CONSTRAINT
SATISFACTION PROBLEMS

BLACK BOX

REPRESENTATION

In which we see how treating states as more than just little black boxes leads to the
invention of a range of powerful new search methods and a deeper understanding
of problem structure and complexity.

Chapters 3 and 4 explored the idea that problems can be solved by searching in a
space of states. These states can be evaluated by domain-specific heuristics and tested to
see whether they are goal states. From the point of view of the search algorithm, however,
each state is a black box with no discernible internal structure. It is represented by an arbi-
trary data structure that can be accessed only by the problem-specific routines—the successor
function, heuristic function, and goal test.

This chapter examines constraint satisfaction problems, whose states and goal test
conform to a standard, structured, and very simple representation (Section 5.1). Search al-
gorithms can be defined that take advantage of the structure of states and use general-purpose
rather than problem-specific heuristics to enable the solution of large problems (Sections 5.2—
5.3). Perhaps most importantly, the standard representation of the goal test reveals the struc-
ture of the problem itself (Section 5.4). This leads to methods for problem decomposition
and to an understanding of the intimate connection between the structure of a problem and
the difficulty of solving it.

5.1 CONSTRAINT SATISFACTION PROBLEMS

CONSTRAINT
SATISFACTION
PROBLEM
VARIABLES
CONSTRAINTS
DOMAIN
VALUES
ASSIGNMENT

CONSISTENT

OBJECTIVE
FUNCTION

Formally speaking, a constraint satisfaction problem (or CSP) is defined by a set of vari-
ables, X1, X5,...,X,, and a set of constraints, Cy,Cs,...,C,,. Each variable X; has a
nonempty domain D; of possible values. Each constraint C; involves some subset of the
variables and specifies the allowable combinations of values for that subset. A state of the
problem is defined by an assignment of values to some or all of the variables, { X; = v;, X; =
vj,...}. An assignment that does not violate any constraints is called a consistent or legal
assignment. A complete assignment is one in which every variable is mentioned, and a so-
lution to a CSP is a complete assignment that satisfies all the constraints. Some CSPs also
require a solution that maximizes an objective function.

137

138

Chapter 5. Constraint Satisfaction Problems

CONSTRAINT GRAPH

So what does all this mean? Suppose that, having tired of Romania, we are looking
at a map of Australia showing each of its states and territories, as in Figure 5.1(a), and that
we are given the task of coloring each region either red, green, or blue in such a way that no
neighboring regions have the same color. To formulate this as a CSP, we define the variables
to be the regions: WA, NT, Q, NSW,V, SA, and T. The domain of each variable is the set
{red, green, blue}. The constraints require neighboring regions to have distinct colors; for
example, the allowable combinations for WA and NT are the pairs

{(red, green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green)} .

(The constraint can also be represented more succinctly as the inequality WA # NT, pro-
vided the constraint satisfaction algorithm has some way to evaluate such expressions.) There
are many possible solutions, such as

{WA=red, NT = green,Q =red, NSW = green, V =red, SA = blue, T = red }.

It is helpful to visualize a CSP as a constraint graph, as shown in Figure 5.1(b). The nodes
of the graph correspond to variables of the problem and the arcs correspond to constraints.

Treating a problem as a CSP confers several important benefits. Because the representa-
tion of states in a CSP conforms to a standard pattern—that is, a set of variables with assigned
values—the successor function and goal test can written in a generic way that applies to all
CSPs. Furthermore, we can develop effective, generic heuristics that require no additional,
domain-specific expertise. Finally, the structure of the constraint graph can be used to sim-
plify the solution process, in some cases giving an exponential reduction in complexity. The
CSP representation is the first, and simplest, in a series of representation schemes that will be
developed throughout the book.

Northern @
Territory
Victoria

Tasmania @

(a) (b)

Western
Australia
South
Australia

Figure5.1 (a) The principal states and territories of Australia. Coloring this map can be
viewed as a constraint satisfaction problem. The goal is to assign colors to each region so
that no neighboring regions have the same color. (b) The map-coloring problem represented
as a constraint graph.

Section 5.1.

Constraint Satisfaction Problems 139

15

FINITE DOMAINS

BOOLEAN CSPS

INFINITE DOMAINS

CONSTRAINT
LANGUAGE

LINEAR
CONSTRAINTS

NONLINEAR
CONSTRAINTS

CONTINUOUS
DOMAINS

Itis fairly easy to see that a CSP can be given an incremental formulation as a standard
search problem as follows:

¢ Initial state: the empty assignment {}, in which all variables are unassigned.
¢ Successor function: a value can be assigned to any unassigned variable, provided that
it does not conflict with previously assigned variables.

¢ Goal test: the current assignment is complete.
¢ Path cost: a constant cost (e.g., 1) for every step.

Every solution must be a complete assignment and therefore appears at depth n if there are
n variables. Furthermore, the search tree extends only to depth n. For these reasons, depth-
first search algorithms are popular for CSPs. (See Section 5.2.) It is also the case that the
path by which a solution is reached is irrelevant. Hence, we can also use a complete-state
formulation, in which every state is a complete assignment that might or might not satisfy
the constraints. Local search methods work well for this formulation. (See Section 5.3.)

The simplest kind of CSP involves variables that are discrete and have finite domains.
Map-coloring problems are of this kind. The 8-queens problem described in Chapter 3 can
also be viewed as a finite-domain CSP, where the variables Q)+, ..., Qg are the positions of
each queen in columns 1, ..., 8 and each variable has the domain {1, 2,3,4,5,6,7,8}. If the
maximum domain size of any variable in a CSP is d, then the number of possible complete
assignments is O(d")—that is, exponential in the number of variables. Finite-domain CSPs
include Boolean CSPs, whose variables can be either true or false. Boolean CSPs include
as special cases some NP-complete problems, such as 3SAT. (See Chapter 7.) In the worst
case, therefore, we cannot expect to solve finite-domain CSPs in less than exponential time.
In most practical applications, however, general-purpose CSP algorithms can solve problems
orders of magnitude larger than those solvable via the general-purpose search algorithms that
we saw in Chapter 3.

Discrete variables can also have infinite domains—for example, the set of integers or
the set of strings. For example, when scheduling construction jobs onto a calendar, each job’s
start date is a variable and the possible values are integer numbers of days from the current
date. With infinite domains, it is no longer possible to describe constraints by enumerating
all allowed combinations of values. Instead, a constraint language must be used. For ex-
ample, if Jobq, which takes five days, must precede Jobs, then we would need a constraint
language of algebraic inequalities such as StartJob; + 5 < StartJobs. It is also no longer
possible to solve such constraints by enumerating all possible assignments, because there are
infinitely many of them. Special solution algorithms (which we will not discuss here) exist
for linear constraints on integer variables—that is, constraints, such as the one just given,
in which each variable appears only in linear form. It can be shown that no algorithm exists
for solving general nonlinear constraints on integer variables. In some cases, we can reduce
integer constraint problems to finite-domain problems simply by bounding the values of all
the variables. For example, in a scheduling problem, we can set an upper bound equal to the
total length of all the jobs to be scheduled.

