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Abstract — The contract net protocol has been developed to specify 
problem-solving communication and control for nodes in a distributed 
problem solver. Task distribution is affected by a negotiation process, 
a discussion carried on between nodes with tasks to be executed and 
nodes that may be able to execute those tasks. 

We present the specification of the protocol and demonstrate its use 
in the solution of a problem in distributed sensing. 

The utility of negotiation as an interaction mechanism is discussed.   
It can be used to achieve different goals, such as distributing control 
and data to avoid bottlenecks and enabling a finer degree of control   
in making resource allocation and focus decisions than is possible with 
traditional mechanisms. 
 

Index Terms—Artificial Intelligence (AI), connection, cooperation, 
distributed problem solving, focus, high-level protocols, negotiation, 
resource allocation, task-sharing. 

I .  INTRODUCTION 
ISTRIBUTED problem solving is the cooperative so- 
  lution of problems by a decentralized and loosely cou-

pled collection of knowledge-sources (KS's) (procedures, sets  
of production rules, etc.), located in a number of distinct pro-
cessor nodes. The KS's cooperate in the sense that no one of 
them has sufficient information to solve the entire problem; 
mutual sharing of information is necessary to allow the group, 
as a whole, to produce an answer. By decentralized we mean 
that both control and data are logically and often geographi-
cally distributed; there is neither global control nor global data 
storage. Loosely coupled means that individual KS's spend 
most of their time in computation rather than communication. 

Such problem solvers offer the promise of speed, reliability, 
extensibility, and the potential for increased tolerance to un-
certain data and knowledge, as well as the ability to handle 
applications with a natural spatial distribution. There has been 
much recent interest in this type of problem solving in the 
Artificial Intelligence (AI) community. Its use has been con- 
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sidered in such applications as traffic-light control [5], dis-
tributed sensing [7], and heuristic search [10]. 

In this paper, we present the contract net protocol, a high-
level protocol for communication among the nodes in a dis-
tributed problem solver. It facilitates distributed control of 
cooperative task execution (which we call task-sharing [9]) 
with efficient internode communication. 

The role of a high-level protocol in a network such as the 
ARPANET has been discussed in previous papers (see, for 
example [11]). Traditional communication protocols form a 
low-level base for problem-solving communication. They en-
able reliable and efficient transmission of bit streams between 
nodes, but do not consider the semantics of the information 
being passed. A high-level protocol assigns interpretations to 
the bit streams. It offers a structure that assists the system 
designer in deciding what the nodes should say to each other, 
rather than how to say it. 

We are not primarily concerned with the physical archi-
tecture of the problem solver. It is assumed to be a network of 
loosely coupled, asynchronous nodes. Each node contains a 
number of distinct KS's. The nodes are interconnected so that 
each node can communicate with every other node by sending 
messages. No memory is shared by the nodes. We also assume 
the existence of a low-level communication protocol to support 
reliable and efficient communication of bit streams between 
nodes. A functional model of a node is shown in Appendix A. 
 

II. CONNECTION AND CONTRACT NEGOTIATION 
The key issue to be resolved in task-sharing is how tasks are 

to be distributed among the processor nodes. There must be a 
means whereby nodes with tasks to be executed can find the 
most appropriate idle nodes to execute those tasks. We call this 
the connection problem. Solving the connection problem is 
crucial to high performance in a distributed problem solver. It 
has two aspects: 1) resource allocation and 2) focus. Ef-
fective resource allocation is achieved by balancing the com-
putational load among the nodes. It is essential if the maximum 
speedup possible from applying multiple nodes to a single 
overall problem is to be obtained. 

Focus is achieved by effective selection of tasks for allocation 
to nodes and by effective selection of KS's for execution of 
tasks. It is essential for problems that do not have well-defined
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algorithms for their solutions (i.e., problems of the type most 
often considered in AI). For such problems, many tasks are 
typically generated during the search for solutions; and the 
execution of many of these tasks will not lead to a solution. In 
addition, the most appropriate KS to invoke for the execution 
of any given task generally cannot be identified a priori. The 
combination of many tasks and many applicable KS's can lead 
to a combinatorial explosion. A problem solver must therefore 
maintain focus to achieve high performance in practical ap-
plications. 

The connection problem can also be viewed from the per-
spective of an idle node. It must find another node with an 
appropriate task that is available for execution. In our ap-
proach, both nodes with tasks to be executed and nodes ready 
to execute tasks proceed simultaneously. They engage each 
other in discussions that resemble contract negotiation to solve 
the connection problem. It is this process that is the basis for 
the contract net protocol. 

For our purposes, negotiation has four important compo-
nents: 1) it is a local process that does not involve centralized 
control, 2) there is a two-way exchange of information, 3) each 
party to the negotiation evaluates the information from its own 
perspective, and 4) final agreement is achieved by mutual se-
lection. 

The collection of nodes is referred to as a contract net and 
the execution of a task is dealt with as a contract between two 
nodes. Each node in the net takes on one of two roles related to 
the execution of an individual task: manager or contractor. A 
manager is responsible for monitoring the execution of a task 
and processing the results of its execution. A contractor is re-
sponsible for the actual execution of the task. Individual nodes 
are not designated a priori as managers or contractors; these 
are only roles, and any node can take on either role dynamically 
during the course of problem solving. Typically, a node will 
take on both roles, often simultaneously for different contracts. 
As a result, nodes are not statically tied to a control hierarchy. 
This also leads to more efficient utilization of nodes, as com-
pared, for example, to schemes that do not allow nodes that 
have contracted out tasks to take on other tasks while they are 
waiting for results. 

A contract is established by a process of local mutual se-
lection based on a two-way transfer of information. In brief, 
available contractors evaluate task announcements made by 
several managers and submit bids on those for which they are 
suited. The managers evaluate the bids and award contracts 
to the nodes they determine to be most appropriate. The ne-
gotiation process may then recur. A contractor may further 
partition a task and award contracts to other nodes. It is then 
the manager for those contracts. This leads to the hierarchical 
control structure that is typical of task-sharing. Control is 
distributed because processing and communication are not 
focused at particular nodes, but rather every node is capable 
of accepting and assigning tasks. 

