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Abstract

Cooperative multi-agent systems are ones in which sevggita attempt, through their interaction, to jointly
solve tasks or to maximize utility. Due to the interactionsomg the agents, multi-agent problem complexity can
rise rapidly with the number of agents or their behaviorgihgstication. The challenge this presents to the task
of programming solutions to multi-agent systems problems $pawned increasing interest in machine learning
techniques to automate the search and optimization process

We provide a broad survey of the cooperative multi-agenhieg literature. Previous surveys of this area have
largely focused on issues common to specific subareas (fanghe, reinforcement learning or robotics). In this
survey we attempt to draw from multi-agent learning work spactrum of areas, including reinforcement learning,
evolutionary computation, game theory, complex systegenimodeling, and robotics.

We find that this broad view leads to a division of the work itw@ categories, each with its own special is-
sues: applying a single learner to discover joint solutimnsiulti-agent problemgaégam learning, or using multiple
simultaneous learners, often one per ageom¢urrent learniny Additionally, we discuss direct and indirect commu-
nication in connection with learning, plus open issues sk @ecomposition, scalability, and adaptive dynamics. We
conclude with a presentation of multi-agent learning pgobblomains, and a list of multi-agent learning resources.

1 Introduction

In recent years there has been increased interest in dalisedrapproaches to solving complex real-world problems.
Many such approaches fall into the arealadftributed systemsyhere a number of entities work together to coopera-
tively solve problems. The combination of distributed sys$ and artificial intelligence (Al) is collectively knows a
distributed artificial intelligencéDAl). Traditionally, DAl is divided into two areas. The firareadistributed problem
solving is usually concerned with the decomposition and distidioubf a problem solving process among multiple
slave nodes, and the collective construction of a solutiché problem. The second class of approacmestj-agent
systemgMAS), emphasizes the joint behaviors of agents with songeeeof autonomy and the complexities arising
from their interactions.

In this survey, we will focus on the application ofachine learningo problems in the MAS area. Machine
learning explores ways to automate the inductive procesting a machine agentto discover on its own, often through
repeated trials, how to solve a given task or to minimizererkdachine learning has proven a popular approach to
solving multi-agent systems problems because the inhemnplexity of many such problems can make solutions
by hand prohibitively difficult. Automation is attractivéVe will specifically focus on problem domains in which the
multiple agents areooperatingo solve a joint task or to maximize utility; as opposedatonpetingvith one another.
We call this specific subdomain of interestoperative multi-agent learningdespite the relative youth of the field,
the number of cooperative multi-agent learning papersrigelaand we hope that this survey will prove helpful in
navigating the current body of work.

1.1 Multi-Agent Systems

The termsagentandmulti-agentare not well-defined in the community; we offer our own, adedly broad, defini-
tions of the concepts here as we intend to use them later isutivey. Anagentis a computational mechanism that
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exhibits a high degree of autonomy, performing actionssreitvironment based on information (sensors, feedback)
received from the environment. #ulti-agentenvironment is one in which there is more than one agent, evtinery
interact with one another, and further, where there aretraings on that environment such that agents may not at any
given time knoweverythingabout the world that other agents know (including the iraeatates of the other agents
themselves).

These constraints are, we argue, important to the notiomeofrtulti-agent system problem definition. Otherwise,
the distributed “agents” can act in sync, knowing exacthatdituation the other agents are in and what behavior they
will pursue. This “omniscience” permits the agents to adf #sey were really mere appendages of a single master
controller. Additionally, if the domain requires no intetimn at all, then it may be decomposed into separate, fully
independent tasks each solvable by a single agent.

Consider the application of cooperative foraging, wherdtipla robot agents are tasked to discover rock samples
and bring them back to specific places. We will return to thianeple throughout the paper. In its simplest form, this is
a problem domain which could be solved by a single robot, anitipfe (totally independent) robots merely parallelize
the effort. The problem becomes more complex when the rataotsthrough their interactions, gradually suggest to
one another good regions to forage. Additionally, if all etbinstantaneously know of all rock discoveries, and
further know where the other robots will choose to forageyttould be coded to operate identically to a basic master-
slave configuration. As Jennings et al. [131] suggest, fealrworld problem domains permit such reductions to
single-agent equivalence: most feature agents with intetemformation about the environment, lack of centralize
control, decentralized and distributed information, asghehronous computation.

Depending on their interest, several authors have prowddéstent taxonomies for MAS applications. For exam-
ple, Dudek et al. [71] classify swarm robotics applicati@esording to team size, range, communication topology
and throughput, team composition and reconfigurabilitg, #re processing ability of individual agents. In a collec-
tion describing the application of Distributed Artificialtelligence to industry, Van Dyke Parunak [273] differateis
betweeragent characteristicteam heterogeneity, control architectures, input/otdpilities) andsystem character-
istics(for example, communication settings). Stone and VeloS&]2xplicitly distinguish among four groups divided
by heterogeneity versus homogeneity and by communicatosug lack thereof. Last, Weil3 [285, 287] and Huhns
and Singh [123] characterize multi-agent systems baseghas bf environments, agents, and inter-agent interagtion

1.2 Multi-Agent Learning

Much of the multi-agent learning literature has sprung fioistorically somewhat separate communities — notably
reinforcement learning and dynamic programming, roboteslutionary computation, and complex systems. Ex-
isting surveys of the work have likewise tended to define ragent learning is ways special to these communities.
Instead, we begin this survey by defining multi-agent leagrbroadly: it is the application of machine learning to
problems involving multiple agents.

We think that there are two features of multi-agent learmihgch merit its study as a field separate from ordinary
machine learning. First, because multi-agent learnindsde@h problem domains involving multiple agents, the
search space involved can be unusually large; and due totheadction of those agents, small changes in learned
behaviors can often result in unpredictable changes ingbgting macro-level (“emergent”) properties of the multi
agent group as a whole. Second, multi-agent learmiaginvolve multiple learnerseach learning and adapting in the
context of others; this introduces game-theoretic issn#se learning process which are not yet fully understood.

Except for section 3.2.3, the survey primarily covers teptinterest tacooperativeanulti-agent learning. While
one might define cooperative domains restrictively in teofijeint shared reward, much of the literature tends to use a
much broader notion of cooperation, particularly with thieaduction of credit assignment (discussed later). Afisuc
we feel that cooperative multi-agent learning should bedébpdefined in terms of thiatentof the experimenter. If
the design of the problem and the learning system is coristiisp as to (hopefully) encourage cooperation among
the agents, then this is sufficient, even if in the end theydado so.

One large class of learning in multi-agent systems that wWeigviore in this survey involves situations where a
single agent learns while the other agents’ behaviors aeel.fiAn example of such situations is presented in [96].
This is single-agent learning: there is only one learnet,the behaviors are plugged into only one agent, rather than
distributed into multiple agents.
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1.3 Machine Learning Methods

There are three main approaches to learnsugpervisedunsupervisedandreward-based learning. These methods
are distinguished by what kind of feedback the critic pregitb the learner. In supervised learning, the critic presid
the correct output. In unsupervised learning, no feedbagkavided at all. In reward-based learning, the critic
provides a quality assessment (the “reward”) of the le&mertput.

Because of the inherent complexity in the interactions oftiple agents, various machine learning methods —
notably supervised learning methods— are not easily agplighe problem because they typically assume a critic
that can provide the agents with the “correct” behavior fgiveen situation (a notable exception involving teaching
in the context of mutual supervised learners is present¢83n88, 302]). Thus the very large majority of papers
in this field have used reward-based methods. The rewamtidearning literature may be approximately divided
into two subsetsreinforcement learningnethods which estimate value functions; atdchastic searcimethods
such as evolutionary computation, simulated annealind,stmchastic hill-climbing, which directly learn behasor
without appealing to value functions. In the stochasticaeéiterature, most multi-agent discussion concentrates
evolutionary computation. The similarities between thigse classes of learning mechanisms permit a rich infusion
of ideas from one to the other: the bucket-brigade algorjthb], the Samuel system [97], and the recent Stochastic
Direct Reinforcement policy gradient algorithm [172].

Reinforcement Learning Reinforcement learning (RL) methods are particularly usefdomains where reinforce-
ment information (expressed as penalties or rewards) is providier a sequence of actions performed in the envi-
ronment. Q-Learning and Temporal-Difference (R(Learning are two common RL methods; the former learns
the utility of performing actions in states, while the lattssually learns the utility of being in the states themsglve
Reinforcement learning methods are inspired by dynamignaraming concepts and define formulas for updating the
expected utilities and for using them for the exploratiothaf state space. The update is often a weighted sum of the
current value, the reinforcement obtained when perforramgction, and the expected utility of the next state reached
after the action is performed. While exploring, deterntinistrategies may choose the most promising action to be
performed in each state (according to the expected usjit@ther stochastic techniques may lead to better exporat

of the state space. Reinforcement learning methods haweetiieal proofs of convergence; unfortunately, such con-
vergence assumptions do not hold for some real-world agmdics, including many multi-agent systems problems.
For more information on reinforcement learning techniqiEs, 135, 260] are good starting points.

Evolutionary Computation Evolutionary Computation (EC) (dEvolutionary AlgorithmgEAS)) is a family of
techniques in which abstract Darwinian models of evolutiom applied to refine populations of candidate solutions
(known as “individuals™) to a given problem. An evolutiogalgorithm begins with an initial population of randomly-
generated individuals. Each member of this populationds #tvaluated and assigned a fitness (a quality assessment).
The EA then uses a fitness-oriented procedure to select] mad mutate individuals to produce children which are
then added to the population, replacing older individu@se evaluation, selection, and breeding cycle is known
as ageneration Successive generations continue to refine the populatithtune is exhausted or a sufficiently fit
individual is discovered. Evolutionary computation methincludegenetic algorithm¢$GA) andevolution strategies
(ES), both of which are usually applied to the search of rdinttensional parameter spaces; gedetic programming
(GP), which concerns itself with evolving actual computergrams. There are many sources of additional information
on EC; good choices include [6, 63, 64, 81, 87, 114, 141, 164].

Coevolutionary algorithms (CEAS) represent a natural epgn to applying evolutionary computation to refine
multi-agent behaviors. In a CEA, the fitness of an individeddased on its interaction with other individuals in the
population: thus the fitness assessment is context-seraitd subjective. Inompetitivecoevolution, individuals ben-
efit at the expense of their peers; butmoperativecoevolution, individuals succeed or fail together in codeation.

