
Dorigo and Gambardella - Ant Colony System 1

Ant Colony System:
A Cooperative Learning Approach to the

Traveling Salesman Problem

TR/IRIDIA/1996-5
Université Libre de Bruxelles

Belgium

Marco Dorigo
IRIDIA, Université Libre de Bruxelles, CP 194/6, Avenue Franklin Roosevelt 50
1050 Bruxelles, Belgium
mdorigo@ulb.ac.be, http://iridia.ulb.ac.be/dorigo/dorigo.html

Luca Maria Gambardella
IDSIA, Corso Elvezia 36, 6900 Lugano, Switzerland
luca@idsia.ch, http://www.idsia.ch/~luca

Abstract

This paper introduces ant colony system (ACS), a distributed algorithm that is applied
to the traveling salesman problem (TSP). In ACS, a set of cooperating agents called
ants cooperate to find good solutions to TSPs. Ants cooperate using an indirect form of
communication mediated by pheromone they deposit on the edges of the TSP graph
while building solutions. We study ACS by running experiments to understand its
operation. The results show that ACS outperforms other nature-inspired algorithms
such as simulated annealing and evolutionary computation, and we conclude comparing
ACS-3-opt, a version of ACS augmented with a local search procedure, to some of the
best performing algorithms for symmetric and asymmetric TSPs.

Accepted for publication in the IEEE Transactions on Evolutionary Computation, Vol.1, No.1, 1997. In press.

Dorigo and Gambardella - Ant Colony System 2/24

I. Introduction

The natural metaphor on which ant algorithms are based is that of ant colonies. Real ants are
capable of finding the shortest path from a food source to their nest [3], [22] without using
visual cues [24] by exploiting pheromone information. While walking, ants deposit
pheromone on the ground, and follow, in probability, pheromone previously deposited by
other ants. A way ants exploit pheromone to find a shortest path between two points is shown
in Fig. 1.

 Consider Fig. 1A: Ants arrive at a decision point in which they have to decide whether to
turn left or right. Since they have no clue about which is the best choice, they choose
randomly. It can be expected that, on average, half of the ants decide to turn left and the other
half to turn right. This happens both to ants moving from left to right (those whose name
begins with an L) and to those moving from right to left (name begins with a R). Figs. 1B
and 1C show what happens in the immediately following instants, supposing all ants walk at
approximately the same speed. The number of dashed lines is roughly proportional to the
amount of pheromone that the ants have deposited on the ground. Since the lower path is
shorter than the upper one, more ants will visit it on average, and therefore pheromone
accumulates faster. After a short transitory period the difference in the amount of pheromone
on the two path is sufficiently large so as to influence the decision of new ants coming into
the system (this is shown by Fig. 1D). From now on, new ants will prefer in probability to
choose the lower path, since at the decision point they perceive a greater amount of
pheromone on the lower path. This in turn increases, with a positive feedback effect, the
number of ants choosing the lower, and shorter, path. Very soon all ants will be using the
shorter path.

R2R1L1L2

? ?
R2

R1

L1

L2

R4R3L3L4

R2

R1

L1

R4L5L6 R6R5

L3

L4

L2

R3

R2

R1

L1

R4

R3

L6L7 R7R6

L3

L4

L2

L5 R5

A B

C D

Fig. 1. How real ants find a shortest path. A) Ants arrive at a decision point. B) Some ants choose the upper
path and some the lower path. The choice is random. C) Since ants move at approximately constant speed, the
ants which choose the lower, shorter, path reach the opposite decision point faster than those which choose the
upper, longer, path. D) Pheromone accumulates at a higher rate on the shorter path. The number of dashed lines
is approximately proportional to the amount of pheromone deposited by ants.

Dorigo and Gambardella - Ant Colony System 3/24

The above behavior of real ants has inspired ant system , an algorithm in which a set of
artificial ants cooperate to the solution of a problem by exchanging information via
pheromone deposited on graph edges. Ant system has been applied to combinatorial
optimization problems such as the traveling salesman problem (TSP) [7], [8], [10], [12], and
the quadratic assignment problem [32], [42].

Ant colony system (ACS), the algorithm presented in this article, builds on the previous ant
system in the direction of improving efficiency when applied to symmetric and asymmetric
TSPs. The main idea is that of having a set of agents, called ants, search in parallel for good
solutions to the TSP, and cooperate through pheromone-mediated indirect and global
communication. Informally, each ant constructs a TSP solution in an iterative way: it adds
new cities to a partial solution by exploiting both information gained from past experience
and a greedy heuristic. Memory takes the form of pheromone deposited by ants on TSP
edges, while heuristic information is simply given by the edge's length.

The main novel idea introduced by ant algorithms, which will be discussed in the
remainder of the paper, is the synergistic use of cooperation among many relatively simple
agents which communicate by distributed memory implemented as pheromone deposited on
edges of a graph.

The article is organized as follows. Section II puts ACS in context by describing ant
system, the progenitor of ACS. Section III introduces ACS. Section IV is dedicated to the
study of some characteristics of ACS: We study how pheromone changes at run time,
estimate the optimal number of ants to be used, observe the effects of pheromone-mediated
cooperation, and evaluate the role that pheromone and the greedy heuristic have in ACS
performance. Section V provides an overview of results on a set of standard test problems
and comparisons of ACS with well-known general purpose algorithms like evolutionary
computation and simulated annealing. In Section VI we add local optimization to ACS,
obtaining a new algorithm called ACS-3-opt. This algorithm is compared favorably with the
winner of the First International Contest on Evolutionary Optimization [5] on asymmetric
TSP (ATSP) problems (see Fig. 2), while it yields a slightly worse performance on TSP
problems. Section VII is dedicated to the discussion of the main characteristics of ACS and
indicates directions for further research.

II. Background

Ant system [10] is the progenitor of all our research efforts with ant algorithms, and was first
applied to the traveling salesman problem (TSP), which is defined in Fig. 2.

Ant system utilizes a graph representation which is the same as that defined in Fig. 2,
augmented as follows: in addition to the cost measure δ(r,s), each edge (r,s) has also a
desirability measure τ (r,s), called pheromone , which is updated at run time by artificial ants
(ants for short). When ant system is applied to symmetric instances of the TSP, τ(r,s)=τ(s,r),
but when it is applied to asymmetric instances it is possible that τ(r,s)≠τ(s,r).

Informally, ant system works as follows. Each ant generates a complete tour by choosing
the cities according to a probabilistic state transition rule : Ants prefer to move to cities which
are connected by short edges with a high amount of pheromone. Once all ants have
completed their tours a global pheromone updating rule (global updating rule, for short) is
applied: A fraction of the pheromone evaporates on all edges (edges that are not refreshed
become less desirable), and then each ant deposits an amount of pheromone on edges which
belong to its tour in proportion to how short its tour was (in other words, edges which belong

Dorigo and Gambardella - Ant Colony System 4/24

to many short tours are the edges which receive the greater amount of pheromone). The
process is then iterated.

TSP

Let V = {a, ... , z} be a set of cities, A = {(r,s) : r,s ∈ V} be the
edge set, and δ(r,s)= δ(s,r) be a cost measure associated with edge
(r,s) ∈ A.

The TSP is the problem of finding a minimal cost closed tour that

visits each city once.

In the case cities r ∈ V are given by their coordinates (xr, yr) and
δ(r,s) is the Euclidean distance between r and s, then we have an
Euclidean TSP.

ATSP

If δ(r,s) ≠ δ(s,r) for at least one edge (r,s) then the TSP becomes an
asymmetric TSP (ATSP).

Fig. 2. The traveling salesman problem.

The state transition rule used by ant system, called a random-proportional rule, is given by
Eq. (1), which gives the probability with which ant k in city r chooses to move to the city s.

p r s

r s r s

r u r u
s J r

k u J r

k

k

(,) =

(,) (,)

(,) (,)
 if ()

 otherwise

()

τ η
τ η

β

β
[] ⋅[]

[] ⋅[]
∈

∈
∑

0

(1)

where τ is the pheromone, η=1/δ is the inverse of the distance δ(r,s), Jk(r) is the set of cities
that remain to be visited by ant k positioned on city r (to make the solution feasible), and β is
a parameter which determines the relative importance of pheromone versus distance (β>0).

In Eq. (1) we multiply the pheromone on edge (r ,s) by the corresponding heuristic value
η(r,s) . In this way we favor the choice of edges which are shorter and which have a greater
amount of pheromone.