The basic idea of contracting is not new. A rudimentary 
bidding scheme, for example, was used for resource allocation 
in the distributed computing system (DCS) [2], [3]. We will 
note the similarities and differences between that scheme and 
the contract net protocol as we proceed. 

Throughout the paper, reference is made to an experimental 
contract net system called CNET. It is a system of 
INTERLISP [12] functions that enables a user to simulate 
the solution of problems with a distributed processor. 

I I I .  EXAMPLE 
This example is taken from a CNET simulation of a dis-

tributed sensing system (DSS) [7]. A DSS is a network of 
sensor and processor nodes spread throughout a relatively large 
geographic area. It attempts to construct and maintain a dy-
namic map of vehicle traffic in the area. Construction and 
maintenance of such a map requires the interpretation and 
integration of a large quantity of sensory information received 
by the collection of sensor elements. 

Use of the contract net protocol in a DSS makes it possible 
for the sensor system to be configured dynamically, taking into 
account such factors as the number of sensor and processor 
nodes available, their locations, and the ease with which 
communication can be established. 

We will examine the negotiation for one particular task, 
called the signal task, that arises during the initialization phase 
of DSS operation. The task involves gathering of sensed data 
and extraction of signal features. The managers for this task 
are nodes that do not have sensing capabilities, but do have 
extensive processing capabilities. They attempt to find a set 
of sensor nodes to provide them with signal features. The sensor 
nodes, on the other hand, have limited processing capabilities 
and attempt to find managers that can further process the 
signal features they extract from the raw sensed data. 

Recall that we view node interaction as an agreement be-
tween a node with a task to be performed and a node capable 
of performing that task. Sometimes the perspective/on the ideal 
character of that agreement differs depending on the point of 
view of the participant. For example, from the perspective of 
the signal task managers, the best set of contractors has an 
adequate spatial distribution about the surrounding area and 
an adequate distribution of sensor types. From the point of view 
of the signal task contractors, on the other hand, the best 
managers are those closest to them in order to minimize po-
tential communication problems. The ability to express and 
deal with such disparate viewpoints is one advantage of the 
contract net protocol. To see how the appropriate resolution 
is accomplished, consider the messages exchanged between 
the signal managers and potential signal contractors. Each 
signal manager announces its own signal task, using a message 
of the sort shown in Fig. 1. Each message in the contract net 
protocol has a set of slots for the task-specific information in 
the message. The four slots of the task announcement are 
shown in the figure. The information that fills the slots is en-
coded in a simple language common to all nodes. 

The task abstraction is the type of task and the position of 
the manager making the announcement. The position enables  
a potential contractor to determine the manager to which it 
should respond. The eligibility specification indicates that the 
only nodes that should bid on this task are those which 1) have 
sensing capabilities and 2) are located in the same area as the 
manager that announced the task. This helps to reduce ex-
traneous message traffic and bid processing. The bid specifi
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To: * indicates a broadcast message. 
From: 25 
Type: TASK ANNOUNCEMENT 
Contract: 22-3-1 
Task Abstraction: 

TASK TYPE SIGNAL 
POSITION LAT 47N LONG 17E 

Eligibility Specification: 
MUST-HAVE SENSOR 
MUST-HAVE POSITION AREA A 

Bid Specification: 
POSITION LAT LONG 
EVERY SENSOR NAME TYPE 

Expiration Time: 
28 1730Z FEB 1979 

Fig. 1. Signal task announcement. 

cation indicates the information that a manager needs to select 
a suitable set of sensor nodes–the position of the bidder and the 
name and type of each of its sensors. Finally, the expiration 
time is a deadline for receiving bids. 

Each potential contractor listens to the task announcements 
made by signal managers. It ranks each announcement relative 
to the others thus far received, according to the distance to the 
manager. Just before the deadline for the task announcement 
associated with the perceived nearest manager, the node sub-
mits a bid (Fig. 2). The bid message supplies the position of 
the bidder and a description of its sensors. A manager uses this 
information to select a set of bidders that covers its area of 
responsibility with a suitable variety of sensors, and then 
awards a signal contract on this basis (Fig. 3). The award 
message specifies the sensors that a contractor must use to 
provide signal-feature data to its manager. 

IV. THE CONTRACT NET PROTOCOL 
We now describe the messages of the protocol and the en-

coding of information in their slots. We also describe the 
processing of each message. The BNF specification of the 
protocol is presented in Appendix B. The reader may find it 
helpful to refer to the specification while reading the following 
sections. 
 
A.  The Basic Messages 

1) Task Announcements 
A node that generates a task normally initiates contract 

negotiation by advertising existence of that task to the other 
nodes with a task announcement message. It then acts as the 
manager of the task. A task announcement can be addressed 
to all nodes in the net (general broadcast), to a subset of nodes 
(limited broadcast), or to a single node (point-to-point). The 
latter two modes of addressing, which we call focused ad-
dressing, reduce message processing overhead by allowing 
nonaddressed nodes to ignore task announcements after ex-
amining only the addressee slot. The saving is small, but is 
useful because it allows a node's communication processor 
alone to decide whether the rest of the message should be ex-
amined and further processed. It is also useful for reducing 
message traffic when the nodes of the problem solver are not 
interconnected with broadcast communication channels. 

As shown in the example, a task announcement has four 
main slots. The eligibility specification is a list of criteria that 
a node must meet to be eligible to submit a bid.  This slot re- 

To: 25 
From: 42 
Type: BID 
Contract: 22-3-1 
Node Abstraction: 

POSITION LAT 62N LONG 9W 
SENSOR NAME SI TYPE S 
SENSOR NAME S2 TYPE S 
SENSOR NAME Tl TYPE T 

Fig. 2. Signal task bid. 
 

