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Abstract. Awerbuch et al.’s approach to distributed recommender sys-
tems (DRSs) is to have agents sample products at random while ran-
domly querying one another for the best item they have found; we im-
prove upon this by adding a communication network. Agents can only
communicate with their immediate neighbors in the network, but neigh-
boring agents may or may not represent users with common interests. We
define two network structures: in the “mailing-list model,” agents repre-
senting similar users form cliques, while in the “word-of-mouth model”
the agents are distributed randomly in a scale-free network (SFN). In
both models, agents tell their neighbors about satisfactory products as
they are found. In the word-of-mouth model, knowledge of items propa-
gates only through interested agents, and the SFN parameters affect the
system’s performance. We include a summary of our new results on the
character and parameters of random subgraphs of SFNs, in particular
SFNs with power-law degree distributions down to minimum degree 1.
These networks are not as resilient as Cohen et al. originally suggested. In
the case of the widely-cited “Internet resilience” result, high failure rates
actually lead to the orphaning of half of the surviving nodes after 60%
of the network has failed and the complete disintegration of the network
at 90%. We show that given an appropriate network, the communication
network reduces the number of sampled items, the number of messages
sent, and the amount of “spam.” We conclude that in many cases DRSs
will be useful for sharing information in a multi-agent learning system.

1 Introduction

One of the canonical problems of machine learning is recommending products
to potential users, i.e., presenting each user with one or more items they are
likely to be satisfied with. Recommendations can be given based on features of
products, user similarity, or both, but the algorithms that learn from this data
are typically centralized [6, 17]. Awerbuch et al. [5] presents what appears to
be the first distributed recommendation system (DRS) algorithm, albeit with a
relaxed definition; the goal is to ensure that most users are eventually presented
with a satisfactory item. Even so, distributed recommender systems potentially
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have many attractive qualities, such as privacy and fault-tolerance. They avoid
gathering personal information from a large number of users back to a central
repository. A large system could learn how best to distribute announcements of
new technical papers, for example, by locally capturing information on research
interests and sharing key pieces of information only between immediate peers.
Such a system is also more robust to failures than a centralized one, and it
does not require corporate interest to ensure servers were maintained (there
being only a peer-to-peer network or similar infrastructure to begin with). If
the distributed algorithm could be designed with a suitable abstraction barrier
between nodes, personalization may also be enabled, with each user’s system
independently learning the structure and parameters of that user’s interests and
how each neighbor’s preferences are related.

We consider the impact of an explicit communication network in a DRS with
requirements similar to [5]. For this work, agents (the DRS nodes that act on
each user’s behalf) were placed into a graph, and were only able to communicate
with their immediate neighbors. Random polling was dropped in favor of local
broadcast.3 Given this new model, we considered the algorithm’s performance
under two graph structures: one in which users with substantial common inter-
ests have agents organized into cliques, and one in which the agents are randomly
connected in a scale-free network [3]. With a network, the amount of work re-
quired to sample the space of products is improved, in part because broadcasts
are used to spread knowledge of liked items more rapidly. The communication
complexity is also greatly improved, and this includes a reduction in the amount
of uninformative traffic, or “spam.”

In the mailing-list model, agents with significant common interests are con-
nected to one another by design. Such a system must be engineered to ensure
that new members are properly connected. It is conceivable, however, that other
network structures would naturally ensure that new members would serendipi-
tously connect to at least one existing member with common interests, effectively
causing groups of users with overlapping interests to form connected subgraphs
in the population. Previously published results by Cohen et al. on the resilience
of scale-free networks to random node failures [8] suggested SFNs might have
this property, and this led us to use SFNs for the word-of-mouth model. Al-
though the original resilience results do not seem to apply to SFNs of minimum
degree 1, SFN structure varies with the power-law exponent used, and we have
identified parameters for which a DRS would perform well.

