
 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 12, DECEMBER 1980 1104

The Contract Net Protocol: High-Level
Communication and Control in a Distributed

Problem Solver
REID G. SMITH, MEMBER, IEEE

Abstract — The contract net protocol has been developed to specify
problem-solving communication and control for nodes in a distributed
problem solver. Task distribution is affected by a negotiation process,
a discussion carried on between nodes with tasks to be executed and
nodes that may be able to execute those tasks.

We present the specification of the protocol and demonstrate its use
in the solution of a problem in distributed sensing.

The utility of negotiation as an interaction mechanism is discussed.
It can be used to achieve different goals, such as distributing control
and data to avoid bottlenecks and enabling a finer degree of control
in making resource allocation and focus decisions than is possible with
traditional mechanisms.

Index Terms—Artificial Intelligence (AI), connection, cooperation,
distributed problem solving, focus, high-level protocols, negotiation,
resource allocation, task-sharing.

I . INTRODUCTION
ISTRIBUTED problem solving is the cooperative so-
 lution of problems by a decentralized and loosely cou-

pled collection of knowledge-sources (KS's) (procedures, sets
of production rules, etc.), located in a number of distinct pro-
cessor nodes. The KS's cooperate in the sense that no one of
them has sufficient information to solve the entire problem;
mutual sharing of information is necessary to allow the group,
as a whole, to produce an answer. By decentralized we mean
that both control and data are logically and often geographi-
cally distributed; there is neither global control nor global data
storage. Loosely coupled means that individual KS's spend
most of their time in computation rather than communication.

Such problem solvers offer the promise of speed, reliability,
extensibility, and the potential for increased tolerance to un-
certain data and knowledge, as well as the ability to handle
applications with a natural spatial distribution. There has been
much recent interest in this type of problem solving in the
Artificial Intelligence (AI) community. Its use has been con-

Manuscript received March 4, 1980; revised May 9, 1980. This work was
supported in part by the Advanced Research Projects Agency under Contract
MDA 903-77-C-0322, the National Science Foundation under Contract MCS
77-02712, and the National Institutes of Health under Grant RR-00785 on
the SUMEX-AIM Computer Facility at Stanford University, Stanford, CA
and by the Defence Research Establishment Atlantic of the Department of
National Defence, Research and Development Branch, Dartmouth, N.S.
Canada.

The author is with the Defence Research Establishment Atlantic, Dart-
mouth, N.S., Canada.

sidered in such applications as traffic-light control [5], dis-
tributed sensing [7], and heuristic search [10].

In this paper, we present the contract net protocol, a high-
level protocol for communication among the nodes in a dis-
tributed problem solver. It facilitates distributed control of
cooperative task execution (which we call task-sharing [9])
with efficient internode communication.

The role of a high-level protocol in a network such as the
ARPANET has been discussed in previous papers (see, for
example [11]). Traditional communication protocols form a
low-level base for problem-solving communication. They en-
able reliable and efficient transmission of bit streams between
nodes, but do not consider the semantics of the information
being passed. A high-level protocol assigns interpretations to
the bit streams. It offers a structure that assists the system
designer in deciding what the nodes should say to each other,
rather than how to say it.

We are not primarily concerned with the physical archi-
tecture of the problem solver. It is assumed to be a network of
loosely coupled, asynchronous nodes. Each node contains a
number of distinct KS's. The nodes are interconnected so that
each node can communicate with every other node by sending
messages. No memory is shared by the nodes. We also assume
the existence of a low-level communication protocol to support
reliable and efficient communication of bit streams between
nodes. A functional model of a node is shown in Appendix A.

II. CONNECTION AND CONTRACT NEGOTIATION
The key issue to be resolved in task-sharing is how tasks are

to be distributed among the processor nodes. There must be a
means whereby nodes with tasks to be executed can find the
most appropriate idle nodes to execute those tasks. We call this
the connection problem. Solving the connection problem is
crucial to high performance in a distributed problem solver. It
has two aspects: 1) resource allocation and 2) focus. Ef-
fective resource allocation is achieved by balancing the com-
putational load among the nodes. It is essential if the maximum
speedup possible from applying multiple nodes to a single
overall problem is to be obtained.

Focus is achieved by effective selection of tasks for allocation
to nodes and by effective selection of KS's for execution of
tasks. It is essential for problems that do not have well-defined

D

© 1980 Canadian Crown Copyright

SMITH: CONTRACT NET PROTOCOL: COMMUNICATION AND CONTROL 1105

algorithms for their solutions (i.e., problems of the type most
often considered in AI). For such problems, many tasks are
typically generated during the search for solutions; and the
execution of many of these tasks will not lead to a solution. In
addition, the most appropriate KS to invoke for the execution
of any given task generally cannot be identified a priori. The
combination of many tasks and many applicable KS's can lead
to a combinatorial explosion. A problem solver must therefore
maintain focus to achieve high performance in practical ap-
plications.

The connection problem can also be viewed from the per-
spective of an idle node. It must find another node with an
appropriate task that is available for execution. In our ap-
proach, both nodes with tasks to be executed and nodes ready
to execute tasks proceed simultaneously. They engage each
other in discussions that resemble contract negotiation to solve
the connection problem. It is this process that is the basis for
the contract net protocol.

