Learning to Select a Coordination Mechanism

Cora B. Excelente-Toledo
University of Southampton
Dept. of Electronics and Computer Science
Southampton SO17 1BJ, UK.

chet99r@ecs.soton.ac.uk

ABSTRACT

This paper examines the potential and the impact of in-
troducing learning capabilities into autonomous agents that
make decisions at run-time about which mechanism to ex-
ploit in order to coordinate their activities. Specifically,
the efficacy of learning is evaluated for making the deci-
sions that are involved in determining when and how to
coordinate. Our motivating hypothesis is that to deal with
dynamic and unpredictable environments it is important to
have agents that can learn the right situations in which to
attempt to coordinate and the right method to use in those
situations. This hypothesis is evaluated empirically, using
reinforcement based algorithms, in a grid-world scenario in
which a) an agent’s prediction about the other agents in the
environment is approximately correct and b) an agent can
not correctly predict the others’ behaviour. The results pre-
sented show when, where and why learning is effective when
it comes to making a decision about selecting a coordination
mechanism.

Categories and Subject Descriptors

1.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Ar-
tificial Intelligence—Multiagent systems

General Terms

Experimentation

1. INTRODUCTION

Effective coordination is essential if autonomous agents are
to achieve their goals in a multiagent system. Such coordina-
tion is required to manage the various forms of dependency
that naturally occur when the agents have inter-linked ob-
jectives, when they share a common environment, or when
there are shared resources. To this end, a variety of mecha-
nisms have been developed to address the coordination prob-
lem at different levels of abstraction [12, 13, 3].

All of these coordination mechanisms have different prop-
erties and characteristics and are suited to different types of
tasks and environments. They vary in the degree to which

Permissionto make digital or hard copiesof all or part of this work for

personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor pro£tor commercialadwantageandthatcopies
bearthis noticeandthefull citationonthe£rstpage.To copy otherwiseto

republishto poston senersor to redistrituteto lists, requiresprior specifc
permissiorand/orafee.

AAMAS 02, July 15-19,2002,Bologna,ltaly.

Copyright 2002ACM 1-58113-480-0/02/00027.$5.00.

Nicholas R. Jennings
University of Southampton
Dept. of Electronics and Computer Science
Southampton SO17 1BJ, UK.

nrj@ecs.soton.ac.uk

coordination is prescribed at design time, the amount of
time and effort they require to set up a given coordination
episode at run-time, and the degree to which they are likely
to be successful and produce coordinated behaviour in a
given situation. In the majority of cases, these dimensions
act as forces in opposing directions; coordination mecha-
nisms that are guaranteed to succeed typically have high set
up and maintenance costs, whereas mechanisms that have
lower set up costs are also more likely to fail. In short, there
is no universally best coordination mechanism.

In general, the choice of coordination mechanism is some-
thing that is imposed upon the system at design time. While
this may be sufficient for predictable and stable environ-
ments, it is inappropriate in dynamic and open contexts
because there is no scope for changing or modifying the me-
chanism to ensure there is a good fit with the prevailing
circumstances [1]. In such environments, it is important
that the agents have a variety of coordination mechanisms,
with varying properties, at their disposal and that they can
then select the mechanism which is most appropriate for
the task at hand. Thus, for particularly important tasks,
the agents may choose to adopt a coordination mechanism
that is highly likely to succeed, but which will invariably
have a correspondingly large set up cost. Whereas for less
important tasks, a mechanism that is less likely to succeed,
but which has lower set up costs, may be more appropri-
ate. In short, this means that the coordination mechanism
that is employed must be suited to the agents’ prevailing
circumstances.

To achieve the necessary degree of flexibility in coordina-
tion requires an agent to make decisions about when to co-
ordinate and which coordination mechanism to use. To this
end, previous work has developed a reasoning framework to
achieve this [1, 4]. However, this work also highlighted the
importance (as well as the difficulty) of making good ap-
proximations about the behaviour of other agents. This is
especially true as the environment becomes more dynamic.
Given this, a natural extension of the framework is to enable
the agents to acquire knowledge through run-time adapta-
tion. Thus, the agents need to be capable of learning to
make the right decisions about their coordination problem.

Against this background, the aim of this research is to
develop agents that can reason about the process of coordi-
nation and then select mechanisms that are appropriate to
their current situation. More specifically, here, we deal with
the problem of allowing agents to learn the right situation
in which to apply the right coordination mechanism. This
work advances the state of the art in the following ways.

Firstly, it introduces learning into that part of the agent’s
decision making process that is concerned with when and
how to coordinate. Secondly, it empirically demonstrates
where the benefits of learning can be obtained and where
learning is not beneficial in this decision making context.

This paper is structured as follows. Section 2 presents
our specific coordination scenario. Section 3 formalises the
decision procedures of the agents. Section 4 explains how
the decision making procedures are applied in a learning con-
text. Section 5 reports on the experimental work to evaluate
the effect of introducing the reinforcement based algorithms.
Section 6 presents related work and Section 7 concludes and
presents the areas of further work.

2. THE COORDINATION TESTBED

Our domain takes the form of a grid-world in which a num-
ber of autonomous agents (A;) perform tasks for which they
receive units of reward (R;) (see [1] for a justification of the
choice of this particular environment for studying coordina-
tion problems). Each agent has a specific task (ST;) which
only it can perform; there are other tasks which require sev-
eral agents to perform them, called cooperative tasks (CTs).
Each task has a reward associated with it, the rewards for
the CT's are higher than those for ST's since they must be
divided among the coordinating agents.