Constraint satisfaction problems with continuous domains are very common in the real
world and are widely studied in the field of operations research. For example, the scheduling

140

Chapter 5. Constraint Satisfaction Problems

LINEAR
PROGRAMMING

UNARY CONSTRAINT

BINARY CONSTRAINT

CRYPTARITHMETIC

AUXILIARY
VARIABLES

CONSTRAINT
HYPERGRAPH

PREFERENCE

of experiments on the Hubble Space Telescope requires very precise timing of observations;
the start and finish of each observation and maneuver are continuous-valued variables that
must obey a variety of astronomical, precedence, and power constraints. The best-known
category of continuous-domain CSPs is that of linear programming problems, where con-
straints must be linear inequalities forming a convex region. Linear programming problems
can be solved in time polynomial in the number of variables. Problems with different types of
constraints and objective functions have also been studied—quadratic programming, second-
order conic programming, and so on.

In addition to examining the types of variables that can appear in CSPs, it is useful to
look at the types of constraints. The simplest type is the unary constraint, which restricts the
value of a single variable. For example, it could be the case that South Australians actively
dislike the color green. Every unary constraint can be eliminated simply by preprocessing
the domain of the corresponding variable to remove any value that violates the constraint. A
binary constraint relates two variables. For example, SA # NSW is a binary constraint. A
binary CSP is one with only binary constraints; it can be represented as a constraint graph, as
in Figure 5.1(b).

Higher-order constraints involve three or more variables. A familiar example is pro-
vided by cryptarithmetic puzzles. (See Figure 5.2(a).) It is usual to insist that each letter in
a cryptarithmetic puzzle represent a different digit. For the case in Figure 5.2(a)), this would
be represented as the six-variable constraint Alldiff (F, T, U, W, R, O). Alternatively, it can
be represented by a collection of binary constraints such as F' = T'. The addition constraints
on the four columns of the puzzle also involve several variables and can be written as

O+0=R+10-X;
Xi+WH+W=U+10-X>
Xo+T+T=0+10-X;3
X3=F

where X1, X5, and X5 are auxiliary variables representing the digit (0 or 1) carried over into
the next column. Higher-order constraints can be represented in a constraint hypergraph,
such as the one shown in Figure 5.2(b). The sharp-eyed reader will have noticed that the
Alldiff constraint can be broken down into binary constraints—F = T, F' # U, and so on.
In fact, as Exercise 5.11 asks you to prove, every higher-order, finite-domain constraint can
be reduced to a set of binary constraints if enough auxiliary variables are introduced. Because
of this, we will deal only with binary constraints in this chapter.

The constraints we have described so far have all been absolute constraints, violation
of which rules out a potential solution. Many real-world CSPs include preference constraints
indicating which solutions are preferred. For example, in a university timetabling problem,
Prof. X might prefer teaching in the morning whereas Prof. Y prefers teaching in the after-
noon. A timetable that has Prof. X teaching at 2 p.m. would still be a solution (unless Prof. X
happens to be the department chair), but would not be an optimal one. Preference constraints
can often be encoded as costs on individual variable assignments—for example, assigning
an afternoon slot for Prof. X costs 2 points against the overall objective function, whereas a
morning slot costs 1. With this formulation, CSPs with preferences can be solved using opti-

Section 5.2.

Backtracking Search for CSPs 141

T WO
+ TWO

FOUR

@ (b)

Figure5.2 (a) A cryptarithmetic problem. Each letter stands for a distinct digit; the aim is
to find a substitution of digits for letters such that the resulting sum is arithmetically correct,
with the added restriction that no leading zeroes are allowed. (b) The constraint hypergraph
for the cryptarithmetic problem, showing the Alldiff constraint as well as the column addition
constraints. Each constraint is a square box connected to the variables it constrains.

mization search methods, either path-based or local. We do not discuss such CSPs further in
this chapter, but we provide some pointers in the bibliographical notes section.

5.2 BACKTRACKING SEARCH FOR CSPs

COMMUTATIVITY

s

BACKTRACKING
SEARCH

The preceding section gave a formulation of CSPs as search problems. Using this formula-
tion, any of the search algorithms from Chapters 3 and 4 can solve CSPs. Suppose we apply
breadth-first search to the generic CSP problem formulation given in the preceding section.
We quickly notice something terrible: the branching factor at the top level is nd, because any
of d values can be assigned to any of n variables. At the next level, the branching factor is
(n—1)d, and so on for n levels. We generate a tree with n! - d"™ leaves, even though there are
only d™ possible complete assignments!

Our seemingly reasonable but naive problem formulation has ignored a crucial property
common to all CSPs: commutativity. A problem is commutative if the order of application
of any given set of actions has no effect on the outcome. This is the case for CSPs be-
cause, when assigning values to variables, we reach the same partial assignment, regardless
of order. Therefore, all CSP search algorithms generate successors by considering possible
assignments for only a single variable at each node in the search tree. For example, at the
root node of a search tree for coloring the map of Australia, we might have a choice between
SA =red, SA= green, and SA = blue, but we would never choose between SA = red and
WA = blue. With this restriction, the number of leaves is d", as we would hope.

The term backtracking search is used for a depth-first search that chooses values for
one variable at a time and backtracks when a variable has no legal values left to assign. The
algorithm is shown in Figure 5.3. Notice that it uses, in effect, the one-at-a-time method of

142

Chapter 5. Constraint Satisfaction Problems

function BACKTRACKING-SEARCH(csp) returnsa solution, or failure
return RECURSIVE-BACKTRACKING({ }, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returnsa solution, or failure

if assignment is complete then return assignment

var <« SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment according to CONSTRAINTS[csp] then

add {var = value} t0 assignment
result < RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment

return failure

Figure 5.3 A simple backtracking algorithm for constraint satisfaction problems. The
algorithm is modeled on the recursive depth-first search of Chapter 3. The functions
SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES can be used to imple-
ment the general-purpose heuristics discussed in the text.

WA=blue

WA=red WA=red
NT=green NT=blue
T
WA=red WA=red
NT=green NT=green
Q=red Q=blue
T

Figure5.4 Part of the search tree generated by simple backtracking for the map-coloring

problem in Figure 5.1.

incremental successor generation described on page 76. Also, it extends the current assign-
ment to generate a successor, rather than copying it. Because the representation of CSPs is
standardized, there is no need to supply BACKTRACKING-SEARCH with a domain-specific
initial state, successor function, or goal test. Part of the search tree for the Australia problem
is shown in Figure 5.4, where we have assigned variables in the order WA, NT, Q,

Plain backtracking is an uninformed algorithm in the terminology of Chapter 3, so we
do not expect it to be very effective for large problems. The results for some sample problems
are shown in the first column of Figure 5.5 and confirm our expectations.

In Chapter 4 we remedied the poor performance of uninformed search algorithms by
supplying them with domain-specific heuristic functions derived from our knowledge of the
problem. It turns out that we can solve CSPs efficiently without such domain-specific knowl-

Section 5.2.

Backtracking Search for CSPs 143

MINIMUM REMAINING
VALUES

Problem Backtracking BT+MRV Forward Checking FC+MRV Min-Conflicts

USA (> 1,000K) (> 1,000K) 2K 60 64
n-Queens (> 40,000K) 13,500K (> 40,000K) 817K 4K
Zebra 3,859K 1K 35K 0.5K 2K
Random 1 415K 3K 26K 2K
Random 2 942K 27K 77K 15K

Figure5.5 Comparison of various CSP algorithms on various problems. The algorithms
from left to right, are simple backtracking, backtracking with the MRV heuristic, forward
checking, forward checking with MRV, and minimum conflicts local search. Listed in each
cell is the median number of consistency checks (over five runs) required to solve the prob-
lem; note that all entries except the two in the upper right are in thousands (K). Numbers in
parentheses mean that no answer was found in the allotted number of checks. The first prob-
lem is finding a 4-coloring for the 50 states of the United States of America. The remaining
problems are taken from Bacchus and van Run (1995), Table 1. The second problem counts
the total number of checks required to solve all n-Queens problems for n from 2 to 50. The
third is the “Zebra Puzzle,” as described in Exercise 5.13. The last two are artificial random
problems. (Min-conflicts was not run on these.) The results suggest that forward checking
with the MRV heuristic is better on all these problems than the other backtracking algorithms,

but not always better than min-conflicts local search.

edge. Instead, we find general-purpose methods that address the following questions:

1. Which variable should be assigned next, and in what order should its values be tried?

2. What are the implications of the current variable assignments for the other unassigned
variables?

3. When a path fails—that is, a state is reached in which a variable has no legal values—
can the search avoid repeating this failure in subsequent paths?