In ant system, the global updating rule is implemented as follows. Once all ants have built
their tours, pheromone is updated on all edges according to

τ α τ τr s r s r sk
k

m

, , ,() ← −() ⋅ () + ()
=

∑1
1

∆ (2)

where ∆τ k

k
r s

L r s

,

() =
() ∈

1 if tour done by ant

 0 otherwise

, k

,

0<α<1 is a pheromone decay parameter, Lk is the length of the tour performed by ant k, and m
is the number of ants.

Pheromone updating is intended to allocate a greater amount of pheromone to shorter
tours. In a sense, this is similar to a reinforcement learning scheme [2], [26] in which better
solutions get a higher reinforcement (as happens, for example, in genetic algorithms under
proportional selection). The pheromone updating formula was meant to simulate the change
in the amount of pheromone due to both the addition of new pheromone deposited by ants on

Dorigo and Gambardella - Ant Colony System 5/24

the visited edges, and to pheromone evaporation.
Pheromone placed on the edges plays the role of a distributed long term memory: This

memory is not stored locally within the individual ants, but is distributed on the edges of the
graph. This allows an indirect form of communication called stigmergy [23], [9]. The
interested reader will find a full description of ant system, of its biological motivations, and
computational results in [12].

Although ant system was useful for discovering good or optimal solutions for small TSPs
(up to 30 cities), the time required to find such results made it unfeasible for larger problems.
We devised three main changes to improve its performance which led to the definition of
ACS, presented in the next section.

III. ACS

ACS differs from the previous ant system because of three main aspects: (i) the state
transition rule provides a direct way to balance between exploration of new edges and
exploitation of a priori and accumulated knowledge about the problem, (ii) the global
updating rule is applied only to edges which belong to the best ant tour, and (iii) while ants
construct a solution a local pheromone updating rule (local updating rule, for short) is
applied.

Informally, ACS works as follows: m ants are initially positioned on n cities chosen
according to some initialization rule (e.g., randomly). Each ant builds a tour (i.e., a feasible
solution to the TSP) by repeatedly applying a stochastic greedy rule (the state transition rule).
While constructing its tour, an ant also modifies the amount of pheromone on the visited
edges by applying the local updating rule. Once all ants have terminated their tour, the
amount of pheromone on edges is modified again (by applying the global updating rule). As
was the case in ant system, ants are guided, in building their tours, by both heuristic
information (they prefer to choose short edges), and by pheromone information: An edge
with a high amount of pheromone is a very desirable choice. The pheromone updating rules
are designed so that they tend to give more pheromone to edges which should be visited by
ants. The ACS algorithm is reported in Fig. 3. In the following we discuss the state transition
rule, the global updating rule, and the local updating rule.

A. ACS state transition rule

In ACS the state transition rule is as follows: an ant positioned on node r chooses the city s to
move to by applying the rule given by Eq. (3)

s

r u r u q q
u J rk

=

 if (exploitation)

 otherwise (biased exploration)

arg max , ,
∈ ()

()[] ⋅ ()[]{ } ≤

τ η β
0

S
(3)

where q is a random number uniformly distributed in [0 .. 1], q0 is a parameter (0≤q0≤1), and
S is a random variable selected according to the probability distribution given in Eq. (1).

The state transition rule resulting from Eqs. (3) and (1) is called pseudo-random-
proportional rule. This state transition rule, as with the previous random-proportional rule,
favors transitions towards nodes connected by short edges and with a large amount of
pheromone. The parameter q0 determines the relative importance of exploitation versus
exploration: Every time an ant in city r has to choose a city s to move to, it samples a random

Dorigo and Gambardella - Ant Colony System 6/24

number 0≤q≤1. If q≤q0 then the best edge (according to Eq. (3)) is chosen (exploitation),
otherwise an edge is chosen according to Eq. (1) (biased exploration).

Initialize

Loop /* at this level each loop is called an iteration */

Each ant is positioned on a starting node

Loop /* at this level each loop is called a step */
Each ant applies a state transition rule to incrementally build a solution
and a local pheromone updating rule

Until all ants have built a complete solution

A global pheromone updating rule is applied

Until End_condition

Fig. 3. The ACS algorithm.

B. ACS global updating rule

In ACS only the globally best ant (i.e., the ant which constructed the shortest tour from the
beginning of the trial) is allowed to deposit pheromone. This choice, together with the use of
the pseudo-random-proportional rule, is intended to make the search more directed: Ants
search in a neighborhood of the best tour found up to the current iteration of the algorithm.
Global updating is performed after all ants have completed their tours. The pheromone level
is updated by applying the global updating rule of Eq. (4)

τ α τ α τr s r s r s, , ,() ← −() ⋅ () + ⋅ ()1 ∆ (4)

where ∆τ r s
L r sgb

,

-1

() =
() () ∈

if global - best - tour

 0 otherwise

,
,

0<α<1 is the pheromone decay parameter, and Lgb is the length of the globally best tour from
the beginning of the trial. As was the case in ant system, global updating is intended to
provide a greater amount of pheromone to shorter tours. Eq. (4) dictates that only those edges
belonging to the globally best tour will receive reinforcement. We also tested another type
of global updating rule, called iteration-best, as opposed to the above called global-best ,
which instead used Lib (the length of the best tour in the current iteration of the trial), in Eq.
(4). Also, with iteration-best the edges which receive reinforcement are those belonging to
the best tour of the current iteration. Experiments have shown that the difference between the
two schemes is minimal, with a slight preference for global-best, which is therefore used in
the following experiments.

C. ACS local updating rule

While building a solution (i.e., a tour) of the TSP, ants visit edges and change their
pheromone level by applying the local updating rule of Eq. (5)

τ ρ τ ρ τr s r s r s, , ,() ← −() ⋅ () + ⋅ ()1 ∆ (5)

where 0<ρ<1 is a parameter.

We have experimented with three values for the term ∆τ(r,s). The first choice was loosely
inspired by Q-learning [40], an algorithm developed to solve reinforcement learning problems

Dorigo and Gambardella - Ant Colony System 7/24

[26]. Such problems are faced by an agent that must learn the best action to perform in each
possible state in which it finds itself, using as the sole learning information a scalar number
which represents an evaluation of the state entered after it has performed the chosen action.
Q-learning is an algorithm which allows an agent to learn such an optimal policy by the
recursive application of a rule similar to that in Eq. (5), in which the term ∆τ(r,s) is set to the
discounted evaluation of the next state value. Since the problem our ants have to solve is
similar to a reinforcement learning problem (ants have to learn which city to move to as a
function of their current location), we set [19] ∆τ γ τr s s z

z J sk

, ,() = ⋅ ()
∈ ()
max , which is exactly the

same formula used in Q-learning (0≤γ<1 is a parameter). The other two choices were: (i) we

set ∆τ (r,s)=τ0 , whereτ0 is the initial pheromone level, (ii) we set ∆τ(r,s)=0. Finally, we also
ran experiments in which local-updating was not applied (i.e., the local updating rule is not
used, as was the case in ant system).

Results obtained running experiments (see Table I) on a set of five randomly generated 50-
city TSPs [13], on the Oliver30 symmetric TSP [41], and the ry48p asymmetric TSP [35]
essentially suggest that local-updating is definitely useful, and that the local updating rule
with ∆τ (r,s)=0 yields worse performance than local-updating with ∆ τ(r,s)=τ0 or with
∆τ γ τr s s z

z J sk

, ,() = ⋅ ()
∈ ()
max .

ACS with ∆τ γ τr s s z
z J sk

, ,() = ⋅ ()
∈ ()
max , which we have called Ant-Q in [11] and [19], and

ACS with ∆τ (r,s)=τ0, called simply ACS hereafter, resulted to be the two best performing
algorithms, with a similar performance level. Since the ACS local updating rule requires less
computation than Ant-Q, we chose to focus attention on ACS, which will be used to run the
experiments presented in the following of this paper.

As will be discussed in Section IV.A, the role of ACS local updating rule is to shuffle the
tours, so that the early cities in one ant’s tour may be explored later in other ants’ tours. In
other words, the effect of local-updating is to make the desirability of edges change
dynamically: every time an ant uses an edge this becomes slightly less desirable (since it
loses some of its pheromone). In this way ants will make a better use of pheromone
information: without local-updating all ants would search in a narrow neighborhood of the
best previous tour.