We have a more accurate estimation of the properties of scale-free networks
when a potentially large fraction of the nodes fail uniformly at random. The
approximations used in the original work on this subject [8] led to the claim
that the Internet4 would retain a spanning cluster across surviving nodes even if
99% of its nodes failed. We conclude, based on more exact formulation, that the
original approximations are highly optimistic when the degree distribution obeys

3 This would have been untenable in the model of [5], which uses global interactions.
4 The Internet is cited as a scale-free network with an exponent of 2.5 and minimum

degree 1 in [8], but see also [1, 7, 20].



a power law down to a minimum degree of 1, and that the critical fraction is
at best 89.8%. Furthermore, under such conditions any “spanning” component
would only capture a small constant fraction of the surviving nodes – if 60%
or more of the network was to fail, at least half of the remaining nodes would
be neighborless orphans. We achieved this result by specifically considering the
degree-1 case, explicitly considering the portion of the network that is orphaned,
and approximating the resulting network with explicit size and power-law pa-
rameters as in [3].

Section 2 reviews the most relevant literature in recommender systems and
cites the most relevant literature on scale-free networks; section 3 covers the
distributed recommender system model from [5] in more detail and introduces
notation that will be used later. Section 4 outlines our result in the conditions for
resilience of scale-free networks and explains its relevance to DRSs. Sections 5
and 6 use the established notation and graph properties to derive our algorithm’s
performance in the number of sampled items, the number of messages sent, and
the amount of “spam” sent. The final section summarizes our results and the
work that remains to be done.

2 Related Work

The Internet is full of examples of centralized recommender systems (Google,
Amazon, etc.). These systems are a mix of collaborative filters and content-
based recommendation systems, but these systems all collect, analyze, and use
the information centrally. This is perfectly legitimate, but it is not the only avail-
able strategy; in many cases the recommendations given are either the service
being provided or are a customer service related to the hosting business. Cen-
tralized algorithms for recommender systems have been covered extensively in
the literature [2, 18].

Distributed recommendation systems are not as highly represented. In [5] the
definition of “recommendation system” is altered slightly to require that users
eventually find a satisfactory item in a stream of recommendations, instead of
being given a short list of the most promising items. Conceptually, we would like
to design systems like [5] that use a DRS to efficiently pass information about
potentially desirable items through to potential users and then locally apply a
user-specific centralized content-based algorithm to filter and rank items as they
arrive. This is like an idealized email system in which people only send messages
within their social circle, and in which all users have a learning mail filter such
as PopFile [13]. From the centralized point of view the most analogous work we
have found is content-boosted collaborative filtering (CBCF) [17].

Scale-free networks were originally of interest to us because of their published
resilience to random failures [8, 22], which implied random subgraphs of an SFN
had a good chance of being highly connected (subject to the power-law exponent
of the original graph). This suggests that simply propagating items through the
network from their point of discovery, in a manner similar to [5], would with
high probability reach most or all of the agents that would be interested in the



item. Recent SFN literature can be roughly divided into theoretical and empir-
ical camps. The formal treatments are based in physics, statistical mechanics,
and mathematics [3, 4, 8, 19] and describe the mathematical properties that can
be derived from the assumption that SFN node degrees follow a power-law distri-
bution. The study-driven work [10, 21, 22] is aimed at capturing or sampling the
structure and degree distribution of real-world networks such as electric power
transmission, Internet routing, web pages, social networks, etc. in order to see
if the observed systems are scale free, and to verify the theoretical properties.
Many authors refer to the tendency of non-engineered Internet communities to
form scale-free networks, although for the Internet some of this work has used
potentially biased forms of sampling [1].

The viral spread of information (or pathogens) in social and information
networks has also been studied extensively [14], and the relationship between
recommender systems and epidemic spread in subpopulations of an SFN is of
interest for further study. Another closely related subdomain of graph theory
focuses on “small-world” networks [23]. We have not analyzed a DRS overlaid
on these graphs but this would be an obvious possible extension to our work.

3 Distributed Recommender Systems

In [5] users search for items they like in some set of products. They alternate
between sampling the set of all products and asking other users for recommen-
dations. The raison d’être of these users is to try products in P , find things
they like, and send messages about good items to the other members of their
“special interest group” (SIG). In a slightly less abstract world, our users have
software agents acting on their behalf in a network. The agents must learn their
user’s preferences, search P and solicit their user’s opinion on items, and forward
messages to one another.

