
TR CS-97-03

A Proposal for a new KQML Speci�cation

Yannis Labrou and Tim Finin

February 3, 1997

A Proposal for a new KQML Speci�cation

Yannis Labrou and Tim Finin

Computer Science and Electrical Engineering Department (CSEE)
University of Maryland Baltimore County (UMBC)

Baltimore, Maryland 21250
email: fjklabrou,�ning@cs.umbc.edu

Abstract

We propose a new speci�cation for the Knowledge Query and Manipulation Lan-
guage (KQML). KQML is a language for the communication between software
agents. KQML o�ers a variety of message types (performatives) that express
an attitude regarding the content of the exchange. Performatives can also assist
agents in �nding other agents that can process their requests. Our starting point
for the speci�cation of KQML is [1]. Although the di�erences regarding the syn-
tax of KQML messages and the reserved performative parameters are minimal,
there are signi�cant changes regarding the set of reserved performatives, their
meaning and intended use.

Note: This document is not the o�cial new KQML speci�cation. It is in-
tended as a proposal for a new KQML speci�cation and the authors welcomes
any comments.

Contents

1 KQML transport assumptions 1

2 KQML string syntax 2

3 Reserved performative parameters 3

4 The reserved performatives 5

4.1 Discourse performatives . 5

4.2 Intervention and mechanics of conversation performatives 22

4.3 Networking and Facilitation performatives 30

List of Tables

1 Summary of reserved parameter keywords and their meanings. 3

2 Summary of reserved performatives for :sender S and :receiver R. 7

3 The set of performatives discussed in this document and their properties
when used in conversations. 8

4 The performatives that may have a <performative>, i.e., a KQML message,
as :content . 9

5 The performatives that various kinds of agents may process. 10

List of Figures

1 KQML string syntax in BNF . 2

2 An ask-all performative and the appropriate response. 6

3 A stream-all performative and the appropriate responses. 12

4 An insert performative following a related advertise, and an example of a
proper uninsert. 15

5 An achieve performative and the appropriate response, later followed by an
unachieve request. 18

6 An example of an advertise and appropriate follow-ups to that. 20

7 An example of an advertise of a subscribe of an ask-all. 22

8 A subscribe request and appropriate responses. 23

9 Examples of the three situations that may result in an error. 26

10 The exchange of Figure 3 when standby is used. 27

11 The possible scenarios that the exchange of Figure 10 might continue with. 28

12 A conversation involving the forward performative. 33

13 The rest of the exchange of Figure 13. 34

14 An example of a broker-one performative and the follow-up. 36

15 An example of a recommend-one and a response to it. 38

16 An example of a recruit-one and its follow-up. 40

A proposal for a new KQML speci�cation 1

This document constitutes a proposal for a revision of the current KQML speci�cation
document ([1]). Although the di�erences regarding the syntax of KQML messages and the
reserved performative parameters are minimal, there are signi�cant changes regarding the
set of reserved performatives, their meaning and intended use. Parts of Sections 1 and 2
appear in the current KQML speci�cation document ([1]) and are included here for reasons
of completeness of this presentation.

1 KQML transport assumptions

This chapter presumes a model of message transport. So for these purposes, we de�ne the
following abstraction of the transport level:

� Agents are connected by unidirectional communication links that carry discrete mes-
sages.

� These links may have a non{zero message transport delay associated with them.

� When an agent receives a message, it knows from which incoming link the message
arrived.

� When an agent sends a message it may direct the message to a particular outgoing
link.

� Messages to a single destination arrive in the order they were sent.

� Message delivery is reliable.

Note: The latter property is less useful than it may appear, unless there is
a guarantee of agent reliability as well. Such a guarantee is a policy issue, and
may vary among systems but it is important (as an assumption) for the semantic
description presented in [3]

This abstraction may be implemented in many ways. For example, the links could be
TCP/IP connections over the Internet, which may only actually exist during the trans-
mission of a single message or groups of messages. The links could be email paths used by
mail{enabled programs. The links could be UNIX IPC connections among processes running
on an ether{networked LAN. Or, the links could be high{speed switches in a multiprocessor
machine like the Hypercube, accessed via Object Request Broker software. Regardless of
how communication is actually carried out, KQML assumes that at the level of agents, the
communication appears to be point{to{point message passing.

The point of this point{to{point message transport abstraction is to provide a simple,
uniform model of communication for the outer layers of agent{based programs. This should
make agent{based programs and APIs easier to design and build.

A proposal for a new KQML speci�cation 2

2 KQML string syntax

A KQML message is also called a performative. A performative is expressed as an ASCII
string using the syntax de�ned in this section. This syntax is a restriction on the ASCII
representation of Common Lisp Polish-pre�x notation. The ASCII-string LISP list notation
has the advantages of being readable by humans, simple for programs to parse (particu-
larly for many knowledge{based programs), and transportable by many inter{application
messaging platforms. However, no choice of message syntax will be both convenient and
e�cient for all messaging APIs.

Unlike Lisp function invocations, parameters in performatives are indexed by keywords and
are therefore order independent. These keywords, called parameter names, must begin with
a colon (:) and must precede the corresponding parameter value. Performative param-
eters are identi�ed by keywords rather than by their position due to a large number of
optional parameters to performatives. Several examples of the syntax appear throughout
this document.

The KQML string syntax in BNF is shown in Figure 1. The BNF assumes de�nitions for
<ascii>, <alphabetic>, <numeric>, <double-quote>, <backslash>, and <whitespace>.
*" means any number of occurrences, and \-" indicates set di�erence. Note that <perform-
ative> is a specialization of <expression>. In length{delimited strings, e.g., \#3"abc",
the whole number before the double{quote speci�es the length of the string after the double{
quote.

<performative>::= (<word> {<whitespace> :<word> <whitespace> <expression>}*)

<expression> ::= <word> | <quotation> | <string> |

(<word> {<whitespace> <expression>}*)

<word> ::= <character><character>*

<character> ::= <alphabetic> | <numeric> | <special>

<special> ::= < | > | = | + | - | * | / | & | ^ | ~ | _ |

@ | $ | % | : | . | ! | ?

<quotation> ::= '<expr> | `<comma-expr>

<comma-expr> ::= <word> | <quotation> | <string> | ,<comma-expr> |

(<word> {<whitespace> <comma-expr>}*)

<string> ::= "<stringchar>*" | #<digit><digit>*"<ascii>*

<stringchar> ::= \<ascii> | <ascii>-\-<double-quote>

Figure 1: KQML string syntax in BNF

A proposal for a new KQML speci�cation 3

3 Reserved performative parameters

As described in Section 2, performatives take parameters identi�ed by keywords. This
section de�nes the meaning of some common performative parameters, by coining their
keywords and describing the meaning of the accompanying values. This will facilitate
brevity in the performative de�nitions presented in Section 4, since those parameters are
used heavily.