The agents move around the grid one step at a time, up,
down, left or right, or stay still. At any one time, each
agent has a single goal, either its ST or a CT over which
coordination needs to be achieved. On arrival at a square
containing its goal, the agent receives the associated reward.
In the case of ST's, a new one appears, randomly, somewhere
in the grid, visible only to the appropriate agent. In the case
of CT's, a new one appears, randomly, somewhere in the grid,
but this is only visible to an agent who subsequently arrives
at that square. If an agent encounters a CT, while pursuing
its current goal (i.e., its ST), it takes charge of the CT*
and must decide on both whether to initiate coordination
with other agents over this task, and which coordination
mechanism (CM) it should use. In this context, each agent
has a predefined range of CMs at its disposal. Each CM is
parameterised by two key attributes: set up cost (in terms of
time-steps) and chance of success. For example, a CM may
take ¢ time-steps to set up (modelled by the agent waiting
that number of time-steps before requesting bids from other
agents) and have a probability, p, of success (thus when the
other agent(s) arrive at the CT square, the reward will be
allocated with probability p, with zero reward otherwise).
An agent may well decide that attempting to coordinate is
not a viable option, in which case it adopts the null CM (i.e.
the agent rejects adopting the CT as its goal).

The Agent-in-Charge (AiC) of the coordination selects a
CM and, after waiting for the set up period, broadcasts a
request for other agents to engage in coordination. The
other agents respond with bids composed of the amount of
reward they would require in order to participate in the CT
and how many time-steps away from the CT square they are
situated. If an agent’s bid is successful, then it is termed
Agent-in-Cooperation (AiCoop) to denote the fact that it is
a participant (not AiC) for a CT task. The role Agent-in-

MIf several agents arrive at a CT square at the same time,
one of them is arbitrarily deemed to be in charge and, if an
agent finds more than one CT in a given cell, it randomly
selects one of them for further analysis.

ST (AiS) is used to denote the situation where an agent is
working towards a ST.

Agents might receive more than one proposal at the same
time step, in which case they reply with as many bids as
the proposals they receive. However, they will only accept
one CT contract at a time. Agreements between AiCs and
AiCoops to achieve a particular CT are established via a
contracting protocol. This contract-net-like protocol con-
sists of three steps. In the first step, AiC broadcasts a pro-
posal to all agents. It then waits for the bids. The second
step involves selecting the bids and contracts from AiCs and
AiCoops respectively (both of them have to consider refusals
and denials of their corresponding offers). Finally, the third
step consists of the commitment about the terms of the con-
tract and the time step at which AiCoops will arrive at the
CT square. Figure 1 gives the protocol the agents follow at
each time-step.

[1] Agents arrive at a square. If AiS arrives at its ST cell, its
goal is attained, it receives the reward and updates its goal.
If AiCoop arrives at the CT cell, it notifies the AiC that
it has arrived. It might have to wait in the cell until the
remaining AiCoops arrive. If AiC receives confirmations from
all AiCoops, the CT is achieved and the rewards are paid to
AiCoops.

[2] If AiS finds a CT it must decide if it wants to become AiC
and, if so, which CM= (¢, p) it should use. If ¢ > 0 it must
wait ¢ time-steps before broadcasting a request for coordina-
tion.

[3] If AiS receives a request for coordination, it decides whether
and what to bid to participate in the CT. The AiC then
evaluates all bids. If AiS’s bid is accepted, it adopts CT as
its new goal. Neither AiCoops nor AiC respond to requests
for coordination.

[4] Each agent decides on its next move according to its current
goal and all agents move simultaneously.

Figure 1: Basic protocol followed by agents

As more than two agents may be required to achieve a CT,
it is necessary to deal with the fact that an AiCoop may
have to wait in the CT cell while the remaining AiCoops
arrive (because agents have to travel different distances).
In such cases, the AiC pays an additional reward for the
time elapsed—AiC knows the number of time steps that
each AiCoop is likely to have to wait (specified in the bid)
and the amount it will pay for waiting time at a specific
predefined waiting rate (¢). Thus when an AiCoop notifies
the AiC of its arrival at the CT cell, it either receives its
share of the CT reward or the waiting rate followed by its
share of the CT reward.

To clarify the protocol and the previous description of the
scenario, Figure 2 shows a 10x10 grid size at a specific time
step with 5 agents in the grid and three CTs. The CT in
position (1,9) requires 3 agents to be achieved, the one at
(2,6) needs 4 agents and the one at (9,8) requires 2 agents. In
the specific moment shown, the AiC-A; (at (1,9)) negotiated
and is in agreement with two AiCoops (A4 at (4,6) and As
at (4,8)) to achieve its CT at (1,9). Ag and A» are AiSs (at
(4,4) and (6,5) respectively) that are working towards their
respective specific tasks at (2,2) and (6,5). No agents have
found the CTs at (2,6) and (9,8).

3. DECISION MAKING PROCEDURES

Previous work has developed and evaluated a decision ma-
king framework for reasoning about whether and how to

2
STof AD|STof Ad
3
A
4 @
|AZ
5
STof AZ

[+
O

STof A1 cT

@B
®

Al

s

STof A3

10

X 1 2 3 4 5 6 7 8 9 10
—

@as Oacoop ©ac Qst @cr

Figure 2: Scenario with agent roles

coordinate in this domain [1, 4]. Since the main focus in
this paper is on the role and impact of learning on this
framework, we do not discuss all the details of the model
here. Rather we concentrate on the decisions where lear-
ning could have a role to play; i.e. in which CM to adopt,
if any; how much to bid when a request for coordination is
received; and how to determine which bid to accept, if any.