To: 42 
From: 25 
Type: AWARD 
Contract: 22-3-1 
Task Specification: 

SENSOR NAME S1 
SENSOR NAME S2 

Fig. 3. Signal task award. 

duces message traffic by pruning nodes whose bids would be 
clearly unacceptable. In a sense, it is an extension to the ad-
dressee slot. Focused addressing can be used to restrict the 
possible respondents only when the manager knows the names 
of appropriate nodes. The eligibility specification slot is used 
to further restrict the possible respondents when the manager 
is not certain of the names of appropriate nodes, but can write 
a description of such nodes.1,2 

The task abstraction is a brief description of the task to be 
executed. It enables a node to rank the task relative to other 
announced tasks. An abstraction is used rather than a complete 
description in order to reduce the length of the message.3 

The bid specification is a description of the expected form 
of a bid. It enables the manager to specify the kind of infor-
mation that it considers important about a node that wants to 
execute the task. This provides a common basis for comparison 
of bids and enables a node to include in a bid only the infor-
mation about its capabilities that is relevant to the task, rather 
than a complete description. This both simplifies the task of 
the manager in evaluating bids and further reduces message 
traffic. 

The expiration time is a deadline for receiving bids. We 
assume global synchronization among the nodes. However, 
time is not critical in the negotiation process. For example, bids 
received after the expiration time of a task announcement are 
not catastrophic: at worst, they may result in a suboptimum 
selection of contractors. 

a)  The Common Internode Language 
It is useful to encode slot information in a single high-level 

language understandable to all nodes We call this a common 
internode language. Such a language, along with a high-level 
programming language (for transfer of procedures between 
nodes), forms a common basis for communicating slot infor-
mation among the nodes. 
 

1 Note that focused addressing is typically a heuristic process, since the 
information upon which it is based may not be exact (e.g., it may be inferred 
from prior responses to task announcements). 

2 We will see that all messages in the protocol that can be addressed to more 
than one node have an addressee slot and an eligibility specification slot to 
accommodate addressing by name and by description. 

3 A numerical priority measure is not, in general, sufficient to allow po-
tential contractors to rank announced tasks. It assumes first, that all nodes 
agree on what constitutes an important task, and second, that the importance 
of a task can be captured in a one-dimensional quantity. 
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While the contract net protocol offers a framework that 
specifies the type of information that is to fill a message slot, it 
remains the difficult task of the user to specify the actual 
content of the slot for any particular problem domain. In this. 
sense, the protocol is similar to AI problem-solving languages 
like PLANNER [4], which supply a framework for problem 
solving (e.g., the notions of goal specifications and theorem 
patterns), but leave to the user the task of specifying the con-
tent of that framework for any given problem. 

CNET does, however, offer the user some additional assis-
tance. It provides a very simple language, based on an object, 
attribute, value representation. The language includes a simple 
grammar, predefined for each slot, and a number of predefined 
domain-independent terms (e.g., TASK, TYPE, PROCEDURE, 
and NAME). The representation, the grammars, and the do-
main-independent terms are offered to the user to help him 
organize and specify the slot information. He must augment 
the language with domain-specific terms (e.g., SENSOR) as 
needed for the application at hand. 

A message that does not have to be understood by many 
nodes (e.g., messages exchanged by a manager and contractor 
during execution of a contract) can be usefully encoded in a 
private language. This can reduce both the length of the 
messages and the overhead required to process them. In 
CNET, such “private” information is preceded by an “escape” 
character; this allows private information to be inserted in any 
message, even one that includes some public information en-
coded in the normal manner. 

2) Task Announcement Processing 
In CNET, all tasks are typed. For each type of task, a node 

maintains a rank-ordered list of announcements that have been 
received and have not yet expired. Each node checks the eli-
gibility specifications of all task announcements that it re-
ceives. This involves ensuring that the conditions expressed in 
the specification are met by the node (e.g., MUST-HAVE 
SENSOR). If it is eligible to bid on a task, then the node ranks 
that task relative to others under consideration. 

Ranking a task announcement is, in general, a task-specific 
operation. Many of the operations involved in processing other 
messages are similarly task-specific. CNET defines a task 
template for each type of task. This template enables a user to 
specify the procedures required to process that type of task. In 
Appendix E we describe the roles of the required procedures, 
together with the default actions taken by CNET when the 
user chooses to omit a procedure. In the following sections, 
whenever reference is made to task-specific actions, the reader 
may refer to Appendix E for further details. 

3) Bidding 
This announcement-ranking activity proceeds concurrently 

with task processing in a node until the task processor (see 
Appendix A) completes processing of its current task and be-
comes available for processing another task. At this point, the 
contract processor is enabled to submit bids on announced 
tasks. It checks its list of task announcements and selects a task 
on which to submit a bid. If there is only one type of task, the 
procedure is straightforward. If, on the other hand, there are  
a number of task types available,  the node must select one of 
 

them. The current version of CNET selects the most recently 
received task (older tasks are more likely to have been already 
awarded). 

An idle node can submit a bid on the most attractive task 
when either of the following events occur: 1) the node receives 
a new task announcement or 2) the expiration time is reached 
for any task announcement that the node has received. At each 
opportunity, the node makes a (task-specific) decision whether 
to submit a bid or wait for further task announcements. (In the 
signal task, a potential contractor waits for further an-
nouncements in an attempt to find the closest manager.) 

The node abstraction slot of a bid is filled with a brief 
specification of the capabilities of the node that are relevant 
to the announced task. It is written in the form indicated by 
the bid specification of the corresponding task announce-
ment. 

The node abstraction slot can also include a number of 
REQUIRE statements (e.g., REQUIRE PROCEDURE NAME 
FFT). Statements of this form are used by a bidder to indicate 
that it needs additional information if it is awarded the task. 
REQUIRE statements can be made if two conditions are met: 
1) the required objects were not preceded by MUST-HAVE 
terms in the eligibility specification of the task announcement 
and 2) the objects are transferable; that is, they can be trans-
ferred by message. (A procedure falls into this class, but a 
hardware device does not.) 