D. ACS parameter settings

In all experiments of the following sections the numeric parameters, except when indicated
differently, are set to the following values: β=2, q0=0.9, α=ρ=0.1, τ0=(n·Lnn)-1 , where Lnn is
the tour length produced by the nearest neighbor heuristic1 [36] and n is the number of cities.
These values were obtained by a preliminary optimization phase, in which we found that the
experimental optimal values of the parameters were largely independent of the problem,
except for τ0 for which, as we said, τ0 =(n·Lnn)-1 . The number of ants used is m =10 (this
choice is explained in Section IV.B). Regarding their initial positioning, ants are placed
randomly, with at most one ant in each city.

1 To be true, any very rough approximation of the optimal tour length would suffice.

Dorigo and Gambardella - Ant Colony System 8/24

TABLE I

A comparison of local updating rules. 50-city problems and Oliver30 were stopped after 2,500 iterations, while
ry48p was halted after 10,000 iterations. Averages are over 25 trials. Results in bold are the best in the Table.

ACS Ant-Q ACS with ∆τ(r,s)=0
ACS without

local-updating

average std
dev

best average std
dev

best average std
dev

best average std
dev

best

City Set 1 5.88 0.05 5.84 5.88 0.05 5.84 5.97 0.09 5.85 5.96 0.09 5.84

City Set 2 6.05 0.03 5.99 6.07 0.07 5.99 6.13 0.08 6.05 6.15 0.09 6.05

City Set 3 5.58 0.01 5.57 5.59 0.05 5.57 5.72 0.12 5.57 5.68 0.14 5.57

City Set 4 5.74 0.03 5.70 5.75 0.04 5.70 5.83 0.12 5.70 5.79 0.05 5.71

City Set 5 6.18 0.01 6.17 6.18 0.01 6.17 6.29 0.11 6.17 6.27 0.09 6.17

Oliver30 424.74 2.83 423.74 424.70 2.00 423.74 427.52 5.21 423.74 427.31 3.63 423.91

ry48p 14,625 142 14,422 14,766 240 14,422 15,196 233 14,734 15,308 241 14,796

IV. A study of some characteristics of ACS

A. Pheromone behavior and its relation to performance

To try to understand which mechanism ACS uses to direct the search we study how the
pheromone–closeness product τ(r,s)[] ⋅ η(r,s)[]β changes at run time. Fig. 4 shows how the
pheromone–closeness product changes with the number of steps while ants are building a
solution2 (steps refer to the inner loop in Fig. 3: the abscissa goes therefore from 1 to n,
where n is the number of cities).

Let us consider three families of edges (see Fig. 4): (i) those belonging to the last best tour
(BE, Best Edges), (ii) those which do not belong to the last best tour, but which did in one of
the two preceding iterations (TE, Testable Edges), (iii) the remaining edges, that is, those that
have never belonged to a best tour or have not in the last two iterations (UE, Uninteresting
Edges). The average pheromone–closeness product is then computed as the average of
pheromone–closeness values of all the edges within a family. The graph clearly shows that
ACS favors exploitation of edges in BE (BE edges are chosen with probability q0=0.9) and
exploration of edges in TE (recall that, since Eqs. (3) and (1), edges with higher pheromone–
closeness product have a higher probability of being explored).

An interesting aspect is that while edges are visited by ants, the application of the local
updating rule, Eq. (5), makes their pheromone diminish, making them less and less attractive,
and therefore favoring the exploration of edges not yet visited. Local updating has the effect
of lowering the pheromone on visited edges so that these become less desirable and therefore
will be chosen with a lower probability by the other ants in the remaining steps of an iteration
of the algorithm. As a consequence, ants never converge to a common path. This fact, which
was observed experimentally, is a desirable property given that if ants explore different paths
then there is a higher probability that one of them will find an improving solution than there is
in the case that they all converge to the same tour (which would make the use of m ants
pointless).

Experimental observation has shown that edges in BE, when ACS achieves a good
performance, will be approximately downgraded to TE after an iteration of the algorithm (i.e.,
one external loop in Fig. 3; see also Fig. 4), and that edges in TE will soon be downgraded to
UE, unless they happen to belong to a new shortest tour.

2 Graph in Fig. 4 is an abstraction of graphs obtained experimentally. Examples of these are given in Fig. 5.

Dorigo and Gambardella - Ant Colony System 9/24

In Figs. 5a and 5b we report two typical behaviors of pheromone level when the system
has a good or a bad performance respectively.

ni1

BE: edges of the last best tour

TE: edges which recently

 belonged to a best tour

UE: uninteresting

 edges

Steps

A
v
e
r
a
g
e
 p
h
e
r
o
m
o
n
e
—
c
l
o
s
e
n
e
s
s

 p
r
o
d
u
c
t

Fig. 4. Families of edges classified according to different behavior with respect to the pheromone–closeness
product. The average level of the pheromone–closeness product changes in each family during one iteration of
the algorithm (i.e., during n steps).

steps

A
ve

ra
ge

 p
he

ro
m

on
e-

cl
os

en
es

s
pr

od
uc

t

0

1

2

3

4

5

6

7

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

U E

B E

T E

 Steps

A
ve

ra
ge

 p
he

ro
m

on
e-

cl
os

en
es

s
pr

od
uc

t

0

1

2

3

4

5

6

7

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

U E

B E

T E

a) b)
Fig. 5. Families of edges classified according to different behavior with respect to the level of the pheromone–
closeness product. Problem: Eil51 [14]. a) Pheromone–closeness behavior when the system performance is
good. Best solution found after 1,000 iterations: 426, α=ρ=0.1. b) Pheromone–closeness behavior when the
system performance is bad. Best solution found after 1,000 iterations: 465, α=ρ=0.9.

B. The optimal number of ants

Consider Fig. 63. Let ϕ2τ0 be the average pheromone level on edges in BE just after they are
updated by the global updating rule, and ϕ1τ0 the average pheromone level on edges in BE
just before they are updated by the global updating rule (ϕ 1τ0 is also approximately the
average pheromone level on edges in TE at the beginning of the inner loop of the algorithm).
Under the hypothesis that the optimal values of ϕ1 and ϕ 2 are known, an estimate of the
optimal number of ants can be computed as follows. The local updating rule is a first-order
linear recurrence relation of the form T Tz z= − +−1 01()ρ τ ρ , which has closed form given by
T Tz

z z= − − − +0 0 01 1() ()ρ ρτ τ . Knowing that just before global updating T0 = ϕ2τ0 (this
corresponds to the start point of the BE curve in Fig. 6), and that after all ants have built their
tour and just before global updating, Tz = ϕ1τ0 (this corresponds to the end point of the BE
curve in Fig. 6), we obtain ϕ ϕ1 2 1 1 1= − − − +() ()ρ ρz z . Considering the fact that edges in
BE are chosen by each ant with a probability >q0, then a good approximation to the number z

3 Note that this figure shows the average pheromone level, while Fig.4 showed the average pheromone–closeness product.

Dorigo and Gambardella - Ant Colony System 10/24

of ants that locally update edges in BE is given by z=m·q0. Substituting in the above formula
we obtain the following estimate of the optimal number of ants

m =
log(ϕ

1
− 1) − log(ϕ

2
− 1)

q
0

⋅ log(1 − ρ)

This formula essentially shows that the optimal number of ants is a function of ϕ1 and ϕ 2.
Unfortunately, up to now, we have not been able to identify the form of the functions ϕ1(n)
and ϕ 2(n), which would tell how ϕ1 and ϕ2 change as a function of the problem dimension .
Still, experimental observation shows that ACS works well when the ratio (ϕ1-1)/(ϕ 2-1)≈0.4,
which gives m =10.

τ
0

ϕ
2
τ
0

ϕ
1
τ
0

ni1

BE: edges of the last best tour

UE: uninteresting

 edges

Steps

A
v
e
r
a
g
e

p
h
e
r
o
m
o
n
e

 l
e
v
e
l

Fig. 6. Change in average pheromone level during an algorithm iteration for edges in the BE family. The
average pheromone level on edges in BE starts at ϕ2τ0 and decreases each time an ant visits an edge in BE.
After one algorithm iteration, each edge in BE has been visited on average m ·q0 times, and the final value of the
pheromone level is ϕ1τ0.