1Some of the literature calls this “reinforcement learningonfusingly, that term is used in two different ways: thegyal category of learning
based on rewards or quality assessments as feedback; aediicsfamily of learning algorithms related to dynamic pragyming (including
Q-learning, Sarsa, Temporal Difference Learning, etco.adoid confusion, we use “reward-based learning” for thiener, and “reinforcement
learning” for latter. The term “reward” is admittedly prebhatic though, as there exist “negative rewards” (punistig)e

2The previous footnote notwithstanding, in this survey, we the termseward andreinforcementnterchangeably to denote the information
the agents receive from the environment as a consequenkeioattions.
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A standard approach to applying cooperative coevolutipalgrorithms (or CCEAS) to an optimization problem starts
by decomposing the problem representation into subcommsntihen assigning each subcomponent to a separate
population of individuals [205, 206, 207, 208].

1.4 Survey Structure and Taxonomy

We believe there are two major categories of cooperativditagént learning approaches. The first one, which we
termteam learningapplies a single learner to search for behaviors for thieectetam of agents. Such approaches are
more along the lines of traditional machine learning meshdadt they may have scalability problems as the number
of agents is increased. A second category of techniquas;urrent learning uses multiple concurrent learning
processes. Rather than learning behaviors for the entira,teoncurrent learning approaches typically employ a
learner for each team member, in the hope that this reduegsithit space by projecting it inthl separate spaces.
However, the presence of multiple concurrent learners sitiie@environment non-stationary, which is a violation of
the assumptions behind most traditional machine learrdogrtiques. For this reason, concurrent learning requires
new (or significantly modified versions of) machine learningthods.

To illustrate the difference between the two, considerratfaé cooperative foraging scenario, where the task is to
maximize the number of items gathered from the environmarnteam learning approach employs a single learner
to iteratively improve the “team behavior” —which consistsall foragers—using the totality of items gathered
as a performance measure. The concurrent learning appatiaels each forager to modify its own behavior via
the forager'sownlearning process. However, the performance measure masbe@pportioned among the various
foragers (for example, dividing the team reward equally agnthe team members, or based on individual merits —
exactly how many items each forager gathered). The foraagemts will improve their behaviors independent of one
another, but have little or no control over how the otherdateto behave.

The survey continues in the next Section with a presentatisasearch in team learning. When a single learner
is employed, most research has focused ongpeesentatiorof candidate solutions that the learner is developing: in
particular, the degree of heterogeneity among the team membhe section after this discusses concurrent learning.
Research in concurrent learning has broken down alongdiffdines than that in team learning, primarily because of
the effect of multiple learners. We divide concurrent léagmmesearch into credit assignment, analysis of the dyoami
of the learning process, and modeling other agents in codeatter cooperate with them. In Section 4 we discuss inter-
agent communication and how it may be applied to the mukirdfparning process. We follow this with a discussion
in Section 5 of three areas in multi-agent learning (scitgpadaptive dynamics, and problem decomposition) which
we feel present large open research questions that have keedm insufficiently addressed by the community. The
remaining sections provide a list of multi-agent problermans, a collection of available resources, and the paper’s
conclusion and suggestions for scaling up multi-agenhiegrproblems.

2 Team Learning

In team learning, there is a single learner involved: bug tharner is discovering a set of behaviors for a team of
agents, rather than a single agent. This lacks the gameetitceaspect of multiple learners, but still poses chaléeng
because as agents interact with one another, the joint lmeh@an be unexpected. This notion is often dubbed the
emergent complexityf the multi-agent system.

Team learning is an easy approach to multi-agent learninguse its single learned can use standard single-agent
machine learning techniques. This sidesteps the diffesilirising from the co-adaptation of several learners tleat w
will later encounter in concurrentlearning approachesthAar advantage of a single learner is that it is concerntd wi
the performance of the entire team, and not with that of idial agents. For this reason, team learning approaches
may (and usually do) ignore inter-agent credit assignmediseussed later —which is usually difficult to compute.

Team learning has some disadvantages as well. A major pnollth team learning is the large state space for
the learning process. For example, if agent A can be in any0fsiates and agent B can be in any of another 100
states, the team formed from the two agents can be in as mdy@R0 states. This explosion in the state space size
can be overwhelming for learning methods that explore tlespf state utilities (such as reinforcement learning),
but it may not so drastically affect techniques that exptheespace of behaviors (such as evolutionary computation)
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[127, 220, 221, 237]. A second disadvantage is the cerdtadiz of the learning algorithm: all resources need to be
available in the single place where all computation is penkd. This can be burdensome in domains where data is
inherently distributed.

Team learning may be divided into two categoriesmogeneousndheterogeneougam learning. Homogeneous
learners develop a single agent behavior which is used by egent on the team. Heterogeneous team learners can
develop a unique behavior for each agent. Heterogeneouelsamust cope with a larger search space, but hold the
promise of better solutions through agent specializatidrere exist approaches in the middle-ground between these
two categories: for example, dividing the team into squadth, squadmates sharing the same behavior. We will refer
to these atiybridteam learning methods.

Consider a possible application of a team learning apprtzattte cooperative foraging scenario described earlier.
The single learning process is concerned with improvingdinaging performance of the entire team of agents. As
such, it needs to somehow encode how each agent will behaveyigituation it may encounter. As there may be
manyagents, the encoding may occugpjot of memory. Heterogeneous team learning approaches magémuiand
a very small number of agents. Yet it may be helpful for somenégyto act as scouts, while the other agents carry the
items as fast as possible. Homogeneous learners canndy idiadover such spacialization, though a hybrid method
could.

Choosing among these approaches depends on whether secst needed in the team or not. Experiments
conducted by Balch [8], Bongard [21] and Potter et al. [208drass exactly this issue (though some of them use
concurrent learning approaches). Balch [8] suggests thatths where single agents can perform well (for example,
foraging) are particularly suited for homogeneous learnimhile domains that require task specialization (such as
robotic soccer) are more suitable for heterogeneous apipesa His argument is bolstered by Bongard [21], who
hypothesizes that heterogeneity may be better in inhgrdetomposable domains. Potter et al. [209] suggest that
domain difficulty is not a determinant factor in selectingedgnogeneous approach. They experiment with increasingly
difficult versions of a multi-agent herding domain obtaitgcadding predators, and argue that increasing the number
of different skills required to solve the domain is a deteramt factor.

2.1 Homogeneous Team Learning

In homogeneous team learning, all agents are assignedddireghaviors, even though the agents may not be identical
(for example, different agents may take a different amoditinee to complete the same task). Because all agents
have the same behavior, the search space for the learnieggsrds drastically reduced. The appropriateness of
homogeneous learning depends on the problem: some prodiemst require agent specialization to achieve good
performance. For other problem domains, particularly anésvery large numbers of agents (“swarms”), the search
space is simply too large to use heterogeneous learning,ielieterogeneity would ultimately yield the best results.
Many homogeneous team learning papers are concerned witmaoication issues; we discuss such literature in
Section 4.

In a straightforward example of successful homogeneoun tearning, Haynes et al. [103], Haynes and Sen
[104], Haynes et al.[109, 110, 111] evolved behaviors fareaptor-prey pursuit domain. When using fixed algorithms
for the prey behavior, the authors report results competitiith the best human-coded greedy predator algorithms:
but when competitively coevolving the prey and predatoravédrs (see Section 3.2.3), the learner discovered a prey
that evades all previously reported hand-coded, greedyeanlved predators.

Agents can act heterogeneously even in homogeneous teerimbgaf the homogeneous behavior specifies sub-
behaviors that differ based an agent’s initial conditiamtdtion etc.) or its relationship with other agents (“alway
follow agent 2”). For example, Quinn et al. [213] investigdihe use of evolutionary computation techniques for a
team formation problem. Three agents start from randontiposibut close enough to sense one another. They are
required to move the team centroid a specific distance whdélang collisions and remaining within sensor range.
Quinn et al. investigate the roles of team members by rengavie agents one at a time. They conclude that the rear
agent is essential to sustain locomotion, but it is not d&ea the other two agents’ ability to maintain formatidrhe
middle agent is needed to keep the two others within sensgerand the front agent is crucial to team formation.
Therefore, even though the agents are homogeneous, thealsyee (based on their relative positions) to perform
better as a team.

Salustowicz et al. [220, 221] compare different machinenieg methods applied to homogeneous learning (the
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EC-related PIPE and CO-PIPE algorithms versus Q-learnitigail agents using the same Q-table). They argue that
Q-learning has serious problems, attributed by the autbdhe algorithm’s need to search for a value function. On the
other hand, both PIPE and CO-PIPE search directly in theypsfpace and show good performance. A contradicting
result is reported in [301], where a variation of Q-learningperforms the methods earlier reported in [220, 221].

A cellular automaton (CA) is an oft-overlooked paradigmfiomogeneous team learning (only a few CA papers
examine heterogeneous agents). A CA consists of a neigbbdrtoften a row or grid) of agents, each with its
own internal state, plus a state-update agent behaviortbeapplied to all the agents synchronously. This rule is
usually based on the current states of an agent'’s neighBés have many of the hallmarks of a multi-agent system:
interactions and communications are local, and behavirpearformed independently. A good survey of existing
work in learning cellular automata rules is presented irv[16

One common CA problem, the Majority (or Density) Classificattask, asks for an update rule which — given
initial configurations of agents, each agent with an intestate of 1 or 0—correctly classifies as many of them
as possible based on whether the initial configuration hackriis than 0’s or more 0's than 1's. This is done by
repeatedly applying the update rule for soMeterations; if the agents have converged to all 1's, the isilgsaid
to have classified the initial configuration as majority-@sgmilarly for 0’s). If it has not converged, the rule has
not classified the initial configuration. The goal is to digeoa rule which classifies most configurations correctly
given specific standard settings (in terms of number of agesite of neighborhood, etc). Due to the complexity
of the emergent behavior, it is exceptionally difficult t@ate good performing solutions for this problem by hand.
The best human-coded result, of. 828% accuracy, was proposed by Das et al. [60]. Much betseltechave been
produced with evolutionary computation methods: Andrd.gRareport a rule with accuracy 8226% using genetic
programming. Several authors, including Juille and P&llg&4], Pagie and Mitchell [186], Werfel et al. [291],
suggest that coevolutidmight perform well in this problem domain; at present thet lk@ewn result, with accuracy
86.3%, was obtained via coevolution [134].

2.2 Heterogeneous Team Learning

In heterogeneous team learning, the team is composed ofsagith different behaviors, with a single learner trying
to improve the team as a whole. This approach allows for miwezglity in the team at the cost of increasing the search
space [89]. The bulk of research in heterogeneous teamiggnas concerned itself with the requirement for or the
emergence of specialists.

