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Abstract. In farsighted MAS, every agent is aware of each other, and
so they can evaluate the outcomes of their interaction in an efficient way.
However, this farsighted knowledge becomes an issue in large scale sys-
tems, leading to combinatorial explosion. Limited awareness of agents
can be modeled as a sparse social network solving this way the combi-
natorial explosion issue. In this paper, a model of MAS dynamic coali-
tion formation is adopted and experiments with fixed underlying social
networks exhibit different exploratory behaviors such that Small World
and Scale Free topologies, that have shown their beneficial properties in
many other MAS environments, turn out to have several drawbacks in
the coalitional scenario.

1 Introduction

In Multi-Agent Systems (MAS), agents need to interact in order to fulfil their
common or individual goals. In some cases, an agent does not need to interact
with every other agent, and social knowledge can be spread in the basis of some
neighboring concept such as functional neighboring (as in supply chain models
[18]), or geographical neighboring (as in sensor networks [5]). In other cases,
agents might benefit from being aware of every other agent of the population
(farsighted social knowledge). This is the case of organisational systems [11, 14,
15] where agents have to explore a search space of agent group combinations in
order to improve data flow, allocate resources efficiently, solve a problem in a co-
ordinated manner, or to improve their outcomes by creating alliances. However,
farsighted social knowledge is not possible in large scale MAS, because it might
lead to combinatorial explosion and computational intractability. To address this
issue in the concrete organisational environment of Coalition Formation, the use
of a dynamic formation mechanism (Iterated RFP [14]) where social awareness
of agents is limited to a fixed social network is proposed.

The work presented here, covers results on the properties that specific net-
work topologies exhibit under different exploratory behaviors. Instead of having
agents that dynamically adjust their social connections [13,9] or that propa-
gate/contaminate their neighbors through a social network [6, 17], agents in the
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present model are constrained by a unmovable social network where no social
capital is transmitted. However, agents can iteratively form coalitions with their
neighbors, leading to an evolutionary process that converges into a Nash equi-
librium. This dynamic gives shape to coalitions by putting together agents that
can be far away from each other in the network. Results obtained show that net-
work parameters like node-degree distribution or clustering coeficient in concrete
nodes, determine the exploratory behavior in the social network of the popula-
tion. One of the main findings presented is the disadvantage of highly clustered
topologies. This result coincides with what has been recently reported in [13]
and in [7], where it is explained why certain human-civilisations with scattered
connections between their regions, triumphed over others optimally connected.
As in that model, the present work shows how heterogeneously distributed con-
nectivity fosters higher exploration in the system. However, the model used in
the current work, has a significant difference with the previous work, that is the
coalitional nature of the protocol used.

Coalition Formation area have been traditionally studied under the assump-
tion of farsightedness, focusing on the problem of finding stability concepts .
MAS research introduced the possibility of experimenting with coalitional sys-
tems with a limited number of possible interactions [1,16], and more recently
this myopic sight of agents have been shaped with concrete knowledge network
topologies in team formation [9,10] as well as in firm formation models [2]. In
this line, the current work presents results on experimentation with different
underlying social network topologies on an specific type of electronic market al-
location mechanism called Iterated Request For Proposal (RFP from now on).
This model was first studied in [12], and further explored in [14] and [15]. In this
environment, an entity regularly issues a call for tender to provide specific goods
or services with certain characteristics. Providers compete amongst themselves
(either individually or in consortia — coalitions). Their bids are ranked according
to an evaluation of their skills (or aggregation of skills) for the task, and receive a
payoff according to their placement in the ranking. Structures created are based
on complementariety of their members. The more complementary they are, the
better outcome they obtain, assuming this way a social structure with proved
real properties reported in [4]. There are many existent real systems that follow
the RFP type procedures such as public building projects, competitive tender
for government contracts or even collaborative research project grants. RFP en-
vironments can also be seen as emerging market opportunities in an economy,
with individual calls for tender representing new opportunities for profit.