The agents’ aim is to maximise their reward, in particular
their average reward per unit time. To account for hetero-
geneity in the population, each agent keeps track of its own
average reward, termed its reward rate, being its total cu-
mulative reward divided by the total number of time-steps
taken to obtain it. It uses this rate to decide how much to
charge for its own services and occasionally to approximate
the expected rates of other agents when it is not able to build
up a picture them. Specifically, each agent uses its reward
rate to evaluate and compare the different actions available
to it; if it can maintain or improve this rate, it chooses to
do so. Of course, this decision model approximates the true
relative values of different actions.

3.1 Deciding which CM to select

An agent which, while pursuing its current goal, encoun-
ters a CT must decide whether to initiate coordination with
other agents in order to perform it. To do this, the agent
must determine whether there is any advantage in so doing.
This depends not only on the reward that is being offered,
but also on the CMs available, as well as on various envi-
ronmental factors which affect the expected demands of the
potential coordinating agents.

To model the expected demands of the other agents, the
AiC assumes they are randomly distributed throughout the
grid, and that their current goals are similarly distributed.
Thus some agents may be near the C'T while others may be
far away; likewise, for some agents there would be a signifi-
cant deviation from their ST to reach the CT, while others
may be able to coordinate over the CT en route to their
own goals. The agent assesses the possible CMs on the ba-

sis of how long before the task can be performed (including
both the set up time and the average distance away each
agent is situated) and of how much reward it is likely to
obtain after deducting the expected reward requirement of
the other agents (based on the amount of time they must
spend deviating from their path and the CM’s probability
of success).

The agent uses all these factors to assess each CM in terms
of the amount of surplus reward it can expect, over and
above what it expects to obtain during its normal course of
operation, i.e., its own average reward per time-step, r. The
agent selects the CM which maximises this surplus?.

To formalise this decision procedure, consider an M x N
grid with reward size S for STs, and R for CTs, a coordi-
nation mechanism, CM=(¢, p), which costs ¢ time-steps to
set up and has a probability of success p. In this grid-world
of known size, the agent can calculate the expected average
distance (ave_dist) away of any randomly situated agent
from the CT square, as well as the likely average deviation
(ave_dev) such agents would have to make to get there.

Based on these figures, the agent can assess the average
surplus reward from coordinating over the CT at (x,y) using
CM; = (tj,p;). First, it must estimate its own cost in terms
of how long the CM will take to set up and how long it
expects to wait for the other agents to arrive. Since the AiC
would usually expect to receive r reward units per time-
step®, the cost of CMj is given by:

costj(x,y) =r X (t; + ave_dist(z,y))

Second, the AiC must estimate the average amount of re-
ward the other m agents will require. To distinguish an
agent’s own average reward (r) from that of the others,
r_AiCoop is used to refer to the average reward of all the
other agents in the environment. When AiC does not have
any knowledge of r_AiCoop it uses its own average reward
as an approximation.

r_AiCoop x ave_dev(z,y) (1)
pj

Third, the AiC estimates the expected surplus of C'M;
from adopting the CT by taking into account the probability
of success of the task:

ave_bid;(z,y) =

ave_surplus; (z,y) =pj x R—
(costj(z,y) + (m X ave_bid;(z,y)) (2)

When deciding which of its CMs to adopt, the agent com-
putes its expected surplus reward from each of them and
selects the one that maximises this value. If the surplus
associated with all CMs is negative, the agent adopts the
option of the null CM (which is defined to have zero sur-
plus).

The formulation presented so far allows agents to take
decisions about when and which CM to select in order to
achieve a CT. Since this is the most important decision the
agents face in this scenario [1], it is the one we concentrate
on in terms of evaluating the role of learning?.

2Though this may not be a globally optimal criterion for de-
ciding which CM to use, it makes sense from a self-interested
agent’s point of view.

3The simple form of computing the average reward assumes
that agents will obtain the reward of a ST per time step,

r= ave_dist *
4There are clearly other places where learning could play a

3.2 Decidingwhat tobid tobecomean AiCoop

When agents receive a request to participate in a CT they
submit a bid based on the amount of reward that they would
require to compensate them for deviating from their current
goal. They also submit their current distance away from the
CT square. The agents’ bids are also affected by their so-
cial attitude factor; which determines whether they expect
to receive more, less or the same average reward for social
activities as they do for non-social ones. In this work, we
only consider neutral agents that expect to receive the same
from social actions as they do from non-social ones ([1] re-
ports on the effect of this parameter). Other influences on
their required reward are the amount of time spent in de-
viating from the C'T square, an agent’s average reward per
time-step and the probability of success of the CM being
proposed.

To formalise this, consider an agent, A; with average re-
ward per time-step ;. The agent calculates its deviation,
i.e., the number of extra time-steps it requires to reach its
ST if it goes via the CT square. Note that if, for example,
the CT square lies directly on a path to the ST, the agent’s
deviation would be zero.