The following parameters are reserved in the sense that any performative's use of parameters
with those keywords must be consistent with the de�nitions below. These keywords and
information parameter meanings are summarized in Table 1. The speci�cation of reserved
parameter keywords is useful in at least two ways: 1) to mandate some degree of uniformity
on the semantics of common parameters, and thereby reduce programmer confusion, and
2) to support some level of understanding, by programs, of performatives with unknown
names but with known parameter keywords.

:sender <word>

:receiver <word>

These parameters convey the actual sender and receiver of a performative, as opposed to
the virtual sender and receiver in the :from and :to parameters of a forward performative
(see Section 4.3).

:reply-with <word>

:in-reply-to <word>

The sender knows that the reply (meaning the response or follow{up, in a more general sense,
that is \related" or \linked" to the message), if any, will have a :in-reply-to parameter
with a value identical to the <word> of the :reply-with parameter of the message to which
it is responding.

:language <word>

:ontology <word>

:content <expression>

Keyword Meaning

:sender the actual sender of the performative
:receiver the actual receiver of the performative
:from the origin of the performative in :content when forward is used
:to the �nal destination of the performative in :content when forward is used
:in-reply-to the expected label in a response to a previous message (same as the

:reply-with value of the previous message)
:reply-with the expected label in a response to the current message
:language the name of the representation language of the :content
:ontology the name of the ontology (e.g., set of term de�nitions) assumed in the

:content parameter
:content the information about which the performative expresses an attitude

Table 1: Summary of reserved parameter keywords and their meanings.

A proposal for a new KQML speci�cation 4

The :content parameter indicates the \direct object" (in the linguistic sense) of the per-
formative. For example, if the performative name is tell then the :content will be the
sentence being \told". The <expression> in the :content parameter must be a valid ex-
pression in the representation language speci�ed by the :language parameter (or KQML
in some cases). Figure 1 suggests that expressions in the :content, that have parentheses
(like the Prolog expressions that appear in the examples throughout this chapter) should be
enclosed in <double-quote>s (\ "). Furthermore, the constants used in the <expression>
must be a subset of those de�ned by the ontology named by the :ontology parameter.

Note: The BNF suggests that both :language and :ontology are restricted
to only take <word>s as values, and therefore complex terms, e.g., denoting
unions of ontologies, are not allowed. The de�nitions for <quotation> and
<comma-expr> in Figure 1, are intended to accommodate expressions in KIF
that use special operators.

A proposal for a new KQML speci�cation 5

4 The reserved performatives

We provide descriptions of the reserved performatives and examples that show their proper
use. We use the following notation:

� When referred to in text, performative names are written in italics, e.g., ask-all, tell,
etc.

� In text, we use the names of reserved performative parameters to refer to their values,
so :sender refers to the particular sender of a performative, :content refers to the
content and so on.

� Occasionally, we use parameterperformative to refer to the value of a particular per-
formative parameter, i.e., senderadvertise to refer to the sender of an advertise in a
particular case.

� We use <performative> to refer to a particular instance of a performative.

The performatives examined in this document are organized in three (3) categories and
their meaning and some properties of interest can be found in Table 2 (page 7), Table 3
(page 8), Table 4 (page 9) and Table 5 (page 10). The parameters presented with the
performatives' speci�cations are mandatory and de�ne the minimum for proper use of the
performative. Parameters preceded by an asterisk (*) are not always mandatory. For
example, the :in-reply-to for ask-if is mandatory if the ask-if follows a relevant advertise,
but not in other cases. The asterisk itself is not part of the KQML syntax; we only use it
as a meta{syntactic marker. Finally, although often some of the values of the parameters
can be inferred, we choose completeness over economy.

4.1 Discourse performatives

This is the category of performatives that may be considered as close as possible to speech
acts in the linguistic sense. Of course the idea of explicitly stating the format of the response
(as in stream-all or ask-one) is unusual from a speech act theory perspective, but they may
still be considered as speech acts in the pure sense. These are the performatives to be used
in the context of an information and knowledge exchange kind of discourse between two
agents.

(ask-if

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>)

A proposal for a new KQML speci�cation 6

Agent A sends the following performative to agent B. The :in-reply-to suggests that
the ask-all follows a relevant advertise message.

(ask-all

:sender A

:receiver B

:in-reply-to id0

:reply-with id1

:language Prolog

:ontology foo

:content "bar(X,Y)")

and agent B replies with the following KQML message

(tell :sender B

:receiver A

:in-reply-to id1

:reply-with id2

:language Prolog

:ontology foo

:content "[bar(a,b),bar(c,d)]")

Figure 2: An ask-all performative and the appropriate response.

The :senderwishes to know if the :content is true of the receiver. True of the :receiver is
taken to mean that either the <expression>matches a sentence in the receiver's Knowledge
Base (KB) or is provable of the :receiver, i.e., matches a sentence in the receiver's Virtual
Knowledge Base (VKB).1

(ask-all

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>)

The :sender wishes to know all instantiations of the :content that are true of the :re-

ceiver; <expression> has free variables that are bound to values in the instantiations of
the response. Those instantiations will be delivered in the form of a collection provided by
:language. Of course, the notion of the collection is language dependent. In the example
in Figure 2 (:language is Prolog) such a collection is just a list.

(ask-one

1From now on we will use \VKB" to refer to either \exists in the KB" or \provable."

A proposal for a new KQML speci�cation 7

Name Page Meaning

ask-if 6 S wants to know if the :content is in R's VKB
ask-all 6 S wants all of R's instantiations of the :content that are true of R
ask-one 11 S wants one of R's instantiations of the :content that is true of R
stream-all 11 multiple-response version of ask-all
eos 11 the end-of-stream marker to a multiple-response (stream-all)
tell 13 the sentence is in S's VKB
untell 13 the sentence is not in S's VKB
deny 13 the negation of the sentence is in S's VKB
insert 14 S asks R to add the :content to its VKB
uninsert 14 S wants R to reverse the act of a previous insert
delete-one 16 S wants R to remove one matching sentence from its VKB
delete-all 16 S wants R to remove all matching sentences from its VKB
undelete 16 S wants R to reverse the act of a previous delete
achieve 17 S wants R to do make something true of its physical environment
unachieve 17 S wants R to reverse the act of a previous achieve
advertise 19 S wants R to know that S can and will process a message like the one in

:content

unadvertise 21 S wants R to know that S cancels a previous advertise and will not
process any more messages like the one in the :content

subscribe 21 S wants updates to R's response to a performative

error 22 S considers R's earlier message to be mal-formed
sorry 24 S understands R's message but cannot provide a more informative re-

sponse
standby 24 S wants R to announce its readiness to provide a response to the message

in :content

ready 25 S is ready to respond to a message previously received from R
next 25 S wants R's next response to a message previously sent by S
rest 25 S wants R's remaining responses to a message previously sent by S
discard 29 S does not want R's remaining responses to a previous (multi-response)

message

register 30 S announces to R its presence and symbolic name
unregister 30 S wants R to reverse the act of a previous register
forward 31 S wants R to forward the message to the :to agent (R might be that

agent)
broadcast 32 S wants R to send a message to all agents that R knows of
transport-address 30 S associates its symbolic name with a new transport address
broker-one 35 S wants R to �nd one response to a <performative> (some agent other

than R is going to provide that response)
broker-all 35 S wants R to �nd all responses to a <performative> (some agent other

than R is going to provide that response)
recommend-one 37 S wants to learn of an agent who may respond to a <performative>

recommend-all 37 S wants to learn of all agents who may respond to a <performative>

recruit-one 37 S wants R to get one suitable agent to respond to a <performative>

recruit-all 39 S wants R to get all suitable agents to respond to a <performative>

Table 2: Summary of reserved performatives for :sender S and :receiver R.

