety of tasks. This drop in costhas spurred research in multi-agent cooperative robotics.
Additionally, computer hardware is cheap enough that what cannot be performed with real robots can now be done in
simulation; though the robotics community still strongly encourages validation of results on real robots.

Predator-Prey Pursuit This is one of the most common environments in multi-agent learning research, and it is
easy to implement. Pursuit games consist of a number of agents (predators) cooperatively chasing a prey. Individual
predator agents are usually not faster than the prey, and often agents can sense the prey only if it is close by. Therefore,
the agents need to actively cooperate in order to successfully capture the prey. The earliest work using this domain is
[15], but there are many variations of the problem [68].
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Foraging The domain consists of a large map with agents (robots) and items to forage (pucks or cans). The task is
to carry the items to specially designated areas. Variations may include multiple item locations, item types, and drop
locations. The efficiency of an approach may be defined by how quickly it completes the foraging task [59, 158], or
by the number of items collected in a fixed amount of time. Ostergaard et al. [185] provide an extended survey of
previous work in this domain. A variation of the problem allows agents to communicate by depositing pheromones
in the environment to mark trails connecting rich pick-up and drop-off areas [20, 189]. In a related problem domain,
clustering, the agents have no pre-specified drop locations; rather, they only need to pile all the items together [14], or
sort them by class into separate piles [67].

Box Pushing This domain involves a two-dimensional bounded area containing obstacles and a number of boxes.
Agents in this environment need to arrange the boxes to specified final positions by pushing them. Sometimes a robot
is capable of pushing one box by itself (see for example the single-agent experiments reported in [35, 156]). A more
complicated version requires two or more agents to cooperate in order to move a single box in simulation [311], or on
real robots [162, 163]. Buffet et al. [34], Dutech et al. [75]present reinforcement learning approaches for a similar
problem domain where agents receive rewards only when they merge together pucks of different colors.

Soccer The game of soccer, both in simulation and with real robots, is one of the most widely used domains for
research in multi-agent systems [140]. The domain consistsof a soccer field with two goals, a ball, and two teams
with a number of agents (from 5 to 11, depending on the sizes ofthe robots and of the field). The performance of a
team is usually assessed based on the difference in number ofgoals scored. Other performance metrics have included
length of time in control of the ball, successful interceptions, and average location of the ball. Successful applications
of learning techniques to this domain are reported in [8, 152, 217, 252, 255]. The strong interest in this domain has
led to several annual “world cup” robot soccer championships. The most well-known such competition, RoboCup, has
different leagues divided by continent and by type of robot or simulation environment.

Keep-Away Soccer Gustafson and Hsu [100] use a simpler version of the soccer domain which contains only one
defensive and three offensive players and a ball. The defensive player is twice as fast than the offensive ones, and the
ball, when passed, can move at twice the speed of the defensive player. The objective is to keep the ball away from the
defensive player by moving and passing; there is a penalty each time the defensive player is within one grid unit away
from the ball. A similar domain is presented in [254].

Cooperative Navigation This task, as described in [8], is to have a team of agents moveacross a field in minimal
time without colliding with obstacles or other robots. Eachagent selects from a number of predefined behaviors, and
the performance is assessed based on the maximum time necessary for the agents to accomplish the task. The questions
investigated by Balch include the benefits from formation participation and the impact of diversity on performance.
The Opera Problem, discussed in [56], represents another challenge problem in cooperative navigation: a large number
of agents located in a bounded space need to coordinate in order to quickly leave through a small fixed exit area. An
application of learning to this problem is shown in [218].

Cooperative Target Observation Introduced by Parker [195], this domain involves a two dimensional bounded
area in which a number of robots have to keep several moving targets under observation. Performance is based on
the total number of targets within the “observable” distance to any team-member robot during the time period. Parker
investigates an initial approach to learning behaviors forthis domain and reports improvements over naive, random
approaches, but also notes the superiority of the hand generated solutions. Additional research using this domain
includes [76, 154, 197, 196]. A related problem domain is described in [13, 12, 308]: a team of flying agents needs
to perform a surveillance task in a region of space. The agents coordinate to avoid collisions, and their reward is
further increased when discovering and observing areas of high interest. Because of constraints placed on flying
unmanned vehicles, the agents must each maintain a minimal speed to keep them in the air. Multi-agent patrolling
is a non-stationary variant of this surveillance task: the agents are required to continuously explore the environment
[224, 262].
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Herding Schultz et al. [231] introduce a domain where a robot must herd another robot into a designated area. The
second robot (the sheep) will avoid obstacles and the “shepherd” robot, but otherwise may either move randomly or try
to avoid the herding area. The shepherd moves close to the sheep robot to encourage the sheep to move in the desired
direction. Potter et al. [209] try a multi-shepherd versionof the domain, where many faster and “stubborn” sheep
require coordination from the several herding agents. Additionally, predators may exist in the environment and try to
kill the sheep while avoiding the shepherds, thus complicating the shepherds’ task. Another application of learning
techniques to a herding domain is presented in [293].