To compute the reward A; requires from engaging in coor-
dination over the CT, it takes into account the compensation
both for its deviation and for the possibility that the CM
might fail. Thus, we have:

bid,; — r; X deviation; 3)
pj

The agent submits its bid to coordinate and its distance
from the CT square. If an agent is selected to coordinate,
it adopts the CT as its current goal. Its ST is only re-
adopted after the CT has been accomplished; in particular,
if it should arrive at the ST square en route for the CT, it
does not receive its reward until it returns there.

3.3 Deciding which AiCoop bidsto accept

Once the AiC has received bids from all agents, it selects the
set that maximises its surplus reward, given the new (defi-
nite) information it has received (cf. the approximation in
section 3.1). For each agent, A;, the AiC knows the amount
of reward it will require (bid;;) and the time it will take to
arrive (T5).

Since all AiCoops need to be in the cell at the same time
to accomplish the CT, AiC needs to pay an additional award
to those AiCoops that have to wait in the CT square. AiC
calculates this reward by selecting the agent that will take
the longest time to arrive from the set of bids received. From
this, it can determine the maximum time, waiting time,;,
that each agent will spend in the cell. For this time, the
waiting AiCoops are compensated at a pre-specified rate q.

Formally, AiC calculates the cost_bid;; based on the re-
ward each agent requires and the reward AiC has to pay for
the waiting time,:

cost_bid;; =bid;; +1; X r + waiting_timeij X q
Next it selects the m bids with the minimum cost:

S = min[cost_bid,;]

role, but here we concentrate on these decisions since they
are the major ones with respect to reasoning about coordi-
nation mechanisms.

From this S, it selects the furthest bid (i.e., maxT =
max;cs[1;]) and calculates its expected surplus:

surplus,; = p; X R —bidij —r X (t; + mazT) (4)

Now, it may be the case that no bids are received which
give a positive surplus. Even though the chosen CM had an
expected surplus, by chance it may be that no agents are
sufficiently near to provide reasonable bids. In such a situ-
ation, the AiC returns to step [2] of the protocol (Figure 1)
since, although it has been unlucky, its state is essentially
unchanged and attempting to coordinate again is still likely
to produce a surplus.

4. THE ROLE OF LEARNING

The previous section highlighted the potential role of lear-
ning in deciding which CM to select. This section will now
describe how learning was actually introduced. We decided
to employ a reinforcement learning (RL) technique [6]. A
reinforcement-based approach is appropriate because we are
concerned with agents pursuing goals and obtaining rewards
according to how effectively those goals are accomplished.
Within this class, Q-learning [17] was chosen because it is
an online algorithm which does not require a model of the
environment and thus it is well suited to our dynamic and
unpredictable scenario.

Here we employ the classical model of Q-learning which
consists of:

e a finite set S of states s of the world (s € S);
e a finite set A of actions a that can be performed (a € A);

e a reward function R: S x A —r.

An agent’s goal consists of learning a policy 7 : S — A
that maximises the average sum of its rewards V:

oo}
Virg +re1 +7°rgz + . = VZ Yoy
i—0

where 0 < v < 1 is the discount factor®. Thus, the agent’s
task is to learn the optimal policy 7 (i.e. argmaz.V™(s),
V(s)).

Assume that agents always perform the cycle of being in
particular state s, then they select and perform an action a,
which causes that agent to enter a new state s’ and receive
an immediate payoff (reward r(s,a)). The Q-learning algo-
rithm is based on the estimated values of the agent’s state
(s)-action (a) pairs, called Q(s,a) values. Based on this ex-
perience, the agent updates its Q(s,a) values using the for-
mula:

Q(s,a) = (1 — an) X Q(s,a) + anlr + v X maz,Q(s',a")]

where « is the learning rate (decreasing with time by calcu-
lating it with the number of times a Q(s, a) value is visited
visits_ QValue: an = m) Q(s',a’) represents
the maximum Q(s, a) value obtained by any previous action
a’ to arrive to state s'.

When agents select their next action to execute, they

have to balance their decision between selecting an action

°The discount factor determines the value of future rewards.
A reward r received t time steps in the future is worth only
~*~! times what it would be worth if it were received im-
mediately. As « approximates 1, the function takes future
rewards into account more strongly.

that, when performed in the past, brought about a posi-
tive reward, and an action that has not yet been performed,
and therefore is associated with an uncertain reward (“ex-
ploitation versus exploration” [6]). For experimental eval-
uation purposes, we used v = 0.90 (which means that the
agent is reasonably farsighted) and as an exploration func-
tion f(u,n) [9]:

R+ ifn < N, e

flu,n) = { u otherwise (5)
which returns the weight of a Q(s,a) value based on the
number of times (n) this policy has been visited. The ac-
tion associated with the best f(u,n) value is selected to be
performed. R™ is the best possible reward that an agent
can obtain in a given state, N, corresponds to the number
of times that agents should try a particular action-state pair
and u represents the utility of a Q(s,a) value.

In this work, our objective is to evaluate the effect of
learning on the agents’ decision making about CMs. To do
this, we will compare the performance of agents which use
a Q-learning algorithm (RL) with those that do not (NL).
Here the key difference is how the agents select the CM
with which they will attempt coordination (step [2] in the
protocol specified in Figure 1). For the remaining steps of
the protocol, both RL and NL agents employ the decision
making procedures outlined in Section 3 to make agreements
when surplus (equation (4)) is positive given the set of bids
(equation (3)) it received.