Luke and Spector [153] investigate possible alternatiseg¥olving teams of agents. In their experiments, Luke
and Spector compare homogeneity, heterogeneity withicestrbreeding (agents could only breed with like agents
from other teams), and heterogeneity with no breedingictistns. The authors suggest that the restricted breeding
works better than having no restrictions for heterogenésarss, which may imply that the specialization allowed by
the heterogeneous team representation conflicts with taed&gent genotype mixture allowed by the free interbreed-
ing. Similarly, Andre and Teller [3] apply genetic prograimgnto develop a team of soccer playing agents for the
RoboCup simulator. The individuals encode eleven diffebemaviors (one for each player). Andre and Teller men-
tion that the crossover operator (between teams of ageatsjnost successful when performing restricted breeding.

Haynes and Sen [106, 108, 112] investigate the evolutionoofidgeneous and heterogeneous teams for the
predator-prey pursuit domain. The authors present seeeoakover operators that may promote the appearance
of specialists within the teams. The results indicate thatrt heterogeneity can significantly help despite apparent
domain homogeneity. The authors suggest that this may b&odileadlocks generated by identical behaviors of ho-
mogeneous agents when positioned in the same location. edamd Sen report that the most successful crossover
operator allows arbitrary crossover operations betwebawers for different agents, a result contradicting Anaind
Teller [3] and Luke and Spector [153].

So-called “one-population” coevolution can be used wittel@geneous team learning in an unusual way: a single
population is evolved using an ordinary evolutionary aiidpon, but agents are tested by teaming them up with partners

3The papers refer to a particular case of coevolution, namypetitive coevolution, and a special setting contaiming subpopulations. The
first subpopulation consists of candidate solutions forpttablem (in this case, behaviors for the CA agents). Thersbsabpopulation contains
possible test cases —initial configurations that the caatdidolutions should solve. Candidate solutions in thedirbpopulation are considered
better fit when solving more test cases existing in the sesabgopulation; meanwhile, the fitness of a test case is as@dw many candidate
solutions it stumps.
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chosen at random from the same population, to form a heteemges team [41, 211]. Quinn shows a situation where
this method outperforms a homogeneous team learning agpr&milarly, Miconi [165] evaluates an individual by
forming a team from the population, then comparing how muchse the team performs when the individual is not in
it. Miconi reports the appearance of squads and “subsgeglean using this method. It is not clear, however, where
one-population cooperative coevolution should be categdr It is clearly a single learner (one EC population), yet
the team is formed from separately-learned teammates henahéthod exhibits many of the game-theoretic oddities
discussed in the Concurrent Learning Sections, partigussction 3.2.3.

2.3 Hybrid Team Learning

In hybrid team learning, the set of agents is split into seh@guads, with each agent belonging to only one squad. All
agents in a squad have the same behavior. One extreme (@siugld), is equivalent to homogeneous team learning,
while the other extreme (one agent per squad) is equivaldrdterogeneous team learning. Hybrid team learning thus
permits the experimenter to achieve some of the advantdgesb method.

Luke [151], Luke et al. [152] focus on evolving soccer teanmstifie RoboCup competition, and they mention that
the limited amount of time available before the competititiminished the probability of obtaining good heteroge-
neous teams. Instead, they compare the fully homogenesuksavith a hybrid combination that divides the team
into six squads of one or two agents each, and then evolvdse$iaviors, one per squad. The authors report that
homogeneous teams performed better than the hybrid agproeaicmention that the latter exhibited initial offensive-
defensive squad specialization and suggest that hybnds@aight have outperformed the homogeneous ones given
more time.

Hara and Nagao [101] present an innovative method for hylgnidup learning. Faced with the
specialization/search-space trade-off inherent in bgtareity, the authors suggest an automated grouping tpehni
called Automatically Defined Groups (ADG). They apply it sassfully to a simple load transportation problem and
to a modified tile-world domain. In ADG, the team of agentsasposed of several groups of homogeneous agents
(similar to [151, 152]); however, ADG automatically disews the optimum number of groups and their compositions.
A similar approach is reported in [21], where GP individuadsitain partitioning instructions used for the creation of
squads.

3 Concurrent Learning

The most common alternative to team learning in cooperativéti-agent systems isoncurrent learning where
multiple learning processes attempt to improve parts ofi¢hen. Typically each agent has it own unique learning
process to modify its behavior. There are other degreesafuarity of course: the team may be divided into
“squads”, each with its own learner, for example. Howevex,ate not aware of any concurrent learning literature
which assigns learners to anything but individual agents.

Concurrent learning and team learning each have their cleer®mpnd detractors. Bull and Fogarty [40] and Iba
[125, 126] present experiments where concurrent learnirigesforms both homogeneous and heterogeneous team
learning, while Miconi [166] reports that team learning igferable in certain conditions. When then would each
method be preferred over the other? Jansen and Wiegand §i1@0¢ that concurrent learning may be preferable
in those domains for which some decomposition is possibteraipful, and when it is useful to focus on each
subproblem to some degree independently of the others. &dson for this is that concurrent learning projects the
large joint team search space onto separate, smallerdudivsearch spaces. If the problem can be decomposed such
that individual agent behaviors are relatively disjoihgn this can result in a dramatic reduction in search spate an
in computational complexity. A second, related advantagbat breaking the learning process into smaller chunks
permits more flexibility in the use of computational res@gto learn each process because they may, at least partly,
be learned independently of one another.

The central challenge for concurrentlearning is that e@aimler is adapting its behaviors in the context of other co-
adapting learners over which it has no control. In singlerdgcenarios (where standard machine learning techniques
may be applicable), a learner explores its environment,velmte doing so, improves its behavior. Things change
with multiple learners: as the agents learn, they modifyrthehaviors, which in turn can ruin other agents’ learned
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behaviors by making obsolete the assumptions on which thepased [223, 282]. One simplistic approach to deal
with this co-adaptation is to treat the other learners asgfa dynamic environment to which the given learner must
adapt. This idea was used in early multi-agent learningglitee [228, 229, 312]. But things are more complicated
in concurrent learning: the other agents are not merelyghgnbut are in fact co-adapting to the original learner’s
adaptatiorto them Therefore, the agents’ adaptation to the environment bange the environment itself in a way
that makes that very adaptation invalid. This is a signifie@slation of the basic assumptions behind most traditiona
machine learning techniques.

Concurrent learning literature breaks down along diffeliees than team learning literature. Since each agent is
free to learn separately, heterogeneity versus homogerastbeen considered an emergent aspect rather than a design
decision in concurrent learning (for example, Balch [7, @jues that the more local a reinforcement signal, the more
homogeneous the final team). We argue that there are in$tessirhain thrusts of research in the area of concurrent
learning. First, there is theredit assignmenproblem, which deals with how to apportion the reward olgdiat a
team level to the individual learners. Second, there arbetiges in thedynamics of learningSuch research aims to
understand the impact of co-adaptation on the learninggss®s. Third, some work has been donenadeling other
agentdn order to improve the interactions (and collaboratiortfwtihhem.

3.1 Credit Assignment

When dealing with multiple learners, one is faced with thektaf divvying up among them the reward received
through their joint actions. The simplest solution is tatgble team reward equally among each of the learners, or in
a larger sense, divide the reward such that whenever a Esare@ard increases (or decreasedl)Jearners’ rewards
increase (decrease). This credit assignment approachafiyitermedglobal reward

There are many situations where it might be desirable tgasgiedit in a different fashion, however. Clearly
if certain learners’ agents did the lion’s share of the tatskyight be helpful to specially reward those learners for
their actions, or to punish others for laziness. Similaviplpert and Tumer [304] argue that global reward does
not scale well to increasingly difficult problems becausel#arners do not have sufficient feedback tailored to their
own specific actions. In other situations credit assignnneumstbe done differently because global reward cannot
be efficiently computed, particularly in distributed congttion environments. For example, in a robotics foraging
domain, it may not be easy to globally gather the informasibaut all items discovered and foraged.

If we're not to equally divide the team reward among the aglemhat options are there, and how do they impact
on learning? One extreme is to assess each agent’s perfoerbased solely on its individual behavior. This approach
discourages laziness because it rewards agents only & theks they have actually accomplished. However, agents
do not have any rational incentive to help other agents, ameldy behaviors may develop. We call this apprdachl
reward

Balch [7, 9] experiments with different credit assignmeuoligies to explain when one works better than the others.
He argues that local reward leads to faster learning rateg)di necessarily to better results than global reward. For
one problem (foraging), local reward produces better tesulhile in another (soccer) global reward is better. The
author suggests that using local reward increases the hemedy of the learned teams. This in turn suggests that the
choice of credit assignment strategy should depend on sieededegree of specialization.

Mataric [159] argues that agents’ separate learning psesesan be improved by combining individual local
reinforcement with types ofocial reinforcement One such rewardpbservational reinforcements obtained by
observing other agents and imitating their behaviors;rfay improve the overall team behavior by reproducing rare
behaviors. Agents additionally receive smatlarious reinforcementahenever other agents are directly rewarded;
the purpose of this type of social reinforcement is to spriedividual rewards to other agents, and thus balance
between local and global rewards. Mataric shows that a weibombination of these components, together with
local reward, has better results in a foraging application.

Chang et al. [49] take a different approach to credit ass@grneach agent assumes the observed reward signal is a
sum of the agent’s direct contribution and some random Mapkocess that estimates the contributions of teammates.
The agent may therefore employ a Kalman filter to separatevhéerms and compute the agent’s true contribution to
the global reward. The authors show that reward filteringioles a better feedback for learning in simple cooperative
multi-agent domains. Rather than apportion rewards to antdzased on its contribution to the team, one mightinstead
apportion reward based on how the team would have fared leadgant never existed. Tumer et al. [270], Wolpert



3 CONCURRENT LEARNING 9

and Tumer [304] call this th&/onderful Life Utility and argue that it is better than both local and global reward
particularly when scaling to large numbers of agents.

Tangamchit et al. [266] take a different tack to credit assignt, arguing that averaging rewards over sequences
of tasks is better than discounting rewards (making imntediewards more important than future ones) in many
multi-agent scenarios. The authors set up an experimealving two robots learning to work together: one robot
ideally handing off items to the other, which in turn carrileem to a final destination. Discounting rewards results in
the first robot receiving significantly less reward the theosel one. The authors show that collaboration is achieved
only when robots are rewarded based on a non-discountedlgkkard averaged over time.

The wide variety of credit assignment methods have a sigmifionpact on our coverage of research in the dy-
namics of learning, which follows in the next section. Ouitiah focus will be on the study of concurrent learning
processes in fully cooperative scenarios, where globahmgws used. But as just mentioned, global reward may
not always work best for concurrent learning agents: imstearious other schemes have been proposed. However
these credit assignment schemes may run counter the resesirintention for the agents to cooperate, resulting in
dynamics resembling general-sum or even competitive gantesh we also discuss in the next section.