The subsections that follow answer each of these questions in turn.

Variable and value ordering

The backtracking algorithm contains the line
var < SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp).

By default, SELECT-UNASSIGNED-VARIABLE simply selects the next unassigned variable
in the order given by the list VARIABLES[csp]. This static variable ordering seldom results in
the most efficient search. For example, after the assignments for WA = red and NT = green,
there is only one possible value for SA, so it makes sense to assign SA = blue next rather than
assigning Q. In fact, after SA is assigned, the choices for Q, NSW, and V are all forced. This
intuitive idea—choosing the variable with the fewest “legal” values—is called the minimum
remaining values (MRV) heuristic. It also has been called the “most constrained variable” or
“fail-first” heuristic, the latter because it picks a variable that is most likely to cause a failure
soon, thereby pruning the search tree. If there is a variable X with zero legal values remain-
ing, the MRV heuristic will select X and failure will be detected immediately—avoiding
pointless searches through other variables which always will fail when X is finally selected.

144

Chapter 5. Constraint Satisfaction Problems

DEGREE HEURISTIC

LEAST-
CONSTRAINING-
VALUE

FORWARD
CHECKING

The second column of Figure 5.5, labeled BT+MRYV, shows the performance of this heuristic.
The performance is 3 to 3,000 times better than simple backtracking, depending on the prob-
lem. Note that our performance measure ignores the extra cost of computing the heuristic
values; the next subsection describes a method that makes this cost manageable.

The MRV heuristic doesn’t help at all in choosing the first region to color in Australia,
because initially every region has three legal colors. In this case, the degree heuristic comes
in handy. It attempts to reduce the branching factor on future choices by selecting the vari-
able that is involved in the largest number of constraints on other unassigned variables. In
Figure 5.1, SA is the variable with highest degree, 5; the other variables have degree 2 or 3,
except for 7', which has 0. In fact, once SA is chosen, applying the degree heuristic solves the
problem without any false steps—you can choose any consistent color at each choice point
and still arrive at a solution with no backtracking. The minimum remaining values heuristic
is usually a more powerful guide, but the degree heuristic can be useful as a tie-breaker.

Once a variable has been selected, the algorithm must decide on the order in which to
examine its values. For this, the least-constraining-value heuristic can be effective in some
cases. It prefers the value that rules out the fewest choices for the neighboring variables in
the constraint graph. For example, suppose that in Figure 5.1 we have generated the partial
assignment with WA = red and NT = green, and that our next choice is for ¢). Blue would
be a bad choice, because it eliminates the last legal value left for QQ’s neighbor, SA. The
least-constraining-value heuristic therefore prefers red to blue. In general, the heuristic is
trying to leave the maximum flexibility for subsequent variable assignments. Of course, if we
are trying to find all the solutions to a problem, not just the first one, then the ordering does
not matter because we have to consider every value anyway. The same holds if there are no
solutions to the problem.

Propagating information through constraints

So far our search algorithm considers the constraints on a variable only at the time that the
variable is chosen by SELECT-UNASSIGNED-VARIABLE. But by looking at some of the
constraints earlier in the search, or even before the search has started, we can drastically
reduce the search space.

Forward checking

One way to make better use of constraints during search is called forward checking. When-
ever a variable X is assigned, the forward checking process looks at each unassigned variable
Y that is connected to X by a constraint and deletes from Y’s domain any value that is in-
consistent with the value chosen for X. Figure 5.6 shows the progress of a map-coloring
search with forward checking. There are two important points to notice about this exam-
ple. First, notice that after assigning WA = red and Q) = green, the domains of NT and SA
are reduced to a single value; we have eliminated branching on these variables altogether by
propagating information from WA and Q. The MRV heuristic, which is an obvious part-
ner for forward checking, would automatically select SA and NT next. (Indeed, we can
view forward checking as an efficient way to incrementally compute the information that the

Section 5.2.

Backtracking Search for CSPs 145

CONSTRAINT
PROPAGATION

ARC CONSISTENCY

WA NT Q NSW Y SA T
Initial domains [R G B[R G B|[RG B|RGB|[RG B|[RG B|RG B
After WA=red [® cB|RGB|RGB|[RGB| GB|RGB
After Q=green |[® B[© |[R B|rRGB B|[RG B
After V=blue [® Bl © |[R RGB

Figure 5.6 The progress of a map-coloring search with forward checking. WA = red
is assigned first; then forward checking deletes red from the domains of the neighboring
variables NT and SA. After Q = green, green is deleted from the domains of NT', SA, and
NSW. After V = blue, blue is deleted from the domains of NSW and SA, leaving SA with
no legal values.

MRV heuristic needs to do its job.) A second point to notice is that, after V = blue, the
domain of SA is empty. Hence, forward checking has detected that the partial assignment
{WA=red, Q= green,V = blue} is inconsistent with the constraints of the problem, and
the algorithm will therefore backtrack immediately.

Constraint propagation

Although forward checking detects many inconsistencies, it does not detect all of them. For
example, consider the third row of Figure 5.6. It shows that when WA is red and Q is green,
both NT and SA are forced to be blue. But they are adjacent and so cannot have the same
value. Forward checking does not detect this as an inconsistency, because it does not look far
enough ahead. Constraint propagation is the general term for propagating the implications
of a constraint on one variable onto other variables; in this case we need to propagate from
WA and Q onto NT and SA, (as was done by forward checking) and then onto the constraint
between NT and SA to detect the inconsistency. And we want to do this fast: it is no good
reducing the amount of search if we spend more time propagating constraints than we would
have spent doing a simple search.

The idea of arc consistency provides a fast method of constraint propagation that is
substantially stronger than forward checking. Here, “arc” refers to a directed arc in the con-
straint graph, such as the arc from SA to NSW. Given the current domains of SA and NSW,
the arc is consistent if, for every value x of SA, there is some value y of NSW that is consis-
tent with 2. In the third row of Figure 5.6, the current domains of SA and NSW are {blue}
and {red, blue} respectively. For SA = blue, there is a consistent assignment for NSW,
namely, NSW = red; therefore, the arc from SA to NSW is consistent. On the other hand,
the reverse arc from NSW to SA is not consistent: for the assignment NSW = blue, there is
no consistent assignment for SA. The arc can be made consistent by deleting the value blue
from the domain of NSTV.