6.2 Game-Theoretic Environments

Many multi-agent systems may be cast in game-theoretic terms; essentially as strategy games consisting of matrices
of payoffs for each agent based on their joint actions. In addition to game-theoretic analysis of multi-agent systems,
some common problem domains are also taken from game theory.

Coordination Games Various repeated games described in terms of joint reward matrices have been previously
introduced in the literature to highlight specific issues associated with multi-agent learning. For example, Claus and
Boutilier [51] introduce two simple 3x3 matrix games: a coordination game with two optima and high penalties for
mis-coordination; and a second game with two Nash-equilibrium points, one of them corresponding to a suboptimal
collaboration. These games are later used in [137, 142, 192]to investigate multi-agent reinforcement learning and
evolutionary computation approaches.

Social Dilemmas These problems concern the individual decisions of severalagents, all of which receive a joint
reward [85]. TheIterated Prisoners’ Dilemma, Tragedy of the Commons, Braess Paradoxand Santa Fe Barare
examples of social dilemma games. The Iterated Prisoner’s Dilemma involves two or more agents supposedly accused
of a robbery; the agents have to choose between to actions:confessthe crime ordenyparticipation in it. The settings
are such that it is rational for individual agents to deny, but it is in their collective interest for all to confess. In
the Tragedy of the Commons, a number of agents share a resource of limited capacity. When the joint usage of the
resource exceeds the capacity, the service deteriorates, and so do the rewards received by the agents. In the Braess
Paradox problem, agents share two resources. The dilemma arises when agents must decide to start accessing the less
utilized resource: if all agents decide to do so, it will become overwhelmed and rewards will drop. Further details on
these problems, accompanied by a coevolutionary approach to learning solutions to them, can be found in [177]. In
the Santa Fe Bar problem, a large number of agents individually must decide whether to go to a bar in Santa Fe. If
too many or too few agents opt to go, their satisfaction is lower than when a reasonable number of them decide to go
[5, 94, 306]. All these social dilemma problems have been used to model practical issues in real multi-agent problems,
such as network routing for example. We believe a valuable source of inspiration for solutions to such problems is
the area of social sciences. For example, Lichbach [146] analyzes a large number of social science solutions to the
Iterated Prisoner’s Dilemma problem.

6.3 Real-World Applications

This section describes a set of such problems drawn from real-world domains previously used in MAS investigations.
Many of the described problem domains are logistics, planning, and constraint-satisfaction problems requiring real-
time, distributed decision making. Because the applications are often very complex and highly distributed, learning
techniques have rarely been applied to them, and so they are presented here primarily as example challenge problems
for multi-agent learning.

Distributed Vehicle Monitoring The task in this domain is to maximize the throughput of cars through a grid of
intersections. Each intersection is equipped with a trafficlight controlled by an agent. The agents need to coordinate
to deal with fluctuations in traffic [145, 183]. Dresner and Stone [70] additionally assign agents to cars and propose a
reservation system for cars to negotiate for green lights upon arrival at the intersection.
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Air Traffic Control For security purposes, the airspace is divided into three-dimensional regions used by air traffic
controllers to guide the airplanes to their final destination. Each such region has an upper bound (called thesector
capacity) on the number of airplanes it can hold at any time. The task isto guide the planes from sector to sector along
minimal length routes, while ensuring that constraints aremet; the solution needs to be fast to handle real-time data.
A multi-agent approach for this domain is reported in [244].

Network Management and Routing This domain consists of a large, distributed network. Agents are deployed to
distributively and cooperatively control and manage the network, handle failures, and balance its load [281]. Boyan and
Littman [30], Subramanian et al. [257], Wolpert et al. [305], Chang et al. [50] introduce various learning approaches
to route packets in static and ad-hoc networks.

Electricity Distribution Management Here the problem is to maintain an optimal power grid configuration that
keeps all customers supplied and minimizes losses; while atthe same time dealing with possible damage to the
network, variable demand from customers, scheduled maintenance operations, and equipment failures and upgrades
[274]. Schneider et al. [230] present a reinforcement learning approach to managing a power grid.