Section 2 presents a formalisation of the RFP mechanism. Section 3 describes
an specific metric that records the amount of dynamism that a certain topology
generates as well as other metrics used to perform the analysis and the experi-
mental setup. Results are analysed in subsection ??. Apart from examining the
drawbacks of the Small World topology, section 3.2 analyses results on the im-
portance of positioning of agents with specific individual properties (versatility
and competitiveness) in certain parts of the social network. Finally, section 4
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discusses the results summarising the main conclusions and explaining future
lines of work.

2 TIterative RFP Coalition Formation Model

A population I = {1,2,...,n} consists of a finite number of n individuals or
agents. Agents compete for creating the best solution proposal to a given task
task T. A partition 0 = {o1,09,...,0p} of the population I is a specification
of p coalitions of agents o; = {Uﬂ7 Oi2y e vy al-m}, where 0ij represents an agent
from population I forming part of coalition ¢;. By forming coalitions, agents are
able to increase their competitiveness towards the specified task. Agents have
heterogeneous capabilities, thus having different performance levels in different
skills. A finite number of k skills, indexed from 1 to k is set for which each
agent o;; has a fixed value: 0;; = (01»1]»,0%, .. .,Ufj>. In this way it is possible
to define a continuum of possibilities between agents that are specialised in the
performance of a certain skill being unskilled for the rest of them, and agents that
are versatile, being averagely apt for the performance of all the skills defined.
A Task T is specified by a set of k skill requirements. Each one of the k skills
have a degree of requirement. These requirements are modelled in the form of a
number T = (T, T2%,...,T*). In a coalition, skills of agents are aggregated in
such a way that each agent gives the best of itself in a join effort to create a group
as competitive as possible under the requirements of the Task. The coalition has
a value in each skill representing the aggregated effort of its members. The
aggregation for every skill [ : 1 < [ < k in the coalition is modelled in the
following way:

Uf:max(ofj):lgjgm (1)

Each skill is considered as a necessary subtask for performing task 7. By using
the aggregation function shown in equation 1, the agent in a coalition which is
the best fit for performing a certain subtask will be the one that performs it. The
aggregated effort of agents in equation 1 is used to measure an score scr (o, T)
that tells how well the agents in coalition o, perform together for accomplishing
a task specification T'. The score of a coalition is computed as the scalar product
between o; and T':

k
ser(o;, T) = Z (ol T (2)

=0

Agent Choices and Strategies Each player’s strategic variables are his coali-
tion choice to join o; and a set of agents in this coalition ¢, C o; to eliminate.
@, can be empty. The possibility of optimisation responds to the change of value
that certain agents can experiment when in their coalition they are out-skilled by
a new member and so they become redundant. The new membership, together
with the optimisation proposal is not accepted straightforward, it is evaluated by
the members of the target coalition. Just those actions accepted by a majority
(more than the half) of members in the affected coalition, are performed. An
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agent that is requested to take an action can submit a finite number of requests
in an specific order, in such a way that if an action is not accepted, next action
is checked and so on. If none of its action proposals is accepted, the agent stays
in the same coalition where it was.

All the agents in the population follow the Competitive Strategy [14], that
consists on proposing a set of actions that contain every proposal that either
improves the score of the coalition the agent is in, or keeps the same score while
reducing the size. When they receive a proposal from an outsider, they accept if
they are not in ¢;;’s proposal, and if the proposal improves the score or keeps
it while reduce the coalition size. Every agent j has a fixed social network o
that is a non-empty set of agents. When considering to join a different coalition,
agents are limited to just evaluating coalitions of agents in a;.