C. Cooperation among ants

This section presents the results of two simple experiments which show that ACS effectively
exploits pheromone-mediated cooperation. Since artificial ants cooperate by exchanging
information via pheromone, to have noncooperating ants it is enough to make ants blind to
pheromone. In practice this is obtained by deactivating Eqs. (4) and (5), and setting the initial
level of pheromone to τ0=1 on all edges. When comparing a colony of cooperating ants with
a colony of noncooperating ants, to make the comparison fair, we use CPU time to compute
performance indexes so as to discount for the higher complexity, due to pheromone updating,
of the cooperative approach.

In the first experiment, the distribution of first finishing times , defined as the time elapsed
until the first optimal solution is found, is used to compare the cooperative and the
noncooperative approaches. The algorithm is run 10,000 times, and then we report on a graph
the probability distribution (density of probability) of the CPU time needed to find the optimal
value (e.g., if in 100 trials the optimum is found after exactly 220 iterations, then for the
value 220 of the abscissa we will have P(220) = 100/10,000). Fig. 7 shows that cooperation
greatly improves the probability of finding quickly an optimal solution.

In the second experiment (Fig. 8) the best solution found is plotted as a function of time
(ms) for cooperating and noncooperating ants. The number of ants is fixed for both cases:
m=4. It is interesting to note that in the cooperative case, after 300 ms, ACS always found the
optimal solution, while noncooperating ants where not able to find it after 800 ms. During the

Dorigo and Gambardella - Ant Colony System 11/24

first 150 ms (i.e., before the two lines in Fig. 8 cross) noncooperating ants outperform
cooperating ants: Good values of pheromone level are still being learned and therefore the
overhead due to pheromone updating is not yet compensated by the advantages which
pheromone can provide in terms of directing the search towards good solutions.

CPU time (sec)

D
en

si
ty

 o
f

pr
ob

ab
ili

ty

0

0.01

0.02

0.03

0.04

0.05

0.06

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100

Cooperating ants

Noncooperating
ants

Fig. 7. Cooperation changes the probability distribution of first finishing times: cooperating ants have a higher
probability to find quickly an optimal solution. Test problem: CCAO [21]. The number of ants was set to m=4.

Cpu time (msec)

T
ou

r
le

ng
th

49.5

5 0

50.5

5 1

51.5

5 2

52.5

0 100 200 300 400 500 600 700 800

Cooperating ants

Noncooperating
ants

Fig. 8. Cooperating ants find better solutions in a shorter time. Test problem: CCAO [21]. Average on 25 runs.
The number of ants was set to m=4.

D. The importance of the pheromone and the heuristic function

Experimental results have shown that the heuristic function η is fundamental in making the
algorithm find good solutions in a reasonable time. In fact, when β=0 ACS performance
worsens significantly (see the ACS no heuristic graph in Fig. 9).

Fig. 9 also shows the behavior of ACS in an experiment in which ants neither sense nor
deposit pheromone (ACS no pheromone graph). The result is that not using pheromone also
deteriorates performance. This is a further confirmation of the results on the role of
cooperation presented in Section IV.C.

The reason ACS without the heuristic function performs better than ACS without
pheromone is that in the first case, although not helped by heuristic information, ACS is still
guided by reinforcement provided by the global updating rule in the form of pheromone,
while in the second case ACS reduces to a stochastic multi-greedy algorithm.

Dorigo and Gambardella - Ant Colony System 12/24

Number of ants

A
ve

ra
ge

 l
en

gt
h

of
 t

he
 b

es
t

to
ur

420

425

430

435

440

445

450

455

460

1 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0

ACS standard

ACS no heuristic

ACS no pheromone

Fig. 9. Comparison between ACS standard, ACS with no heuristic (i.e., we set β=0), and ACS in which ants
neither sense nor deposit pheromone. Problem: Oliver30. Averaged over 30 trials, 10,000/m iterations per trial.

V. ACS: Some computational results

We report on two sets of experiments. The first set compares ACS with other heuristics. The
choice of the test problems was dictated by published results found in the literature. The
second set tests ACS on some larger problems. Here the comparison is performed only with
respect to the optimal or the best known result. The behavior of ACS is excellent in both
cases.

Most of the test problems can be found in TSPLIB: http://www.iwr.uni-
heidelberg.de/iwr/comopt/soft/ TSPLIB95/TSPLIB.html. When they are not available in this
library we explicitly cite the reference where they can be found.

Given that during an iteration of the algorithm each ant produces a tour, in the reported
results the total number of tours generated is given by the number of iterations multiplied by
the number of ants. The result of each trial is given by the best tour generated by the ants.
Each experiment consists of at least 15 trials.

A. Comparison with other heuristics

To compare ACS with other heuristics we consider two sets of TSP problems. The first set
comprises five randomly generated 50-city problems, while the second set is composed of
three geometric problems4 of between 50 and 100 cities. It is important to test ACS on both
random and geometric instances of the TSP because these two classes of problems have
structural differences that can make them difficult for a particular algorithm and at the same
time easy for another one.

Table II reports the results on the random instances. The heuristics with which we
compare ACS are simulated annealing (SA), elastic net (EN), and self organizing map
(SOM). Results on SA, EN, and SOM are from [13], [34]. ACS was run for 2,500 iterations
using 10 ants (this amounts to approximately the same number of tour searched by the
heuristics with which we compare our results). ACS results are averaged over 25 trials. The
best average tour length for each problem is in boldface: ACS almost always offers the best
performance.

4 Geometric problems are problems taken from the real world (for example, they are generated choosing real cities and real
distances).

Dorigo and Gambardella - Ant Colony System 13/24

TABLE II

Comparison of ACS with other heuristics on random instances of the symmetric TSP. Comparisons on average
tour length obtained on five 50-city problems.

Problem name ACS
(average)

SA
(average)

EN
(average)

SOM
(average)

City set 1 5 . 8 8 5 . 8 8 5.98 6.06

City set 2 6.05 6 . 0 1 6.03 6.25

City set 3 5 . 5 8 5.65 5.70 5.83

City set 4 5 . 7 4 5.81 5.86 5.87

City set 5 6 . 1 8 6.33 6.49 6.70

Table III reports the results on the geometric instances. The heuristics with which we
compare ACS in this case are a genetic algorithm (GA), evolutionary programming (EP), and
simulated annealing (SA). ACS is run for 1,250 iterations using 20 ants (this amounts to
approximately the same number of tours searched by the heuristics with which we compare
our results). ACS results are averaged over 15 trials. In this case comparison is performed on
the best results, as opposed to average results as in previous Table II (this choice was dictated
by the availability of published results). The difference between integer and real tour length
is that in the first case distances between cities are measured by integer numbers, while in the
second case by floating point approximations of real numbers.

TABLE III

Comparison of ACS with other heuristics on geometric instances of the symmetric TSP. We report the best
integer tour length, the best real tour length (in parentheses) and the number of tours required to find the best
integer tour length (in square brackets). N/A means “not available.” In the last column the optimal length is
available only for integer tour lengths.

Problem name ACS GA EP SA Optimum

Eil50

(50-city problem)

425

(427.96)

[1,830]

428

(N/A)

[25,000]

426

(427.86)

[100,000]

443

(N/A)

[68,512]

425

(N/A)

Eil75

(75-city problem)

535

(542.37)

[3,480]

545

(N/A)

[80,000]

542

(549.18)

[325,000]

580

(N/A)

[173,250]

535

(N/A)

KroA100

(100-city problem)

21,282

(21,285.44)

[4,820]

21,761

(N/A)

[103,000]

N/A

(N/A)

[N/A]

N/A

(N/A)

[N/A]

21,282

(N/A)

Results using EP are from [15], and those using GA are from [41] for Eil50, and Eil75, and
from [6] for KroA100. Results using SA are from [29]. Eil50, Eil75 are from [14] and are
included in TSPLIB with an additional city as Eil51.tsp and Eil76.tsp. KroA100 is also in
TSPLIB. The best result for each problem is in boldface. Again, ACS offers the best
performance in nearly every case. Only for the Eil50 problem does it find a slightly worse
solution using real-valued distance as compared with EP, but ACS only visits 1,830 tours,
while EP used 100,000 such evaluations (although it is possible that EP found its best solution
earlier in the run, this is not specified in the paper [15]).