Assume we have a set of agents U of size µ, and a set of products P of size
η, with each user u ∈ U having a predetermined but unknown set of products
they will like, P (u). It is reasonable to assume that SIG members have more
in common with one another than a member’s fraction of desirable products

in P , i.e. P (u)
η

< P (S)
P (v) . If this were not the case, items recommended by other

users would have a lower expectation of satisfying the recipient than something
chosen at random. Let there be a set of special interest groups S = {S : S ⊂
U,

⋂

u∈S P (u) 6= φ} , where each SIG S is a set of users with common interests.
As in [5], the stated goal is that “a large fraction λ of the users will find a
good product in the set recommended to them” given that “there exists a small
collection of SIGs that cover most users,” i.e. the fraction of U represented by
all of S is at least λ and the number of SIGs ℓ = |S| is of order Θ(1). In [5]
there is no requirement that the set of products recommended to an individual
be small, but it should be clear that this would be desirable.

For this work, we add a graph G representing the communication network
available to the users. In the “mailing-list model,” users are organized into (po-
tentially overlapping) cliques based on their SIGs (Figure 3a). In the “word-



of-mouth model,” the users are randomly distributed in a scale-free network
(Figure 3b). In either model, we can consider the subgraph G′ comprising some
set of vertices in G (corresponding to the members of a SIG). Users communi-
cate by broadcasting positive findings to their immediate neighbors in the graph.
When a user u receives a product name from v, they sample the item, and may or
may not generate further messages (depending on the structure of the network)
if it is satisfactory. For our analysis, users sample shared items independently of
their continuous random sampling.

(a) (b)

Fig. 1. The mailing-list model (a) with four SIGs sizes 5, 7, 7, and 6, and the word
of mouth model (b) generated with a random configuration given a power-law degree
distribution with α = 2.3 and β = 1.2. Notice the presence of a self-arc in the latter.
Self-arcs are an inevitable artifact of generating simulated networks using the random
configuration model but occur in no significant fraction in large graphs.

A related question to the amount of work required to disseminate popular
items (and the portion of this that leads to unfruitful probes of products, if
probes have an associated cost) is the amount of unproductive traffic, or “spam”,
generated during the cooperative process. In the mailing-list model and word-
of-mouth model, spam consists of an item being reported to any individual for
whom that item is not in their set of interests. For the algorithm in [5] we consider
spam to be any request for a recommendation sent to an unsatisfied individual,
although this definition could be extended to include other unproductive traffic.

It is important to stress that this decentralized system is not solving the same
problem as traditional recommendation systems; this system is not identifying
or exploiting similarities between users or trying to estimate the likelihood that
some user will like some item. Instead, the goal is to ensure that information
about some item will reach most of the users that are likely to be satisfied by the
item. Then, a content-based algorithm would be used to estimate how desirable
the item is for each the users it reaches. CBCF algorithms are a solution of
interest, if we are able to decentralize the learning problem and exploit existing
social structures along with domain information.



4 Scale-Free Networks

A frequently cited result in scale-free networks is the incredible resilience to
random failures of “the Internet,” an example of an SFN with fairly low minimum
degrees [8]. A corollary of that result is that small random subgraphs of such an
SFN would exhibit a giant component. This would be useful in a DRS setting
such as the word-of-mouth model: disinterest in an item may be seen as node
failure, and the persistence of a giant component would imply the remaining
SIG is able to pass information. Unfortunately, the resilience result is based on
approximations that do not appear to hold when the minimum degree of the SFN
is 1 (as in the Internet). To answer performance questions related to DRSs in
SFNs of minimum degree 1, we determined the conditions under which random
SFN subgraphs remain connected. The full derivation can be found in draft form
as [16].

Random subpopulations of a scale-free network have a degree distribution
that can be roughly estimated with a power law. In fact, the distribution starts
with a minimum degree of 1 and is very nearly log/log linear, but with a rolloff
that underrepresents high-degree nodes. The rolloff causes potential giant com-
ponents in an SFN to disintegrate more readily, as shown in [9, 11], so using a
pure power law in our derivations leads to an upper bound result on the crit-
ical failure rate p – where (1 − p) is the percentage size of the subpopulation
of interest – at which point the giant component ceases to exist, given the ini-
tial graph’s power law parameter β (Figure 4). This gives a lower bound on the
size of SIGs necessary in the word-of-mouth model given β; our analysis also
shows the relationship of β and p to the portion λ of the population that must
eventually be satisfied in the DRS problem.