RFP Iterated Model At time 0, every agent is a coalition of just one element
(0; = {04}). A task T is issued and a run of negotiation starts in which every
agent, sequentially and following a random order, is asked about an action to
take. Agents decide on the basis of their strategy (see previous subsection), and
the action taken is performed before the next agent is asked. Agents have no
knowledge on the order in which they are asked, but by the time they are asked
they have perfect information of the state of the coalitions where the agents in
their social network are. The negotiation process is repeated as many times as
necessary until no agent is willing to leave the state is in or none of its choices
to leave its current state is accepted by the hosting coalition®. Is in this state of
equilibrium when the system is observed, and the data of coalitions is captured
for further analysis.

3 Experiments

Metrics used in the experiments: In order to measure how competitive
an agent is in a simple way, every agent in the population has the same total
number of skill capabilities, but distributed differently across skills. This way we
can define a simple metric of Competitiveness: com(o;;), by just measuring the
standard deviation in its skill values weighted by the task values. Analogously,
Versatility is defined as the inverse of Competitiveness: (ver(o;;) = 1/com(o;;)).

In order to test the dynamism that a certain underlying social network per-
mits, a new metric called Historical Average Degree (HAD from now on) is
defined. This metric measures the distance that exists in the social network be-
tween agents in a coalition. What makes different this metric from the classical
distance definition (minimal path length between two nodes), is that the dis-
tance is measured just using the links between the coalition members. The HAD
value between two members does not change through the addition or abandon
of partners. When an agent A joins a coalition there is at least 1 member (B)

! In [15] it was shown how the system always converge to an stable state when the
population follows an score maximizing function.
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Fig. 1. Example of iterated coalition formation process. Edge’s values reflect the HAD
between nodes. Shaded areas denote coalitions.

with path-length equal to 1, (otherwise this agent would not know directly any
of the members of the coalition, hence it could not consider that coalition). The
distance to the other members corresponds to 1 (distance from A to B) plus the
minimal path length from B to the member of the coalition through the complete
(HAD valued) network between members of the coalition. The final value of the
metric at the end of the process is the mean of each HAD value between each
member of the coalition. This mean is computed for every coalition when the
system has reached equilibrium. Figure3 exemplifies how the metric is computed
during the process of coalition formation.

At the end of an experiment, coalitions are compared with the optimal coali-
tional structure oT; that is the structure that creates the coalitions with the
maximum possible score?. If top coalitions of an experiment have low score ver-
sus those in the optimal structure is because the best endowed agents are stuck
in suboptimal coalitions. This way, a certain experiment ends up with better or
worse results depending on how efficient the best agents are in getting to know
each other. To measure this efficiency, the aggregated score of an experiment is
obtained by computing the weighted sum of every coalition with an exponential
weight: Sc(o) = 3P | _ (scr(ovank, T) * 1/27%7%). To know how suboptimal a
coalitional setup is the following difference is computed: Sub = Sc(o™) — Sc(o)

3.1 experimental set-up

In order to investigate the effects of networks properties in the dynamics of
exploration of agents, a significant number of experiments have been performed

2 This reference structure is computed by exhaustive exploration using farsighted
agents
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node degree (k)|avg. distance (ad)|clust. coefficient (cc)
SF (Scale Free) 1.4 2.571 0.072
Rdm (Random Erdos) 1.4 2.644 0.028
Rdm2 (Random Watts) 1.4 2.643 0.024
SW (Small World) 1.4 3.541 0.565

Table 1. Average properties across the set of 1000 networks used in each topology

varying the most significative variables. These are the concrete social network
topology and the concrete mapping between agents and nodes in the network.
A total of 4000 networks with 500 nodes and average undirected connectivity
degree of k = 10.3 have been tested, in 4 different topologies: 1000 Small World
networks (using the Watts-Strogatz model [19] with p = 0.07), 1000 Random
networks (Using Erdos-Reni model [8]), 1000 Random2 networks (Using Watts-
Strogatz model with p = 0.07 and rewiring randomly the nodes while keeping
every node’s degree) and 1000 Scale Free networks (using Barabassi model [3]).