Dorigo and Gambardella - Ant Colony System 14/24

B. ACS on some bigger problems

When trying to solve big TSP problems it is common practice [28], [35] to use a data
structure known as candidate list. A candidate list is a list of preferred cities to be visited; it
is a static data structure which contains, for a given city i, the cl closest cities, ordered by
increasing distances; cl is a parameter that we set to c l =15 in our experiments. We
implemented therefore a version of ACS [20] which incorporates a candidate list: An ant in
this extended version of ACS first chooses the city to move to among those belonging to the
candidate list. Only if none of the cities in the candidate list can be visited then it considers
the rest of the cities. ACS with candidate list (see Table IV) was able to find good results for
problems up to more than 1,500 cities. The time to generate a tour grows only slightly more
than linearly with the number of cities (this is much better than the quadratic growth obtained
without the candidate list): On a Sun Sparc–server (50 MHz) it took approximately 0.02 sec
of CPU time to generate a tour for the d198 problem, 0.05 sec for the pcb442, 0.07 sec for the
att532, 0.13 sec for the rat783, and 0.48 sec for the fl1577 (the reason for the more than linear
increase in time is that the number of failures, that is, the number of times an ant has to
choose the next city outside of the candidate list, increases with the problem dimension).

TABLE IV

ACS performance for some bigger geometric problems (over 15 trials). We report the integer length of the
shortest tour found, the number of tours required to find it, the average integer length, the standard deviation , the
optimal solution (for fl1577 we give, in square brackets, the known lower and upper bounds, given that the
optimal solution is not known), and the relative error of ACS.

Problem name ACS

best integer
length

(1)

ACS

number of
tours

generated
to best

ACS

average
integer
length

Standard
deviation

Optimum

(2)

Relative error

 (1)-(2)
 --------- * 100
 (2)

d198

(198-city problem)

15,888 585,000 16,054 71 15,780 0.68 %

pcb442

(442-city problem)

51,268 595,000 51,690 188 50,779 0.96 %

att532

(532-city problem)

28,147 830,658 28,523 275 27,686 1.67 %

rat783

(783-city problem)

9,015 991,276 9,066 28 8,806 2.37 %

fl1577

(1577-city problem)

22,977 942,000 23,163 116 [22,204 –
22,249]

3.27÷3.48 %

Dorigo and Gambardella - Ant Colony System 15/24

VI. ACS plus local search

In Section V we have shown that ACS is competitive with other nature-inspired algorithms
on some relatively simple problems. On the other hand, in the past years a lot of work has
been done to define ad-hoc heuristics, see [25] for an overview, to solve the TSP. In general,
these ad-hoc heuristics greatly outperform, on the specific problem of the TSP, general
purpose algorithms approaches like evolutionary computation and simulated annealing.
Heuristic approaches to the TSP can be classified as tour constructive heuristics and tour
improvement heuristics (these last also called local optimization heuristics). Tour
constructive heuristics (see [4] for an overview) usually start selecting a random city from the
set of cities and then incrementally build a feasible TSP solution by adding new cities chosen
according to some heuristic rule. For example, the nearest neighbor heuristic builds a tour by
adding the closest node in term of distance from the last node inserted in the path. On the
other hand, tour improvement heuristics start from a given tour and attempt to reduce its
length by exchanging edges chosen according to some heuristic rule until a local optimum is
found (i.e., until no further improvement is possible using the heuristic rule). The most used
and well-known tour improvement heuristics are 2-opt and 3-opt [30], and Lin-Kernighan
[31] in which respectively two, three, and a variable number of edges are exchanged. It has
been experimentally shown [35] that, in general, tour improvement heuristics produce better
quality results than tour constructive heuristics. A general approach is to use tour
constructive heuristics to generate a solution and then to apply a tour improvement heuristic
to locally optimize it.

It has been shown recently [25] that it is more effective to alternate an improvement
heuristic with mutations of the last (or of the best) solution produced, rather than iteratively
executing a tour improvement heuristic starting from solutions generated randomly or by a
constructive heuristic. An example of successful application of the above alternate strategy is
the work by Freisleben and Merz [17], [18] in which a genetic algorithm is used to generate
new solutions to be locally optimized by a tour improvement heuristic.

ACS is a tour construction heuristic which, like Freisleben and Merz's genetic algorithm,
after each iteration produces a set of feasible solutions which are in some sense a mutation of
the previous best solution. It is therefore a reasonable guess that adding a tour improvement
heuristic to ACS could make it competitive with the best algorithms.

We have therefore added a tour improvement heuristic to ACS. In order to maintain ACS
ability to solve both TSP and ATSP problems we have decided to base the local optimization
heuristic on a restricted 3-opt procedure [25], [27] that, while inserting/removing three edges
on the path, considers only 3-opt moves that do not revert the order in which the cities are
visited. In this case it is possible to change three edges on the tour (k , l), (p, q) and (r , s) with
three other edges (k, q), (p, s) and (r , l) maintaining the previous orientations of all the other
sub-tours. In case of ATSP problems, where in general δ(k, l) ≠ δ(l, k), this 3-opt procedure
avoids unpredictable tour length changes due to the inversion of a sub-tour. In addition, when
a candidate edge (k, l) to be removed is selected, the rescricted 3-opt procedure restricts the
search for the second edge (p, q) to be removed only to those edges such that δ(k, q)<δ(k, l).

The implementation of the restricted 3-opt procedure includes some typical tricks which
accelerate its use for TSP/ATSP problems. First, search for the candidate nodes during the
restricted 3-opt procedure is only made inside the candidate list [25]. Second, the procedure
uses a data structure called don’t look bit [4] in which each bit is associated to a node of the
tour. At the beginning of the local optimization procedure all the bits are turned off and the
bit associated to node r is turned on when a search for an improving move starting from r

Dorigo and Gambardella - Ant Colony System 16/24

fails. The bit associated to node r is turned off again when a move involving r is performed.
Third, only in the case of symmetric TSPs, while searching for 3-opt moves starting from a
node r the procedure also considers possible 2-opt moves with r as first node: the move
executed is the best one among those proposed by 3-opt and those proposed by 2-opt. Last, a
traditional array data structure to represent candidate lists and tours is used (see [16] for more
sophisticated data structures).

Initialize

Loop /* at this level each loop is called an iteration */

Each ant is positioned on a starting node

Loop /* at this level each loop is called a step */
Each ant applies a state transition rule to incrementally build a solution
and a local pheromone updating rule

Until all ants have built a complete solution

 Each ant is brought to a local minimum using a tour improvement

heuristic based on 3-opt

A global pheromone updating rule is applied

Until End_condition

Fig. 10. The ACS-3-opt algorithm.

ACS-3-opt also uses candidate lists in its constructive part; if there is no feasible node in
the candidate list it chooses the closest node out of the candidate list (this is different from
what happens in ACS where, in case the candidate list contains no feasible nodes, then any of
the remaining feasible cities can be chosen with a probability which is given by the
normalized product of pheromone and closeness). This is a reasonable choice since most of
the search performed by both ACS and the local optimization procedure is made using edges
belonging to the candidate lists. It is therefore pointless to direct search by using pheromone
levels which are updated only very rarely.

A. Experimental results

The experiments on ATSP problems presented in this section have been executed on a SUN
Ultra1 SPARC Station (167Mhz), while experiments on TSP problems on a SGI Challenge L
server with eight 200 MHz CPU's, using only a single processor due to the sequential
implementation of ACS-3-opt. For each test problem have been executed 10 trials. ACS-3-
opt parameters were set to the following values (except if differently indicated): m=10, β=2,
q0=0.98, α=ρ=0.1, τ 0=(n·Lnn)

-1 , cl=20.

A s y m m e t r i c T S P p r o b l e m s

The results obtained with ACS-3-opt on ATSP problems are quite impressive. Experiments
were run on the set of ATSP problems proposed in the First International Contest on
Evolutionary Optimization [5], but see also http://iridia.ulb.ac.be/langerman/ICEO.html). For
all the problems ACS-3-opt reached the optimal solution in a few seconds (see Table V) in all
the ten trials, except in the case of ft70, a problem considered relatively hard, where the
optimum was reached 8 out of 10 times.

In Table VI results obtained by ACS-3-opt are compared with those obtained by ATSP-GA
[17], the winner of the ATSP competition. ATSP-GA is based on a genetic algorithm that
starts its search from a population of individuals generated using a nearest neighbor heuristic.

Dorigo and Gambardella - Ant Colony System 17/24

Individuals are strings of cities which represent feasible solutions. At each step two parents x
and y are selected and their edges are recombined using a procedure called DPX-ATSP.
DPX-ATSP first deletes all edges in x that are not contained in y and then reconnects the seg-
ments using a greedy heuristic based on a nearest neighbor choice. The new individuals are
brought to the local optimum using a 3-opt procedure, and a new population is generated after
the application of a mutation operation that randomly removes and reconnects some edges in
the tour.