The number of nodes that retain no neighbors and the the number of nodes
retaining only one neighbor are, respectively,

#′(0) = (1 − p)eαχ, χ
def

=
∑e

α
β

k0=1
1

k
β

0

pk0 , and

#′(1) = (1 − p)eαξ, ξ
def

=
∑e

α
β

k0=1
1

k
β

0

k0(1 − p)pk0−1.

For networks with strict power-law degree distributions and minimum de-
gree 1, there is no spanning component in the remaining graph when the slope
increases beyond β0 = 3.47875 [3]. The key result is that the slope of the degree
distribution of the subgraph is greater than the slope of its parent’s – putting
it closer to or even beyond this threshold. The new slope β′ is a function of the
original slope β and the failure rate p (captured in the sums ξ and χ above):

β′ = ζ−1

(

ζ(β) − χ

ξ

)

.

By varying β in an engineered network, we can ensure random subgraphs of a
given fractional size will be highly connected. In this way, β can be used to design
a DRS network where SIGs of a given size may propagate recommendations of
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Fig. 2. The size of a SIG’s subgraph (minus orphans), relative to its host SFN, as a
function of the failure rate p. The distance between each curve and the diagonal (1−p)
equals the fraction of orphans #′(0). Curves are for β = 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0,
and 3.3. When 2 < β < β0 there is a significant critical failure rate (inset) due to the
increase in β′; the critical points for the curves of β = 2.5, 3.0, and 3.3 are highlighted.
For β′ < 2 virtually all of the remaining graph is in the giant cluster, and this fraction
declines from 90% to virtually nothing as β′ goes from 2 to β0

particular interest. In contrast, for typical values of β in empirically studied SFNs
such as the Internet, a SIG comprising a small randomly-distributed group of
DRS members has little chance of being able to share information without the
assistance of agents outside the SIG. In addition, when the properties of the
network are known and fixed, this result can be used to control the likelihood
with which agents forward uninteresting recommendations, artificially boosting
the effective SIG and ensuring that disconnected agents with common interests
can still reach one another.

5 The Mailing-List Model

Awerbuch’s model provides a fundamental theoretical result [5], but in practical
terms people operate within the auspices of social circles that can provide a
more structured (but still distributed) approach to finding items of interest. One
possible model is that users interested in certain kinds of items will subscribe
to “mailing lists” so that they can share findings with one another deliberately.
While still oversimplified, this model gives additional structure and lends itself to
some initial analysis. Given the users and their SIGs, we can construct a graph of
user associations. In the “mailing-list model” each SIG is represented by a clique.
Let G be the graph (U, E) such that ∀ S ∈ S, ∀ u, v ∈ S, (u, v) ∈ E. When a
user broadcasts a finding to all his neighbors, this is tantamount to sending an



email to all of the mailing lists to which they subscribe; given the construction
of G this will reach the members of all of a user’s SIGs, so no retransmissions
are necessary.

As in [5], consider a sequence of samples, σ = π1π2...πn, made by the mem-
bers of a lone SIG S. The expected number of samples E[n] before all SIG
members are satisfied is at worst the number of messages generated before they
find an item in P (S). This is equivalent to a sequence of Bernoulli trials, giving
E[n] = η/|P (S)|, with each SIG member making η

|P (S)||S| samples. For the last

element of the sequence it takes |S| messages to broadcast the finding, but some
number of messages that do not satisfy the entire SIG may also be announced
in the process. Each user’s samples prior to this are either in P (u)\P (S) or
P\P (u), with only the former generating a broadcast. In a sequence of Poisson
trials with each user u having a potentially different chance |P (u)|/η to find an
item they like in a single trial, the expected number of liked items found will be

tightly bounded around
avgu∈S |P (u)|

η
η

|P (S)| =
avgu∈S |P (u)|

|P (S)| . Given this, the sample

complexity5 of the system is at most

C = ℓ

(

η

mini{|P (Si)|}
+ avgi

{

|Si|
avgu∈Si

|P (u)|

|P (Si)|

})

.