For each one of the networks, 3 different mappings have been created in the
following way: in one hand, for every network, nodes are ordered decreasingly
by connectivity degree k. In the other hand, 2 different orders of agents are
created by computing com, and ver metrics in every agent (see section 3) and
ordering agents decreasingly by each metric’s values. Every experiment maps
every agent in one of the 2 specific orders (ver-ord or com-ord), to a node
according to its k order in the network. An additional random mapping rdm-ord
has been used to create the third tested order. That creates a total setup of
12000 experiments: for each 1000 networks of each of the 4 topologies tested, 3
different sets of experiments are performed, each one with a concrete mapping
between node degree and agent characteristics. Experiments are run until the
system has converged to an equilibrium (see section 2).

For space restriction reasons, not all the experiments performed are shown.
Some of the variables (those that just produce scale effects but do not change the
global effects) have been fixed. These variables are: the population composition
(500 agents with 10 skills and, for every agent a total value of 100, heteroge-
neously distributed amongst the skills. The stdev. in the skill distribution is
homogeneously distributed from 5 to 20), the task used in all the experiments
(T = (1,2,3,4,5,6,7,8,9,10) 3) and the connectivity degree k ( 10.3 for each
one of the 4000 networks).

3.2 Experiments Results

experiments with rdm-ord mapping: This setup does not prioritise any
specific type of agent in the experiments this way the effect of the topology under

3 the difference between values favors the diversity of Competitiveness and Versatility
degrees (see section 3). None of the values is 0, so that all the skills are required (see
section 2)
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Fig. 2. Suboptimality for each topology and mapping. Topologies with higher node
degree heterogeneity show higher sensibility to specific agent mappings. Small World
proves to be the most suboptimal topology.

even conditions for every agent can be observed. The average suboptimality of
each topology is summarised in Figure 2. There is a clear disadvantage in the
SW networks. Those networks fail to provide the necessary conditions to put in
contact the most competent agents. There are two main reasons that explain
this fact. First, the highest average distance in the nodes of the SW networks
(see Table 1), is an indicator on how short the path that interconnects two nodes
can be. The longer this path is, the higher can be the required number of jumps
in the network to group two agents. However this indicator is not the only fact
that explains the suboptimality of SW networks, as this metric accounts for the
average shortest distance, but agents do not necessarily follow the shortest path
that interconnect them. Paths can be blocked when intermediate agents have
an stable coalition that do not adhere new members, this way, in order to join
specific agents, a network topology requires to provide not only optimal paths
but also as much alternative paths as possible. The second reason that explains
the inneficiency of SW networks has to do with the provision of alternative paths.
The structured nature of SW networks make that, initially, agents form coalitions
with other agents within their cluster; coalitions iteratively are expanded because
structured clusters are interconnected. That rises HAD in coalitions to similar
levels than the SF networks (see figure 3(c)) but the process of exploration is
heavily dependant on agents with high betweenness (rewired agents in the Watts
model), those that create shortcuts between clusters. If those agents are stuck in
a certain coalition, they are blocking the path that interconnects distant clusters,
hence just permitting agents to explore through neighbor clusters.

Another interesting fact captured in Figure 3(c) is that Rdm and Rdm2
networks show higher average HAD compared to SF. However, SF networks
prove to have similar performance than Rdm and Rdm2 (see Figure 2). Again,
the average distances partly explains this fact; as SF networks have, in average,
shortest optimal distances, some agents can find the way to each other in a
shorter number of steps than for the case of Rdm and Rdm2 networks. However
there is a structural reason than makes SF networks create coalitions with less
HAD. As in the case of SW networks, some nodes with a crucial network role
might block the process. While for SW networks these were the shortcut agents,
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in SF, are the agents with higher degree (hubs). When these agents form an
stable coalition, all the connections that were concentrated in them are lost
and all the paths that crosses them are be blocked, so the exploration might
be affected when the stabilisation is early reached. This way, the advantage of
having a shorter avg. distance is compensated by the disadvantage of having
nodes accumulating many connections.