A proposal for a new KQML speci�cation 8

Category Name Response Response No :content

Required Only Response

Discourse ask-if X <expression>

ask-all X <expression>

ask-one X <expression>

stream-all X <expression>

eos X empty
tell X <expression>

untell X <expression>

deny X <expression>

insert X <expression>

uninsert X <expression>

delete-one X <expression>

delete-all X <expression>

undelete X <expression>

achieve X <expression>

unachieve X <expression>

advertise X <performative>

unadvertise X <performative>

subscribe X <performative>

Intervention error X empty
and Mechanics sorry X empty

standby n/a n/a n/a <performative>

ready n/a n/a n/a empty
next n/a n/a n/a empty
rest n/a n/a n/a empty
discard n/a n/a n/a empty

Facilitation register X <expression>

and Networking unregister X empty
forward :content <performative>

broadcast :content <performative>

transport-address X <expression>

broker-one :content <performative>

broker-all :content <performative>

recommend-one X <performative>

recommend-all X <performative>

recruit-one :content <performative>

recruit-all :content <performative>

Table 3: This is the set of performatives discussed in this document and their properties
when used in conversations. The properties have the following meaning: "response required"
means that the :receiver processes the performative and generates the response on its own;
"response only" means that the performative can only be used in the context of responding
to some other performative; "no response" means that those performatives do not require
(but might allow) a response (there is also the possibility of a follow-up message); and
:content refers to the type of the :content ("n/a" stands for not applicable; see Section 4.2
for an explanation). Forward, broadcast, broker-one, broker-all, recruit-one and recruit-all,
do not require a response by default. Whether there is a response or a follow-up to them,
depends solely on the :content, i.e., on the <performative> that appears in the :content
and its properties in conversations.

A proposal for a new KQML speci�cation 9

Category Name advertise subscribe standby forward Facilitation
broadcast performatives

Discourse ask-if X X X X
ask-all X X X X
ask-one X X X X X
stream-all X X X X X
eos X X
tell X X
untell X
deny X
insert X X X
uninsert X
delete-one X X X
delete-all X X X
undelete X
achieve X X X
unachieve X
advertise X
unadvertise X
subscribe X X X X

Intervention error X
and Mechanics sorry X

standby X
ready X
next X
rest X
discard X

Facilitation register
and Networking unregister

forward
broadcast
transport-address
broker-one X
broker-all X
recommend-one X X X
recommend-all X X X
recruit-one X
recruit-all X

Table 4: Advertise, subscribe, standby, forward, broadcast and the facilitation performatives

are the only performatives that may have a <performative>, i.e., a KQML message, as
:content ("facilitation performatives" refers to broker-one, broker-all, recruit-one, recruit-
all, recommend-one and recommend-all). Note that the facilitation performatives allow
exactly the same performatives as advertise, which makes sense since the processing of the
facilitation performatives depends on advertisements. The facilitation performatives may
appear in the :content of advertise messages if and only if a non-facilitator is the :sender
of the advertise.

A proposal for a new KQML speci�cation 10

Category Name All Facilitators Only if

agents only advertised

Discourse ask-if X
ask-all X
ask-one X
stream-all X
eos X
tell X
untell X
deny X
insert X
uninsert X
delete-one X
delete-all X
undelete X
achieve X
unachieve X
advertise X
unadvertise X
subscribe X

Intervention error X
and Mechanics sorry X

standby X
ready X
next X
rest X
discard X

Facilitation register X
and Networking unregister X

forward X
broadcast X
transport-address X
broker-one X X
broker-all X X
recommend-one X X
recommend-all X X
recruit-one X X
recruit-all X X

Table 5: This table lists the performatives that various kinds of agents may process. We
distinguish between agents that are facilitators and agents that are not facilitators. The
categories have the following meaning: "all agents" refers to all agents, whether they serve
as facilitators on not; "facilitators only" only applies to agents that are facilitators; and
"only if advertised" refers to non-facilitator agents that have to advertise for the speci�c
<performative>. A subtle distinction has to be drawn between an agent's ability to process
a performative in principle and to process a <performative>, i.e., a KQML message of that
performative with a particular :content. So, for example, although all agents can process
ask-if, i.e., they have handler functions for that performative, they still have to advertise

their ability to process an ask-if with a particular :content.

A proposal for a new KQML speci�cation 11

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>)

This performative is the same as ask-all but only one expression is sought as a response.
Any of the tell performatives of Figure 3 would constitute the appropriate response to an
ask-one message similar to the ask-all message of Figure 2.

Note: The :sender of an ask-one has no control over which of the possible
responses might be delivered to it (�rst, last, random, etc.)

(stream-all

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>)

This performative's meaning is identical to that of ask-all, except for the format of the
delivery of the response. Instead of delivering the collection of matches in a single perfor-
mative, a series of performatives, one for each member of the collection, should be sent.
This only holds of course, if the response to the corresponding ask-all would have been a
tell. See Figure 3 for an example of an exchange that involves the stream-all performative
and note that the collective response is equivalent to that of Figure 2.

(eos

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>)

This performative only serves the purpose of marking the end{of{stream of the multi{
response to a stream-all (see Figure 3).

A proposal for a new KQML speci�cation 12

Agent A sends a message to agent B

(stream-all

:sender A

:receiver B

:in-reply-to id0

:reply-with id1

:language Prolog

:ontology foo

:content "bar(X,Y)")

and agent B replies with the following KQML message

(tell :sender B

:receiver A

:in-reply-to id1

:reply-with id2

:language Prolog

:ontology foo

:content "bar(a,b)")

and later agent B sends

(tell :sender B

:receiver A

:in-reply-to id1

:reply-with id3

:language Prolog

:ontology foo

:content "bar(c,d)")

and �nally concludes the response with

(eos :sender B

:receiver A

:in-reply-to id1

:reply-with id4)

Note that B's response is equivalent to B's single performative response to the similar
ask-all of Figure 2.