In more detail, when an agent finds a CT, it calculates
the expected surplus (equation (2)) of each CM at its dis-
posal. With NL the agent simply chooses the one with the
best ave_surplus. With RL it exploits-and-explores (equa-
tion (5)) the set of CMs. When using RL, the reinforcement
is used to measure the benefit of having selected a particular
CM which corresponds to the surplus gained by achieving a
CT using the CM chosen® after paying the AiCoops. This
means the agent-state corresponds to the abstraction of the
particular situation that agents experience when a CT is
found (for example, the agent role, position in the grid and
so on); the agent-action represents the set of options an
agent has at its disposal (i.e. the set of coordination mecha-
nisms it can select, including the null CM) and the reinfor-
cement is modelled as the reward obtained by selecting the
particular CM. Thus, the idea is that with Q-learning the
agents will eventually learn the policy (after exploring suf-
ficient situations) which allows them to know which CM to
choose given a specific situation/state.

It is clear that the reinforcement is a central element in
the process of learning because it is the mechanism to praise
or blame if a good or bad action is performed. Thus, we de-
cided to consider alternative values and moments to provide
the reinforcement. The role of the reinforcement is to as-
sess the evaluation performed on the choice of CM. To this
end, the ave_surplus corresponds to the predicted value
that an AiC expects to obtain by selecting a particular CM.
When the negotiation phase is finished, the AiC receives
firm information from the other agents and it is in position
to evaluate this prediction. Thus, the AiC compares its pre-
dicted ave_surplus with the firm value negotiated (i.e. the

6 Actually, accomplishing CTs is the only case considered.
Even though agents achieve ST tasks, this information is
not considered as reinforcement since it is not relevant to
the agent’s decisions about CMs.

surplus, equation (4)). If the prediction is close enough
(£ 25%) to the real information, a strong reinforcement is
made; but if it is not that close, a negative reinforcement is
made”.

In addition to this basic reinforcement method, we wanted
to see whether the coordination decision making could be
improved if the AiC builds a model of the other agents in the
environment. That is, can RL agents improve their predic-
tion of ave_surplus if they have a model of the other agents?
To evaluate this, we do not need to construct a complex rep-
resentation of the other agents but, rather, we can simply
record the key variables that are crucial to coordination de-
cisions. In particular, we decided to explore r_AiCoop in
equation (1) and we let AiC calculate the value of r_AiCoop
by averaging the bids it receives from the other agents (in
contrast to using the AiC’s own average reward).

In summary, the agents’ performance will be analysed us-
ing the following algorithms:

RL1 agents learn to select a particular CM according to the
profit gained by accomplishing CTs with a particular
CM.

RL2 agents learn to select a particular CM according to
the accuracy with which they predict the ave_surplus
(which is based on the tailoring of r_AiCoop to their
prevailing circumstances).

NL agents do not engage in learning activities.

To finish the discussion on the role of learning in our
model, it is necessary to specify the features of the envi-
ronment in which the algorithms will be tested. Two sce-
narios have been designed: scenariol in which all AiSs in
the environment become AiCoop by submitting a bid which
is calculated by equation (3) and scenario2 in which AiSs
calculate their bids in the same way but they vary the re-
sult by a random factor. The reason for this change is that
in the general case AiCs face a great deal of uncertainty in
predicting this value. Thus the random element mirrors en-
vironments in which predictions are less accurate. Together,
these two scenarios constitute a reasonably static environ-
ment in which good predictions can be made and a more
dynamic environment in which predictions are inherently
less accurate.

5. EXPERIMENTAL EVALUATION

The main hypothesis we seek to evaluate in this section
is whether agents coordinate more effectively in our scena-
rio using the reinforcement based algorithms. To measure
the benefits of introducing or refining an agent’s abilities in
our model, a set of experiments were designed as a formal
methodology to provide information about the experimental
variables. In order to test and to verify the hypothesis ques-
tions we employ statistical inference methods, in particular
analysis of variance (ANOVA) is used to test hypotheses
about differences between the means collected. The null hy-
pothesis (HO) of equal means can be rejected when the pro-
cedure reveals for all experiments that the differences among
means are significant (p < 0.05) or might be accepted in the
contrary case. That is, the execution of an algorithm in
a specific environment generates a set of values for the ex-
perimental variables that can be analysed under the same

"The absolute value of ave_surplus is used to provide the
reinforcement in either the positive or the negative direction.

circumstances and situations in order to probe hypotheses
using ANOVA.

In this case, the experimental variables were: Total Agent
Reward obtained from its ST and CT tasks, which is nor-
mally called agent utility (AU), and the Total number of
CTs accomplished (TCT). The following simulation vari-
ables were fixed for all the experiments: size of the grid
(10x10), duration (50,000 time units)®, number of CTs in
the grid at any one time (3), number of agents in the environ-
ment (5), ST reward (1), CT reward (20), maximum number
of agents needed to achieve a CT (3), coordination mecha-
nisms considered by an agent (CM(0,0.6), CM(15,0.7), CM
(30,0.8), CM(45,0.9) and CM(60,1.0)°). The experiments
described collect the results of the experimental variables
averaged over 10 simulation runs.

To probe the acceptance of the main hypothesis, all the
hypotheses presented below must be rejected (meaning that
the hypothesis of equal means is false) and the values of
the experimental variables of a particular learning algorithm
should produce significantly better results than those ob-
tained with NL. Therefore, the following hypotheses must
be tested in scenariol and scenario2:

H1: the agent utility obtained by performing a reinforce-
ment based algorithm is the same as that obtained by
agents which use the NL algorithm.