—e— Rdm:ver-ord

—e— Rdm:com-ord
—+— SW:ver-ord

—+— SW:com-ord
—— SF:com —— SFuver-ord

2 —o— Rdm2:ver-ord

2 —o— Rdm2:com-ord
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Coalition Rank Coalition Rank

(a) HAD by ranking in com-ord (b) HAD by ranking in ver-ord

—e— Rdm:rdm-ord —— SF:com-ord

—— SW:rdm-ord
—e— SF:ver-ord

N —— SF:rdm-ord
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’ 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 ’ 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67
(c) HAD by ranking in rdm-ord (d) HAD in Scale Free networks

Fig. 3. Avg. HAD of the 67 best coalitions through 1000 experiments showing the
amount of exploration that each topology permits.

experiments with ver-ord and com-ord mapping: Network structures
with high inequalities in the nodes degree are more affected by an specific map-
ping. SF topology is the one with higher unequal distribution, followed by Rdm.
In SW and Rdm2, the degree distribution in nodes is almost even, and so they
are not very sensitive to the different mappings.

An interesting result drawn from experiments shows that when the more
competitive agents (those that are ment to be part of the leading coalitions)
have the lower number of connections in the network, the general exploration
performed by agents rises significantly (ver-ord fosters higher HAD than other
mapping, see Figure 3(d)). This happens because competitive agents have higher
potential of attraction. As these agents are valuable parts of many possible
coalitions, others are attracted to join them. This attraction fosters the mobility
of many agents that improve the score of the coalition of the competent agent
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by attracting each time more competent agents. However, in many cases, this
incremental attraction proves to be not enough for letting the most competitive
agents to get to know each other. This is why ver-ord experiments produce the
highest suboptimality degree (Figure 2).

Inversely, when competitive agents are highly connected, good quality coali-
tions are formed in few jumps, having near optimal score. Their members are
highly connected hubs in the social network that easily find a path to get in
touch. However, in the lower positions the HAD analysis shows a deficient dy-
namism because there are not many attractive agents to foster movility between
coalitions, hence the coalitions at the lower positions end up having poor per-
formance being limited not to explore much further than their close neighbors.
The lack of dynamism in those positions can be clearly detected in Figure 3(d)
in the SF:com-ord series.

4 Conclusions and Future Work

In the rush to connectedness towards structured organisational topologies, the
recent work by [13] suggested a potential downside of highly efficient topologies
with short average path lengths. In the present work, more arguments are pro-
vided in favor of unstructured networks but using a completely different MAS
model, based on a well known organisational paradigm called Request For Pro-
posal. As in the case of [13], RFP model also proved that low levels of ho-
mogeneity in the population capabilities reduce the exploration at the social
network. When highly compatible agents are closely connected in the social net-
work, diversity in the system is squeezed out. And agents are unable to find out
optimal solutions. Additionally, RFP model suggests that Small World networks
are potentially inefficient because they concentrate in a reduced set of agents a
set of key connections between different clusters. When those agents block the
exploration, the system end up having worse global results.

In spite of the attention that dynamic coalition formation area is attracting
in the last years, the use of social networks to map limited awareness of agents
has not been deeply explored (for an exception see [10,9] in the area of team
formation). The present work represents an step further in the combination of
social network analysis and coalition formation, proving that coalitional models
can benefit from the research in the area solving issues related to farsightedness,
and also highlighting some properties of well known network topologies that are
not beneficial in any case.

The work in progress is focused on testing the effects of placing specific agents
in nodes of the network with other network properties such as page-rank central-
ity, betweenness or clustering coefficient. The conclusions drawn from these work
will be applied in the design of the more appropriate social network adaptation
mechanism that agents should have in order to reduce the suboptimality degree
of coalitions.
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