Figure 3: A stream-all performative and the appropriate responses.

A proposal for a new KQML speci�cation 13

(tell

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>)

This performative indicates that the :content expression is true of the :sender, i.e., that
:expression is in its VKB.

(untell

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>)

This performative indicates that the :content expression in not true of the sender, i.e., it is
not part of the sender's VKB. This does not necessarily mean that the expression's negation
is true of the sender. In other words, untell<expression> is not the same as tell

:<expression>.

(deny

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>)

This performative indicates that the negation of the :content is true of the sender, i.e.,
it is in the sender's VKB. In other words, deny<expression> is the same as tell

:<expression>.

Note: The reason for having such a performative is that a system might not
provide for logical negation in :language but still operate under a Closed World
Assumption (CWA), i.e., non-provability of an <expression> is equivalent to
provability of its negation.

A proposal for a new KQML speci�cation 14

(insert

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>)

The :sender requests the :receiver to add the :content to its KB (see Figure 4).

(uninsert

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>)

This performative is a request to reverse an insert that took place in the past by deleting
the inserted expression.

Note: Performatives like insert and delete can only be used when an agent
has advertised that is going to accept them. Such an advertisement implies the
acceptance of the corresponding uninsert and undelete messages. Although it is
tempting to view insert and delete as complementary and use delete in the place
of uninsert, and insert instead of undelete, we choose having performatives of
the un- variety, because: (a) an agent might advertise only an insert or only a
delete for a particular :content, and (b) to emphasize that the intent of the un-
performative is to reverse an action that has taken place rather than negate its
e�ects. An uninsert can only be used after a corresponding insert.

An example that involves insert and uninsert can be seen in Figure 4.

(delete-one

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>)

A proposal for a new KQML speci�cation 15

Agent A sends the following performative to agent B

(advertise

:sender A

:receiver B

:reply-with id1

:language KQML

:ontology kqml-ontology

:content (insert

:sender B

:receiver A

:in-reply-to id1

:language Prolog

:ontology foo

:content "bar(X,Y)"))

Later B sends the following message to A, making use of the advertise

(insert

:sender B

:receiver A

:in-reply-to id1

:reply-with id2

:language Prolog

:ontology foo

:content "bar(a,b)")

and some time later B sends the following message to A

(uninsert

:sender B

:receiver A

:in-reply-to id1

:reply-with id3

:language Prolog

:ontology foo

:content "bar(a,b)")

which is followed a bit later by

(insert

:sender B

:receiver A

:in-reply-to id1

:reply-with id4

:language Prolog

:ontology foo

:content "bar(c,d)")

Figure 4: An insert performative following a related advertise, and an example of a proper
uninsert. Note that reply� withinsert is not preset by the :sender of the advertise.

A proposal for a new KQML speci�cation 16

This performative is a request to delete one sentence from the receiver's KB. The sentence
to be deleted is the one that would have been the :content of the response if an identical
ask-one KQMLmessage had been sent and a tell performative had been used in the response.

Note: Had the response to the corresponding ask-one been anything other
than a tell, a sorry should be the response to a delete-one. The idea is that in
such a case, e.g., had a deny been the response to the ask-all, the :content of
the deny would not appear in the KB, and thus cannot be removed from it.

(delete-all

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>)

This performative is a request to delete all sentences from the receiver's KB that would
have constituted the response if an identical ask-all KQML message had been sent and a
tell performative had been used for the response.

(undelete

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>)

This performative is a request to reverse a delete that took place in the past by inserting
the deleted expression(s).

Note: An undelete can only be used after a corresponding delete-one or delete-
all. In either case, it undeletes whatever was deleted in the �rst place, assuming
of course that the original delete action was executed successfully (no error or
sorry was sent as a response).

A proposal for a new KQML speci�cation 17

(achieve

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>)

The :receiver is asked to want to try to make the :content true of the system. Of course
this can always be done by just inserting the :content in the KB, but this performative
makes sense when the :receiver has a representation of the real world in its KB and the
result of the attempt to \make the :content true" will be some action in the real world
the e�ect of which will be to modify the respective part of the representation of the real
world and thus make the :content true in the KB. In other words, the :content can be
made true only as a result of some action outside of the system, in the physical world. See
Figure 5 for an example of an exchange that involves the achieve performative.

(unachieve

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>)

This performative is a request to reverse an achieve that took place in the past. See Figure 5
for an example of an exchange that involves the unachieve performative.

Note: An unachieve can only be used after a corresponding achieve.

(advertise

:sender <word>

:receiver <word>

:reply-with <word>

:language <word>

:ontology <word>

:content (performative_name

:sender <word>

:receiver <word>

:in-reply-to <word>

A proposal for a new KQML speci�cation 18

Agent A sends the following performative to agent B (the :in-reply-to value suggests
that B has sent an advertise for such an achieve message), requesting that B set a new
value for the motor torque of motor1

(achieve :sender A

:receiver B

:in-reply-to id1

:reply-with id2

:language Prolog

:ontology motors

:content "torque(motor1,5)")

After achieving the requested motor torque (assuming that it was not already set to 5),
agent B sends the following message to A (although this is not required)

(tell :sender B

:receiver A

:in-reply-to id2

:reply-with id3

:language Prolog

:ontology motors

:content "torque(motor1,5)")

Some time later, agent A sends the following message to B, in e�ect requesting that the
previous setting (unknown to A) be achieved

(unachieve :sender A

:receiver B

:in-reply-to id1

:reply-with id4

:language Prolog

:ontology motors

:content "torque(motor1,5)")

Agent A responds with the following message that serves as acknowledgment (although
this is not required), which implies that the motor torque for motor1 has been sent to its
previous value (as a result of the unachieve)

(untell :sender B

:receiver A

:in-reply-to id4

:reply-with id5

:language Prolog

:ontology motors

:content "torque(motor1,5)")

A could choose to send a tell instead, in which case A would give information to B about
the original value (before the achieve) of the motor torque of motor1.

Figure 5: An achieve performative and the appropriate response, later followed by an
unachieve request.

A proposal for a new KQML speci�cation 19

:language <word>

:ontology <word>

:content <expression>))

This performative indicates that the :sender commits to process the whole embedded
message if the senderadvertise receives it (presumably from receiveradvertise in the future).
The subsequent KQML message ought to be identical to whatever the contentadvertise is,
except for the :reply-with value that is going to be set by the :receiver of the advertise.
There are constraints that apply to such a message:

� performative name can be one of ask-if, ask-one, ask-all, stream-all, insert,
delete-one, delete-all, achieve and subscribe (or one of the facilitation perfor-

matives if the :sender is not a facilitator; see also Table 4).

� senderadvertise = receiverperformative name

� receiveradvertise = senderperformative name

� reply� withadvertise = in� reply� toperformative name

See Figure 6 for an example of an exchange that involves the advertise performative.