The task template is helpful here. If a node receives an an-
nouncement for a type of task with which it is not familiar (i.e., 
does not have the template), then it can request the template 
as a convenient shorthand for the entire set of procedures as-
sociated with that type of task. 

4) Bid Processing 
Contracts are queued locally by the manager that generated 

them until they can be awarded. The manager also maintains  
a rank-ordered list of bids that have been received for the task. 
When a bid is received, the manager ranks the bid relative to 
others under consideration. If, as a result, any of the bids are 
determined to be satisfactory, then the contract is awarded 
immediately to the associated bidder. (The definition of sat-
isfactory is task-specific.) Otherwise, the manager waits for 
further bids. 

Because a manager is not forced to always wait until the 
expiration time before awarding a contract, the average ne-
gotiation time for contracts is reduced over that of DCS   
[2]. 

If the expiration time is reached and the contract has not 
yet been awarded, several actions are possible. The appropriate 
action is task-specific, but the possibilities include: awarding 
the contract to the most acceptable bidder(s); transmitting 
another task announcement (if no bids have been received); 
or waiting for a time interval before transmitting another task 
announcement (if no acceptable bids have been received). This 
is in contrast to the traditional view of task allocation where 
the most appropriate node available at the time would be se-
lected. 

Successful bidders are informed that they are now con-
tractors for a task through an announced award message. The 
task specification slot contains a specification of the data 
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needed to begin execution of the task, together with any ad-
ditional information requested by the bidder. 

5) Contract Processing, Reporting Results, and Termi-
nation 

Once a contract has been awarded to a node, it follows the 
state transition diagram shown in Appendix C. The data 
structures shown in Appendix D form a local context for 
communication between the contractor and manager (and other 
nodes) about the task being performed. 

The information message is used for general communication 
between manager and contractor during the processing of a 
contract. (See Section IV-B.3 for further discussion of this 
message.) 

The report is used by a contractor to inform the manager 
(and other report recipients, if any) that a task has been par-
tially executed (an interim report) or completed (a final report). 
The result description slot contains the results of the execution. 
Final reports are the normal method of result communication. 
Interim reports, however, are useful when generator-style 
control is desired. A contractor can be set to work on a task and 
instructed to issue interim reports whenever the next result is 
ready. It then suspends the task until it is instructed by the 
manager to continue (with an information message) and 
produce another result. 

The manager can also terminate contracts with a termina-
tion message. The contractor receiving such a message ter-
minates execution of the contract indicated in the message and 
all of its outstanding subcontracts. 

6) Negotiation Tradeoffs 
In this section, we discuss choices made in the CNET im-

plementation of the negotiation process. In the main, our 
concern has been with problem solving. We have been more 
interested in the types of information that must be passed be-
tween nodes than with these aspects of the negotiation process. 
As a result, the choices are only tentative and warrant further 
detailed analysis. 

Because bids are binding and a node is allowed to have more 
than one bid outstanding at a time, a node may receive multiple 
awards. These are queued for processing in order of receipt. 
The cost is potentially slower overall system performance (the 
load may be less evenly balanced) than would be the case if 
multiple awards were prevented. 

If nodes could refuse awards (as in DCS [3]), multiple 
awards could be prevented. However, the cost is at least one 
additional acknowledgment message per transaction. In some 
cases, it may be many additional messages (if an award is re-
fused by several bidders). 

Similarly, if a node could only have a single bid outstanding, 
multiple awards could be prevented. However, the cost would 
be significant delay. Nodes would be forced to remain idle until 
a task announcement had expired to find that their bids had 
been rejected, and have to start the process again. This could 
lower overall system performance. 

The above delay could be reduced in some instances by ex-
plicitly informing unsuccessful bidders that their bids had been 
refused. The cost, however, would likely be a very large in-
crease in message traffic, assuming that there are several 
 

bidders per task. In addition, it would only lower the delay for 
contracts that were awarded before the expiration times of 
their task announcements were reached. 

We have allowed a node to bid at intervals related to the 
receipt of task announcements rather than at fixed intervals. It 
is intuitively appealing, offers a reasonable compromise 
between message traffic and delay in allocating tasks, and has 
exhibited good performance in experience to date with CNET. 

We have chosen to allow a node to submit, at most, a single 
bid at each opportunity. This reduces message traffic and the 
possibility that a single node could bid on far more tasks than 
it could process. For the same reasons, we allow only idle nodes 
to submit bids. Because of these choices, contracts are not-
centrally notarized as they were in DCS [2]. This further re-
duces message traffic and maintains the distributed nature of 
the negotiation process. 

The current version of CNET uses a nonpreemptive 
scheduler in each node. It would appear to be useful, however; 
to allow preemptive scheduling instead of simply queueing 
contracts in order of receipt. This would help avoid the situa-
tion where time-critical tasks are not executed soon enough 
because less important tasks are queued ahead of them. The 
difficult question here is determining the criteria for 
preemption and providing a place for them in the common 
internode language. We are currently exploring this issue. 
 
B. Complications and Extensions 

In the following sections we consider some problems with 
the basic negotiation mechanism and present extensions to 
solve these problems. The extensions are evolving as we gain 
more experience with using the protocol in practical applica-
tions. 

1) Immediate Response Bids 
We have, thus far, discussed the negotiation process under 

the assumption that a node cannot submit a bid until it goes 
idle and is actually ready to process a new contract. This 
strategy can, however, lead to difficulty. For instance, a node 
that issues a task announcement may not receive any bids for 
one of several reasons: 1) there are no idle nodes; 2) some node 
is both idle and eligible, but ranks the task too low; or 3) no 
node is capable of working on the task even if it were idle (as 
may happen if the eligibility specification is too stringent or  
no node has the data necessary for executing the task). In the 
first two cases, the task announcement may be usefully reissued 
until a bid is obtained from an idle node; in the third case it 
would be pointless. Therefore, a node requires a way of de-
termining what caused the lack of response. 