To understand why credit assignment policies can complittae dynamics of learning, suppose two foraging
agents are rewarded solely based on the speed at which thggthiering items. A narrow bridge separates the source
of items from the location where items are to be depositeldotlfi robots arrive at the bridge at the same time, what is
the rational thing for them to do? If they have a local credgignment procedure, neither is willing to let the other go
first: that would cost time and would decrease an agent’s @aditc This is reminiscent of social scientists’ notion of
being in the individual interest of none, but in the colleetinterest of all [146].

3.2 The Dynamics of Learning

When applying single-agent learning to stationary envirents, the agent experiments with different behaviord unti
hopefully discovering a globally optimal behavior. In dymia environments, the agent may at best try to keep up with
the changes in the environment and constantly track tharghidptimal behavior. Things are even more complicated
in multi-agent systems, where the agents may adaptivelygghaach others’ learning environments.

The range of tools to model and analyze the dynamics of coactiearners is unfortunately very limited. Many
such tools are particularly suited to only certain learmimgthods, and only a few offer a common framework for
multiple learning techniques. Evolutionary game theotfiésmain tool in this second category, and it was succegsfull
used to study the properties of cooperative coevolution 2B8], to visualize basins of attraction to Nash equilibria
for cooperative coevolution [191], and to study traje@erof concurrent Q-learning processes [271, 263]. Another
tool for modeling and predicting the dynamics of concurrantti-agent learners was recently proposed in Vidal and
Durfee [276, 277]. The system uses parameters such as faébavdior change per agent, learning and retention rates,
and the rate at which other agents are learning. Combinisgriformation permits approximating the error in the
agents’ decision function during the learning process.

Many studies in concurrentlearning have investigated tbhblpm from a game-theoretic perspective (for example,
[82]). An important concept in such investigations is thiza dlash equilibrium, which is a joint strategy (one strategy
for each agent) such that no single agent has any rationahiive (in terms of better reward) to change its strategy
away from the equilibrium. As the learners do not usuallyeheantrol over each others’ behaviors, creating alliances
to escape this equilibrium is not trivial. For this reasorany concurrent learning methods will converge to Nash
equilibria, even if such equilibria correspond to suboptiteam behaviors.

In a fully-cooperative scenario with only global reward ¢8en 3.2.1), the rewards received by agents are cor-
related, and so increasing one’s reward implies increasiggybody else’s reward. In such cases, it is relatively
straightforward to check that the concurrent learning apph has converged to the globally optimal Nash equilib-
rium. Section 3.2.2 covers learning in more general settimigere the relationship among rewards received by learn-
ers is less clear. Such research is particularly apropasatmihg in combination with non-global credit assignment
schemes. The extreme of such environments includes camgpstenarios, where rewards for learners are inversely
correlated —this is the focus of Section 3.2.3.
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3.2.1 Fully Cooperative Scenarios

A “fully cooperative” scenario employs a global reward stieeto divvy reinforcement equally among all agents. In
such environments, proof of convergence to global Nashibgaiis relatively straightforward, and there has been a
significant amount of research in the area. The researclsésan repeated and stochastic games, described below.

A repeated game consists of a series of interactions amoagitvnore agents. After each interaction, each
agent may receive some reward (or punishment). Reinforeenier interactions are independent of any previous
interactions. Claus and Boutilier [51] propose two benctingames ¢limb andpenalty and show that convergence
to global optimum is not always achieved in these games éezth agent can immediately perceive the actions of all
other agents in the environment. This result is disturbgigen the fact that usually agents do not have stathplete
informationabout the team and the environment.

Lauer and Riedmiller [142] suggest updating an agent'cgdl@-values) by estimating the likely best coopera-
tion possible for the agent’s action, and prove that thi$ @ahverge to the optimum in deterministic repeated games.
Kapetanakis and Kudenko [136, 137] point out possible flamisaiuer's approach when dealing with stochastic envi-
ronments, and present a modified exploration strategynt@tives cooperation under these new conditions. Brafman
and Tennenholtz [31] introduce a stochastic sampling tigctethat is guaranteed to converge to optimal Nash equi-
libria. The algorithm is polynomial in the number of actioofsthe agents, but it assumaspriori coordination of
the agents’ learning processes: the agents agree to a jgildration phase of some length, then agree to a joint
exploitation phase (where each agent settles on the betihgioyielded maximum reward).

Stochastic games are an extension of repeated games wamg oint in time the game is in sonstate The
game transitions to a new state based on a stochastic faraftibie old state and the interactions among the agents
in the old state. Reinforcements are based both on the atitena of the agents and on the current state value. With
a single state, a stochastic game reduces to a repeated gémey; single agent, a stochastic game reduces to a
Markov decision process. Most learning approaches in sgithgames target general-sum stochastic games; they
will be presented in the next section. In contrast, Wang aamtiBolm [279] present th@ptimal Adaptive Learning
algorithm, which is guaranteed to converge to optimal Naghiliria if there are a finite number of actions and
states. The algorithm creates “virtual games” for eactedstabrder to eliminate suboptimal Nash equilibria. This
is to our knowledge the only algorithm guaranteed to find tloda optimum in fully cooperative stochastic games.
Unfortunately, the optimality guarantees comes at a costatability: the number of virtual games that need to be
solved is exponential in the number of agents.

Partially observable Markov decision processes (POMDR®Ne stochastic games by adding constraints on
the agents’ ability to observe the state of the environm@&hte task of finding the optimal policies in POMDPs is
PSPACE-complete [193], it becomes NEXP-complete for deabred POMDPs [18]. Peshkin et al. [200] investigate
a distributed reinforcement learning approach to paytiabbservable fully cooperative stochastic games, and show
that their algorithm converges to local optima that may remtassarily be Nash equilibria. Another approach involves
agents adapting one at a time while keeping fixed the poliofesll other agents; in combination with dynamic
programming, this can lead to exponential speedups [180].

Cooperative coevolutionary algorithms may be used to Isalutions to repeated and stochastic games. CCEAs
were originally proposed as ways to (possibly automatigalecompose problems and to concurrently search for
solutions to such subproblems [205, 206]. Some work hastedsa done in tuning parameters of the system in order
to increase the performance of the algorithm [38, 39, 29'8ceaRt work has analyzed the conditions under which
coevolutionary systems gravitate towards Nash equilitatizer than providing globally optimal solutions for thane
as a whole [296, 298, 299]. Panait et al. [190, 191, 192] pmihthat such standard coevolutionary approaches, when
applied to cooperative problem domains, are sometimesgmtdy balanceconsiderations rather than performance.
That is, agents tend to co-adapt to one another (includingp@or collaborators) rather than trying to optimize their
performance with the rational ideal collaborating ageP@naitet al show that evaluating an agent in the context of
agents chosen as estimates of its best possible collab®sasdds significantly improved results over the standard
coevolutionary approach.

But choosing such estimates is non-trivial. One way to &tthe problem is to test individuals in the context of
well-known “good partners” from previous experience. 10,[210], a coevolutionary algorithm is augmented with a
“hall of fame” repository consisting of thid best teams discovered so far. Individuals are evaluatedibyg them up
with teammates chosen from this hall of fame; this approa&cterally outperforms ordinary cooperative coevolution
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methods. A related approach is reported in [19], where kzarperiodically provide representative behaviors for the
other learners to use for training.

3.2.2 General Sum Games

Due to unequal-share credit assignment, increasing therdsef an agent may not necessarily result in increasing the
reward of all its teammates. Indeed, such credit assignoantnadvertently create highly non-cooperative scenar-
ios. For such reasons, general sum games are applicable todperative learning paradigm, even though in some
situations such games may not be in any way cooperativeouroll) the early work of Littman [147], there has been
significant recent research in concurrent (and not neagssaoperative) learning for general-sum stochastic game
Some work has applied Q-learning to extensive-form gam@8][@here players alternate in performing actions; but
most work in the area has instead been in normal-form gamesasdiayers act simultaneously.

Bowling and Veloso [26] examine a number of game theory anmdarement learning approaches to stochastic
games, and describe the differences in the assumptionsrthkg. Hu and Wellman [119] (revised and extended
by Bowling [24], Hu and Wellman [121]) introduce a distrikbdtreinforcement learning algorithm where agents do
not learn just a single table of Q-values, but also tablesafbother agents. This extra information is used later
to approximate the actions of the other agents. NagayuKi §t 28] present an alternative approach where agents
approximate the policies, rather than the tables of Q-wlakthe other agents. Suematsu and Hayashi [258] point
out that the algorithm of Hu and Wellman does not adapt to thercagent’s policy, but only tries to converge to
Nash equilibria. In the case when the other agent has a fixéxype@aching a Nash equilibrium may be impossible.
They then introduce the EXORL algorithm which learns optireaponse policies to both adaptive and fixed policies
of the other agent. Littman [148] introduces the Friend=oe Q-learning algorithm to find either a coordination
equilibrium (with cooperative agents) or an adversaria @with competitive agents). Greenwald and Hall [95]
introduce Correlated-Q — a learning algorithm based ontbertlated equilibrium” solution concept (which assumes
additional coordination among agents via a mechanism tcifypghat action each agent should play).

Bowling and Veloso [27] describe two desirable propertigddarning agents, namely rationality (the agent should
converge optimally when the other agents have converget@tiorsary strategies) and convergence (under specified
conditions, all agents should converge to stationaryegias). They then present a learning algorithm that exibit
these two properties. Bowling and Veloso [28] investightedxistence of equilibria points for agents with limitato
which may prevent them from reaching optimality. Bowlinglareloso [29] also introduce the WoLF algorithm (Win
or Learn Fast), which varies the learning rate from small @augtious values when winning, to large and aggressive
values when losing to the other agents.

In [182], two agents with two actions each participate in@esed game with two Nash equilibria. In one Nash
equilibrium, one agent receives more reward than the otiemtawhile in the other Nash equilibrium the situation is
reversed. The authors propose a “homo-equalis” reinfoecempproach, where communication is used to alternate
between the two unfair optimal points in order to fairly shéne rewards received by the two agents. Peeters et al.
[199] describe an extension of the algorithm for games wititiple states.