Note: Advertising to a facilitator is like advertising, i.e., potentially sending
an advertise, to all agents that the facilitator knows (or might learn) about. So,
when an agent sends an advertise to a facilitator, the agent will process messages
like the contentadvertise from any agent and not only from receiveradvertise. For
all practical purposes, an advertise to a facilitator is an advertise to the commu-
nity. Since in order for the senderadvertise to process such a message, the proper
value for the in� reply� toperformative name is needed, the senderadvertise can
rest assured that such knowledge was acquired only through the facilitator that
was the receiveradvertise.

(unadvertise

:sender <word>

:receiver <word>

:reply-with <word>

:language <word>

:ontology <word>

:content (performative_name

:sender <word>

:receiver <word>

:in-reply-to <word>

:language <word>

:ontology <word>

:content <expression>))

A proposal for a new KQML speci�cation 20

Agent A sends the following performative to agent B

(advertise

:sender A

:receiver B

:reply-with id1

:language KQML

:ontology kqml-ontology

:content (ask-if

:sender B

:receiver A

:in-reply-to id1

:language Prolog

:ontology foo

:content "bar(X,Y)"))

Later B sends the following message to A, making use of the advertise

(ask-if

:sender B

:receiver A

:in-reply-to id1

:reply-with id2

:language Prolog

:ontology foo

:content "bar(X,Y)")

and agent A responds accordingly, as committed to do

(tell

:sender A

:receiver B

:in-reply-to id2

:reply-with id3

:language Prolog

:ontology foo

:content "bar(X,Y)")

At some later time, B sends another ask-if message, with a new reply� withask�if this
time, and agent A will respond promptly again.

Figure 6: An example of an advertise and appropriate follow-ups to that.

A proposal for a new KQML speci�cation 21

This performative essentially cancels an advertise. Its :content has to be the same with
the :content of the advertise that it cancels.

(subscribe

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content (performative_name

:sender <word>

:receiver <word>

:in-reply-to <word>

:language <word>

:ontology <word>

:content <expression>))

This performative is a request to be updated every time that the would{be response to
the message in :content is di�erent than the last response delivered to the sendersubscribe.
Additionally, since a point of reference is needed for the receiver of a subscribe, it should
issue the �rst response immediately after receiving the performative and then store the last
response in order to compare. We do not need something like an unsubscribe performative
because a subscribe does not a�ect the VKB, so there is nothing to be undone. If an agent
has lost interest to the responses to a prior subscribe, a discard (see page 29) may be used
to inform the other agent. See Figure 8 for an example of an exchange that involves the
subscribe performative.

Note: The performative name in the contentsubscribe might be any of the
performatives that require a response (see Table 3).

A proposal for a new KQML speci�cation 22

(advertise

:sender B

:receiver A

:reply-with id0

:language KQML

:ontology kqml-ontology

:content (subscribe

:sender A

:receiver B

:in-reply-to id0

:language KQML

:ontology kqml-ontology

:content (ask-all

:sender A

:receiver B

:in-reply-to id0

:language Prolog

:ontology foo

:content "bar(X,Y)")))

There is no in� reply� toadvertise because advertise messages are starting points for
conversations, and there is no reply� withsubscribe value because this is not to be provided
by the agent that advertises.

Figure 7: An example of an advertise of a subscribe of a ask-all.

4.2 Intervention and mechanics of conversation performatives

The role of those performatives is to intervene in the normal course of a conversation.
The normal course of a conversation is as follows: agent A sends a KQML message (thus
starting a conversation) and agent B responds whenever it has a response or a follow{up.
The performatives of this category, either prematurely terminate a conversation (error,
sorry), or override this default protocol (standby, ready, next, rest and discard).

(error

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>)

This performative suggests that the :sender received a message, indicated by the value
of :in-reply-to, that it does not comprehend. The cause for an error might be: 1)
syntactically ill-formed message, 2) the message has wrong performative parameter values,
or 3) it does not comply with the conversation protocols. This performative can appear as
a response to any performative, if necessary. See Figure 9 for examples of cases that may
lead to an error performative being sent.

A proposal for a new KQML speci�cation 23

Agent A sends to agent B the following KQML message, whose :in-reply-to tag suggests
that is a follow-up to an advertise (see Figure 7 for this advertise; it is an example of a
really long KQML message)

(subscribe

:sender A

:receiver B

:in-reply-to id0

:reply-with id1

:language KQML

:ontology kqml-ontology

:content (ask-all

:sender A

:receiver B

:in-reply-to id0

:reply-with id2

:language Prolog

:ontology foo

:content "bar(X,Y)"))

Upon receiving this subscribe message, B responds immediately with an appropriate mes-
sage (as if processing the ask-all)

(tell

:sender B

:receiver A

:in-reply-to id2

:reply-with id3

:language Prolog

:ontology foo

:content "[bar(a,b),bar(a,c)]")

Some time later, when the would{be response to the ask-all message changes, B sends
another message to A

(tell

:sender B

:receiver A

:in-reply-to id2

:reply-with id4

:language Prolog

:ontology foo

:content "[bar(a,b)]")

In the future, whenever B decides that the would{be response to the ask-all message would
have been di�erent than the last response sent to A, B will sent a new update to A. Note
that B's responses are to the ask-all (and not to the subscribe), which explains the values
of the :in-reply-to parameters.

Figure 8: A subscribe request and appropriate responses.

A proposal for a new KQML speci�cation 24

(sorry

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>)

This performative indicates that the :sender comprehends the message, which is correct in
every syntactic and semantic aspect, but has nothing to provide as a response. The sorry

performative may be used also when the agent could give some more responses (assuming
the agent has provided responses in the past, as in when responding to a subscribe), i.e.,
theoretically there are more responses, but for whatever reason decides not to continue
providing them. When an agent uses sorry as a response to a <performative> this means
that the agent did not process till the end the message to which it is responding to, e.g., an
agent that responds with a sorry to a insert, never inserted the :content to its KB. This
performative can appear as a response to any performative, if necessary.

(standby

:sender <word>

:receiver <word>

:reply-with <word>

:language <word>

:ontology <word>

:content (performative_name

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>))

Normally the :receiver of a performative will deliver its response as soon as a response
is generated. The standby performative that takes a <performative> as its content, acts
like a modi�er on the usual order of a�airs. It is a request to the receiverstandby to handle
the embedded performative as it would normally do, but in addition, the :receiver should
inform the senderstandby that it has generated the response and then withhold it until the
:sender requests for it. In e�ect, standby warns the :receiver that the response to the
:content should not be delivered until the :sender of the standby sends an appropriate
noti�cation. From the above it is obvious that performative name may be any of the
performatives of Table 3 that require a response.

Note: In short, standby transfers control of the timing of the responses to the
:sender of the original query, thus reversing the default protocol, according to
which the :receiver delivers its responses at will.