We can also apply arc consistency to the arc from SA to NT at the same stage in the
search process. The third row of the table in Figure 5.6 shows that both variables have the
domain {blue}. The result is that blue must be deleted from the domain of SA, leaving the
domain empty. Thus, applying arc consistency has resulted in early detection of an inconsis-

146

Chapter 5. Constraint Satisfaction Problems

function AC-3(csp) returnsthe CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X1, X5, ..., X, }
local variables. queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X in NEIGHBORS[X;] do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X;, X;) returnstrue iff we remove a value
removed < false
for each z in DOMAIN[X;] do
if no value y in DOMAIN[X ;] allows (z,y) to satisfy the constraint between X; and X ;
then delete = from DOMAIN[X;]; removed < true
return removed

Figure 5.7 The arc consistency algorithm AC-3. After applying AC-3, either every arc
is arc-consistent, or some variable has an empty domain, indicating that the CSP cannot be
made arc-consistent (and thus the CSP cannot be solved). The name “AC-3” was used by the
algorithm’s inventor (Mackworth, 1977) because it’s the third version developed in the paper.

tency that is not detected by pure forward checking.

Arc consistency checking can be applied either as a preprocessing step before the be-
ginning of the search process, or as a propagation step (like forward checking) after every
assignment during search. (The latter algorithm is sometimes called MAC, for Maintaining
Arc Consistency.) In either case, the process must be applied repeatedly until no more incon-
sistencies remain. This is because, whenever a value is deleted from some variable’s domain
to remove an arc inconsistency, a new arc inconsistency could arise in arcs pointing to that
variable. The full algorithm for arc consistency, AC-3, uses a queue to keep track of the arcs
that need to be checked for inconsistency. (See Figure 5.7.) Each arc (X;, X;) in turn is
removed from the agenda and checked; if any values need to be deleted from the domain of
X, then every arc (X, X;) pointing to X; must be reinserted on the queue for checking. The
complexity of arc consistency checking can be analyzed as follows: a binary CSP has at most
O(n?) arcs; each arc (X, X;) can be inserted on the agenda only d times, because X; has
at most d values to delete; checking consistency of an arc can be done in O(dQ) time; so the
total worst-case time is O(n2d?). Although this is substantially more expensive than forward
checking, the extra cost is usually worthwhile.t

Because CSPs include 3SAT as a special case, we do not expect to find a polynomial-
time algorithm that can decide whether a given CSP is consistent. Hence, we deduce that arc
consistency does not reveal every possible inconsistency. For example, in Figure 5.1, the par-
tial assignment { WA = red, NSW = red} is inconsistent, but AC-3 will not find the incon-

1 The AC-4 algorithm, due to Mohr and Henderson (1986), runs in O(n?d?). See Exercise 5.10.

Section 5.2.

Backtracking Search for CSPs 147

K-CONSISTENCY

NODE CONSISTENCY

PATH CONSISTENCY

STRONGLY
K-CONSISTENT

sistency. Stronger forms of propagation can be defined using the notion called k-consistency.
A CSP is k-consistent if, for any set of k£ — 1 variables and for any consistent assignment to
those variables, a consistent value can always be assigned to any kth variable. For example,
1-consistency means that each individual variable by itself is consistent; this is also called
node consistency. 2-consistency is the same as arc consistency. 3-consistency means that
any pair of adjacent variables can always be extended to a third neighboring variable; this is
also called path consistency.

A graph is strongly k-consistent if it is k-consistent and is also (k — 1)-consistent,
(k—2)-consistent, . . . all the way down to 1-consistent. Now suppose we have a CSP problem
with n nodes and make it strongly n-consistent (i.e., strongly k-consistent for k£ =n). We can
then solve the problem with no backtracking. First, we choose a consistent value for X;. We
are then guaranteed to be able to choose a value for X, because the graph is 2-consistent, for
X3 because it is 3-consistent, and so on. For each variable X;, we need only search through
the d values in the domain to find a value consistent with X1, ..., X;_1. We are guaranteed to
find a solution in time O(nd). Of course, there is no free lunch: any algorithm for establishing
n-consistency must take time exponential in » in the worst case.

There is a broad middle ground between n-consistency and arc consistency: running
stronger consistency checks will take more time, but will have a greater effect in reducing
the branching factor and detecting inconsistent partial assignments. It is possible to calculate
the smallest value k& such that running k-consistency ensures that the problem can be solved
without backtracking (see Section 5.4), but this is often impractical. In practice, determining
the appropriate level of consistency checking is mostly an empirical science.

Handling special constraints

Certain types of constraints occur frequently in real problems and can be handled using
special-purpose algorithms that are more efficient than the general-purpose methods de-
scribed so far. For example, the Alldiff constraint says that all the variables involved must
have distinct values (as in the cryptarithmetic problem). One simple form of inconsistency
detection for Alldiff constraints works as follows: if there are m variables involved in the
constraint, and if they have n possible distinct values altogether, and m > n, then the con-
straint cannot be satisfied.

This leads to the following simple algorithm: First, remove any variable in the con-
straint that has a singleton domain, and delete that variable’s value from the domains of the
remaining variables. Repeat as long as there are singleton variables. If at any point an empty
domain is produced or there are more variables than domain values left, then an inconsistency
has been detected.

We can use this method to detect the inconsistency in the partial assignment { WA = red,
NSW =red} for Figure 5.1. Notice that the variables SA, NT', and () are effectively con-
nected by an Alldiff constraint because each pair must be a different color. After applying
AC-3 with the partial assignment, the domain of each variable is reduced to {green, blue}.
That is, we have three variables and only two colors, so the Alldiff constraint is violated.
Thus, a simple consistency procedure for a higher-order constraint is sometimes more effec-

148

Chapter 5. Constraint Satisfaction Problems

RESOURCE
CONSTRAINT

BOUNDS
PROPAGATION

CHRONOLOGICAL
BACKTRACKING

CONFLICT SET

BACKJUMPING

tive than applying arc consistency to an equivalent set of binary constraints.

Perhaps the most important higher-order constraint is the resource constraint, some-
times called the atmost constraint. For example, let PA4, ..., PA4 denote the numbers of
personnel assigned to each of four tasks. The constraint that no more than 10 personnel are
assigned in total is written as atmost(10, PA;, PAs, PAs, PA4). An inconsistency can be
detected simply by checking the sum of the minimum values of the current domains; for
example, if each variable has the domain {3, 4, 5,6}, the atmost constraint cannot be satis-
fied. We can also enforce consistency by deleting the maximum value of any domain if it is
not consistent with the minimum values of the other domains. Thus, if each variable in our
example has the domain {2, 3,4, 5,6}, the values 5 and 6 can be deleted from each domain.

For large resource-limited problems with integer values—such as logistical problems
involving moving thousands of people in hundreds of vehicles—it is usually not possible to
represent the domain of each variable as a large set of integers and gradually reduce that
set by consistency checking methods. Instead, domains are represented by upper and lower
bounds and are managed by bounds propagation. For example, let’s suppose there are two
flights, 271 and 272, for which the planes have capacities 165 and 385, respectively. The
initial domains for the numbers of passengers on each flight are then

Flight271 € [0,165] and Flight272 € [0, 385] .

Now suppose we have the additional constraint that the two flights together must carry 420
people: Flight271 + Flight272 € [420, 420]. Propagating bounds constraints, we reduce the
domains to

Flight271 € [35,165] and Flight272 € [255,385] .

We say that a CSP is bounds-consistent if for every variable X, and for both the lower bound
and upper bound values of X, there exists some value of Y that satisfies the constraint be-
tween X and Y, for every variable Y. This kind of bounds propagation is widely used in
practical constraint problems.

Intelligent backtracking: looking backward

The BACKTRACKING-SEARCH algorithm in Figure 5.3 has a very simple policy for what to
do when a branch of the search fails: back up to the preceding variable and try a different
value for it. This is called chronological backtracking, because the most recent decision
point is revisited. In this subsection, we will see that there are much better ways.