A class of bids we call immediate response bids offers a 
mechanism for doing this. Three such bids have been identified, 
allowing a node to indicate that it is eligible but BUSY, that it 
is INELIGIBLE, or that it gave the task a LOW RANKING. A 
manager can specify that nodes are to respond in any of these 
cases or to respond in a subset of the cases (e.g., respond if 
eligible, but busy). 

A node receiving a task announcement whose.bid specifi-
cation asks for an immediate response bid does not deal with 
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the announcement in the usual way (ranking it immediately, 
but waiting until it is idle to submit a bid), but instead responds 
immediately with either a standard bid or the appropriate 
special form. 

The immediate response mechanism permits a manager to 
take a more appropriate course of action if a task announce-
ment elicits no bids. The normal procedure is to simply reissue 
the task announcement. If this continues to elicit no bids, then 
the manager can specify an immediate response bid. If the 
response is uniformly BUSY, then the manager can wait and 
reissue the task announcement later. If all nodes are INELI-
GIBLE, then the manager may loosen the eligibility specifi-
cation. If all nodes gave the task a LOW RANKING, the man-
ager can wait and reissue, in the hope that the more interesting 
tasks currently occupying the nodes will soon be done. The 
manager may also decide to execute the task itself when it 
becomes idle. 

2) Directed Contracts 
The normal contract negotiation process can be simplified 

in some instances, with a resulting enhancement in the effi-
ciency of the protocol. If a manager knows exactly which node 
is appropriate for execution of a task, a directed contract can 
be awarded. No task announcement is made and no bids are 
submitted. Instead, a directed award message is sent to the 
selected node without negotiation. 

In addition to the low-level acknowledgment used by an 
underlying communication protocol to ensure reliable com-
munication, the contract net protocol uses a further high-level 
acknowledgment message for directed award messages. This 
allows a refusal or negative acknowledgment of the form, I 
can't execute this contract because . . ., in addition to the low-
level negative acknowledgment of the form,  I didn't receive 
your message correctly. 

If the node that receives a directed award either does not 
meet the eligibility specification or does not have a template 
for the task, then it transmits a refusal to the manager. Oth-
erwise, the node uses task-specific criteria to determine 
whether to transmit an acceptance or refusal to the manager. 
The refusal message contains a refusal justification slot that 
specifies the reasons for the refusal (e.g., INELIGIBLE or NO 
TEMPLATE). 

The action taken by a manager upon receipt of a refusal is 
also task-specific, in general. 

3) Request and Information Messages 
If a simple transfer of information is required, then a re-

quest–response sequence can be used without further embel-
lishment. The request message is used to encode straightfor-
ward requests for information. The information message is 
used to respond to a request, and for manager/contractor 
communication during the execution of a contract (Section IV-
A.5). This message is also used in result-sharing [9], a style of 
distributed problem solving in which nodes cooperate by 
sharing partial results. 

If a node that receives a request message meets the eligibility 
specification and has the necessary information, then it re-
sponds with an information message. No task-specific decisions 
need to be made. 

If a node that receives an information message meets the 
eligibility specification, then the action it takes is task-specific. 
If the contract named in the message is one that the node is 
processing, then the appropriate action is determined by a 
procedure associated with that contract. Otherwise, the node 
takes a default action. (The latter possibility arises in result-
sharing because nodes communicate partial results to other 
nodes without being requested to do so, and without being 
explicitly linked by a contract.) 

4) Node Available Messages 
The protocol has been designed to allow a reversal of the 

normal negotiation process. When the processing load on a net 
is high, most task announcements will not be answered with 
bids because all nodes will be busy. Hence, the protocol in-
cludes a node available message. A node that transmits such  
a message is idle and searching for a task to execute. In this 
case, the eligibility specification is a list of criteria that the node 
will look for in a task. The node abstraction is a brief specifi-
cation of the capabilities of the node and the expiration time is 
a deadline for receiving an award. 

When a node receives a node available message, it tries to 
determine if it can match the node with a task that it has an-
nounced, but not yet awarded. First, it tries to match the eli-
gibility specification in the node available message against the 
task abstractions of the tasks that it has waiting. A task for 
which this match succeeds is of interest to the volunteering 
node. The manager then tries to match the eligibility specifi-
cation of the task against the node abstraction of the node 
available message. If this match succeeds, then the node is the 
sort which is required for the task. Hence, even in this case we 
have the mutual selection aspect, as the volunteering node 
selects a task and the task specifies the criteria necessary in a 
volunteer. If the two matches are successful, the manager sends 
a directed award message to the volunteer. If a node has several 
tasks for which both matches succeed, then CNET selects the 
oldest task (it is least likely to be awarded in the normal 
way). 

In CNET, a node maintains a list of unexpired node avail-
able messages. Before it announces a new task, a node first tries 
to find a suitable volunteer in the list. If several volunteers are 
suitable, the newest volunteer is selected (it is least likely to 
have received an award). 

A node can thus acquire a contract in one of two ways: it can 
wait for a suitable task announcement and submit a bid; or it 
can transmit a node available message and wait for a directed 
award. The decision as to which method to use is net-load de-
pendent. If the net is not heavily loaded, then the use of the task 
announcement is warranted in all cases, since the availability 
of a task to be executed is the event of primary importance. If 
the net is heavily loaded, then unlimited use of task an-
nouncements serves only to saturate the available communi-
cation channels. In this case, the availability of an idle node is 
the event of primary importance and the use of node avail-
able messages is preferred. 