A proposal for a new KQML speci�cation 25

See Figure 10 for an example of an exchange that involves the standby performative.

(ready

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>)

This performative is used by an agent to announce its readiness to deliver at least one of
its responses to a KQML message that has been embedded in a standby performative. The
use of standby does not put the additional constraint on the receiverstandby (which is also
the senderready) to generate all of its possible responses before announcing its readiness.
See Figure 10 for an example of an exchange that involves the ready performative.

(next

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>)

This performative is used by an agent that has sent a standby in order to request a response
from its interlocutor, after the interlocutor (the receiver of the standby) has announced
that it has the response(s) (with the use of ready). See Figure 10 and Figure 11 for an
example of an exchange that involves the next performative.

(rest

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>)

This performative is to be used by an agent to request for the remaining of the responses, in
an exchange that started with a standby. In e�ect, rest results to an undoing of the standby,
since it puts in e�ect the default protocol where the :receiver is in charge of the pace of
the conversation and may deliver its responses at will. See Figure 10 and Figure 11 for an
example of an exchange that involves the rest performative.

(discard

A proposal for a new KQML speci�cation 26

Agent B has received the ask-all message of Figure 2. If B sends either of the following 3
messages as a response to agent A, agent A will respond with an error.
Example 1

(tell :sender B

:receiver A

:reply-with id2

:language Prolog

:ontology foo

:content "[bar(a,b),bar(c,d)]")

The response is incorrect because it is syntactically ill-formed (the value of the
:in-reply-to tag is missing).

Example 2

(tell :sender B

:receiver A

:in-reply-to id5

:reply-with id2

:language Prolog

:ontology foo

:content "[bar(a,b),bar(c,d)]")

The response is incorrect because the value of the :in-reply-to is incorrect (assuming
that A has sent no message to B with such a :in-reply-to tag).
Example 3

(tell :sender B

:receiver A

:in-reply-to id1

:reply-with id2

:language Prolog

:ontology foo

:content "[foo(a,b,c),foo(c,d,e)]")

The response is semantically incorrect because the value of the :content is not an
instantiation of the value of contentask�all to which this message serves as a re-
sponse (the response could also be semantically incorrect if the performative name used in
the response had not been one of those allowed by the conversation policies, e.g., an insert).

Had agent B responded with either of the above messages, agent A would have sent

(error :sender A

:receiver B

:in-reply-to id2

:reply-with id3)

Figure 9: Examples of the three situations that may result in an error.

A proposal for a new KQML speci�cation 27

Agent A sends a message identical to the stream-all of Figure 3 but this time a standby is
used.

(standby

:sender A

:receiver B

:reply-with id00

:language KQML

:ontology kqml-ontology

:content (stream-all

:sender A

:receiver B

:reply-with id1

:language Prolog

:ontology foo

:content "bar(X,Y)"))

and agent B this time responds with

(ready

:sender B

:receiver A

:in-reply-to id00

:reply-with id01)

Then, agent A requests the �rst response with

(next

:sender A

:receiver B

:in-reply-to id01

:reply-with id02)

and �nally A delivers

(tell :sender B

:receiver A

:in-reply-to id1

:reply-with id2

:language Prolog

:ontology foo

:content "bar(a,b)")

Note that the :in-reply-to value of the tell matches the reply-with value of the stream-

all and not that of the next, since tell is the response to the stream-all. From that point
on, a couple of di�erent scenarios are possible (see Figure 11).

Figure 10: The exchange of Figure 3 when standby is used.

A proposal for a new KQML speci�cation 28

Scenario 1: Agent A requests the second response and B delivers it

(next :sender A

:receiver B

:in-reply-to id01

:reply-with id03)

(tell :sender B

:receiver A

:in-reply-to id1

:reply-with id3

:language Prolog

:ontology foo

:content "bar(c,d)")

Agent A requests for the next response with next and B ends the exchange, since there
are no more responses, by delivering the end-of-stream marker

(next :sender A

:receiver B

:in-reply-to id01

:reply-with id04)

(eos :sender B

:receiver A

:in-reply-to id1

:reply-with id4)

Scenario 2: Agent A might request for the remaining responses all together

(rest :sender A

:receiver B

:in-reply-to id01

:reply-with id05)

in which case the exchange ends with B delivering

(tell :sender B

:receiver A

:in-reply-to id1

:reply-with id3

:language Prolog

:ontology foo

:content "bar(a,b)")

(eos :sender B

:receiver A

:in-reply-to id1

:reply-with id4)

Scenario 3: Agent A is not interested in any more responses and lets B know that, by

(discard :sender A

:receiver B

:in-reply-to id00

:reply-with id06)

Figure 11: The possible scenarios that the exchange of Figure 10 might continue with
(Figure 10 shows the exchange of Figure 3 when standby is used).

A proposal for a new KQML speci�cation 29

:sender <word>

:receiver <word>

:reply-with <word>

:in-reply-to <word>)

This performative indicates to the :receiver that the :sender is not interested in any more
responses (presumably to a multi-response performative). See Figure 10 and Figure 11 for
an example of an exchange that involves the discard performative.

Note: Performatives that may result to a multi-response are: stream-all,
subscribe, recommend-all.

A proposal for a new KQML speci�cation 30

4.3 Networking and Facilitation performatives

The performatives of this category are not speech acts in the pure sense. They are primarily
performatives that allow agents to �nd other agents that can process their queries. Although
regular, non{facilitator agents could choose to process them, it would not be particularly
helpful since the facilitation performatives rely on advertise messages and only facilitators

have the power to make advertise messages community{wide.

(register

:sender <word>

:receiver <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>)

This performative is used by an agent to announce to a facilitator its presence and the
symbolic name associated with its physical address. The :content comprises of the agent's
symbolic name and other information about the agent suggested by some KQML-agents

ontology.

(unregister

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>)

This performative is used to undo a previously sent register and can only be used if a register
has been sent before by the same agent (the senderunregister). This also automatically
cancels all the commitments made by the agent in the past, i.e., all advertise messages sent
by the agent to the facilitator become invalid.

(transport-address

:sender <word>

:receiver <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <word>)

A proposal for a new KQML speci�cation 31

This performative may be used by an agent to announce its relocation in the network
(mail forwarding with the U.S. Postal Service meaning). Using transport-address updates
the information provided by a register. Essentially this is a unregister (from the physical
address where the register was sent from), followed by a register from the new (current)
physical address.

Note: The physical address is automatically captured by the router of a re-
ceiving register and is not part of the KQML message. Performatives like regis-
ter, unregister and transport-address generate an association between a symbolic
name (which is part of the KQML message) and a physical address and port
(captured by the router of a receiving agent, by virtue of the message being sent
across the network).