3.2.3 Related Pathologies from Competitive Learning

Though this survey focuses on cooperative multi-agentlagr many pathologies in competitive learning environ-
ments arise from similar dynamics, and so are worthwhiletiapimg as hints into difficulties that may plague learning
in cooperative scenarios as well. Competitive learning pito or more agents against one another, hopefully estab-
lishing a beneficial “arms race” among them. For exampleydf &agents learn to play one another at chess, it may be
desirable for both to learn at about the same pace, creatjregaial ramping up of difficulty. This has often been used
in the context of a single learner playing a multi-agent gagi@nst itself [4]. The most famous examples of this are
learned Backgammon [202, 203, 267] and Checkers [80, 22Rer@ames have included Tic-Tac-Toe [4], Mancala
[61], Othello [241], Go [149], Chess [138, 269], Poker [L3Blackjack [261], Nim and 3D Tic-TacToe [219], and
Tag [215]. Some domains contain a mixture of competition@aperation. For example, Luke [151] evolves a team
of players for a soccer domain: the players need to coopasatdeam, but also compete against an opposing team.
Competitive learning can of course also be done with matiphrners, each co-adapting to the others. But the
intended outcome is usually different. Instead of learningompete against like foes, multi-learner scenariosllysua
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try to discover a solution which is robust over a wide rangprablem test cases. Thus one target learner discovers
the solutions, while a competing learner co-adaptivelyusidj the set of test cases. This is sometimes known as
“host-parasite” coevolution. Examples include sortingvoeks [113] and predator-prey scenarios [52, 102].

However, if unchecked, one learner can come to dominate tther tearner. In this situation, no one receives
sufficient feedback to improve —no matter what the domineatrier does, it always wins, and no matter what the
subjugated learner(s) do, they always lose. This is ustedigedoss of gradienf203, 280], and it is closely related
to “laziness” and similar pathologies in cooperation. Baraple, Wiegand and Sarma [300] investigate the behavior
of cooperative coevolution in a domain that provides déferlearning opportunities to different agents (one agent
may learn faster than the other). The authors’ spatiallyesidbd CCEAs (which place constraints on the learners’
interactions) may better cope with the loss of gradienttetby these asymmetries.

It is also difficult to monitor progress in competitive co@tion. Consider again our chess players: they initially
draw most of the games, while later on, the first agent defbatsther one. What does that tell us? We're tempted
to say the first agent learned to play better. However, it nethht the first player has not changed at all, but rather
that the second managed to decrease its playing ability fildtegent might in fact have gotteworseat chess, yet
the second agent decreased in performaves more This phenomenon is known as tRed-Queeheffect[52]. A
related question concerns cooperative multi-agent lagnwhen a local reward credit assignment is used: while each
learner improves with respect to its own individual rewag there any guarantees that the entire team of agents is
improving as well?

Last, competition can result inyclic behaviors where agents circle about one another due to non-tramsitiv
relationships between agent interactions. For exampléhamrock-scissors-paper game, Agent A picks Rock and
Agent B picks Paper. Agent A then adapts to Scissors, causjiemt B to adapt to Rock. Then Agent A adapts
to Paper, Agent B adapts to Scissors, and Agent A adegas to Rock. If a multi-agent environment is fraught
with such non-transitive cycles, competing agents may bgltiain them, rather than building the desired arms race
[52, 77, 219, 280]. Luke and Wiegand [155] cite (harsh) ctads under which single-learner coevolution can be
rid of these difficulties. Popovici and DeJong [204] arguat ttriteria used to analyze single-agent domains may be
insufficient for classifying, at a high-level, the dynamstgh environments will incur.

3.3 Teammate Modeling

A final area of research in concurrent learning is teammaigatiieg: learning about other agents in the environment
so as to make good guesses of their expected behavior, acichtocardingly (to cooperate with them more effectively,
for example). Such an approach is used by Boutilier [22] analkiadakis and Boutilier [47], who employ a Bayesian
learning method for updating models of other agents. Basglase models, agents may estimate the current behavior
of other agents and try to better cooperate with them. Suryad Gmytrasiewicz [259] present a similar agent
modeling approach consisting of learning the beliefs, bdipias and preferences of teammates. As the correct model
cannot usually be computed, the system stores a set of sugblsritogether with their probability of being correct,
given the observed behaviors of the other agents.

As other agents are likely modeliygu, modelingthemin turn brings up the spectre of infinite recursion: “Agent
A is doing X because it thinks that agent B thinks that agenhiflkis that agent B thinks that ...” This must be
rationally sorted out in finite time. Vidal and Durfee [27%jtegorize agents based on the complexity they assume for
their teammates. A O-level agent believes that none ofdisiteates is performing any learning activity and it does not
consider their changing behaviors as “adaptive” in its nhoflel-level agent models its teammates as 0-level agents.
In general, an N-level agent models its teammates as (vE)-hgents.

Mundhe and Sen [176] investigate the use of O-level, 1-landI2-level modeling agents. The authors report a very
good performance for the O-level learners, suggestinddhabme domains teammate modeling may not be necessary.
Similar results showing good coordination without modglirther agents are reported in [238, 239], where two robots
learn to cooperatively push a box without either being aveditbe other’s presence. Banerjee et al. [10], Mukherjee
and Sen [173] present experiments in which 1-level agentbeir@ach others’ action probability distributions; this
produces a form of mutual trust. Tambe [264] briefly discaghe benefits of modeling other agents and recursively

4The name refers to Lewis Carrolf&hrough the Looking Glassvhere the Red Queen constantly runs because ‘it takeseallitining you can
do to keep in the same place”.
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tracking their decisions (either for individual agentsfargroups of agents). Benefits from modeling agents in other
purely competitive settings are also reported in [272, 45].

When dealing with larger numbers of teammates, a simplerfiragapproach is to presume that the entire team
consists of agents identical to the modeling agent. Hayhak EL03], Haynes and Sen [105, 107] use this approach
complemented with a case-based learning mechanism fdnderith exceptions from this assumed behavior.

Hu and Wellman [118], Wellman and Hu [290] suggest that wieanring models of other agents in a multi-agent
learning scenario, the resulting behaviors are highlyiteaso the agents’ initial beliefs. Depending on thesdiahi
beliefs, the final performance may be better or ewmemsethan when no teammate modeling is performed — agent
modeling may prevent agents from converging to optimal behs. A similar conclusion is reported by Hu and
Wellman [120]: the authors suggest that the best policy feating learning agents is tinimizethe assumptions
about the other agents’ policies. An alternative is to awtically discover if the other agents in the environment are
cooperating with you, competing with you, or are in some oth&ationship to you. Sekaran and Sen [233], Sen and
Sekaran [236] investigate the application of reciprocityaepts to multi-agent domains where not enough informatio
on the intentions of other agents is knowpriori. They apply a stochastic decision-making algorithm thabenages
reciprocity among agents while avoiding being taken acagabf by unfriendly agents. The authors show that those
agents that prefer not to cooperate end up with worse pediocen Nowak and Sigmund [181] mention two types
of reciprocity: direct (agent A helps another agent B and so expects B to help himeirfiutiure) andndirect (an
agent helps another in return for future help from other &g)erBuch reciprocity improves an agent’s “reputation”.
They argue that a necessary condition for cooperation istiiea‘degree of acquaintanceship” (the probability that
an agent knows another agent’s reputation) should exceedtio of cost of altruistic help relative to the benefit to
the recipient. Similar analysis can be done without the rieedodel reputatioper se Ito [129] pitted game-players
against one another, where each agent had access to a bishigyopponent’s previous actions against other players.

We conclude this section with work in agent modeling undencmnication. Ohko et al. [184] use a communica-
tion protocol for agents to subcontract subtasks to othentsg In their approach, each agent tries to decompose tasks
into simpler subtasks and broadcasts announcements digostititasks to all other agents in order to find “contrac-
tors” who can solve them more easily. When agents are capéldarning about other agents’ task-solving abilities,
communication is reduced from broadcasting to everyonemoncunicating exact messages to only those agents that
have high probabilities to win the bids for those tasks. Aated approach is presented in [37, 36]: here, Bayesian
learning is used to incrementally update models of othentag®e reduce communication load by anticipating their
future actions based on their previous ones. Case-basminigdas also been used to develop successful joint plans
based on one’s historical expectations of other agentigrec{83].

4 Learning and Communication

For some problems communication is a necessity; for otfrensmunication may nonetheless increase agent per-
formance. We defineommunicatioras altering the state of the environment such that othertagam perceive the
modification and decode information from it. Among others@as, agents communicate in order to coordinate more
effectively, to distribute more accurate models of the Emwinent, and to learn subtask solutions from one another.
But are communicating agents reathulti-agent?Stone and Veloso [255] argue that unrestricted commumwicati
reduces a multi-agent system to something isomorphic toglesagent system. They do this by noting that without
restrictions, the agents can send complete external sfatgriation to a “central agent”, and to execute its commands
in lock-step, in essence acting as effectors for the ceagyat. A central agent is not even necessary: as long assagent
can receive all the information they need to known about threeit states of all the other agents, they can make inde-
pendent decisions knowing exactly what the other agentglwijlin essence enabling a “central controller” on-board
each individual agent, picking the proper sub-action ferftlil joint action. Thus we feel that a true multi-agent prob
lem necessitates restrictions on communication. At argy valile full, unrestricted communication can orthogozrali
the learning problem into a basic single-agent problemh sucapproach requires very fast communication of large
amounts of information. Real-time applications insteatplconsiderable restrictions on communication, in tedfms o
both throughput and latency. Unfortunately, learning ihallenging issue in itself, and difficulties associatechwit
it often resulted in a simplified approach to communicatiesyally neglecting costs of communication with other
agents. We feel further research needs to address the isgsi@a@ selective communication only when necessary.
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Explicit communication can also significantly increaseltarning method’s search space, both by increasing the
size of the external state available to the agent (it now lenstate information communicated from other agents), and
by increasing the agent’s available choices (perhaps bypgad'communicate with agenrtaction). As noted in [73],
this increase in search space can hamper learning an ogitghal/ior by more than communication itself may help.
Thus even when communication is required for optimal pentorce, for many applications the learning method must
disregard communication, or hard-code it, in order to sifpphe learning process. For example, when learning in a
predator-prey pursuit domain, Luke and Spector [153] asstiwat predators can sense each other’s position no matter
what distance separates them, and Berenji and Vengerou$&a blackboard communication scheme to allow agents
to know of other agents’ locations.

4.1 Direct Communication

Many agent communication techniques employ, or assumestamal communication method by which agents may
share information with one another. The method may be cainstd in terms of throughput, latency, locality, agent
class, etc. Examples of direct communication include gshatackboards, signaling, and message-passing. The
literature has examined both hard-coded communicatiomadstand learned communication methods, and their
effects on cooperative learning overall.