In CNET, a node selects one of the two modes based on 
experience with its own task announcements. The scheme is 
rudimentary, however, and warrants further analysis. 
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V. DYNAMIC DISTRIBUTION OF INFORMATION 
The contract net protocol enables dynamic distribution of 

information (i.e., procedures and data) via three methods. 
First, a node can transmit a request directly to another node 
for the transfer of the required information. The response is 
the information requested (e.g., the code for a procedure). 
Second, a node can broadcast a task announcement in which 
the task is a transfer of information. A bid on the task indicates 
that the bidder has the information and is willing to transmit 
it. Finally, a node can note, in its bid on a task, that it requires 
particular information in order to execute the task. The 
manager can then send the required information in the award 
message if the bid is accepted. 

Dynamic distribution enables effective use of available 
computational resources: a node that is standing idle because 
it lacks information required to execute a previously announced 
task can acquire that information as indicated above. This also 
means that nodes do not have to be preloaded with extensive 
amounts of information which may or may not prove useful. 
Dynamic distribution also facilitates the addition of a new node 
to an existing net; the node can dynamically acquire the pro-
cedures and data necessary to allow it to participate in the 
operation of the net. This is especially useful in the distributed 
sensing application. 

Dynamic distribution works, first, because all nodes know 
the syntax of the contract net protocol, which enables them to 
identify the slots that contain task-dependent information (e.g., 
the eligibility specification of a task announcement); second, 
because they know how to parse the common internode lan-
guage, which enables them to identify the information in the 
slots that they do not possess; and third, because a negotiation 
process is used to effect task distribution, which makes it 
possible for a new node to begin participating in the operation 
of the net by listening to the messages being exchanged (spe-
cifically, task announcements) and submitting bids. This may 
be contrasted with more traditional task allocation schemes 
that explicitly assign tasks to nodes. In such schemes, new 
nodes must be explicitly linked to other nodes in the net-
work. 

VI. DISCUSSION 
We have presented a high-level protocol for distributed 

problem solving. The protocol facilitates distributed control 
of cooperative task execution with efficient internode com-
munication. It has been designed to provide a more powerful 
mechanism for connection than is available in current prob-
lem-solving systems. The message types have been selected to 
capture the types of interactions that arise in a task-sharing 
approach to distributed problem solving. The message slots 
have been selected to capture the types of information that 
must be passed between nodes to make these interactions ef-
fective. 

The connection of nodes with tasks to be executed and nodes 
that can execute those tasks is more general than load bal-
ancing. The difference can be illustrated by comparing the 
information placed in the slots of the task announcement with 
that used in DCS. In that system, a task announcement (re- 
 

quest for quotation) contains only the name of the process to 
be executed and the amount of memory required. A bid is a 
measure of the excess memory available in a node. Note, 
however, that this is only one of the possible dimensions along 
which tasks and nodes can be evaluated. In general, such 
evaluation is task-dependent (as we saw in Section III) and 
may require a different form of information for each task. 
Recognizing this, the contract net protocol takes a wider per-
spective and allows a range of descriptions to be passed be-
tween the manager and bidders. In more general terms, since 
our concern is with problem solving, more attention is paid to 
the type of information that must be transferred between nodes 
to solve the connection problem. The connection that is effected 
with the contract net protocol is an extension to the pattern-
directed invocation used in many AI programming languages 
(see [8] for a more in-depth discussion). 

There are several reasons for adopting a distributed ap-
proach to problem solving. These include speed, reliability, 
extensibility, and the ability to handle applications that have 
a natural spatial distribution. The design of the contract net 
protocol attempts to ensure that these potential benefits are 
indeed realized. 

In order to achieve high speed we wish to avoid bottlenecks. 
Such bottlenecks can arise in two primary ways: by concen-
trating disproportionate amounts of computation or commu-
nication at central resources and by saturating available 
communication channels so that nodes must remain idle while 
messages are transmitted. 

To avoid bottlenecks we distribute control, data, and KS's. 
Control is distributed through the use of negotiation to achieve 
connections for task distribution. Every node is capable of 
assigning and accepting tasks, and managers and contractors 
simultaneously seek each other out. Data and KS's are also 
distributed dynamically as part of the negotiation process or 
with a request-response mechanism. 

The contract net protocol includes several elements aimed 
at avoiding communication channel saturation. First, the in-
formation in task announcements (like eligibility specifica-
tions) helps eliminate extraneous message traffic. Similarly, 
bid messages can be kept short and “to the point” through the 
use of the bid specification mechanism. Second, specialized 
interactions, like directed contracts and requests, reduce 
communication for transactions that do not require the com-
plexity of negotiation. Third, the protocol enables dynamic 
distribution of information on an as-required basis. Finally, it 
provides a very general form of guidance in determining 
appropriate partitioning of problems: the notion of tasks exe-
cuted under contracts suggests relatively large task sizes. This 
is important if the speedup obtained from distribution is not 
to be outweighed by the effort required to effect that distri-
bution. 

Distribution of control also enhances reliability and permits 
graceful degradation of performance in the case of individual 
node failures. There are no nodes whose failure can completely 
block the contract negotiation process. In addition, recovery 
from the failure of a node is aided by the presence of explicit 
links between managers and their contractors. The failure of 
any contractor, for example, can be detected by its manager; 
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the contract for which it was responsible can then be rean-
nounced and awarded to another node. 

The use of a negotiation process for allocation of nodes to 
tasks facilitates the extension of an existing net to include new 
nodes. Such nodes can begin to participate in the operation of 
the net without first explicitly informing the other nodes of 
their presence. New node entry is also facilitated by the com-
mon internode language and dynamic distribution of infor-
mation. 

The ability to handle applications with a natural spatial 
distribution is facilitated by the local nature of negotiation. 
A net is able to configure itself dynamically according to the 
positions of the nodes and the ease with which they can es-
tablish communication. 

The protocol is best suited to problems in which it is ap-
propriate to define a hierarchy of tasks (e.g., heuristic search) 
and a hierarchy of levels of data abstraction (e.g., audio or 
video signal interpretation). Such problems lend themselves 
to decomposition into a set of relatively independent subtasks 
with little need for global information or synchronization. 
Individual subtasks can be assigned to separate processor 
nodes; these nodes can then execute the subtasks with little 
need for communication with other nodes. 

