orithm for Distributed Constraint
Optimization

Jay Modi

Distributed Optimizatian Problem

“How do a set of agents optimize over a Sst of alternatives that have

varying degrees of global quality?”

Examples

e allocating resources

e constructing schedules
e planning activities

Difficulties
e No global control/knowledge
e Localized communication

e Quality guarantees required
e Limitedtime

Approach

e Constraint Based Reasoning \
— Distributed Constraint Optimization Probi
e Adopt algorithm
— Firgt-ever distributed, asynchronous, optimal a
— Efficient, polynomialspace
e Bounded error approximation
— Principled solution-quality/time-to-sol ution tr adeoffs

for DCOP

Constraint Represe

Why constraints for multiagent systems? ™
e Constraints are natural, general, smple)
— Many successful applications
® Leverage existing work in Al
— Constraints Journal, Conferences
e Ableto model coordination, conflicts, interactions, etc.:

Key advances
e Distributed constraints
e Constraints have degrees of violation

TN |
Distributed Constraint Optimization (DCW
Given

e Variables{x1, x2, ..., xn}, each assigned
e Finite, discrete domainsD1, D2, ..., Dn,
e For each xi, xj, valued constraint fij: Di xDj ® N.
Goal

e Find complete assignment A that minimizes F(A) wher

F(A) = Sf”(dpdj)’ X di’xj_' dj in A

0/ o[FA)=0 1l FA) =4 [2| FA
‘; D)

EECEN |
Existing Methods el
RN Branch and Bound
% Optimization (Hirayamag?) 2
S
g
S Satisfaction _ Asynchronous Backtracking
IS (Y okoo92)
S
3 .
|f No guarantee - [terative I mprovement
(Y 0koo96)
Synchronous Asynchronous
Execution Model

Desiderata for D

Why is distributedimportant?

o Autonomy

e Communication cost

® Robustness (central point of failure)
® Privacy

Why is asynchrony important?

o Parallelism

® Robust to communication delays
e Noglobal clock

Why are theor etical guar antees important? loosely conn
e Optimal solutions feasible for special classes communities
® Bound on worst-case performance
) agentsBUSC
State of the Art in
Why have previous distributed methods faied to provide

asynchrony + optimality?

e Branch and Bound
— Backtrack condition - when cost exceeds upper boun
— Problem — sequential, synchronous

e Asynchronous Backtracking
— Backtrack condition - when congtraint is unsatisfiable
— Problem - only hard constraints allowed

e Observation Previous approaches backtrack only when sub-
optimality is proven

Adopt: Asynchron Distributed Optimi?aI T%n

First key idea-- Weak backtracking \
e Adopt’ sbacktrack condition— when |ow:

Why lower bounds?

e allows asynchrony

e alows soft constraints

e allows quality guarantees

Any downside?
e backtrack before sub-optimality is proven
e solutions need revisiting

— Second key idea -- Efficient reconstruction of abandoned solutiol

Adopt Algorithm

e Agents are ordered in atree
— constraints between Q\
ancestors/descendents
— no congtraints between siblings @ @

Constraint Graph

e Basic Algorithm:

— choose value with min cost /
— Loop until termination-condition true: '
« When receive message: \
— choose value with min cost \
— send VAL UE message to 4
descendents
— send COST message to parent
— send THRESHOL D message to child

Weak Backtrackin
® Suppose parent has two values, “whi

Explore “white” first Receive cost msg

parent

Receive cost msg

parent

LB(w) =
LB(b) =

Go back to “white”

LB(w) =
LB(b) =

2
0

—y

2
3

Example

7 \
! /l
I)
| \ 4
4 s LB=2",

concurrently choose,
send to descendents

report lower bounds

x1 switches value

$2

AN

A
Q/B=O

X2, x3 report new lower bounds

'

AN
\LB=0

optimal so

Revisiting Aba

ed Solutions w
Problem

— reconstructing from scratch is ineffici

— remembering solutions isexpensive
Solution

— backtrack thresholds — polynomial space

— control backtracking to efficiently re-search

Parent informs child of lower bound:

Explore “white” firss Now explore “black” Return to

parent

LB(w) =10 parent
LB(b) =0

LB(w) = 10
LB(b) = 11

Backtrack Thresho

@ Suppose agent i received threshold =~3Q from its parent

LB(w) =11
LB(b)=0
threshold = 10

olds with multiple L

Backtrack t
children

How to correctly
subdivide threshold?

Third key idea: Dynamically rebalance threshold
Time T, TimeT,

Evaluation of Spee S
N
GraphCelor, Link Densily 2 GrapnColor, Link Density 3
ﬁgg [7+ 7 SynehBE —— %ggg I " SfnchBE ——
A00m - zyrichlL # E
y agon | Adopt —m—/_, g EOOQ0 |
A a0 b - 2 Emooo
& 2500 t P & 4000 |
& 2000 S 30000
« 1500 | T oo |
1000
=00 | 10000
o " | -
1 i0 15 20 25 30 35 40 B 10 12 14 16 1R 20 22 24 26
MU Agents ML Apents
Conclusions

» Adopt’slower bound search method and parallelism yields
significant efficiency gains

* Sparse graphs (density 2) solved optimally, efficiently by Adop

i

Numm%\

GraphColor
a0
70
B0

Msgs per cycle

50 r .
40 |]
30 ¢ 1
20 1 1
10 1
U 1 1 1 1 1 1
5 10 15 20 25 30 35 40
Mum Agents
Conclusion
« Communication grows linearly
* only loca communication (no broadcast)
EECEN |

Bounded error appr

e Motivation Quality control for approxiry
e Problem User provides error bound b
e Goal Find any solution S where

cost(S) £ cost(optimal soln) + b

* Fourth key idea: Adopt’s lower-
bound based search method
naturally leads to bounded error
approximation!

root 'k‘)wer bound = 10

/
threshold=10+ b

Evaluation of Bou d Error

GraphCalor, Link Density 3

4500
4200
3500
agon
2500
2000
1500

Avg Cyvoles

iz 14
Murn Agents

10

Conclusion

» Time-to-solution decreases as b is increased.

* Plus: Guaranteed worst-case performance!

i

GraphColor, Link Density 3

{18 agents)
:"d'
J!' wl
[]
n
q] 3%
-.'ﬂ L
et (5]
fearn Cine Twe

Criztance from Ootimal Solution

Adopt summary —

e First-ever optimal, asynchronous algorithm

— polynomial space at each agent

o Weak Backtracking
— lower bound based search method

— Parallel search in independent subtrees

Bounded error approximation
— sub-optimal solutionsfaster
— bound on worst-case performance

Efficient reconstruction of abandoned solutions
— backtrack thresholds to control backtracking

IS0 e I
agentsBUSC

10