This captures the samples taken by each SIG to find some liked item, and the
number of extra samples users draw based on posted items. When users belong
to more than one clique individual SIG interests P (S) can be expected to vary in
size, and the sequence σ to vary in length as a result, but the number of samples
an individual user takes is simply the appropriate number for the worst-case
SIG. This is because all users are broadcasting into all their SIGs, with each
SIG deciding somewhat independently whether the item is of interest. Individ-
ual users’ interests remain constant through this process and so the number of
broadcasts they are expected to make also remains the same from the point of
view of each SIG.

The mailing-list model improves upon the distributed algorithm in [5], which

has a sample complexity of 2ℓ
(

η
mini{|P (Si)|}

+ µ ln(maxi{|U(Si)|})
)

, and can be

approximated as O(ℓ(η +µ lnµ)). In comparison C = O(ℓ(η +µ)) with the addi-
tional savings of the hidden constant factor of 2. The savings in samples required
caused by the elimination of the original algorithm’s sample/query alternation,
which causes samples to be taken long after a suitable item for a SIG has been
discovered, in favor of a network which dramatically speeds the propagation of
items when found.

In addition to the modest reduction in samples taken, the mailing-list model
has lower communication complexity than the original distributed algorithm,
generates less unproductive network traffic, and does not assume the availability

5 [5] defines recommendation complexity as the total number of times users test rec-
ommended products. We use sample complexity for the number of time users test
products, and reserve recommendation complexity for the number of times users test
recommended products.



of global communication. The algorithm in [5] communicates at every other

step and has communication complexity ℓ
(

η
mini{|P (Si)|}

+ µ ln(maxi{|U(Si)|})
)

.

In contrast, the mailing-list model only communicates when items of possible
interest are found, leading to a communication complexity of

ℓ avgi

(

|Si|
avgu∈Si

|P (u)|

|P (Si)|

)

.

This is far less than the distributed algorithm and is independent of the size of
the set of objects, which is particularly important when |P (u)| ≪ η.

Of the traffic generated, a portion of it is “spam” from the recipient’s point of
view. The spam generated in the mailing-list model consists of personal interests
broadcast, totalling

ℓ avgi

(

|Si|
avgu∈Si

|P (u)|

|P (Si)|
− 1

)

.

This could be reduced further by extending the protocol to “test the waters”
by checking with a small sample of neighbors for each list prior to broadcasting
an item, but this would require the agents to be more aware of the system’s
structure. The original distributed algorithm is more complicated to analyze in
depth. All queries prior to the discovery of a SIG item are spam, and as the
propagation of those items begins many more queries will be sent to agents
that do not hold items of interest. By itself, the former consists of ℓ η

mini{|P (Si)|}

messages, which by itself will be more spam than the mailing-list model in many
domains (when η ≫ µ).

As noted earlier, we assume that SIG members have something meaningful

in common, i.e., P (u)
η

< P (S)
P (v) . However in the mailing-list model is is also desir-

able for the ratio |P (u)|/|P (S)| to be O(1), to prevent an inordinate number of
broadcasts from being made. This is in addition to the requirements of [5], in
which the amount of superfluous traffic is not a consideration.

The following network model removes the constraint on |P (u)|/|P (S)| and
replaces the presence of cliques with the need for a network in which subgroups
of vertices are expected to be highly connected (to the tune of an large fraction
λ of their members) and which is an expander graph with a small expansion
coefficient.

6 The Word-of-Mouth Model

In a random graph, it is highly unlikely that SIGs will be represented by cliques.
Still, using a sample-and-share approach to spreading information, we could
achieve similar results to a mailing-list if SIGs were sufficiently-connected sub-
graphs in G. In random scale-free networks it appears that the connected por-
tions of SIGs represent most of the members of the SIG under certain circum-
stances (βG significantly less than β0, and |S| a respectable fraction of the pop-
ulation size |U |). If most of a SIG’s nodes formed a connected component, either



due to this result or by construction6, it would be appropriate to have an agent
A’s neighbors sample items A has liked and spread those items further if they also
like the item. For ease of analysis, we will assume that nodes remember what has
been recommended to them, and do not resample objects or recommend objects
redundantly over edges in the network.