VII. CONCLUSION 
The main contribution of the contract net protocol is the 

mechanism it offers for structuring high-level interactions 
between nodes for cooperative task execution. It stresses the 
utility of negotiation as an interaction mechanism. Negotiation 
can be used at different levels of complexity. At one extreme, 
it is a means of achieving task distribution with distributed 
control and shared responsibility for tasks to maintain reli-
ability and avoid bottlenecks. At the other extreme, the two-
way transfer of information and mutual selection attributes 
of negotiation make possible a finer degree of control in making 
resource allocation and focus decisions than is possible with 
traditional mechanisms. 

APPENDIX A 
CONTRACT NODE ARCHITECTURE 

We view a node as having four major functional components 
(Fig. 4): a local database, a communication processor that 
handles low-level message traffic with other nodes, a task 
processor that carries out the computation associated with user 
tasks, and a contract processor that processes high-level pro-
tocol messages and manages node resources. It is assumed that 
the functions of the three processors are carried out concur-
rently. 

APPENDIX B 
CONTRACT NET PROTOCOL SPECIFICATION 

The BNF specification of the contract net protocol is shown 
in Fig. 5. Nonterminal symbols are enclosed by “(  ),” ter-
minal symbols are written without delimiters, and nontermi-
nals whose specific expansion is not germane to the discussion 
 

 

 

 

 

 

 

Fig. 4. Contract node architecture. 

<message>  ⇒  <header> <addressee> <originator> <text> <trailer> 
<header>  ⇒  [line-header] [identifier] [time] [acknowledge] 
<trailer>  ⇒  [error-control] [line-trailer] 
<addressee>  ⇒  [net-address] | [subnet-address] | [node-address] 
<originator>  ⇒  [node-address] 
<text>  ⇒  [cctext] | <pstext> 
<pstext>  ⇒ <task-announcement> | <bid> | <announced-award> | 

<directed-award> | <acknowledgment> | <report> | 
<termination> | <node-available-message> |  
<request-message> | <information-message> 

<task-announcement>  ⇒ TASK-ANNOUNCEMENT [name] 
{task-abstraction} {eligibility-specification} 
{bid-specification} [expiration-time] 

<bid>  ⇒  BID [name] {node-abstraction} 
<announced-award>  ⇒  ANNOUNCED-AWARD [name] {task-specification} 
<directed-award>  ⇒ DIRECTED-AWARD [name] {task-abstraction}* 

{eligibility-specification} {task-specification} 
<acknowledgment> ⇒  ACCEPTANCE [name]* 

⇒  REFUSAL [name] {refusal-justification} 
<report>  ⇒ INTERIM-REPORT [name] {result-description} 

FINAL-REPORT [name] {result-description} 
<termination>  ⇒  TERMINATION [name] 
<node-available-message>  ⇒ NODE-AVAILABLE {eligibility-specification}* 

{node-abstraction} [expiration-time]  
<request-message>  ⇒ REQUEST [name] {eligibility-specification}* 

{request-specification} 
<information-message>  ⇒ INFORMATION [name] {eligibility-specification}* 

{information-specification} 

Fig. 5. Contract net protocol specification. 

are enclosed by “[  ].” Slots that are to be filled with infor-
mation encoded in the common internode language are en-
closed in “{  }.” Message types that need not be included in 
a basic implementation are followed by “*.” 

One possible set of low-level message slots is shown for 
completeness. Other variations may be dictated by the specific 
communication architecture for which the protocol is imple-
mented. Briefly: line-header delimits the beginning of a mes-
sage; identifier is a unique identifier for the message; time 
specifies the time at which the message is transmitted; ac-
knowledge is set only if acknowledgment of receipt of the 
message is required (this slot is included because delivery of 
some messages is not essential to the operation of the protocol 
(e.g., broadcast task announcements) and acknowledgments 
for such messages might greatly increase message traffic); 
error-control is used by an addressee to determine that the 
message has been correctly received; and line-trailer delimits 
the end of the message. Three forms of addressee slot are 
shown. These are used for general broadcast, limited broad-
cast, and point-to-point messages, respectively. 

There are two forms of text slot. cctext (communication 
control text) indicates that the message is for checking net 
integrity, acknowledging receipt of messages, maintaining 
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basic net communication data, such as routing tables, and so 
on. Messages of the form Hello and I heard you, exchanged 
periodically by IMP’s in the ARPANET as status checks, fall 
into this category. 

pstext (problem-solving text) indicates that the message is 
for high-level problem solving (see Section IV). 

APPENDIX C 
CONTRACT PROCESSING STATES 

Contracts are processed according to the state transition 
diagram shown in Fig. 6, which uses the terminology of oper-
ating systems [1]. The contract processor of a node (Appendix 
A) is responsible for moving a contract through the states of 
the diagram. The standard progression through the states is 
shown by solid lines. Optional progressions are shown by 
dashed lines. 

When a contract is awarded to a node (IN), it is placed in 
the READY state where it waits until the task processor is 
available. At that time, the contract is placed in the EXE-
CUTING state and its processing is started. If subcontracts are 
generated, they are placed in the ANNOUNCED state. A sub-
contract may either be awarded to another node (OUT) or to 
this node (READY). 

If execution cannot continue on the contract until some 
event occurs (e.g., receipt of a subcontract report), then the 
contract is placed in the SUSPENDED state; and another con-
tract in the READY state is selected for processing. When the 
awaited event occurs, the contract is transferred back to the 
READY state where it awaits further processing. 

When processing of the contract has been completed, it is 
placed in the TERMINATED state; and another contract in the 
READY state is selected for processing. Recently completed 
contracts are held in the TERMINATED state in order to fa-
cilitate recovery from the failure of a manager. 

If a contract in the EXECUTING state is moved to either the 
SUSPENDED or TERMINATED state and if there are no con-
tracts in the READY state, then the node attempts to acquire a 
new contract—either by making a bid on a recent task an-
nouncement or by transmitting a node available message 
(Section IV). 