Consider what happens when we apply simple backtracking in Figure 5.1 with a fixed
variable ordering Q, NSW, V, T, SA, WA, NT. Suppose we have generated the partial
assignment {Q = red, NSW = green,V = blue, T =red}. \When we try the next variable,
SA, we see that every value violates a constraint. We back up to T' and try a new color
for Tasmania! Obviously this is silly—recoloring Tasmania cannot resolve the problem with
South Australia.

A more intelligent approach to backtracking is to go all the way back to one of the
set of variables that caused the failure. This set is called the conflict set; here, the conflict
set for SA is {Q, NSW,V'}. In general, the conflict set for variable X is the set of previ-
ously assigned variables that are connected to X by constraints. The backjumping method

Section 5.2.

Backtracking Search for CSPs 149

CONFLICT-DIRECTED
BACKJUMPING

backtracks to the most recent variable in the conflict set; in this case, backjumping would
jump over Tasmania and try a new value for V. This is easily implemented by modifying
BACKTRACKING-SEARCH so that it accumulates the conflict set while checking for a legal
value to assign. If no legal value is found, it should return the most recent element of the
conflict set along with the failure indicator.

The sharp-eyed reader will have noticed that forward checking can supply the conflict
set with no extra work: whenever forward checking based on an assignment to X deletes a
value from Y’s domain, it should add X to Y’s conflict set. Also, every time the last value is
deleted from Y’s domain, the variables in the conflict set of Y are added to the conflict set of
X. Then, when we get to Y, we know immediately where to backtrack if needed.

The eagle-eyed reader will have noticed something odd: backjumping occurs when
every value in a domain is in conflict with the current assignment; but forward checking
detects this event and prevents the search from ever reaching such a node! In fact, it can be
shown that every branch pruned by backjumping is also pruned by forward checking. Hence,
simple backjumping is redundant in a forward-checking search or, indeed, in a search that
uses stronger consistency checking, such as MAC.

Despite the observations of the preceding paragraph, the idea behind backjumping re-
mains a good one: to backtrack based on the reasons for failure. Backjumping notices failure
when a variable’s domain becomes empty, but in many cases a branch is doomed long before
this occurs. Consider again the partial assignment { WA = red, NSW = red} (which, from
our earlier discussion, is inconsistent). Suppose we try T'= red next and then assign NT', Q,
V, SA. We know that no assignment can work for these last four variables, so eventually we
run out of values to try at N7'. Now, the question is, where to backtrack? Backjumping cannot
work, because NT does have values consistent with the preceding assigned variables—NT
doesn’t have a complete conflict set of preceding variables that caused it to fail. We know,
however, that the four variables NT, Q, V, and SA, taken together, failed because of a set of
preceding variables, which must be those variables which directly conflict with the four. This
leads to a deeper notion of the conflict set for a variable such as N7": it is that set of preced-
ing variables that caused NT', together with any subsequent variables, to have no consistent
solution. In this case, the set is WA and NSW, so the algorithm should backtrack to NSTW
and skip over Tasmania. A backjumping algorithm that uses conflict sets defined in this way
is called conflict-directed backjumping.

We must now explain how these new conflict sets are computed. The method is in
fact very simple. The “terminal” failure of a branch of the search always occurs because a
variable’s domain becomes empty; that variable has a standard conflict set. In our example,
SA fails, and its conflict set is (say) { WA, NT,@Q}. We backjump to @, and @ absorbs
the conflict set from SA (minus Q itself, of course) into its own direct conflict set, which is
{NT, NSW}; the new conflict set is { WA, NT, NSW}. That is, there is no solution from
@ onwards, given the preceding assignment to { WA, NT, NSW }. Therefore, we backtrack
to NT, the most recent of these. NT absorbs { WA, NT, NSW} — {NT} into its own
direct conflict set { WA}, giving { WA, NSW} (as stated in the previous paragraph). Now
the algorithm backjumps to NS, as we would hope. To summarize: let X; be the current
variable, and let conf (X)) be its conflict set. If every possible value for X; fails, backjump

150 Chapter 5. Constraint Satisfaction Problems

to the most recent variable X; in conf (X;), and set
conf(X;) «— conf(X;) U conf(X;) — {Xi}.
Conflict-directed backjumping takes us back to the right point in the search tree, but doesn’t

CONSTRANT prevent us from making the same mistakes in another branch of the tree. Constraint learning
actually modifies the CSP by adding a new constraint that is induced from these conflicts.

5.3 LoOCAL SEARCH FOR CONSTRAINT SATISFACTION PROBLEMS

Local-search algorithms (see Section 4.3) turn out to be very effective in solving many CSPs.
They use a complete-state formulation: the initial state assigns a value to every variable,
and the successor function usually works by changing the value of one variable at a time.
For example, in the 8-queens problem, the initial state might be a random configuration of
8 queens in 8 columns, and the successor function picks one queen and considers moving it
elsewhere in its column. Another possibility would be start with the 8 queens, one per column
in a permutation of the 8 rows, and to generate a successor by having two queens swap rows.?
We have actually already seen an example of local search for CSP solving: the application of
hill climbing to the n-queens problem (page 112). The application of WALKSAT (page 223)
to solve satisfiability problems, which are a special case of CSPs, is another.

In choosing a new value for a variable, the most obvious heuristic is to select the value

MIN-CONFLICTS that results in the minimum number of conflicts with other variables—the min-conflicts
heuristic. The algorithm is shown in Figure 5.8 and its application to an 8-queens problem is
diagrammed in Figure 5.9 and quantified in Figure 5.5.

Min-conflicts is surprisingly effective for many CSPs, particularly when given a reason-
able initial state. Its performance is shown in the last column of Figure 5.5. Amazingly, on
the n-queens problem, if you don’t count the initial placement of queens, the runtime of min-
conflicts is roughly independent of problem size. It solves even the million-queens problem
in an average of 50 steps (after the initial assignment). This remarkable observation was the
stimulus leading to a great deal of research in the 1990s on local search and the distinction be-
tween easy and hard problems, which we take up in Chapter 7. Roughly speaking, n-queens
is easy for local search because solutions are densely distributed throughout the state space.
Min-conflicts also works well for hard problems. For example, it has been used to schedule
observations for the Hubble Space Telescope, reducing the time taken to schedule a week of
observations from three weeks (!) to around 10 minutes.

Another advantage of local search is that it can be used in an online setting when the
problem changes. This is particularly important in scheduling problems. A week’s airline
schedule may involve thousands of flights and tens of thousands of personnel assignments,
but bad weather at one airport can render the schedule infeasible. We would like to repair the
schedule with a minimum number of changes. This can be easily done with a local search
algorithm starting from the current schedule. A backtracking search with the new set of

2 Local search can easily be extended to CSPs with objective functions. In that case, all the techniques for hill
climbing and simulated annealing can be applied to optimize the objective function.

Section 5.4. The Structure of Problems 151

function MIN-CONFLICTS(csp, max _steps) returnsa solution or failure
inputs: csp, a constraint satisfaction problem
max _steps, the number of steps allowed before giving up

current < an initial complete assignment for csp
for + = 1t0 max_steps do
if current is a solution for csp then return current
var < a randomly chosen, conflicted variable from VARIABLES[csp]
value < the value v for var that minimizes CONFLICTS(var, v, current, csp)
set var = value in current
return failure

Figure5.8 The MIN-CONFLICTS algorithm for solving CSPs by local search. The initial
state may be chosen randomly or by a greedy assignment process that chooses a minimal-
conflict value for each variable in turn. The CoNFLICTS function counts the number of
constraints violated by a particular value, given the rest of the current assignment.