(forward

:from <word>

:to <word>

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content (performative_name

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>))

This performative is a request from agent :sender to agent :receiver to deliver a message
that originated from agent :from, to agent :to. The :receiver of the forward might be
the :to agent, in which case the :receiver just processes the message in :content. Agent
:receiver might not be able to deliver the message to agent :to in which case it should
send a forward to some other agent that has a better chance to get the message to the :to
agent. The following constraints hold:

� fromforward = senderperformative name

� toforward = receiverperformative name

See Figure 12 and Figure 13 for an example of an exchange that involves the forward

performative.

A proposal for a new KQML speci�cation 32

Note: The :in-reply-to parameter for forward is optional and as far as
we know only makes sense in the context of responding to recommend-one,
recommend-all, broker-one and broker-all in which case the forward is a direct

response to the <performative>. In the case of forward being used to respond
to broker-one and broker-all, the :sender value of the embedded performative
is omitted.

(broadcast

:sender <word>

:receiver <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <performative>)

This performative is a request to forward the <performative> to all agents that the
:receiver knows of, i.e., to all agents that have registered (using register with the :re-

ceiver, if :receiver is a facilitator), or that the :receiver might know of. A broadcast is
equivalent (and implemented in such a manner) to a series of forward messages to all such
agents.

Note: All agents (both facilitators and regular agents) are by default capable
of processing forward and broadcast, so agents do not have to send advertise

messages for those performatives. This is the reason why broadcast requires no
:in-reply-to value. What might have been advertised is the contentbroadcast
and it is the :content's :in-reply-to value that is of interest.

(broker-one

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content (performative_name

:sender <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>))

A proposal for a new KQML speci�cation 33

Let us consider the following situation: agent C knows of agent A, agent A knows of agent
B and agent B knows of agent D ("knows of" is synonymous to "is able to deliver messages
to"). Agent C wants agent D to process an ask-if for which agent D has advertised its
ability and commitment to do so (it is possible for C to know that agent D exists but still
not being able to deliver messages to it, e.g., C learned about D after a recommend-one

message similar to that of Figure 15). So, agent C sends the following forward message to
agent A.

(forward

:from C

:to D

:sender C

:receiver A

:reply-with id00

:language KQML

:ontology kqml-ontology

:content (ask-if

:sender C

:receiver D

:in-reply-to id1

:reply-with id2

:language Prolog

:ontology foo

:content "bar(a,b)"))

Agent A is not the toforward, and cannot deliver to it, so it sends another forward to
B, hoping that B will have a better chance to accomplish the task. If B is incapable of
doing so, B will respond with a sorry to A and A will eventually respond with a sorry

to C's original forward request (such a sorry will be a response to the forward, so the
:in-reply-to will be id00). This sorry will not get back to A wrapped in a forward.

(forward

:from C

:to D

:sender A

:receiver B

:reply-with id01

:language KQML

:ontology kqml-ontology

:content (ask-if

:sender C

:receiver D

:in-reply-to id1

:reply-with id2

:language Prolog

:ontology foo

:content "bar(a,b)"))

See Figure 13 for the continuation of this exchange.

Figure 12: A conversation involving the forward performative. See Figure 13, also.

A proposal for a new KQML speci�cation 34

Continuing the exchange that is shown in Figure 12, agent B sends to agent D the following
forward message.

(forward

:from C

:to D

:sender B

:receiver D

:reply-with id02

:language KQML

:ontology kqml-ontology

:content (ask-if

:sender C

:receiver D

:in-reply-to id1

:reply-with id2

:language Prolog

:ontology foo

:content "bar(a,b)"))

There are two possible scenarios for D upon receiving this last message.
Scenario 1: D can deliver directly to C, i.e., D knows of C even though C does not know
of D. In this case C sends the following message

(tell :sender D

:receiver C

:in-reply-to id2

:reply-with id3

:language Prolog

:ontology foo

:content "bar(a,b)")

Scenario 2: If D cannot deliver directly to C, then the response has to follow a similar
path back to C, i.e., the response is wrapped in forward messages that travel from D !
B ! A ! C, and D starts this by

(forward

:from D

:to C

:sender D

:receiver B

:reply-with id03

:language KQML

:ontology kqml-ontology

:content (tell :sender D

:receiver C

:in-reply-to id2

:reply-with id3

:language Prolog

:ontology foo

:content "bar(a,b)"))

that is followed by messages similar to those of Figure 12.

Figure 13: The rest of the exchange of Figure 12.

A proposal for a new KQML speci�cation 35

The constraint is that performative name can be one of the performatives that can be used
with advertise (see page 19). This is a request to �nd an agent that can and will process the
:content, (i.e., an agent that has sent an advertise with such a :content) in the name of
the receiver of the broker-one (so all responses from the third party will be directed to the
broker, i.e., the receiverbroker�one). After receiving the response, the broker will sent it to
the :sender of the broker-one, wrapped in a forward originating from the broker-ed agent.
See Figure 14 for an example of an exchange that involves the broker-one performative.

Note: The in-reply-to value only makes sense if :receiver is not a facil-

itator, in which case it might have advertised the broker-one. The same holds
for the remaining performatives of this category.

(broker-all

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content (performative_name

:sender <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>))

This performative is a request to �nd all agents that can and will process the content
(similar to broker-one). The constraint is again that performative name can be one of
those that may be used with advertise (see page 19).

(recommend-one

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content (performative_name

:sender <word>

:language <word>

:ontology <word>

:content <expression>))

A proposal for a new KQML speci�cation 36

Agent facilitator has received an advertise message from agent A, identical to the �rst
message in Figure 6, except for receiveradvertise = facilitator and senderask�if =
facilitator). Later, agent C sends the following message to the facilitator

(broker-one :sender C

:receiver facilitator

:reply-with id3

:language KQML

:ontology kqml-ontology

:content (ask-if :sender C

:reply-with id4

:language Prolog

:ontology foo

:content "bar(X,Y)"))

Agent facilitator, after searching through the advertise messages that have been sent to
him, decides to send the following KQML message to agent A

(ask-if :sender facilitator

:receiver A

:in-reply-to id1

:reply-with id4

:language Prolog

:ontology foo

:content "bar(X,Y)"))

Agent A responds with the following message

(tell :sender A

:receiver facilitator

:in-reply-to id4

:reply-with id5

:language Prolog

:ontology foo

:content "bar(X,Y)"))

and �nally, agent facilitator sends the following KQML message to agent C, as a response
to the original broker-one message from C.

(forward :from C

:sender facilitator

:receiver C

:in-reply-to id3

:reply-with id6

:language KQML

:ontology kqml-ontology

:content (tell :receiver C

:language Prolog

:ontology foo

:content "bar(X,Y)"))

The :from of the forward, which is also the value of the :sender of the tell, is omitted for
reasons that are made clear in the semantic description (see [3]).