Tan [265] suggests that cooperating learners can use cormation in a variety of ways in order to improve
team performance. For example, agents can inform othetseafturrent state by sharing immediate sensor infor-
mation. Another approach is for agents to share informadioout past experiences in the form of episodes (se-
quences of(stateaction reward) previously encountered by the agent) that others may nat baperienced yet.
Yet another alternative is for agents to share knowledgeeaélto their current policies (for example, in the form of
(stateaction utility) for cooperating reinforcement learning agents).

Some research, particularly in reinforcement learning,diaply presumed that the agents have access to a joint
utility table or to a joint policy table to which each may cobtite in turn, even though the agents are separate
learners. For example, Berenji and Vengerov [16] investigacooperative learning setting where multiple agents
employ communication to use and update the same policynBared Vengerov suggest that the simultaneous update
of a central policy reduces early tendencies for convergémsuboptimal behaviors. We argue that this is an implicit
hard-coded communication procedure: the learners arbitepeach other learned information.

Much of the remaining research provides the agents with amaamication channel but does not hard-code its
purpose. In a simple situation, agents’ vocabulary mayisbo§a single signal detectable by other agents [278]. In
other work (for example [309]) mobile robots in a coopemtivovement task are endowed with a fixed but undefined
communication vocabulary. The robots learn to associasmimgs with words in various trials. When circumstances
change, the robots learn to adjust their communicationdagg as appropriate. A similar approach is reported in
[133] to learn a language for communication in a predatesspiomain. The authors use a blackboard communication
scheme and present a rule for determining a pessimistimatgtion the minimum language size that should be used
for multi-agent problems. Steels [246] reports the emergef a spontaneous coherent lexicon that may adapt to
cope with new meanings during the lifetime of the agentseIStend Kaplan [251] continue this investigation to show
that agents are able to create general words through dedeagreement on their meanings and coverage. Similar
approaches to evolving communication languages are pgesksan[42, 62, 225, 245, 247, 248, 249, 250, 302].

Many such methods provide an incentive to the agents to coriwae (perhaps by sharing the resulting reward).
However, Ackley and Littman [1] show that reward incentiag not necessary for the agents to communicate:
instead, agents learn to communicate even when the agertse@o benefit from this action.

4.2 Indirect Communication

We define indirect communication methods as those whichevbieimplicit transfer of information from agent to
agent through modification of the world environment. Exagspf indirect communication include: leaving footsteps
in snow, leaving a trail of bread crumbs in order to find one&yviback home, and providing hints through the
placement of objects in the environment (perhaps incluthiegagent’s body itself).

Much of the indirect communication literature has drawrpiration from social insects’ use of pheromones to
mark trails or to recruit other agents for tasks [116]. Phwnes are chemical compounds whose presence and
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concentration can be sensed by fellow insects [20], andrikey other media for indirect communication, pheromones
can last a long time in the environment, though they may sifor evaporate. In some sense, pheromone deposits may
be viewed as a large blackboard or state-utility table shbyeall the agents; but they are different in that pheromones
can only be detected locally.

Several pheromone-based learning algorithms have begroged for foraging problem domains. A series of
reinforcement learning algorithms have adopted a fixedgrhene laying procedure, and use current pheromone
amounts for additional sensor information while explorthg space or while updating the state-action utility es-
timates [143, 168, 169, 170, 171]. Evolutionary computatiechniques have also been applied to learn explo-
ration/exploitation strategies using pheromones depodity hard-coded mechanisms. For example, Sauter et al.
[226, 227] show how EC can be used to tune an agent policy ipglication involving multiple digital pheromones.

A similar idea applied to network routing is presented in4R9

Another research direction is concerned with studying tMaieagents can learn not only to use pheromone infor-
mation but to deposit the pheromones in a rational mannes qurestion was first examined in AntFarm, a system
that combines communication via pheromones and evolutoc@mputation [54, 53]. AntFarm ants use a single
pheromone to mark trails toward food sources, but use a cssrpapoint themselves along the shortest path back
to the nest. Panait and Luke [187, 188, 189] present a reldgedithm that exhibits good performance at various
foraging tasks in the presence of obstacles. This algorite@s multiple pheromones, and in doing so it eliminates
the explicit requirement for ants to precisely know the cli@n towards the nest from any point. Rather, ants use
pheromone information to guide themselves to the food soancl back to the nest. The authors note a hill-climbing
effect that leads to straight (and locally optimal) pathm] demonstrate both hard-coded and learned foraging behav-
iors which build these paths.

Werger and Mataric [292] present another approach to inod@d@nmmunication among agents: using the agents’
body positions themselves to convey meaning. The authesept a foraging application where a number of robots
need to collect items and deposit them at a pre-specifiedidmcaThe robots use their bodies to mark the path for
other robots to follow. In some sense, the robots’ bodiesaatimg essentially as a pheromone trail for the other
robots. Quinn [212] argues that this is a form of communaaby citing Wilson’s statement that communication “is
neither the signal by itself, nor the response, [but] indtéee relationship between the two” [303]. This definition
suggests that a shared dedicated channel is not necessagnimunication. In his study, Quinn investigates the
evolution of strategies in a two-agent collaborative-nmoeat domain and reports that robots were able to coordinate
by communicating their adopted roles of leader or followiarsequences of moves. For example, after initial phases
of alignment, the robots use rotation and oscillatory bacl-forth movements to decide who leads the way and who
follows.

5 Major Open Topics

Multi-agent learning is a new field and as such its open rebkeiasues are still very much in flux. Here, we single
out three issues we observed recurring while surveying liftasature. We believe that these specific areas have
proven themselves important open questions to tackle ieraadmake multi-agent learning more broadly successful
as a technique. These issues arise fromntlodti in multi-agent learning, and may eventually require newrlewy
methods special to multiple agents, as opposed to the morentional single-agent learning methods (case-based
learning, reinforcement learning, traditional evoluiopcomputation) now common in the field.

5.1 Scalability

Scalability is a problem for many learning techniques, apteeially so for multi-agent learning. The dimensionality
of the search space grows rapidly with the number and cortpleikagent behaviors, the number of agents involved,
and the size of the network of interactions between thems $barch space grows so rapidly that we believe one
cannotlearn the entire joint behavior of a large, heterogeneamsngly intercommunicating multi-agent system.
Effective learning in an area this complex requires someetegf sacrifice: either by isolating the learned behaviors
among individual agents, by reducing the heterogeneithefagents, or by reducing the complexity of the agent’s
capabilities. Techniques such as learning hybrid teantgrdposing behaviors, or partially restricting the logati



5 MAJOR OPEN TOPICS 16

reinforcement provide promising solutions in this direatibut it is not well understood under which constraints and
for which problem domains these restricted methods willkns@st.

We believe multi-agent learning techniques should be exatlespecially carefully with respect to their scalapilit
For example, it is not unusual (on the contrary, it is widelgqgticed) for concurrent learning techniques to be studied
in two-agent scenarios, for the environment to be staté¢feshistory of past interactions is necessary), and for each
agent to have only two or three actions to choose from. Butwdualed up to dozens or hundreds of agents, to
stochastic environments with partially-observable staémd to many more available actions, current methods seem
likely to fail. This is of course not just a cooperative leamproblem. Recent research by Sturtevant and Korf [256] in
the area of search in competitive games has shown that nariamd alpha-beta pruning are ineffective at significantly
reducing the search for games with more than two players.

These simple scenarios have also presumed so trivial anoanvént that it is straightforward to identify the
resulting outcome of the interactions of specific agentstaett behaviors. But as problem complexity increases, it
gives rise to the spectre efmergent behavipwhere the global effects of simple per-agent behavioraatme readily
predicted. This is an area of considerable study and exeitéim the artificial life community: but we view it as a
major problem for machine learning. To what degree does genéibehavior prevent the solution space from being
smooth? If small perturbations in agent behavior resulaifical swings in emergent behavior, can learning methods
be expected to scale well at all in this environment? Thesgstipns have not been well studied.

5.2 Adaptive Dynamics and Nash Equilibria

Multi-agent systems are typically dynamic environmenighwmultiple learning agents vying for resources and tasks.
This dynamism presents a unique challenge not normallydanrsingle-agent learning: as the agents learn, their
adaptation to one another changes the world scenario. Hoageots learn in an environment where the goalposts
are constantly and adaptively being moved? As mentioneatbgthis co-adaptation of learners to one another leads
to a violation of a fundamental assumption of most machiaelieg techniques; for this reason, entirely new multi-
agent learning algorithms may be required to deal with g#8sé. This is exacerbated by credit assignment schemes,
which while often important, can convert an ordinary coapige scenario into a general-sum or even (inadvertently)
competitive environment.

This constant “moving the goalposts” presents a challem§jading optimal behaviors. In many cases the learning
methods may converge not to optima but to suboptimal Nasliiledg, if they converge at all. While avoiding
convergence to suboptimal Nash equilibria has become & foaoevolution [192, 296], we are concerned that much
of the concurrent learning literature has merely satisfiselfito demonstrate convergence to Nash equilibria rather
than to optima. A notable exception worth following is pretsel by Chalkiadakis and Boutilier [47], where costs are
associated with exploration to balance its potential reakd benefits.

We echo opinions from [146, 240] and express our concerntivétuse of Nash equilibria in cooperative multi-
agent learning. Such “rational” convergence to equililonay well be movement away from globaligam-optimal
solutions [146]. As mentioned earlier, optimism about pars seems better than rationality alone for learners con-
cerned with team optimality [51, 142, 136, 192]. Shoham ef240] also point out that learning techniques that
specifically target Nash equilibria have problems coortiligavhen multiple optimal equilibria exist.

We argue that, in the context of cooperative agents, theinegent of rationality should be secondary to that of
optimal team behavior. In the context of the Prisoner’s mitea (Section 6.2) as a model focaoperativegame, it is
clearly irrational for agents to choose lower payoffs justduse they are afraid of being stumped by other agents. We
believe that rational agents may learn better if they thest their teammates share a common goal of achieving better
team behavior.

5.3 Problem Decomposition

The state space of a large, joint multi-agent task can bexdwedming. An obvious way to tackle this is to use domain
knowledge to simplify the state space, often by providingnalter set of more “powerful” actions customized for the
problem domain. For example, Mataric [162, 160] applies &nang to select from hand-coded reactive behaviors
such asavoid, head-home, seardn dispersefor robot foraging tasks. An alternative has been to redoceptexity

by heuristically decomposing the problem, and hence tim f@havior, into separate, simpler behaviors for the agent
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to learn. Such decomposition may be done at various levetofdposing team behaviors into sub-behaviors for each
agent; decomposing an agents’ behavior into sub-behawdtrg, and the behaviors may be learned independently,
iteratively (each depending on the earlier one), or in admottip fashion (learning simple behaviors, then grouping

into “complex” behaviors).