Figure 5.9 A two-step solution for an 8-queens problem using min-conflicts. At each
stage, a queen is chosen for reassignment in its column. The number of conflicts (in this
case, the number of attacking queens) is shown in each square. The algorithm moves the
gueen to the min-conflict square, breaking ties randomly.

constraints usually requires much more time and might find a solution with many changes
from the current schedule.

5.4 THE STRUCTURE OF PROBLEMS

In this section, we examine ways in which the structure of the problem, as represented by the
constraint graph, can be used to find solutions quickly. Most of the approaches here are very
general and are applicable to other problems besides CSPs, for example probabilistic reason-
ing. After all, the only way we can possibly hope to deal with the real world is to decompose
it into many subproblems. Looking again at Figure 5.1(b) with a view to identifying problem

152

Chapter 5. Constraint Satisfaction Problems

INDEPENDENT
SUBPROBLEMS

CONNECTED
COMPONENTS

structure, one fact stands out: Tasmania is not connected to the mainland.® Intuitively, it is ob-
vious that coloring Tasmania and coloring the mainland are independent subproblems—any
solution for the mainland combined with any solution for Tasmania yields a solution for the
whole map. Independence can be ascertained simply by looking for connected components
of the constraint graph. Each component corresponds to a subproblem CSP;. If assignment
S; is a solution of CSP;, then |J; S; is a solution of | J; CSP,;. Why is this important? Con-
sider the following: suppose each C'SP; has c variables from the total of »n variables, where
c is a constant. Then there are n/c subproblems, each of which takes at most d¢ work to
solve. Hence, the total work is O(d°n/c), which is linear in n; without the decomposition,
the total work is O(d"™), which is exponential in n. Let’s make this more concrete: dividing a
Boolean CSP with n = 80 into four subproblems with ¢ = 20 reduces the worst-case solution
time from the lifetime of the universe down to less than a second.

Completely independent subproblems are delicious, then, but rare. In most cases, the
subproblems of a CSP are connected. The simplest case is when the constraint graph forms a
tree: any two variables are connected by at most one path. Figure 5.10(a) shows a schematic
example.* We will show that any tree-structured CSP can be solved in time linear in the
number of variables. The algorithm has the following steps:

1. Choose any variable as the root of the tree, and order the variables from the root to the
leaves in such a way that every node’s parent in the tree precedes it in the ordering. (See
Figure 5.10(b).) Label the variables X1, ..., X,, in order. Now, every variable except
the root has exactly one parent variable.

2. For j from n down to 2, apply arc consistency to the arc (X;, X;), where X; is the
parent of X, removing values from DOMAIN[X;] as necessary.

3. For j from 1 to n, assign any value for X; consistent with the value assigned for X;,
where X is the parent of X;.

There are two key points to note. First, after step 2 the CSP is directionally arc-consistent,
so the assignment of values in step 3 requires no backtracking. (See the discussion of k-
consistency on page 147.) Second, by applying the arc-consistency checks in reverse order in
step 2, the algorithm ensures that any deleted values cannot endanger the consistency of arcs
that have been processed already. The complete algorithm runs in time O(nd?).

Now that we have an efficient algorithm for trees, we can consider whether more general
constraint graphs can be reduced to trees somehow. There are two primary ways to do this,
one based on removing nodes and one based on collapsing nodes together.

The first approach involves assigning values to some variables so that the remaining
variables form a tree. Consider the constraint graph for Australia, shown again in Fig-
ure 5.11(a). If we could delete South Australia, the graph would become a tree, as in (b).
Fortunately, we can do this (in the graph, not the continent) by fixing a value for SA and
deleting from the domains of the other variables any values that are inconsistent with the
value chosen for SA.

3 A careful cartographer or patriotic Tasmanian might object that Tasmania should not be colored the same as
its nearest mainland neighbor, to avoid the impression that it might be part of that state.
4 Sadly, very few regions of the world, with the possible exception of Sulawesi, have tree-structured maps.

Section 5.4. The Structure of Problems 153

) @2

@ (b)

Figure5.10 (a) The constraint graph of a tree-structured CSP. (b) A linear ordering of the
variables consistent with the tree with A as the root.

(@) (b)

Figure5.11 (a) The original constraint graph from Figure 5.1. (b) The constraint graph
after the removal of SA.

Now, any solution for the CSP after SA and its constraints are removed will be con-
sistent with the value chosen for SA. (This works for binary CSPs; the situation is more
complicated with higher-order constraints.) Therefore, we can solve the remaining tree with
the algorithm given above and thus solve the whole problem. Of course, in the general case
(as opposed to map coloring) the value chosen for SA could be the wrong one, so we would
need to try each of them. The general algorithm is as follows:

1. Choose a subset S from VARIABLES[csp] such that the constraint graph becomes a tree
CYCLE GUTSET after removal of S. S is called a cycle cutset.
2. For each possible assignment to the variables in S that satisfies all constraints on S,
(a) remove from the domains of the remaining variables any values that are inconsis-
tent with the assignment for S, and
(b) If the remaining CSP has a solution, return it together with the assignment for S.

If the cycle cutset has size ¢, then the total runtime is O(d® - (n — c)d?). If the graph is
“nearly a tree” then ¢ will be small and the savings over straight backtracking will be huge.

154

Chapter 5. Constraint Satisfaction Problems

CUTSET
CONDITIONING

TREE
DECOMPOSITION

In the worst case, however, ¢ can be as large as (n — 2). Finding the smallest cycle cutset is
NP-hard, but several efficient approximation algorithms are known for this task. The overall
algorithmic approach is called cutset conditioning; we will see it again in Chapter 14, where
it is used for reasoning about probabilities.

The second approach is based on constructing a tree decomposition of the constraint
graph into a set of connected subproblems. Each subproblem is solved independently, and the
resulting solutions are then combined. Like most divide-and-conquer algorithms, this works
well if no subproblem is too large. Figure 5.12 shows a tree decomposition of the map-
coloring problem into five subproblems. A tree decomposition must satisfy the following
three requirements:

e Every variable in the original problem appears in at least one of the subproblems.

o If two variables are connected by a constraint in the original problem, they must appear
together (along with the constraint) in at least one of the subproblems.

o If avariable appears in two subproblems in the tree, it must appear in every subproblem
along the path connecting those subproblems.

The first two conditions ensure that all the variables and constraints are represented in the
decomposition. The third condition seems rather technical, but simply reflects the constraint
that any given variable must have the same value in every subproblem in which it appears;
the links joining subproblems in the tree enforce this constraint. For example, SA appears in
all four of the connected subproblems in Figure 5.12. You can verify from Figure 5.11 that
this decomposition makes sense.

Figure5.12 A tree decomposition of the constraint graph in Figure 5.11(a).

We solve each subproblem independently; if any one has no solution, we know the en-
tire problem has no solution. If we can solve all the subproblems, then we attempt to construct

Section 5.5.