If an item in P (S) is found and propagated to λ|S| or more SIG members,
it will also cause non-SIG members to test the item – in particular those users
adjacent to the SIG in the network. A SIG member finding something in P (S)
would lead to (1 + γ)|S| total users testing the announced item, where γ is the
expansion coefficient of the graph. For “Internet-like” SFNs7 as in [12] Gkantsidis
et al. show the core of the network has expansion properties, and that the second
eigenvalue λ2 of a stochastic matrix corresponding to a random walk on the graph
is bounded as

1 − Ω

(

1

log n

)

< λ2 < 1 − Ω

(

1

log2 n

)

.

For large networks this means the eigenvalue gap is not large, implying γ is small
[15]. As in the SIG model, false alarms are possible, and while idiosyncratic in-
terests should not propagate very far (1 + γ)|S| can be used as a conservative
estimate. Taking this result across all SIGs, the system recommendation com-

plexity is at worst ℓ(1 + γ)|S| |P (u)|
|P (S)| , making the total sample complexity of the

word-of-mouth model

ℓ

(

η

mini{|P (Si)|}
+ avgi

{

(1 + γ)|Si|
avgu∈Si

|P (u)|

|P (Si)|

})

.

This is comparable to the mailing-list model in performance, with the caveat
that only some fraction of the population λ|U | has satisfaction guaranteed and
more or less spam may be generated depending on γ.

In an SFN, this algorithm will require as much communication as there are
edges within the SIG and at the boundary to the subgraph of S. However,
announcing personal interests will be only a fraction of that work, and will vary
depending on the popularity of the actual item discovered. This hints at the
presence of equitability; unpopular items will not be forwarded to large groups of
users as they were in the mailing-list model, and popular items will satisfy more
users for the system’s trouble. This also suggests the theoretical result based
on SIGs may be a coarse approximation of the actual algorithm’s performance,
because SIGs are no longer strictly defined. Further analysis is necessary.

6 The results in Section 4 are for SFNs created directly from a degree distribution, but
SFNs can be formed by processes that exhibit growth and preferential attachment [4].
One could imagine a network growing with interest-driven preferential attachment.
Assortativity [20] may be most important side effect of this; for our purposes, biased
failure modes would need to be studied in this context.

7 In [12] these SFNs are made with a power-law degree distribution with 2 < β < 3
but are altered to ensure there is a network “core” of minimum degree 3, to which all
nodes of degree 1 or 2 are connected. They are fully connected, while a random SFN
with the same β would almost surely have a large number of secondary components.



7 Conclusions and Future Work

By explicitly considering the role of the network and limiting the scope of com-
munication in a distributed recommender system, the mailing-list model and
the word-of-mouth model both appear to do better in terms of sampling, com-
munication, and spam complexity than Awerbuch’s original work. Although we
are particularly interested in the ability of agents to share recommendations to
one another on behalf of the users they represent, our work is applicable to a
more general context than DRSs. It provides a formal basis for agents to share
information with only their nearest neighbors under certain circumstances, with
an understanding of when a large portion of the interested agents will eventually
receive that information.

This is part of ongoing work in distributed systems and the use of agents
that share information to enhance distributed learning. We are confirming the
new SFN results in simulation, and we realize the conductance properties of
SFNs and the affects of assortativity need to be more thoroughly studied. The
current conductance result depends on the low conductance of an SFN when
2 < β < 3, which corresponds to the parameter space in which SIGs must
represent a large fraction of the entire population (these two results are related
– in a graph with poor expansion properties, more bottlenecks exist that could
fail and fragment the graph). In addition, for 2 < β < β0 we do not know of
a published result on the precise fractional size of the giant component of the
graph, and we are preparing to publish our experimental plot of this – it does
not appear to approach 1 in any reasonable limit as it does for β < 2. This
increases the necessary SIG size to accommodate λ, and increases the contrast
of our work to [8].

Both network models shown would benefit if agents could distinguish their
personal user’s interests from those of each SIG or from those of their neigh-
bors, eliminating “spam” to the degree such assessments were accurate. Such
information could also be used to dynamically improve the graph structure in
the word-of-mouth model, if highly-correlated neighbors were introduced to one
another. If features are added to the products of the current model, content-
based learning methods would be the next enabling step for this work. Finally,
we would like to identify systems that can share certain kinds of information
such that this sharing will lead independent learners to converge on a common
set of parameters. This would make data points the subject of recommendations,
abstracted away from the domain of the learned model.
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