One approach to such decomposition is to learn basic betsdirit, then set them in stone and learn more complex
behaviors based on them. This method is commonly knownyased learning and was proposed by Stone [252,
253] and successfully applied to robotic soccer. Furthg@liegtions of the technique are reported by Gustafson
[99], Gustafson and Hsu [100], Hsu and Gustafson [117], ¥gloih and Stone [295] in keep-away soccer. Another
approachshaping gradually changes the reward function from favoring easéhaviors to favoring more complex
ones based on those easy behaviors. Balch [9] uses a shapkedcement reward function (earlier suggested by
Mataric [161]) which depends on the number of partial stepilleéd towards accomplishing the joint task. Balch
shows that using a shaped reward leads to similar resultsing & local reward, but in a significantly shorter time.
A related methodfitness switchingadaptively changes the reward function to emphasize theksaviors the agents
have made the least progress [311].

Shaping, layered learning, and fitness switching, are ndti4agent learning techniques, but they have often
been applied in such a context. Less work has been done omlfarethods for decomposing tasks (and behaviors)
into subtasks (sub-behaviors) appropriate for multi-agetutions, how agents’ sub-behaviors interact, and haiv an
when the learning of these sub-behaviors may be parakkligensider robot soccer as an example: while it is true
that agents must learn to acquire a ball and to kick it befoeg tan learn to pass the ball, their counterparts must
also have learned to receive the ball, and to ramp up difficultyparents may simultaneously co-adaptively learn
to intercept the ball. Few papers have examined how to foeselidecomposition dependency graphs”, much less
have the learning system develop them automatically. Yeatallelize the learning process, to simplify the search
space, and to produce more robust multi-agent behaviodgratanding these interactions is important. One notable
exception: Guestrin et al. [98] note that in many domainsdtitons of some agents may be independent. Taking
advantage of this, they suggest partially decomposingaing Q-values of agents based on@ordination grapththat
heuristically spells out which agents must interact in otdesolve the problem. This partial decomposition permits
a heuristic middle-ground between learning a full jointitytitable and learning separate independent tables. Also,
Makar et al. [157], Ghavamzadeh and Mahadevan [84] suggeiteaent hierarchical approach to simplifying the
inter-agent coordination task, where agents coordinagie tligh-level behaviors, rather than each primitive attio
they may perform.

6 Problem Domains and Applications

Despite the relative young age of the field, the multi-aggstesns area contains a very large number of problem
domains. The list in this survey is far from complete, butdhtains many of the common problems. The problem
domains are divided into three classes: embodied ageme-ffaeoretic environments, and applications to real-avorl
problems.

6.1 Embodied Agents

The cost of robots has decreased significantly, making #iliéato purchase and use several (tens, hundreds, or even
thousands of) robots for a variety of tasks. This drop in bastspurred research in multi-agent cooperative robotics.
Additionally, computer hardware is cheap enough that whanhot be performed with real robots can now be done in
simulation; though the robotics community still stronghceurages validation of results on real robots.

Predator-Prey Pursuit This is one of the most common environments in multi-agestriimg research, and it is
easy to implement. Pursuit games consist of a number of ageregdators) cooperatively chasing a prey. Individual
predator agents are usually not faster than the prey, aed affents can sense the prey only if it is close by. Therefore,
the agents need to actively cooperate in order to succssfigture the prey. The earliest work using this domain is
[15], but there are many variations of the problem [68].
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Foraging The domain consists of a large map with agents (robots) anasito forage (pucks or cans). The task is
to carry the items to specially designated areas. Variatinay include multiple item locations, item types, and drop
locations. The efficiency of an approach may be defined by haekty it completes the foraging task [59, 158], or
by the number of items collected in a fixed amount of time. @stard et al. [185] provide an extended survey of
previous work in this domain. A variation of the problem alkbagents to communicate by depositing pheromones
in the environment to mark trails connecting rich pick-upl @nop-off areas [20, 189]. In a related problem domain,
clustering the agents have no pre-specified drop locations; ratheyr,ahly need to pile all the items together [14], or
sort them by class into separate piles [67].

Box Pushing This domain involves a two-dimensional bounded area comgiobstacles and a number of boxes.
Agents in this environment need to arrange the boxes tofsgefinal positions by pushing them. Sometimes a robot
is capable of pushing one box by itself (see for example thglesiagent experiments reported in [35, 156]). A more
complicated version requires two or more agents to cooparatrder to move a single box in simulation [311], or on
real robots [162, 163]. Buffet et al. [34], Dutech et al. [fBksent reinforcement learning approaches for a similar
problem domain where agents receive rewards only when tleegeriogether pucks of different colors.

Soccer The game of soccer, both in simulation and with real robat@ne of the most widely used domains for
research in multi-agent systems [140]. The domain consfséssoccer field with two goals, a ball, and two teams
with a number of agents (from 5 to 11, depending on the sizéiseofobots and of the field). The performance of a
team is usually assessed based on the difference in numbealsfscored. Other performance metrics have included
length of time in control of the ball, successful intercept, and average location of the ball. Successful applicati

of learning techniques to this domain are reported in [8, PAZ, 252, 255]. The strong interest in this domain has
led to several annual “world cup” robot soccer champiorshife most well-known such competition, RoboCup, has
different leagues divided by continent and by type of robdimulation environment.

Keep-Away Soccer Gustafson and Hsu [100] use a simpler version of the socaaagtowhich contains only one
defensive and three offensive players and a ball. The defepkyer is twice as fast than the offensive ones, and the
ball, when passed, can move at twice the speed of the defguisiyer. The objective is to keep the ball away from the
defensive player by moving and passing; there is a penatty e the defensive player is within one grid unit away
from the ball. A similar domain is presented in [254].

Cooperative Navigation This task, as described in [8], is to have a team of agents menass a field in minimal
time without colliding with obstacles or other robots. Eagfent selects from a number of predefined behaviors, and
the performance is assessed based on the maximum time agdesshe agents to accomplish the task. The questions
investigated by Balch include the benefits from formatiortipgation and the impact of diversity on performance.
The Opera Problem, discussed in [56], represents anoth#enge problem in cooperative navigation: a large number
of agents located in a bounded space need to coordinateén torduickly leave through a small fixed exit area. An
application of learning to this problem is shown in [218].

Cooperative Target Observation Introduced by Parker [195], this domain involves a two disienal bounded
area in which a number of robots have to keep several moviggtsunder observation. Performance is based on
the total number of targets within the “observable” disatwany team-member robot during the time period. Parker
investigates an initial approach to learning behaviordtig domain and reports improvements over naive, random
approaches, but also notes the superiority of the hand genksolutions. Additional research using this domain
includes [76, 154, 197, 196]. A related problem domain iscdbed in [13, 12, 308]: a team of flying agents needs
to perform a surveillance task in a region of space. The agamtrdinate to avoid collisions, and their reward is
further increased when discovering and observing areasgbfihterest. Because of constraints placed on flying
unmanned vehicles, the agents must each maintain a minpeatiso keep them in the air. Multi-agent patrolling
is a non-stationary variant of this surveillance task: therds are required to continuously explore the environment
[224, 262].
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Herding Schultz et al. [231] introduce a domain where a robot musi haother robot into a designated area. The
second robot (the sheep) will avoid obstacles and the “streiphobot, but otherwise may either move randomly or try
to avoid the herding area. The shepherd moves close to tlep sbkot to encourage the sheep to move in the desired
direction. Potter et al. [209] try a multi-shepherd versafrthe domain, where many faster and “stubborn” sheep
require coordination from the several herding agents. #althlly, predators may exist in the environment and try to
kill the sheep while avoiding the shepherds, thus compligahe shepherds’ task. Another application of learning
techniques to a herding domain is presented in [293].

6.2 Game-Theoretic Environments

Many multi-agent systems may be cast in game-theoreticstegssentially as strategy games consisting of matrices
of payoffs for each agent based on their joint actions. Intamdto game-theoretic analysis of multi-agent systems,
some common problem domains are also taken from game theory.

Coordination Games Various repeated games described in terms of joint rewaiticea have been previously
introduced in the literature to highlight specific issuesoasated with multi-agent learning. For example, Claus and
Boutilier [51] introduce two simple 3x3 matrix games: a adiaation game with two optima and high penalties for
mis-coordination; and a second game with two Nash-equilibpoints, one of them corresponding to a suboptimal
collaboration. These games are later used in [137, 142, tb9P\vestigate multi-agent reinforcement learning and
evolutionary computation approaches.

Social Dilemmas These problems concern the individual decisions of sewsgants, all of which receive a joint
reward [85]. Thelterated Prisoners’ DilemmaTragedy of the Common8raess Paradoxand Santa Fe Barare
examples of social dilemma games. The Iterated Prisonédgsiina involves two or more agents supposedly accused
of a robbery; the agents have to choose between to actton$esshe crime ordenyparticipation in it. The settings

are such that it is rational for individual agents to deny ibus in their collective interest for all to confess. In
the Tragedy of the Commons, a number of agents share a resofulimited capacity. When the joint usage of the
resource exceeds the capacity, the service deterioratescado the rewards received by the agents. In the Braess
Paradox problem, agents share two resources. The dilensea arhen agents must decide to start accessing the less
utilized resource: if all agents decide to do so, it will be@overwhelmed and rewards will drop. Further details on
these problems, accompanied by a coevolutionary appreaelaitning solutions to them, can be found in [177]. In
the Santa Fe Bar problem, a large number of agents indilidmalst decide whether to go to a bar in Santa Fe. If
too many or too few agents opt to go, their satisfaction islothan when a reasonable number of them decide to go
[5, 94, 306]. All these social dilemma problems have beed tsenodel practical issues in real multi-agent problems,
such as network routing for example. We believe a valuahlecgoof inspiration for solutions to such problems is
the area of social sciences. For example, Lichbach [148}aesia large number of social science solutions to the
Iterated Prisoner’s Dilemma problem.

6.3 Real-World Applications

This section describes a set of such problems drawn fromwedtl domains previously used in MAS investigations.
Many of the described problem domains are logistics, plagrénd constraint-satisfaction problems requiring real-
time, distributed decision making. Because the applioatare often very complex and highly distributed, learning
techniques have rarely been applied to them, and so theyesenied here primarily as example challenge problems
for multi-agent learning.