Summary 155

TREE WIDTH

s

a global solution as follows. First, we view each subproblem as a “mega-variable” whose do-
main is the set of all solutions for the subproblem. For example, the leftmost subproblems in
Figure 5.12 is a map-coloring problem with three variables and hence has six solutions—one
is { WA = red, SA = blue, NT = green}. Then, we solve the constraints connecting the
subproblems using the efficient algorithm for trees given earlier. The constraints between
subproblems simply insist that the subproblem solutions agree on their shared variables. For
example, given the solution { WA = red, SA = blue, NT = green} for the first subproblem,
the only consistent solution for the next subproblem is { SA = blue, NT = green,Q = red}.
A given constraint graph admits many tree decompositions; in choosing a decompo-
sition, the aim is to make the subproblems as small as possible. The tree width of a tree
decomposition of a graph is one less than the size of the largest subproblem; the tree width
of the graph itself is defined to be the minimum tree width among all its tree decompositions.
If a graph has tree width w, and we are given the corresponding tree decomposition, then the
problem can be solved in O(nd“*1) time. Hence, CSPs with constraint graphs of bounded
tree width are solvable in polynomial time. Unfortunately, finding the decomposition with
minimal tree width is NP-hard, but there are heuristic methods that work well in practice.

55 SUMMARY

e Constraint satisfaction problems (or CSPs) consist of variables with constraints on
them. Many important real-world problems can be described as CSPs. The structure of
a CSP can be represented by its constraint graph.

e Backtracking search, a form of depth-first search, is commonly used for solving CSPs.

e The minimum remaining values and degree heuristics are domain-independent meth-
ods for deciding which variable to choose next in a backtracking search. The least-
constraining-value heuristic helps in ordering the variable values.

e By propagating the consequences of the partial assignments that it constructs, the back-
tracking algorithm can reduce greatly the branching factor of the problem. Forward
checking is the simplest method for doing this. Arc consistency enforcement is a more
powerful technique, but can be more expensive to run.

e Backtracking occurs when no legal assignment can be found for a variable. Conflict-
directed backjumping backtracks directly to the source of the problem.

e Local search using the min-conflicts heuristic has been applied to constraint satisfaction
problems with great success.

e The complexity of solving a CSP is strongly related to the structure of its constraint
graph. Tree-structured problems can be solved in linear time. Cutset conditioning can
reduce a general CSP to a tree-structured one and is very efficient if a small cutset can
be found. Tree decomposition techniques transform the CSP into a tree of subproblems
and are efficient if the tree width of the constraint graph is small.

156

Chapter 5. Constraint Satisfaction Problems

BIBLIOGRAPHICAL AND HISTORICAL NOTES

DIOPHANTINE
EQUATIONS

GRAPH COLORING

The earliest work related to constraint satisfaction dealt largely with numerical constraints.
Equational constraints with integer domains were studied by the Indian mathematician Brah-
magupta in the seventh century; they are often called Diophantine equations, after the Greek
mathematician Diophantus (c. 200-284), who actually considered the domain of positive ra-
tionals. Systematic methods for solving linear equations by variable elimination were studied
by Gauss (1829); the solution of linear inequality constraints goes back to Fourier (1827).

Finite-domain constraint satisfaction problems also have a long history. For example,
graph coloring (of which map coloring is a special case) is an old problem in mathematics.
According to Biggs et al. (1986), the four-color conjecture (that every planar graph can be
colored with four or fewer colors) was first made by Francis Guthrie, a student of de Morgan,
in 1852. It resisted solution—despite several published claims to the contrary—until a proof
was devised, with the aid of a computer, by Appel and Haken (1977).

Specific classes of constraint satisfaction problems occur throughout the history of
computer science. One of the most influential early examples was the SKETCHPAD sys-
tem (Sutherland, 1963), which solved geometric constraints in diagrams and was the fore-
runner of modern drawing programs and CAD tools. The identification of CSPs as a general
class is due to Ugo Montanari (1974). The reduction of higher-order CSPs to purely binary
CSPs with auxiliary variables (see Exercise 5.11) is due originally to the 19th-century logi-
cian Charles Sanders Peirce. It was introduced into the CSP literature by Dechter (1990b) and
was elaborated by Bacchus and van Beek (1998). CSPs with preferences among solutions are
studied widely in the optimization literature; see Bistarelli et al. (1997) for a generalization
of the CSP framework to allow for preferences. The bucket-elimination algorithm (Dechter,
1999) can also be applied to optimization problems.

Backtracking search for constraint satisfaction is due to Bitner and Reingold (1975),
although they trace the basic algorithm back to the 19th century. Bitner and Reingold also
introduced the MRV heuristic, which they called the most-constrained-variable heuristic.
Brelaz (1979) used the degree heuristic as a tie-breaker after applying the MRV heuristic.
The resulting algorithm, despite its simplicity, is still the best method for k-coloring arbitrary
graphs. Haralick and Elliot (1980) proposed the least-constraining-value heuristic.

Constraint propagation methods were popularized by Waltz’s (1975) success on poly-
hedral line-labeling problems for computer vision. Waltz showed that, in many problems,
propagation completely eliminates the need for backtracking. Montanari (1974) introduced
the notion of constraint networks and propagation by path consistency. Alan Mackworth
(1977) proposed the AC-3 algorithm for enforcing arc consistency as well as the general idea
of combining backtracking with some degree of consistency enforcement. AC-4, a more
efficient arc consistency algorithm, was developed by Mohr and Henderson (1986). Soon af-
ter Mackworth’s paper appeared, researchers began experimenting with the tradeoff between
the cost of consistency enforcement and the benefits in terms of search reduction. Haralick
and Elliot (1980) favored the minimal forward checking algorithm described by McGregor
(1979), whereas Gaschnig (1979) suggested full arc consistency checking after each variable

Section 5.5.

Summary 157

DEPENDENCY-
DIRECTED
BACKTRACKING

CONSTRAINT
RECORDING

BACKMARKING

DYNAMIC
BACKTRACKING

assignment—an algorithm later called MAC by Sabin and Freuder (1994). The latter paper
provides somewhat convincing evidence that, on harder CSPs, full arc consistency checking
pays off. Freuder (1978, 1982) investigated the notion of k-consistency and its relationship
to the complexity of solving CSPs. Apt (1999) describes a generic algorithmic framework
within which consistency propagation algorithms can be analyzed.

Special methods for handling higher-order constraints have been developed primarily
within the context of constraint logic programming. Marriott and Stuckey (1998) pro-
vide excellent coverage of research in this area. The Alldiff constraint was studied by Regin
(1994). Bounds constraints were incorporated into constraint logic programming by Van Hen-
tenryck et al. (1998).

The basic backjumping method is due to John Gaschnig (1977, 1979). Kondrak and
van Beek (1997) showed that this algorithm is essentially subsumed by forward checking.
Conflict-directed backjumping was devised by Prosser (1993). The most general and pow-
erful form of intelligent backtracking was actually developed very early on by Stallman and
Sussman (1977). Their technique of dependency-directed backtracking led to the develop-
ment of truth maintenance systems (Doyle, 1979), which we will discuss in Section 10.8.
The connection between the two areas is analyzed by de Kleer (1989).

The work of Stallman and Sussman also introduced the idea of constraint record-
ing, in which partial results obtained by search can be saved and reused later in the search.
The idea was introduced formally into backtracking search by Dechter (1990a). Backmark-
ing (Gaschnig, 1979) is a particularly simple method in which consistent and inconsistent
pairwise assignments are saved and used to avoid rechecking constraints. Backmarking can
be combined with conflict-directed backjumping; Kondrak and van Beek (1997) present a
hybrid algorithm that provably subsumes either method taken separately. The method of
dynamic backtracking (Ginsberg, 1993) retains successful partial assignments from later
subsets of variables when backtracking over an earlier choice that does not invalidate the
later success.