The scheduler used by a contract processor in the current 
version of CNET is nonpreemptive and gives priority to a 
contract whose execution can continue (e.g., due to receipt of 
a report) over a contract whose execution has not yet been 
started. 

APPENDIX D 
CONTRACT SPECIFICATION 

A node maintains a structure of the form shown in Fig. 7 for 
each task for which it is the contractor. Such a structure forms 
a local context for the execution of a task. 

name is a unique identifier for the contract. manager is the 
node that generated the task. report recipients are the nodes 
to which reports for the contract are to be sent. The default 
report recipient is the manager. related contractors are the 
nodes that are working on related contracts (e.g., subcontracts 
of the same contract). 

The report recipients and related contractors slots facilitate 
more flexible communication and cooperation. They give IN 

 

 

 

 

 

 

 

 

Fig. 6. Contract processing states. 

<contract>  ⇒ [name] 
 [manager] 
 [report-recipients] 
 [related-contractors] 
 <task> 
 [results] 
 <subcontract-list> 

Fig. 7. Contract structure. 

node an explicit indication of other nodes in the net with which it 
may be useful to communicate (e.g., to enable use of focused 
addressing in task announcements) and help to reduce message 
traffic. Messages from one related contractor to another, for 
example, can be addressed directly and therefore do not have to 
follow the communication paths of the control hierarchy. 

task is filled with a structure of the form shown in Fig. 8. The 
structure lists the type of the task, its specification, and the 
procedures that are required to handle the task in a contract 
net. These procedures are described in Appendix E. 

results are the outcome of executing a task. They are 
transmitted to the report recipients of the contract. subcon-
tract-list is the collection of subtasks generated from the initial 
contract. This slot is filled with a list of structures of the form 
shown in Fig. 9. Such structures contain the information held 
by a manager for a subtask. 

name is a unique identifier for the subcontract. contractor 
is the name of the node responsible for its processing. task is 
the task structure (Fig. 8). results are the outcome of executing 
the subtask. predecessors are the names of subcontracts that 
are preconditions for the subcontract and successors are the 
names of subcontracts for which the subcontract is a precon-
dition. Predecessors and successors are necessary for tasks that 
must be performed in a particular order, such as those that 
occur in planning applications [6]. A subcontract will not be 
announced (Section IV-A.1) until its predecessors have been 
completed. 

APPENDIX E 
TASK PROCESSING PROCEDURES 

In this appendix, we discuss the task-specific procedures, 
the roles they play, and the default actions taken in CNET 
when no procedure is provided by the user. In the terms of the 
functional model of a node presented in Appendix A, the ex-
ecution procedure runs in the task processor. The rest of the 
procedures run in the contract processor. 

Announcement Procedure: Called each time a subtask is 
generated. Its role is to determine whether the task should be 
announced or awarded directly. In either case, it must deter-
mine the addressee.  It must also compute the information re- 
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<task>  ⇒ [name] 
 [type] 
 [specification] 
 [announcement-procedure] 
 [announcement-ranking-procedure] 
 [bid-procedure] 
 [bid-ranking-procedure] 
 [award-procedure] 
 [acknowledgment-procedure] 
 [refusal-processing-procedure] 
 [report-acceptance-procedure] 
 [termination-procedure] 
 [information-acceptance-procedure] 
 [execution-procedure] 

Fig. 8. Task structure. 

<subcontract>  ⇒ [name] 
[contractor] 
<task> 
[results] 
[predecessors] 
[successors] 

Fig. 9. Subcontract structure. 

quired to fill the slots of a task announcement or directed 
award and indicate the names of any predecessor subcontracts. 
The default is to announce the task to all nodes with a task 
abstraction that states the task type and a default expiration 
time. 

Announcement Ranking Procedure: Called when a task 
announcement is received. Its role is to rank the new an-
nouncement relative to others under consideration. The default 
is to give the most recently received task announcement the 
highest ranking. 

Bid Procedure: Called when a node has an opportunity to 
submit a bid. Its role is to decide whether or not to submit a bid 
and to add any common internode language statements to 
those called for in the bid specification of the associated task 
announcement. No default action is taken. 

Bid Ranking Procedure: Called when a bid is received. Its 
role is to rank the new bid relative to others under consideration 
and determine whether the contract should be awarded to any 
of the current bidders. The default is to insert the new bid into 
the list of bids so that bids that REQUIRE the least information 
(Section IV-A.3) are ranked highest. 

Award Procedure: Called when the expiration time for a task 
announcement is reached and the contract has not yet been 
awarded. Its role is to decide what action is to be taken. The 
default is to award the contract to the bidder that REQUIRE’s 
the least additional information (or the first bidder in case of a 
tie) or to transmit another task announcement if no bids have 
been received. 

Acknowledgment Procedure: Called when a node receives 
a directed contract for which it is eligible and has a task tem-
plate. Its role is to decide whether to accept or reject the con-
tract. The default is to accept. 

Refusal Processing Procedure: Called when a refusal mes-
sage is received. Its role is to determine what action is to be 
taken. The default is to transmit a task announcement. 

Report Acceptance Procedure: Called when a report mes-
sage is received. Its role is to determine what to do with the 
contents of the result description slot. The default is to add the 
contents of the slot to the results slot of the contract. 

Termination Procedure: Called when a contract that has 
been terminated is about to be deleted from the local database. 

(CNET maintains a list of the recently terminated contracts 
[Appendix C].) Its role is to take any specialized action that is 
required before the contract is deleted (e.g., storing contract 
slot information in the local database). No default action is 
taken. 

Information Acceptance Procedure: Called when an infor-
mation message is received. Its role is to determine what to do 
with the contents of the information specification slot. The 
default is to store the information in the local database. 

Execution Procedure: Called when processing is started on 
the contract. Its role is to perform the computation required to 
execute the task. 
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