Distributed Medical Care This domain applies AI to assist clinical staff in making diagnoses, decide on therapy and
tests, determine prescriptions, and perform other health care tasks [122]. The problem is well suited for multi-agent
systems because of the decentralization of data and resources, the high costs for obtaining comprehensive information,
and the stochasticity and dynamism of data.

Supply Chains This classic planning and scheduling problem involves managing the process of producing complex
items through a series of steps, where there are different constraints and costs associated with each step. The task
consists of building a plan (aproduction sequence) that specifies the order of operations for different items such that
the production costs are minimized while satisfying customer orders [307]. Brauer and Weiß [32] present a learning
approach for such a domain.

Hierarchical Multi-Agent Systems Problems Some multi-agent domains are of particular interest because of the
different levels at which problems can be formulated. For example, in the “Transportation” problem, several trucking
companies transport goods between locations. Depending onproblem formulation, agents may represent whole com-
panies, sets of trucks from the same or from different companies, or even individual trucks. The task is to complete
requests from customers under specific constraints (maximum time required to finish the job, minimal cost of delivery,
etc.). A multi-agent approach to this domain is reported in [79]. The “Loading Dock” is a similar problem, where
several forklifts load and unload trucks according to task requirements; either individual forklifts or groups of forklifts
may be modeled as an agent [175]. A related “Factory Floor” problem is investigated in [198], where products are
manufactured from raw material by several machines under time and cost minimization constraints, and agents can
represent individual machines or groups of machines.

Models of Social Interaction Many natural and social systems have very large numbers of interacting agents. Ac-
cordingly, such interactions need also be present in simulations of these natural phenomena. Examples of work in this
area include hard-coded and learned collective behaviors such as flocking [216, 214, 242, 243], learning of dispersion
and aggregation [310], learning social behaviors in virtual worlds [92, 91], and the modeling of the formation of early
countries [46].

Meeting Scheduling In this domain, each person has an agent that knows his/her preferences (for example, no
weekends) and obligations (possibly other meetings or travel). Upon request to schedule a meeting that requires the
presence of multiple persons, their agents are solicited tofind a time and a place to hold the meeting. Although most
work in this area does not involve learning (for example, theElectric Elves system [48]), Crawford and Veloso [55]
identify several opportunities for learning in the domain.
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Other multi-agent systems domains investigated include particle accelerator control [132], intelligent document
retrieval [174], spacecraft control [232], and concurrentengineering [58]. Further applications of Distributed AI in
industry are reported in [273].

7 Resources

Conferences and Workshops Various AI and machine learning meetings welcome multi-agent topics. The largest
such conference is the biannual International Joint Conference on Artificial Intelligence (IJCAI). Regional conferences
include the annual conference of the American Association for Artificial Intelligence (AAAI) and its European equiv-
alent, the European Conference on Artificial Intelligence (ECAI). Machine learning conferences include the Interna-
tional Conference on Machine Learning (ICML) and the European Conference on Machine Learning (ECML). Major
evolutionary computation conferences include the Geneticand Evolutionary Computation Conference (GECCO), the
Congress on Evolutionary Computation (CEC), and the European Conference on Parallel Problem-Solving from Na-
ture (PPSN).

Robotics conferences of interest include the IEEE International Conference on Robotics and Automation (ICRA)
and the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Multi-agent learning research
is also found at Artificial Life and Complexity conferences such as the Conference on Artificial Life (ALife) and
the International Conference on Simulation of Adaptive Behavior (SAB). Some conferences specialize in multi-agent
systems specifically. The current largest such event is the conference on Autonomous Agents and Multi-Agent Systems
(AAMAS). Other notable meetings include the symposium series on Adaptive Agents and Multi-Agent Systems, the
European Workshop on Multi-Agent Systems (EUMAS) and the UKWorkshop on Multiagent Systems (UKMAS).

Larger conferences usually host smaller workshops in narrower topics; some collections of papers presented at such
multi-agent learning workshops are published in [124, 128,235, 285, 286, 289]. There have also been independent,
smaller symposia focused specifically on multi-agent learning: for example, the AAAI-1996 Spring Symposium on
Adaptation, Coevolution and Learning in Multiagent Systems; the AAAI-2002 Spring Symposium on Collaborative
Learning Agents; and the AAAI-2004 Fall Symposium on Artificial Multiagent Learning.

Texts Issues directly relevant to the area of multi-agent learning are covered in [284, 287]. Other surveys of existing
work in multi-agent learning and related domains include [23, 33, 43, 66, 65, 72, 74, 144, 150, 194, 273, 234, 255, 283,
288]. There are also several PhD theses investigating aspects of multi-agent learning ranging from communication and
agent modeling, to credit assignment and co-adaptation: [8, 25, 44, 57, 69, 86, 93, 158, 179, 205, 253, 296].