Figure 14: An example of a broker-one performative and the follow-up

A proposal for a new KQML speci�cation 37

The constraint is that performative name be one of the performatives that can be used
in advertise (see page 19). This is a request to suggest an agent that can process the
:content (again, as is the case with broker-one, use is made of the advertise messages that
the receiverrecommend�one has received). Since more than just an agent name is needed in
order for senderrecommend�one to be able to contact this agent, the appropriate response of
receiverrecommend�one will be to forward the advertise message that satis�es the request.
See Figure 15 for an example of an exchange that involves the recommend-one performative.

(recommend-all

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content (performative_name

:sender <word>

:language <word>

:ontology <word>

:content <expression>))

The constraint is that performative name can be one of the performatives that can be
used in advertise (see page 19). This is a request to suggest all agents that can process the
content (similar to recommend-one).

(recruit-one

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content (performative_name

:sender <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>))

The constraint is that performative name can be one of the performatives that can be
used in advertise (see page 19). This performative is like a broker-one but responses will be
directed back to the issuer of the recruit-one. In e�ect, recruit-one is equivalent to

A proposal for a new KQML speci�cation 38

Agent facilitator has received an advertise message from agent A, identical to the �rst mes-
sage in Figure 6 (except receiveradvertise = facilitator and senderask�if = facilitator).
Later, agent C sends the following message to the facilitator

(recommend-one

:sender C

:receiver facilitator

:reply-with id3

:language KQML

:ontology kqml-ontology

:content (ask-if

:sender C

:language Prolog

:ontology foo

:content "bar(X,Y)"))

Agent facilitator sends the following KQML message to agent C, after searching through
the advertise messages that have been sent to it.

(forward

:from A

:to C

:sender facilitator

:receiver C

:in-reply-to id3

:reply-with id5

:language KQML

:ontology kqml-ontology

:content (advertise

:sender A

:receiver C

:reply-with id1

:language KQML

:ontology kqml-ontology

:content (ask-if

:sender C

:receiver A

:in-reply-to id1

:language Prolog

:ontology foo

:content "bar(X,Y)")))

Note that receiveradvertise = C instead of facilitator which was the value of
receiveradvertise in A's advertise. Since A's advertise was made to the facilitator, the
value of the receiveradvertise may be set by the facilitator to the name of any agent that
has registered with the facilitator.

Figure 15: An example of a recommend-one and a response to it.

A proposal for a new KQML speci�cation 39

(forward

:from <word>

:to <word>

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content (performative_name

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>))

with the additional constraint that toforward = receiverperformative name = X, where X

is to be provided by the receiverforward, i.e., the receiverrecruit�one, making use of the
advertise performatives known to it (likewise for the in� reply� toperformative name) See
Figure 16 for an example of an exchange that involves the recruit-one performative.

(recruit-all

:sender <word>

:receiver <word>

* :in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content (performative_name

:sender <word>

:receiver <word>

:in-reply-to <word>

:reply-with <word>

:language <word>

:ontology <word>

:content <expression>))

The constraint is that performative name can be one of the performatives that can be
used in advertise (see page 19). This performative is like a broker-all but responses will
be directed to the issuer of the recruit-all. In e�ect broker-all is equivalent to a series of
forward messages, like those mentioned in the description of recruit-one.

A proposal for a new KQML speci�cation 40

Agent facilitator has received an advertise message from agent A, identical to the �rst
message in Figure 6 (except for receiveradvertise = facilitator and senderask�if =
facilitator). Later, agent C sends the following message to the facilitator

(recruit-one

:sender C

:receiver facilitator

:reply-with id3

:language KQML

:ontology kqml-ontology

:content (ask-if

:sender C

:reply-with id4

:language Prolog

:ontology foo

:content "bar(X,Y)"))

Agent facilitator sends the following KQML message to agent A, after searching through
the advertise messages that have been sent to it.

(forward

:from C

:to A

:sender facilitator

:receiver A

:reply-with id4

:language KQML

:ontology kqml-ontology

:content (ask-if

:sender C

:receiver A

:in-reply-to id1

:reply-with id4

:language Prolog

:ontology foo

:content "bar(X,Y)"))

Agent A responds with the following message that is sent to C and not to the facilitator

(tell

:sender A

:receiver C

:in-reply-to id4

:reply-with id5

:language Prolog

:ontology foo

:content "bar(X,Y)")

Figure 16: An example of a recruit-one and its follow-up.

A proposal for a new KQML speci�cation 41

Summary

Let us summarize the features of a domain of KQML{speaking agents:

� In each domain of KQML{speaking agents there is at least one agent with a special
status called facilitator that can always handle the networking and facilitation per-
formatives. Agents advertise to their facilitator, i.e., they send advertise messages to
their facilitators, thus announcing the messages that they are committed to accepting
and properly processing. Advertising to a facilitator is like advertising to the commu-
nity (either of their own domain or of some other domain). Agents can still advertise
on a one-to-one basis, if they so wish, and such advertisements do not commit them to
processing messages from agents other than the :receiver of the advertise. Actually,
such advertisements will never be shared with other agents, because of the \personal"
nature of the advertisements, i.e., they are addressed to particular agents and only
facilitators can supersede that; see Table 5, also. Agents can use their facilitator either

{ to have their queries properly dispatched to other agents, using recruit-one,
recruit-all, broker-one or broker-all, or

{ to send a recommend-one or a recommend-all to get the relevant advertise mes-
sages and directly contact agent(s) that may process their queries.

� Agents can access agents in other domains either through their facilitator, or directly.
This implies that a smart facilitator may be built in such a way that whenever it
cannot �nd a useful, relevant advertise from an agent in its domain, it may query
another facilitator, in some other domain. Such an action initiates a sub-dialogue
with another facilitator in order to serve the original query. Elaborate protocols of
this kind are examples of conversations (interactions) that be built on top of the
conversation policies presented in [3]

� Facilitators may request the services of other facilitators in the same way that regular
agents may request the services of their facilitator. Facilitators do not advertise, not
even to other facilitators. The model we imply is one where regular agents advertise
their services to their facilitators and thus facilitators become providers of query{
processing information about the agents in their domain; such information can then
be accessed by any agent (regular or facilitator), using the facilitation performatives.

� We use the term facilitator to refer to all kinds of special services that may be provided
by specialized agents, such as Agent Name Servers (ANS), proxy agents, or brokers

([2]).

References

[1] ARPA Knowledge Sharing Initiative. Speci�cation of the KQML agent-communication
language. ARPA Knowledge Sharing Initiative, External Interfaces Working Group
working paper., July 1993.

[2] Tim Finin, Anupama Potluri, Chelliah Thirunavukkarasu, Don McKay, and Robin
McEntire. On agent domains, agent names and proxy agents. In CIKM Intelligent

Information Agents Workshop, Baltimore, MD, December 1995.

A proposal for a new KQML speci�cation 42

[3] Yannis Labrou. Semantics for an Agent Communication Language. PhD thesis, Uni-
versity of Maryland, Baltimore County, August 1996.