H2: the number of CTs achieved by agents by means of
either reinforcement learning algorithm is identical to
that of agents using NL.

H3: the agent utility obtained by RL1 is the same as that
of RL2 (evaluated in the case where H1 rejected).

H4: the number of CTs accomplished by RL1 is identical
to that of RL2 (evaluated in the case where H2 is re-
jected).

Table 1 presents a summary of the results obtained by
performing ANOVA on the data collected by each of the
algorithms in scenariol. Let’s first analyse the agent util-
ity hypothesis. H1 is rejected, meaning that the perfor-
mance of the algorithms does have a significant effect on
the AU obtained. To understand this result, a post-analysis
of the AU values obtained by each algorithm was neces-
sary. Here, the interesting conclusion is that the perfor-
mance of NL is better by a statistically significant amount
(AUnL = 10,138.30) than RL1 and RL2 (AUgr1 = 9,413.58,
AUgr2 = 9,399.00). Furthermore, comparing the perfor-
mance of RL1 and RL2 in H3 (Accepted), it is concluded
that the value and the moment of praising or blaming agents
does not have any effect on the AU obtained.

H2 evaluates the effectiveness of achieving CTs. This
hypothesis is accepted which means that the total of CTs
achieved does not depend on the algorithm executed. This
is an important result to analyse in detail. In particular,
why does NL perform better if all the algorithms achieve

8We decided to evaluate for a fixed duration because in this
scenario time counts and agents win reward at each time-
step. Thus, it is reasonable to compare the behaviour of
all algorithms under the same parameters. The duration
selected is sufficient for the learning algorithms to converge.
9These CMs were selected because previous results have in-
dicated that these are the main ones that are selected by
the agents in this setting [1].

Hypothesis to evaluate o) Outcome
H1: AUgrL1=AUgrL2=AUnL 0.000 Rejected
H2: TCTru1i=TCTRr=TCTnL 0.876 ACCGpted

H3: AURL1=AURL2
H4: Not evaluated

Table 1: scenariol, result of ANOVA

| 0.590 { Accepted

the same number of CTs? One reason is that NL accom-
plishes more ST tasks than the other algorithms. Figure 3
(left part) shows that the reward obtained by achieving ST's
is the biggest part of the total reward. Another, and more
important reason, is that in this scenario it is highly expen-
sive (due to the set-up cost of the CMs) to invest in a CT
when there is some uncertainty about achieving it. With
NL, it seems that AiC can make a good prediction of the
ave_surplus. Meanwhile with RLs, the agents evaluate and
explore the CMs and when they learn what is and what is
not a good decision, the time has elapsed*®.

12000

M AiCoop
AiC

10000
W oAS

8000 1]] I [T

6000

Total Reward obtained

4000 +— -

2000

RL1 ‘ RL2 ‘ NL RL1 ‘ RL2 ‘ NL

scenario1 scenario2

Figure 3: Reward obtained by agent role

Contrary to our intuition, the two versions of Q-learning
(RL1, RL2) do not have any effect on the agents’ perfor-
mance. Analysing in detail, we find that this is because
there is no change of information between the time agents
make agreements and the time when they achieve the task.
That is, no events occur which allow agents to change the
reinforcement. Examples of events that could make a dif-
ference are if there are any decommitments or delays from
AiCoops. The behaviour of the RLs is exploring and exploit-
ing the actions and receiving a reinforcement which praises
or blames the actions performed. Thus the two versions of
RLs are simply reinforcing the same actions but with differ-
ent values.

Turning now to the more dynamic environment of scena-
rio2. We tested the same set of hypotheses and the results
are summarised in Table 2. First, we analyzed the hypothe-

10The convergence time for the RLs is a combination of the
learning rate, the exploration and exploitation function, the
state representations and so on. It was not our objective to
hand tune all these parameters to reduce the convergence
time in particular cases. Rather, we fixed the values of all
parameters and kept them constant in both Q-learning im-
plementations.

ses related with agent utility (H1, H3). Similarly to the re-
sults obtained in Table 1, we conclude that applying RL and
NL produces distinctive results (H1 is rejected). But, con-
versely to Table 1, in this point RL1 and RL2 get significantly
better results (AUgr; = 8,063.30 and AUgr2 = 8,067.98)
than NL (AUn. = 7,151.12). Additionally, observing the
ANOVA result of both RL algorithms, we make the same
conclusion as we did in scenariol; namely, giving the rein-
forcement before and after the negotiation phase makes no
difference to the final reward obtained by agents (H4 is ac-
cepted).

Hypothesis to evaluate P Outcome
H1: AURL1:AURL2:AUNL 0.000 Rejected
H2: TCTrui=TCTr=TCTnL 0.000 Rejected
H3: AUgrL1=AUg2 0.835 | Accepted
H4: TCTru1=TCTreL2 0.940 Accepted

Table 2: scenario2, result of ANOVA

With reference to the values of TCT (H2 and H4). The
hypothesis of equal means of H2 is rejected and H4 is ac-
cepted. There is a significant impact on the TCT achieved
when performing RLs or NL, where the results are 65 to RLs
and 84 to NL. The relevant aspect to discuss now, though,
is why NL obtains a lower AU despite achieving more CTs?
Being consistent with the previous explanation, and observ-
ing Figure 3 (right section), it can be seen that the reward
gained by achieving CTs for NL-AiCs is bigger than that
gained by RL-AiCs because they achieve more CTs. How-
ever, the time invested on them was not sufficient to recover
the reward that was being gained by RL-AiSs (RL-AiSs ob-
tained in total approximately 84% of the total reward by
accomplishing STs and NL-AiSs achieved 76%). The reason
for this result is that agents invest a significant amount of
time to set up the CM and, in the end, the AiCoops of-
ten request higher bids than those in scenariol (meaning the
AiCs’ profit is reduced). Thus, RLs perform better because
they are more certain about when to invest time in a CT
and, more importantly, when not to do it (because it is not
worth it). They then use this time to take advantage of
pursuing STs.