Local search in constraint satisfaction problems was popularized by the work of Kirk-
patrick et al. (1983) on simulated annealing (see Chapter 4), which is widely used for
scheduling problems. The min-conflicts heuristic was first proposed by Gu (1989) and was de-
veloped independently by Minton et al. (1992). Sosic and Gu (1994) showed how it could be
applied to solve the 3,000,000 queens problem in less than a minute. The astounding success
of local search using min-conflicts on the n-queens problem led to a reappraisal of the nature
and prevalence of “easy” and “hard” problems. Peter Cheeseman et al. (1991) explored the
difficulty of randomly generated CSPs and discovered that almost all such problems either
are trivially easy or have no solutions. Only if the parameters of the problem generator are
set in a certain narrow range, within which roughly half of the problems are solvable, do we
find “hard” problem instances. We discuss this phenomenon further in Chapter 7.

Work relating the structure and complexity of CSPs originates with Freuder (1985), who
showed that search on arc-consistent trees works without any backtracking. A similar result,
with extensions to acyclic hypergraphs, was developed in the database community (Beeri
et al., 1983). Since those papers were published, there has been a great deal of progress in
developing more general results relating the complexity of solving a CSP to the structure of

158

Chapter 5. Constraint Satisfaction Problems

its constraint graph. The notion of tree width was introduced by the graph theorists Robertson
and Seymour (1986). Dechter and Pearl (1987, 1989), building on the work of Freuder, ap-
plied the same notion (which they called induced width) to constraint satisfaction problems
and developed the tree decomposition approach sketched in Section 5.4. Drawing on this
work and on results from database theory, Gottlob et al. (1999a, 1999b) developed a notion,
hypertree width, that is based on the characterization of the CSP as a hypergraph. In addi-
tion to showing that any CSP with hypertree width w can be solved in time O(n%*!logn),
they also showed that hypertree width subsumes all previously defined measures of “width”
in the sense that there are cases where the hypertree width is bounded and the other measures
are unbounded.

There are several good surveys of CSP techniques, including those by Kumar (1992),
Dechter and Frost (1999), and Bartak (2001); and the encyclopedia articles by Dechter (1992)
and Mackworth (1992). Pearson and Jeavons (1997) survey tractable classes of CSPs, cover-
ing both structural decomposition methods and methods that rely on properties of the domains
or constraints themselves. Kondrak and van Beek (1997) give an analytical survey of back-
tracking search algorithms, and Bacchus and van Run (1995) give a more empirical survey.
The texts by Tsang (1993) and by Marriott and Stuckey (1998) go into much more depth
than has been possible in this chapter. Several interesting applications are described in the
collection edited by Freuder and Mackworth (1994). Papers on constraint satisfaction ap-
pear regularly in Artificial Intelligence and in the specialist journal, Constraints. The primary
conference venue is the International Conference on Principles and Practice of Constraint
Programming, often called CP.

EXERCISES

5.1 Define in your own words the terms constraint satisfaction problem, constraint, back-
tracking search, arc consistency, backjumping and min-conflicts.

5.2 How many solutions are there for the map-coloring problem in Figure 5.1?

5.3 Explain why it is a good heuristic to choose the variable that is most constrained, but
the value that is least constraining in a CSP search.

5.4 Consider the problem of constructing (not solving) crossword puzzles:® fitting words
into a rectangular grid. The grid, which is given as part of the problem, specifies which
squares are blank and which are shaded. Assume that a list of words (i.e., a dictionary) is
provided and that the task is to fill in the blank squares using any subset of the list. Formulate
this problem precisely in two ways:

a. As a general search problem. Choose an appropriate search algorithm, and specify a
heuristic function, if you think one is needed. Is it better to fill in blanks one letter at a
time or one word at a time?

5 Ginsberg et al. (1990) discuss several methods for constructing crossword puzzles. Littman et al. (1999) tackle
the harder problem of solving them.

Section 5.5.

Summary 159

FLOOR-PLANNING

CLASS SCHEDULING

EE

b. As a constraint satisfaction problem. Should the variables be words or letters?
Which formulation do you think will be better? Why?

5.5 Give precise formulations for each of the following as constraint satisfaction problems:

a. Rectilinear floor-planning: find nonoverlapping places in a large rectangle for a num-
ber of smaller rectangles.

b. Class scheduling: There is a fixed number of professors and classrooms, a list of classes
to be offered, and a list of possible time slots for classes. Each professor has a set of
classes that he or she can teach.

5.6 Solve the cryptarithmetic problem in Figure 5.2 by hand, using backtracking, forward
checking, and the MRV and least-constraining-value heuristics.

5.7 Figure 5.5 tests out various algorithms on the n-queens problem. Try these same al-
gorithms on map-coloring problems generated randomly as follows: scatter n points on the
unit square; selecting a point X at random, connect X by a straight line to the nearest point
Y such that X is not already connected to Y and the line crosses no other line; repeat the
previous step until no more connections are possible. Construct the performance table for the
largest n you can manage, using both d =3 and d =4 colors. Comment on your results.

5.8 Use the AC-3 algorithm to show that arc consistency is able to detect the inconsistency
of the partial assignment { WA = red, V' = blue} for the problem shown in Figure 5.1.

5.9 What is the worst-case complexity of running AC-3 on a tree-structured CSP?

5.10 AC-3 puts back on the queue every arc (X, X;) whenever any value is deleted from
the domain of X, even if each value of X, is consistent with several remaining values of X;.
Suppose that, for every arc (X, X;), we keep track of the number of remaining values of X;
that are consistent with each value of X. Explain how to update these numbers efficiently
and hence show that arc consistency can be enforced in total time O(n2d?).

5.11 Show how a single ternary constraint such as “A + B = C” can be turned into three
binary constraints by using an auxiliary variable. You may assume finite domains. (Hint:
consider a new variable that takes on values which are pairs of other values, and consider
constraints such as “X is the first element of the pair Y.”) Next, show how constraints with
more than three variables can be treated similarly. Finally, show how unary constraints can be
eliminated by altering the domains of variables. This completes the demonstration that any
CSP can be transformed into a CSP with only binary constraints.

5.12 Suppose that a graph is known to have a cycle cutset of no more than & nodes. Describe
a simple algorithm for finding a minimal cycle cutset whose runtime is not much more than
O(n*) for a CSP with n variables. Search the literature for methods for finding approximately
minimal cycle cutsets in time that is polynomial in the size of the cutset. Does the existence
of such algorithms make the cycle cutset method practical?

5.13 Consider the following logic puzzle: In five houses, each with a different color, live
5 persons of different nationalities, each of whom prefer a different brand of cigarette, a

160 Chapter 5. Constraint Satisfaction Problems

different drink, and a different pet. Given the following facts, the question to answer is
“Where does the zebra live, and in which house do they drink water?”

The Englishman lives in the red house.

The Spaniard owns the dog.

The Norwegian lives in the first house on the left.

Kools are smoked in the yellow house.

The man who smokes Chesterfields lives in the house next to the man with the fox.

The Norwegian lives next to the blue house.

The Winston smoker owns snails.

The Lucky Strike smoker drinks orange juice.

The Ukrainian drinks tea.

The Japanese smokes Parliaments.

Kools are smoked in the house next to the house where the horse is kept.

Coffee is drunk in the green house.

The Green house is immediately to the right (your right) of the ivory house.

Milk is drunk in the middle house.
Discuss different representations of this problem as a CSP. Why would one prefer one repre-
sentation over another?