TABLE V

Results obtained by ACS-3-opt on ATSP problems taken from the First International Contest on Evolutionary
Optimization [5]. We report the length of the best tour found by ACS-3-opt, the CPU time used to find it, the
average length of the best tour found and the average CPU time used to find it, the optimal length and the
relative error of the average result with respect to the optimal solution.

Problem name ACS-3-opt

best result

(length)

ACS-3-opt

best result

(sec)

ACS-3-opt

average

(length)

ACS-3-opt

average

(sec)

Optimum % Error

p43
(43-city problem)

2,810 1 2,810 2 2,810 0.00 %

ry48p

(48-city problem)
14,422 2 14,422 19 14,422 0.00 %

ft70

(70-city problem)
38,673 3 38,679.8 6 38,673 0.02 %

kro124p

(100-city problem)
36,230 3 36,230 25 36,230 0.00 %

ftv170*

(170-city problem)
2,755 17 2,755 68 2,755 0.00 %

* ftv170 trials were run setting cl=30.

TABLE VI

Comparison between ACS-3-opt and ATSP-GA on ATSP problems taken from the First International Contest
on Evolutionary Optimization [5]. We report the average length of the best tour found, the average CPU time
used to find it, and the relative error with respect to the optimal solution for both approaches.

Problem name ACS-3-opt

average

(length)

ACS-3-opt

average

(sec)

ACS-3-opt

% error

ATSP-GA

average

(length)

ATSP-GA

average

(sec)

ATSP-GA

% error

p43

(43-city problem)
2,810 2 0.00 % 2,810 10 0.00 %

ry48p

(48-city problem)
14,422 19 0.00 % 14,440 30 0.12 %

ft70

(70-city problem)
38,679.8 6 0.02 % 38,683.8 639 0.03 %

kro124p

(100-city problem)
36,230 25 0.00 % 36,235.3 115 0.01 %

ftv170

(170-city problem)
2,755 68 0.00 % 2,766.1 211 0.40 %

Dorigo and Gambardella - Ant Colony System 18/24

The 3-opt procedure used by ATSP-GA is very similar to our restricted 3-opt, which
makes the comparison between the two approaches straightforward. ACS-3-opt outperforms
ATSP-GA in terms of both closeness to the optimal solution and of CPU time used.
Moreover, ATSP-GA experiments have been performed using a DEC Alpha Station (266
MHz), a machine faster than our SUN Ultra1 SPARC Station.

S y m m e t r i c T S P p r o b l e m s

If we now turn to symmetric TSP problems, it turns out that STSP-GA (STSP-GA ex-
periments have been performed using a 175 MHz DEC Alpha Station), the algorithm that
won the First International Contest on Evolutionary Optimization in the symmetric TSP
category, outperforms ACS-3-opt (see Tables VII and VIII). The results used for
comparisons are those published in [18], which are slightly better than those published in
[17].

Our results are, on the other hand, comparable to those obtained by other algorithms
considered to be very good. For example, on the lin318 problem ACS-3-opt has
approximately the same performance as the “large step Markov chain” algorithm [33]. This
algorithm is based on a simulated annealing mechanism that uses as improvement heuristic a
restricted 3-opt heuristic very similar to ours (the only difference is that they do not consider
2-opt moves) and a mutation procedure called double-bridge . (The double-bridge mutation
has the property that it is the smallest change (4 edges) that can not be reverted in one step by
3-opt, LK and 2-opt.)

A fair comparison of our results with the results obtained with the currently best
performing algorithms for symmetric TSPs [25] is difficult since they use as local search a
Lin-Kernighan heuristic based on a segment-tree data structure [16] that is faster and gives
better results than our restricted-3-opt procedure. It will be the subject of future work to add
such a procedure to ACS.

TABLE VII

Results obtained by ACS-3-opt on TSP problems taken from the First International Contest on Evolutionary
Optimization [5]. We report the length of the best tour found by ACS-3-opt, the CPU time used to find it, the
average length of the best tour found and the average CPU time used to find it, the optimal length and the
relative error of the average result with respect to the optimal solution.

Problem name ACS-3-opt

best result

(length)

ACS-3-opt

best result

(sec)

ACS-3-opt

average

(length)

ACS-3-opt

average

(sec)

Optimum % Error

d198

(198-city problem)
15,780 16 15,781.7 238 15,780 0.01 %

lin318*

(318-city problem)
42,029 101 42,029 537 42,029 0.00 %

att532

(532-city problem)
27,693 133 27,718.2 810 27,686 0.11 %

rat783

(783-city problem)
8,818 1,317 8,837.9 1,280 8,806 0.36 %

* lin318 trials were run setting q0 =0.95.

Dorigo and Gambardella - Ant Colony System 19/24

TABLE VIII

Comparison between ACS-3-opt and STSP-GA on TSP problems taken from the First International Contest on
Evolutionary Optimization [5]. We report the average length of the best tour found, the average CPU time
used to find it, and the relative error with respect to the optimal solution for both approaches.

Problem name ACS-3-opt

average

(length)

ACS-3-opt

average

(sec)

ACS-3-opt

% error

STSP-GA

average

(length)

STSP-GA

average

(sec)

STSP-GA

% error

d198

(198-city problem)
15,781.7 238 0.01 % 15,780 253 0.00 %

lin318

(318-city problem)
 42,029 537 0.00 % 42,029 2,054 0.00 %

att532

(532-city problem)
27,718.2 810 0.11 % 27,693.7 11,780 0.03 %

rat783

(783-city problem)
8,837.9 1,280 0.36 % 8,807.3 21,210 0.01 %

VII. Discussion and conclusions

An intuitive explanation of how ACS works, which emerges from the experimental results
presented in the preceding sections, is as follows. Once all the ants have generated a tour, the
best ant deposits (at the end of iteration t) its pheromone, defining in this way a “preferred
tour” for search in the following algorithm iteration t+1. In fact, during iteration t+1 ants will
see edges belonging to the best tour as highly desirable and will choose them with high
probability. Still, guided exploration (see Eqs. (3) and (1)) together with the fact that local
updating “eats” pheromone away (i.e., it diminishes the amount of pheromone on visited
edges, making them less desirable for future ants) allowing for the search of new, possibly
better tours in the neighborhood5 of the previous best tour. So ACS can be seen as a sort of
guided parallel stochastic search in the neighborhood of the best tour.

Recently there has been growing interest in the application of ant colony algorithms to
difficult combinatorial problems. A first example is the work of Schoonderwoerd, Holland,
Bruten and Rothkrantz [37] who apply an ant colony algorithm to the load balancing problem
in telecommunications networks. Their algorithm takes inspiration from the same biological
metaphor as ant system, although their implementation differs in many details due to the
different characteristics of the problem. Another interesting ongoing research is that of
Stützle and Hoos who are studying various extensions of ant system to improve its
performance: in [38] they impose an upper and lower bound on the value of pheromone on
edges, in [39] they add local search, much in the same spirit as we did in the previous Section
VI.

Besides the two works above, among the "nature-inspired" heuristics, the closest to ACS
seems to be Baluja and Caruana’s Population Based Incremental Learning (PBIL) [1]. PBIL,
which takes inspiration from genetic algorithms, maintains a vector of real numbers, the
generating vector, which plays a role similar to that of the population in GAs. Starting from
this vector, a population of binary strings is randomly generated: Each string in the

5 The form of the neighborhood is given by the previous history of the system, that is, by pheromone accumulated on
edges.

Dorigo and Gambardella - Ant Colony System 20/24

population will have the i-th bit set to 1 with a probability which is a function of the i-th value
in the generating vector (in practice, values in the generating vector are normalized to the
interval [0, 1] so that they can directly represent the probabilities). Once a population of
solutions is created, the generated solutions are evaluated and this evaluation is used to
increase (or decrease) the probabilities in the generating vector so that good (bad) solutions in
the future generations will be produced with higher (lower) probability. When applied to
TSP, PBIL uses the following encoding: a solution is a string of size nlog2n bits, where n is
the number of cities; each city is assigned a string of length log2n which is interpreted as an
integer. Cities are then ordered by increasing integer values; in case of ties the leftmost city
in the string comes first in the tour. In ACS, the pheromone matrix plays a role similar to
Baluja’s generating vector, and pheromone updating has the same goal as updating the
probabilities in the generating vector. Still, the two approaches are very different since in
ACS the pheromone matrix changes while ants build their solutions, while in PBIL the
probability vector is modified only after a population of solutions has been generated.
Moreover, ACS uses heuristic to direct search, while PBIL does not.