Before making a general conclusion about the irrelevance
of the different options of reinforcement and modelling other
agents, Figure 4 shows the performance of the algorithms
from a different perspective. Here, we analyze the perfor-
mance of agents by evaluating the average surplus reward
expected (equation 2). We undertake this analysis because
is important to know if it really worthwhile having adaptive
agents instead of just hand tuning the agents’ decision ma-
king procedures about which CM to select. To be precise,
NL agents select the CM based on ave_surplus, but RLs
agents do not (RL2 uses the result of this evaluation just
as a reinforcement). Thus, the idea is to count the num-
ber of cases in which the action selected by either RL algo-
rithm coincides with the outcome indicated by equation 2.
In other words, given a specific situation, RL agents exploit
the CMs and evaluate this formulation, then they analyze
the ave_surplus of that CM. If it is positive, then a case
of T'T' is encountered (because the CM was exploited and it
coincided with the decision based on ave_surplus). On the
other hand, if it is negative, the CM was exploited but this
did not correspond with the evaluation of equation 2 (case
TF). Additionally, we have the cases in which the CM was

not exploited and this corresponds (FF) or not (FT') with the
decision based on ave_surplus. It is clear that with NL all
the cases have to be consistent because they attempt coor-
dination based on this evaluation. As for the RLs, it will
depend on how this equation is calculated. Both NL and
RL1 agents employ equation 2 using their own r values for
r_AiCoop, whereas RL2 uses the value that it has learned
based on previous encounters. Figure 4 shows only the T'T
and FF cases since the others (TF and FT) are not relevant
in this discussion. The first thing to notice is the clear dif-
ference between RLs, which is due to the different ways in
which the ave_surplus is calculated. The second observa-
tion is that RL2 has more FF cases, meaning that most of the
time the action it performs is to not attempt coordination
and in these cases this decision is consistent with that based
on the ave_surplus. The reason for this result is that RL2
is modelling others using r_AiCoop which helps it to make
a good prediction of the other agents. Given this, the obvi-
ous question to ask is: could NL perfom better by modelling
others in the same way as RL27 Here, the answer is no. The
system utility obtained by NL agents in scenariol degrades
considerably when agents use r_AiCoop (AUn. = 7,575.28)
and in scenario2 it raises slightly (AUnL = 7,578.42). Despite
the improvement in scenario2, it is not sufficient to have H1
accepted. If the NL agents’ predictions of ave_surplus are
too low (being optimistic about the possible future cooper-
ative agents), they will always initiate coordination even in
situations where it not the best decision to make. However,
if their predictions are too high (being pessimist) they will
never attempt coordination. Thus, we can conclude that
having learning agents which explore and exploit actions,
taking advantage of long-term profits, is the more reason-
able thing to do in dynamic environments because agents
can not be certain about the others’ actions.

400

MNL
350 ORLA1 —
RL2

300

n

o

3
L

n
S
s

Total cases

a
3

50—

™ FF T FF

scenariol scenario?

Figure 4: RL and ave_surplus action selection

6. RELATED WORK

A vast literature has been produced in recent years concern-
ing the use of learning techniques (particularly Q-learning)
in multiagent systems [11, 14]. The focus has been mainly
on two aspects. In the first one, an agent’s goal is to learn
about the other agents and their environment by observation
in order to predict their behaviour or to produce a model
of them [7, 5, 2]. In the second case, Q-learning has been

applied to learn how to coordinate or cooperate to achieve
common goals by using specific strategies [16, 10]. The suc-
cess in these two lines of research has mainly been to improve
the cooperation or coordination between the agents in the
environment. While this is clearly an important issue to
address, we are more concerned with learning to select par-
ticular coordination mechanisms. Much less work has been
done in this area. The most relevant work to our own is the
COLLAGE [8] and LODES [15] systems. The objective in
both systems is to improve coordination by learning to select
a coordination strategy in appropriate situations. However
the aspects each system addresses are different and their
findings are complementary. LODES is more interested in
having agents capable of learning the key information that is
necessary to improve coordination in specific situations. In
COLLAGE agents learn how to choose the most appropri-
ate coordination strategy given a particular situation. Thus,
LODES focuses on “what information to learn” and COL-
LAGE on “learning the situation where to use a coordina-
tion strategy”. It is important to notice that both systems
are concerned with the detailed activities of coordination as
part of the learning process. For agents to solve a particular
coordination problem, they have to solve all the interrela-
tions and dependencies between their actions. Thus agents
first plan the actions to perform and then execute them.
To solve this, both systems have to handle deep knowledge:
about the domain in the case of LODES and about coor-
dination strategies with COLLAGE. In our case, however,
the research aim is broadly similar, but our assumptions are
different and we deal with the problem using alternative so-
lutions. In our framework, agents are endowed with a set
of decision making procedures to select adequate coordina-
tion mechanisms. By dealing with an abstract set of such
mechanisms, we consider it more important to have agents
that have the capacity to take decisions about coordination,
rather than dealing with all the interactions between them.
We leave the latter to the details of the subsequent tasks
of the associated protocol. Furthermore, we believe that as
agents are increasingly being required to deal with more dy-
namic issues then online learning will become more impor-
tant. COLLAGE, by contrast, uses instance based learning
techniques in which there is a phase of recovery of examples
and one of training. Consequently, the system has well de-
fined moments in which these phases are performed which
gives the additional problem of determining when each phase
should finish.