Distributed Vehicle Monitoring The task in this domain is to maximize the throughput of chreugh a grid of
intersections. Each intersection is equipped with a tréfflet controlled by an agent. The agents need to coordinate
to deal with fluctuations in traffic [145, 183]. Dresner andr& [70] additionally assign agents to cars and propose a
reservation system for cars to negotiate for green lightswagprival at the intersection.
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Air Traffic Control  For security purposes, the airspace is divided into thieeedsional regions used by air traffic
controllers to guide the airplanes to their final destimatiach such region has an upper bound (callecséutor
capacity on the number of airplanes it can hold at any time. The taskgsiide the planes from sector to sector along
minimal length routes, while ensuring that constraintsraeg; the solution needs to be fast to handle real-time data.
A multi-agent approach for this domain is reported in [244].

Network Management and Routing This domain consists of a large, distributed network. Ageme deployed to
distributively and cooperatively control and manage th@oek, handle failures, and balance its load [281]. Boyash an
Littman [30], Subramanian et al. [257], Wolpert et al. [306hang et al. [50] introduce various learning approaches
to route packets in static and ad-hoc networks.

Electricity Distribution Management Here the problem is to maintain an optimal power grid configjon that
keeps all customers supplied and minimizes losses; whitheasame time dealing with possible damage to the
network, variable demand from customers, scheduled nrant operations, and equipment failures and upgrades
[274]. Schneider et al. [230] present a reinforcement iegrapproach to managing a power grid.

Distributed Medical Care This domain applies Al to assist clinical staff in makinggti@ses, decide on therapy and
tests, determine prescriptions, and perform other health tasks [122]. The problem is well suited for multi-agent
systems because of the decentralization of data and reesgtine high costs for obtaining comprehensive information
and the stochasticity and dynamism of data.

Supply Chains This classic planning and scheduling problem involves rgamgthe process of producing complex
items through a series of steps, where there are differergti@nts and costs associated with each step. The task
consists of building a plan (aroduction sequengehat specifies the order of operations for different itennshsthat

the production costs are minimized while satisfying custoorders [307]. Brauer and Weil3 [32] present a learning
approach for such a domain.

Hierarchical Multi-Agent Systems Problems Some multi-agent domains are of particular interest bexatithe
different levels at which problems can be formulated. F@negle, in the “Transportation” problem, several trucking
companies transport goods between locations. Dependipgotriem formulation, agents may represent whole com-
panies, sets of trucks from the same or from different corgsaor even individual trucks. The task is to complete
requests from customers under specific constraints (mamitimie required to finish the job, minimal cost of delivery,
etc.). A multi-agent approach to this domain is reportedr@].] The “Loading Dock” is a similar problem, where
several forklifts load and unload trucks according to ta&sjuirements; either individual forklifts or groups of ftifts

may be modeled as an agent [175]. A related “Factory Floooblam is investigated in [198], where products are
manufactured from raw material by several machines undes ind cost minimization constraints, and agents can
represent individual machines or groups of machines.

Models of Social Interaction Many natural and social systems have very large numbergeyBicting agents. Ac-
cordingly, such interactions need also be present in stionkof these natural phenomena. Examples of work in this
area include hard-coded and learned collective behavigtsas flocking [216, 214, 242, 243], learning of dispersion
and aggregation [310], learning social behaviors in vin@rlds [92, 91], and the modeling of the formation of early
countries [46].

Meeting Scheduling In this domain, each person has an agent that knows his/k&rpnces (for example, no
weekends) and obligations (possibly other meetings oeftyalpon request to schedule a meeting that requires the
presence of multiple persons, their agents are solicitdididica time and a place to hold the meeting. Although most
work in this area does not involve learning (for example, Etectric Elves system [48]), Crawford and Veloso [55]
identify several opportunities for learning in the domain.
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Other multi-agent systems domains investigated includégia accelerator control [132], intelligent document
retrieval [174], spacecraft control [232], and concurremgineering [58]. Further applications of Distributed Al i
industry are reported in [273].

7 Resources

Conferences and Workshops Various Al and machine learning meetings welcome multiragpics. The largest
such conference is the biannual International Joint Cemfeg on Artificial Intelligence (IJCAI). Regional confeoas
include the annual conference of the American Associatiorftificial Intelligence (AAAI) and its European equiv-
alent, the European Conference on Atrtificial IntelligenE€AI). Machine learning conferences include the Interna-
tional Conference on Machine Learning (ICML) and the Euamp€onference on Machine Learning (ECML). Major
evolutionary computation conferences include the GeretitEvolutionary Computation Conference (GECCO), the
Congress on Evolutionary Computation (CEC), and the Ewan@onference on Parallel Problem-Solving from Na-
ture (PPSN).

Robotics conferences of interest include the IEEE Intéonat Conference on Robotics and Automation (ICRA)
and the IEEE/RSJ International Conference on Intelligeatid®s and Systems (IROS). Multi-agent learning research
is also found at Atrtificial Life and Complexity conferencaghk as the Conference on Atrtificial Life (ALife) and
the International Conference on Simulation of Adaptive 8gbr (SAB). Some conferences specialize in multi-agent
systems specifically. The current largest such event isthiecence on Autonomous Agents and Multi-Agent Systems
(AAMAS). Other notable meetings include the symposiumesedn Adaptive Agents and Multi-Agent Systems, the
European Workshop on Multi-Agent Systems (EUMAS) and the\WW#tkshop on Multiagent Systems (UKMAS).

Larger conferences usually host smaller workshops in maartopics; some collections of papers presented at such
multi-agent learning workshops are published in [124, &5, 285, 286, 289]. There have also been independent,
smaller symposia focused specifically on multi-agent le@rnfor example, the AAAI-1996 Spring Symposium on
Adaptation, Coevolution and Learning in Multiagent Syssethe AAAI-2002 Spring Symposium on Collaborative
Learning Agents; and the AAAI-2004 Fall Symposium on ArtdidMultiagent Learning.

Texts Issues directly relevant to the area of multi-agent leayaire covered in [284, 287]. Other surveys of existing
work in multi-agent learning and related domains incluc® B3, 43, 66, 65, 72, 74, 144, 150, 194, 273, 234, 255, 283,
288]. There are also several PhD theses investigating @spfanulti-agent learning ranging from communication and
agent modeling, to credit assignment and co-adaptatio25844, 57, 69, 86, 93, 158, 179, 205, 253, 296].

Journals As of the time of writing this article, there is no journal fmed on multi-agent learning issues alone.
Rather, articles on such topics may be found in journalsiated fields, such as the Journal of Autonomous Agents and
Multi-Agent Systems (JAAMAS), Machine Learning Journall(8), Journal of Machine Learning Research (JMLR),
Evolutionary Computation Journal (ECJ), IEEE Transaction Evolutionary Computation, and Artificial Life.

Online Resources Several websites offer up-to-date information on everdmganies, laboratories, and publica-
tions in the area of multi-agents. We found http://www.ragent.com to be a good source of information in the field.
Another such site is http://agents.umbc.edu, though itkatgs are less frequent.

Competitions The annual RoboCup competition (http://www.robocup.afi@rs robotic soccer as a testbed for
cooperative multi-agent strategies pitted against otherey teams submitted by other researchers. RoboCup axlud
many leagues: middle size robots, small “table-top” ropgtsadrupeds, bipeds, and softbots. RoboCup Rescue
(http://www.rescuesystem.org/robocuprescue/) is aratboperative multi-agent competition in simulation othwi
real robots, in which heterogeneous teams of agents mufsrpedisaster rescue missions. Various conferences
and research groups organize cooperative multi-agent etitiops or challenges from time to time: for example,
the GECCO 2004 conference held a competition called Cetleolving an optimal controller for a colony of self-
replicating cells.
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8 Conclusions

Cooperative multi-agent learning is a relatively new afesght with complex and rich dynamics, but which also
holds the promise of widespread applicability. Reseachave traditionally approached the problem from a number
of different directions: reinforcement learning and dede environments, evolutionary computation and stohast
optimization, cellular automata and other “swarm compiéxinodels, robotics, and game theory. In this survey we
attempted to collect these disparate approaches to ngdtitdearning and unify them under two broad multi-agent
learning methods (team learning and concurrent learnirtgg.difference in how these methods approach the learning
task results in their respective literature breaking dolengrather different lines. We also discussed the crustalé
of communication in multi-agent learning, detailed opgpide in the field (scalability, adaptive dynamics, and dredi
assignment), and provided common problem domains and-amggint resources.

Initial work in multi-agent learning has generally focusadrelatively simple environments. Indeed we are sur-
prised by the number of multi-agent learning papers invig\a mergwo agents. We think there are several areas in
which multi-agent learning field can “scale up” to more rstédi and interesting environments. Here are four:

e Multiple Agents The “multi” in multi-agent learning cries out for larger nbers of agents, in the range of ten
to thousands or more. Two- and three-agent scenarios a@maale simplifications to make theoretical analysis
feasible: but the experimental and empirical literaturghduo strive for more.

e Team Heterogeneitylf there are more than two agents, most of the literatureypnes that the agents are
identical in behavior and in ability. Yet it is common for agg to have different capabilities, for missions to
require agents with explicitly different behaviors, etch& dealing with large numbers of agents it is of course
not plausible to have total heterogeneity: but agents mihyifeler some number of heterogeneous classes.
These directions of research have not been adequatelyresplo

e Agents with Internal State or other Complexity Much of the multi-agent learning literature simplifies agen
behaviors in order to reduce the total search space and besargents to understand each other more easily. But
many multi-agent environments, particularly in robotlmsnefit considerably from agents with more complexity,
and especially more internal (hidden) state.

e Dynamically Changing Teams and ScenariodVhat happens when various agents fail, or are required to
perform some different task? When new agents are added srémario? When new abilities come on-line?
We applaud efforts such as RoboCup [140] to push the fieldriisider more dynamic scenarios, but more needs
to be done yet.

As discussed in Section 5, these and other areas preseamisedalability challenges due to larger numbers of
agents, their possible heterogeneity, and their intevasti Such areas also present more complex game-theoretic
difficulties as the agents constantly “move the goalpostsboe another. And last, the environments demand (and
present interesting approaches to) new ways of problenndeasition to simplify the search space.

Along with multi-agent systems in general, multi-agentiéag is at the cusp of a major growth spurt. Many fields
have finally adopted multi-agent models and frameworks dui@dxpensive computational brawn. These include
models of social, political, and economic behavior; popata, systems-, and cellular-biology models and genomics
and robotics, video-game and virtual-reality agents, amdilations for animation. Multi-agent frameworks have
come into their own with the onset of the Internet, clustenpating, and peer-to-peer architectures. We imagine that
these environments will all call upon machine learning gistsn the automatic development of multi-agent behayiors
particularly as the complexity of such environments and tleenergent phenomena” becomes such that hand-coded
solutions are not readily obtained.
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