There are a number of ways in which the ant colony approach can be improved and/or
changed. A first possibility regards the number of ants which should contribute to the global
updating rule. In ant system all the ants deposited their pheromone, while in ACS only the
best one does: obviously there are intermediate possibilities. Baluja and Caruana [1] have
shown that the use of the two best individuals can help PBIL to obtain better results, since the
probability of being trapped in a local minimum becomes smaller. Another change to ACS
could be, again taking inspiration from [1], allowing ants which produce very bad tours to
subtract pheromone.

A second possibility is to move from the current parallel local updating of pheromone to a
sequential one. In ACS all ants apply the local updating rule in parallel, while they are
building their tours. We could imagine a modified ACS in which ants build tours
sequentially: the first ant starts, builds its tour and, as a side effect, changes the pheromone
on visited edges. Then the second ant starts, and so on until the last of the m ants has built its
tour. At this point the global updating rule is applied. This scheme will determine a different
search regime, in which the preferred tour will tend to remain the same for all the ants (as
opposed to the situation in ACS, in which local updating shuffles the tours). Nevertheless,
search will be diversified since the first ants in the sequence will search in a narrower
neighborhood of the preferred tour than later ones (in fact, pheromone on the preferred tour
decreases as more ants eat it away, making the relative desirability of edges of the preferred
tour decrease). The role of local updating in this case would be similar to that of the
temperature in simulated annealing, with the main difference that here the temperature
changes during each algorithm iteration.

Last, it would be interesting to add to ACS a more effective local optimizer than that used
in Section VI. A possibility we will investigate in the near future is the use of the Lin-
Kernighan heuristic.

Another interesting subject of ongoing research is to establish the class of problems that
can be attacked by ACS. Our intuition is that ant colony algorithms can be applied to
combinatorial optimization problems by defining an appropriate graph representation of the
problem considered, and a heuristic that guides the construction of feasible solutions. Then,
artificial ants much like those used in the TSP application presented in this paper can be used
to search for good solutions of the problem under consideration. The above intuition is
supported by encouraging, although preliminary, results obtained with ant system on the

Dorigo and Gambardella - Ant Colony System 21/24

quadratic assignment problem [12], [32], [42].
In conclusion, in this paper we have shown that ACS is an interesting novel approach to

parallel stochastic optimization of the TSP. ACS has been shown to compare favorably with
previous attempts to apply other heuristic algorithms like genetic algorithms, evolutionary
programming, and simulated annealing. Nevertheless, competition on the TSP is very tough,
and a combination of a constructive method which generates good starting solution with local
search which takes these solutions to a local optimum seems to be the best strategy [25]. We
have shown that ACS is also a very good constructive heuristic to provide such starting
solutions for local optimizers.

Appendix A: The ACS algorithm

1./* Initialization phase */
For each pair (r,s) τ(r,s):= τ

0 End-for
For k:=1 to m do

Let r
k1 be the starting city for ant k

J
k
(r

k1
):= {1, ..., n} - r

k1
/* J

k
(r

k1
) is the set of yet to be visited cities for

ant k in city r
k1
 */

r
k
:= r

k1 /* r
k
 is the city where ant k is located */

End-for
2. /* This is the phase in which ants build their tours. The tour of ant k

is stored in Tour
k
. */

 For i:=1 to n do
 If i<n

 Then
 For k:=1 to m do

Choose the next city s
k
 according to Eq. (3) and Eq. (1)

J
k
(s

k
):= J

k
(r

k
) - s

k
Tour

k
(i):=(r

k
,s

k
)

 End-for
 Else
 For k:=1 to m do
 /* In this cycle all the ants go back to the initial city r

k1
 */

s
k := rk1
Tour

k
(i):=(r

k
,s

k
)

 End-for
 End-if

 /* In this phase local updating occurs and pheromone is
updated using Eq. (5)*/

 For k:=1 to m do
τ(r

k
,s

k
):=(1-ρ)τ(r

k
,s

k
)+ ρτ

0
r
k
 := s

k /* New city for ant k */
 End-for

 End-for
3. /* In this phase global updating occurs and pheromone is updated */

For k:=1 to m do
Compute L

k
 /* L

k
 is the length of the tour done by ant k*/

End-for
Compute L

best
 /*Update edges belonging to L

best
using Eq. (4) */

For each edge (r,s)
τ(r

k
,s

k
):=(1-α)τ(r

k
,s

k
)+ α (L

best
)-1

End-for
4. If (End_condition = True)

then Print shortest of L
k

else goto Phase 2

Dorigo and Gambardella - Ant Colony System 22/24

Acknowledgments

Marco Dorigo is a Research Associate with the FNRS. Luca Gambardella is Research
Director at IDSIA. This research has been funded by the Swiss National Science Fund,
contract 21–45653.95 titled “Cooperation and learning for combinatorial optimization.” We
wish to thank Nick Bradshaw, Gianni Di Caro, David Fogel, and five anonymous referees for
their precious comments on a previous version of this article.

References
[1] S. Baluja and R. Caruana, “Removing the genetics from the standard genetic algorithm,”

Proceedings of ML-95, Twelfth International Conference on Machine Learning, A. Prieditis and
S. Russell (Eds.), 1995, Morgan Kaufmann, pp. 38–46.

[2] A.G. Barto, R.S. Sutton, P.S. Brower, “Associative search network: a reinforcement learning
associative memory,” Biological Cybernetics, vol. 40, pp. 201–211, 1981.

[3] R. Beckers, J.L. Deneubourg, and S. Goss, “Trails and U-turns in the selection of the shortest
path by the ant Lasius Niger,” Journal of Theoretical Biology, vol. 159, pp. 397–415, 1992.

[4] J.L. Bentley, “Fast algorithms for geometric traveling salesman problems,” ORSA Journal on
Computing , vol. 4, pp. 387–411, 1992.

[5] H. Bersini, M. Dorigo, S. Langerman, G. Seront, and L. M. Gambardella, “Results of the first
international contest on evolutionary optimisation (1st ICEO),” Proceedings of IEEE
International Conference on Evolutionary Computation, IEEE-EC 96, 1996, IEEE Press, pp.
611–615.

[6] H. Bersini, C. Oury, and M. Dorigo, “Hybridization of genetic algorithms,” Tech. Rep. No.
IRIDIA/95-22, 1995, Université Libre de Bruxelles, Belgium.

[7] A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed optimization by ant colonies,”
Proceedings of ECAL91 - European Conference on Artificial Life , Paris, France, 1991, F.
Varela and P. Bourgine (Eds.), Elsevier Publishing, pp. 134–142.

[8] A. Colorni, M. Dorigo, and V. Maniezzo, “An investigation of some properties of an ant
algorithm,” Proceedings of the Parallel Problem Solving from Nature Conference (PPSN 92),
1992, R. Männer and B. Manderick (Eds.), Elsevier Publishing, pp. 509–520.

[9] J.L. Deneubourg, “Application de l’ordre par fluctuations à la description de certaines étapes de
la construction du nid chez les termites,” Insect Sociaux , vol. 24, pp. 117–130, 1977.

[10] M. Dorigo, Optimization, learning and natural algorithms. Ph.D.Thesis, DEI, Politecnico di
Milano, Italy, 1992. (In Italian.)

[11] M. Dorigo and L.M. Gambardella, “A study of some properties of Ant-Q,” Proceedings of
PPSN IV–Fourth International Conference on Parallel Problem Solving From Nature, H.–M.
Voigt, W. Ebeling, I. Rechenberg and H.–S. Schwefel (Eds.), Springer-Verlag, Berlin, 1996, pp.
656–665.

[12] M. Dorigo, V. Maniezzo, and A.Colorni, “The ant system: optimization by a colony of coop-
erating agents,” IEEE Transactions on Systems, Man, and Cybernetics–Part B, vol. 26, No. 2,
pp. 29–41, 1996.

[13] R. Durbin and D. Willshaw, “An analogue approach to the travelling salesman problem using
an elastic net method,” Nature, vol. 326, pp. 689-691, 1987.