7. CONCLUSIONSAND FUTURE WORK

This paper analysed the use and the efficacy of agents lear-
ning about making decisions about when and how to coordi-
nate. We showed that learning improves the decision making
when agents are uncertain about the other agents’ actions.
This improvement occurs because agents learn to recognize
the situations where the most profitable actions must be se-
lected. We also showed that learning was ineffective when
agents operate in more static environments in which they
can make accurate predictions about their environment and
other agents.

Speaking more generally, we believe it is important to
develop techniques that enable agents to coordinate flexi-
bly in dynamic and unpredictable environments. Although
several of the detailed aspects of our decision procedures
are specific to our grid-world scenario, we believe that the

general processes and structures are suitable for reasoning
about coordination mechanisms in more general domains.
In particular, the issues of when and how to exploit learning
techniques to allow agents to take decisions based on their
experience is a key aspect that needs broader investigation.
To this end, the results presented here can be viewed as a
first step in that direction.

For the future, we aim to extend the use of learning to
cover other aspects of the agent’s decision framework. In
particular, to learn the decision about how much to bid in a
request for coordination, when to become an AiCoop (equa-
tion 3) and which bids to accept (equation 4). We also in-
tend to allow agents to construct more sophisticated models
of one another and to have the ability to vary the details of
this modelling according to the agent’s coordination context.

8. ACKNOWLEDGMENTS

The first author acknowledges the funding of Mexico’s Na-
tional Council of Science and Technology, CONACyT.

9. REFERENCES

[1] R. A. Bourne, C. B. Excelente-Toledo, and N. R. Jennings.
Run-time selection of coordination mechanisms in multi-agent
systems. In Proc. of the 14th European Conf. on AlI, 2000.

[2] C. Claus and C. Boutilier. The dynamics of reinforcement
learning in cooperative multiagent systems. In Proc. of 15th
Nat. Conf. on AI, 1998.

[3] E. H. Durfee and V. R. Lesser. Partial global planning: A
coordination framework for distributed hypothesis formation.
IEEE Transactions on Systems, Man, and Cybernetics,
21(5):1167-1183, 1991.

[4] C. B. Excelente-Toledo, R. A. Bourne, and N. R. Jennings.
Reasoning about commitments and penalties for coordination
between autonomous agents. In Proc. of the 5th Intl. Conf. on
Autonomous Agents, 2001.

[5] J. Hu and M. P. Wellman. Online learning about other agents
in a dynamic multiagent system. In Proc. of 2nd Intl. Conf.
on Autonomous Agents, 1998.

[6] L. P. Kaelbling, M. L. Littman, and A. W. Moore.
Reinforcement learning: A survey. Journal of AI Research,
4(4):237-285, 1996.

[7] Y. Nagayuki, S. Ishii, and K. Doya. Multi-agent reinforcement
learning: An approach based on the other agent’s internal
model. In Proc. of the 4th Intl. Conf. on MultiAgent
Systems, 2000.

[8] M. V. N. Prasad and V. R. Lesser. Learning situation-specific
coordination in cooperative multi-agent systems. Autonomous
Agents and Multi-Agent Systems, 2(2):173-207, 1999.

[9] S. J. Russell and P. Norvig. Reinforcement learning. In AI: A
Modern Approach, chapter 20, pages 598-624. Prentice Hall,
1995.

[10] S. Sen, M. Sekaran, and J. Hale. Learning to cooperate
without sharing information. In Proc. of the 12th Nat. Conf.
on Al 1994.

[11] S. Sen and G. Weiss. Learning in multiagent systems. In
G. Weiss, editor, Multiagent Systems, chapter 6, pages
259-298. The MIT Press, 1999.

[12] Y. Shoham and M. Tennenholtz. On the synthesis of useful
social laws for artificial agent societies. In Proc. of the 10th
Nat. Conf. on Al pages 276 281, 1992.

[13] R. G. Smith and R. Davis. Frameworks for cooperation in
distributed problem solving. IEEE Transactions on Systems,
Man, and Cybernetics, 11(1):61-70, 1980.

[14] P. Stone and M. Veloso. Multiagent systems: A survey from a
machine learning perspective. Autonomous Robots,
3(8):345-383, June 2000.

[15] T. Sugawara and V. Lesser. Learning to improve coordinated
actions in cooperative distributed problem-solving
environments. Machine Learning, 33(2/3):129-153, 1998.

[16] M. Tan. Multi-agent reinforcement learning: Independent vs
cooperative agents. In Proc. of the 10th Intl. Conf. on
Machine Learning, 1993.

[17] C. J. C. H. Watkins and P. Dayan. Technical note: Q-learning.
Machine Learning, 8:279-292, 1992.