Journals As of the time of writing this article, there is no journal focused on multi-agent learning issues alone.
Rather, articles on such topics may be found in journals in related fields, such as the Journal of Autonomous Agents and
Multi-Agent Systems (JAAMAS), Machine Learning Journal (MLJ), Journal of Machine Learning Research (JMLR),
Evolutionary Computation Journal (ECJ), IEEE Transactions on Evolutionary Computation, and Artificial Life.

Online Resources Several websites offer up-to-date information on events, companies, laboratories, and publica-
tions in the area of multi-agents. We found http://www.multiagent.com to be a good source of information in the field.
Another such site is http://agents.umbc.edu, though its updates are less frequent.

Competitions The annual RoboCup competition (http://www.robocup.org)offers robotic soccer as a testbed for
cooperative multi-agent strategies pitted against other soccer teams submitted by other researchers. RoboCup includes
many leagues: middle size robots, small “table-top” robots, quadrupeds, bipeds, and softbots. RoboCup Rescue
(http://www.rescuesystem.org/robocuprescue/) is another cooperative multi-agent competition in simulation or with
real robots, in which heterogeneous teams of agents must perform disaster rescue missions. Various conferences
and research groups organize cooperative multi-agent competitions or challenges from time to time: for example,
the GECCO 2004 conference held a competition called Cellz for evolving an optimal controller for a colony of self-
replicating cells.
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8 Conclusions

Cooperative multi-agent learning is a relatively new area,fraught with complex and rich dynamics, but which also
holds the promise of widespread applicability. Researchers have traditionally approached the problem from a number
of different directions: reinforcement learning and stateless environments, evolutionary computation and stochastic
optimization, cellular automata and other “swarm complexity” models, robotics, and game theory. In this survey we
attempted to collect these disparate approaches to multi-agent learning and unify them under two broad multi-agent
learning methods (team learning and concurrent learning).The difference in how these methods approach the learning
task results in their respective literature breaking down along rather different lines. We also discussed the crucial issue
of communication in multi-agent learning, detailed open topics in the field (scalability, adaptive dynamics, and credit
assignment), and provided common problem domains and multi-agent resources.

Initial work in multi-agent learning has generally focusedon relatively simple environments. Indeed we are sur-
prised by the number of multi-agent learning papers involving a meretwo agents. We think there are several areas in
which multi-agent learning field can “scale up” to more realistic and interesting environments. Here are four:

• Multiple Agents The “multi” in multi-agent learning cries out for larger numbers of agents, in the range of ten
to thousands or more. Two- and three-agent scenarios are reasonable simplifications to make theoretical analysis
feasible: but the experimental and empirical literature ought to strive for more.

• Team HeterogeneityIf there are more than two agents, most of the literature presumes that the agents are
identical in behavior and in ability. Yet it is common for agents to have different capabilities, for missions to
require agents with explicitly different behaviors, etc. When dealing with large numbers of agents it is of course
not plausible to have total heterogeneity: but agents may fall under some number of heterogeneous classes.
These directions of research have not been adequately explored.

• Agents with Internal State or other Complexity Much of the multi-agent learning literature simplifies agent
behaviors in order to reduce the total search space and to enable agents to understand each other more easily. But
many multi-agent environments, particularly in robotics,benefit considerably from agents with more complexity,
and especially more internal (hidden) state.

• Dynamically Changing Teams and ScenariosWhat happens when various agents fail, or are required to
perform some different task? When new agents are added to thescenario? When new abilities come on-line?
We applaud efforts such as RoboCup [140] to push the field to consider more dynamic scenarios, but more needs
to be done yet.

As discussed in Section 5, these and other areas present serious scalability challenges due to larger numbers of
agents, their possible heterogeneity, and their interactions. Such areas also present more complex game-theoretic
difficulties as the agents constantly “move the goalposts” on one another. And last, the environments demand (and
present interesting approaches to) new ways of problem decomposition to simplify the search space.

Along with multi-agent systems in general, multi-agent learning is at the cusp of a major growth spurt. Many fields
have finally adopted multi-agent models and frameworks due to inexpensive computational brawn. These include
models of social, political, and economic behavior; population-, systems-, and cellular-biology models and genomics;
and robotics, video-game and virtual-reality agents, and simulations for animation. Multi-agent frameworks have
come into their own with the onset of the Internet, cluster computing, and peer-to-peer architectures. We imagine that
these environments will all call upon machine learning to assist in the automatic development of multi-agent behaviors,
particularly as the complexity of such environments and their “emergent phenomena” becomes such that hand-coded
solutions are not readily obtained.
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