[14] S. Eilon, C.D.T. Watson-Gandy, and N. Christofides, “Distribution management: mathematical
modeling and practical analysis,” Operational Research Quarterly, vol. 20, pp. 37–53, 1969.

[15] D. Fogel, “Applying evolutionary programming to selected traveling salesman problems,”
Cybernetics and Systems: An International Journal, vol. 24, pp. 27–36, 1993.

[16] M.L. Fredman, D.S. Johnson, L.A. McGeoch, and G. Ostheimer, “Data structures for traveling
salesmen,” Journal of Algorithms, vol. 18, pp. 432–479, 1995.

[17] B. Freisleben and P. Merz, “Genetic local search algorithm for solving symmetric and
asymmetric traveling salesman problems,” Proceedings of IEEE International Conference on
Evolutionary Computation, IEEE-EC 96, 1996, IEEE Press, pp. 616-621.

Dorigo and Gambardella - Ant Colony System 23/24

[18] B. Freisleben and P. Merz, “New genetic local search operators for the traveling salesman
problem,” Proceedings of PPSN IV–Fourth International Conference on Parallel Problem
Solving From Nature, H.–M. Voigt, W. Ebeling, I. Rechenberg and H.–S. Schwefel (Eds.),
Springer-Verlag, Berlin, 1996, pp. 890–899.

[19] L. M. Gambardella and M. Dorigo, “Ant-Q: a reinforcement learning approach to the traveling
salesman problem,” Proceedings of ML-95, Twelfth International Conference on Machine
Learning, A. Prieditis and S. Russell (Eds.), Morgan Kaufmann, 1995, pp. 252–260.

[20] L.M. Gambardella and M. Dorigo, “Solving symmetric and asymmetric TSPs by ant colonies,”
Proceedings of IEEE International Conference on Evolutionary Computation, IEEE-EC 96 ,
IEEE Press, 1996, pp. 622–627.

[21] B. Golden and W. Stewart, “Empiric analysis of heuristics,” in The traveling salesman problem,
E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy-Kan, D.B. Shmoys (Eds.), New York: Wiley and
Sons, 1985.

[22] S. Goss, S. Aron, J.L. Deneubourg, and J.M. Pasteels, “Self-organized shortcuts in the argentine
ant,” Naturwissenschaften, vol. 76, pp. 579–581, 1989.

[23] P. P. Grassé, “La reconstruction du nid et les coordinations inter-individuelles chez
Bellicositermes natalensis et Cubitermes sp . La théorie de la stigmergie: Essai d’interprétation
des termites constructeurs,” Insect Sociaux, vol. 6, pp. 41–83, 1959.

[24] B. Hölldobler and E.O. Wilson, The ants . Springer-Verlag, Berlin, 1990.
[25] D.S. Johnson and L.A. McGeoch, “The travelling salesman problem: a case study in local

optimization,” in Local Search in Combinatorial Optimization, E.H.L. Aarts and J.K. Lenstra
(Eds.), New York: Wiley and Sons, 1997.

[26] L.P. Kaelbling, L.M. Littman and A.W. Moore, “Reinforcement learning: a survey,” Journal of
Artificial Intelligence Research, vol. 4, pp. 237–285, 1996.

[27] P-C. Kanellakis and C.H. Papadimitriou, “Local search for the asymmetric traveling salesman
problem,” Operations Research, vol. 28, no. 5, pp. 1087–1099, 1980.

[28] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy-Kan, and D. B. Shmoys (Eds.), The traveling
salesman problem. New York: Wiley and Sons, 1985.

[29] F.–T. Lin, C.–Y. Kao, and C.–C. Hsu, “Applying the genetic approach to simulated annealing in
solving some NP-Hard problems,” IEEE Transactions on Systems, Man, and Cybernetics, vol.
23, pp. 1752–1767, 1993.

[30] S. Lin., “Computer solutions of the traveling salesman problem,” Bell Systems Journal, vol. 44,
pp. 2245–2269, 1965.

[31] S. Lin and B.W. Kernighan, “An effective heuristic algorithm for the traveling salesman
problem,” Operations Research, vol. 21, pp. 498–516, 1973.

[32] V. Maniezzo, A.Colorni, and M.Dorigo, “The ant system applied to the quadratic assignment
problem,” Tech. Rep. IRIDIA/94-28 , 1994, Université Libre de Bruxelles, Belgium.

[33] O. Martin, S.W. Otto, and E.W. Felten, “Large-step Markov chains for the TSP incorporating
local search heuristics,” Operations Research Letters, vol. 11, pp. 219-224, 1992.

[34] J.–Y. Potvin, 1993, “The traveling salesman problem: a neural network perspective,” ORSA
Journal of Computing, vol. 5, No. 4, pp. 328–347.

[35] G. Reinelt, The traveling salesman: computational solutions for TSP applications. Springer-
Verlag, 1994.

[36] D.J. Rosenkrantz, R.E. Stearns, and P.M. Lewis, “An analysis of several heuristics for the
traveling salesman problem,” SIAM Journal on Computing, vol. 6, pp. 563–581, 1977.

[37] R. Schoonderwoerd, O. Holland, J. Bruten, and L. Rothkrantz, “Ant-based load balancing in
telecommunications networks,” Adaptive Behavior, vol.5, No.2, 1996.

[38] T. Stützle and H. Hoosa, “Improvements on the ant system, introducing the MAX-MIN ant
system,” Proceedings of ICANNGA97 - Third International Conference on Artificial Neural
Networks and Genetic Algorithms , 1997, University of East Anglia, Norwich, UK.

[39] T. Stützle and H. Hoos, “The ant system and local search for the traveling salesman problem,”
Proceedings of ICEC'97 - 1997 IEEE 4th International Conference on Evolutionary
Computation, 1997, IEEE Press.

Dorigo and Gambardella - Ant Colony System 24/24

[40] C.J.C.H. Watkins, Learning with delayed rewards. Ph.D. dissertation, Psychology Department,
University of Cambridge, England, 1989.

[41] D. Whitley, T. Starkweather, and D. Fuquay, “Scheduling problems and travelling salesman:
the genetic edge recombination operator,” Proceedings of the Third International Conference
on Genetic Algorithms , Morgan Kaufmann, 1989, pp. 133–140.

[42] L. M. Gambardella, E. Taillard, and M. Dorigo, "Ant Colonies for QAP," IDSIA, Lugano,
Switzerland, Tech. Rep. IDSIA 97-4, 1997.

About the authors

Marco Dorigo (S’92-M’93-SM'96) was born in Milan, Italy, in
1961. He received the Laurea (Master of Technology) degree in
industrial technologies engineering in 1986 and the Ph.D. degree
in information and systems electronic engineering in 1992 from
Politecnico di Milano, Milan, Italy, and the title of Agrégé de
l'Enseignement Supérieur, from the Université Libre de Bruxelles,
Belgium, in 1995.

From 1992 to 1993 he was a research fellow at the International
Computer Science Institute of Berkeley, CA. In 1993 he was a
NATO-CNR fellow, and from 1994 to 1996 a Marie Curie fellow.
Since 1996 he has been a Research Associate with the FNRS, the
Belgian National Fund for Scientific Research. His research areas

include evolutionary computation, distributed models of computation, and reinforcement
learning. He is interested in applications to autonomous robotics, combinatorial optimization,
and telecommunications networks.

Dr. Dorigo is an Associate Editor for the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICS, and for the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION. He is
a member of the Editorial Board of the Evolutionary Computation journal and of the Adaptive
Behavior journal. He was awarded the 1996 Italian Prize for Artificial Intelligence. He is a
member of the Italian Association for Artificial Intelligence (AI*IA).

Luca Maria Gambardella (M’91) was born in Saronno, Italy, in
1962. He received the Laurea degree in computer science in 1985
from the Università degli Studi di Pisa, Facoltà di Scienze
Matematiche Fisiche e Naturali. Since 1988 he has been
Research Director at IDSIA, Istituto Dalle Molle di Studi sull’
Intelligenza Artificiale, a private research institute located in
Lugano, Switzerland, supported by Canton Ticino and Swiss
Confederation. His major research interests are in the area of
machine learning and adaptive systems applied to robotics and
optimization problems. He his leading several research and
industrial projects in the area of collective robotics, cooperation

and learning for combinatorial optimization, scheduling and simulation supported by the
Swiss National Fundation and by the Swiss Technology and Innovation Commission.