For our purposes, negotiation has four important compo-
nents: 1) it is a local process that does not involve centralized
control, 2) there is a two-way exchange of information, 3) each
party to the negotiation evaluates the information from its own
perspective, and 4) final agreement is achieved by mutual se-
lection.

The collection of nodes is referred to as a contract net and
the execution of a task is dealt with as a contract between two
nodes. Each node in the net takes on one of two roles related to
the execution of an individual task: manager or contractor. A
manager is responsible for monitoring the execution of a task
and processing the results of its execution. A contractor is re-
sponsible for the actual execution of the task. Individual nodes
are not designated a priori as managers or contractors; these
are only roles, and any node can take on either role dynamically
during the course of problem solving. Typically, a node will
take on both roles, often simultaneously for different contracts.
As a result, nodes are not statically tied to a control hierarchy.
This also leads to more efficient utilization of nodes, as com-
pared, for example, to schemes that do not allow nodes that
have contracted out tasks to take on other tasks while they are
waiting for results.

A contract is established by a process of local mutual se-
lection based on a two-way transfer of information. In brief,
available contractors evaluate task announcements made by
several managers and submit bids on those for which they are
suited. The managers evaluate the bids and award contracts
to the nodes they determine to be most appropriate. The ne-
gotiation process may then recur. A contractor may further
partition a task and award contracts to other nodes. It is then
the manager for those contracts. This leads to the hierarchical
control structure that is typical of task-sharing. Control is
distributed because processing and communication are not
focused at particular nodes, but rather every node is capable
of accepting and assigning tasks.

The basic idea of contracting is not new. A rudimentary
bidding scheme, for example, was used for resource allocation
in the distributed computing system (DCS) [2], [3]. We will
note the similarities and differences between that scheme and
the contract net protocol as we proceed.

Throughout the paper, reference is made to an experimental
contract net system called CNET. It is a system of
INTERLISP [12] functions that enables a user to simulate
the solution of problems with a distributed processor.

I I I . EXAMPLE
This example is taken from a CNET simulation of a dis-

tributed sensing system (DSS) [7]. A DSS is a network of
sensor and processor nodes spread throughout a relatively large
geographic area. It attempts to construct and maintain a dy-
namic map of vehicle traffic in the area. Construction and
maintenance of such a map requires the interpretation and
integration of a large quantity of sensory information received
by the collection of sensor elements.

Use of the contract net protocol in a DSS makes it possible
for the sensor system to be configured dynamically, taking into
account such factors as the number of sensor and processor
nodes available, their locations, and the ease with which
communication can be established.

We will examine the negotiation for one particular task,
called the signal task, that arises during the initialization phase
of DSS operation. The task involves gathering of sensed data
and extraction of signal features. The managers for this task
are nodes that do not have sensing capabilities, but do have
extensive processing capabilities. They attempt to find a set
of sensor nodes to provide them with signal features. The sensor
nodes, on the other hand, have limited processing capabilities
and attempt to find managers that can further process the
signal features they extract from the raw sensed data.

Recall that we view node interaction as an agreement be-
tween a node with a task to be performed and a node capable
of performing that task. Sometimes the perspective/on the ideal
character of that agreement differs depending on the point of
view of the participant. For example, from the perspective of
the signal task managers, the best set of contractors has an
adequate spatial distribution about the surrounding area and
an adequate distribution of sensor types. From the point of view
of the signal task contractors, on the other hand, the best
managers are those closest to them in order to minimize po-
tential communication problems. The ability to express and
deal with such disparate viewpoints is one advantage of the
contract net protocol. To see how the appropriate resolution
is accomplished, consider the messages exchanged between
the signal managers and potential signal contractors. Each
signal manager announces its own signal task, using a message
of the sort shown in Fig. 1. Each message in the contract net
protocol has a set of slots for the task-specific information in
the message. The four slots of the task announcement are
shown in the figure. The information that fills the slots is en-
coded in a simple language common to all nodes.

The task abstraction is the type of task and the position of
the manager making the announcement. The position enables
a potential contractor to determine the manager to which it
should respond. The eligibility specification indicates that the
only nodes that should bid on this task are those which 1) have
sensing capabilities and 2) are located in the same area as the
manager that announced the task. This helps to reduce ex-
traneous message traffic and bid processing. The bid specifi

 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 12, DECEMBER 1980

1106

To: * indicates a broadcast message.
From: 25
Type: TASK ANNOUNCEMENT
Contract: 22-3-1
Task Abstraction:

TASK TYPE SIGNAL
POSITION LAT 47N LONG 17E

Eligibility Specification:
MUST-HAVE SENSOR
MUST-HAVE POSITION AREA A

Bid Specification:
POSITION LAT LONG
EVERY SENSOR NAME TYPE

Expiration Time:
28 1730Z FEB 1979

Fig. 1. Signal task announcement.

cation indicates the information that a manager needs to select
a suitable set of sensor nodes–the position of the bidder and the
name and type of each of its sensors. Finally, the expiration
time is a deadline for receiving bids.

Each potential contractor listens to the task announcements
made by signal managers. It ranks each announcement relative
to the others thus far received, according to the distance to the
manager. Just before the deadline for the task announcement
associated with the perceived nearest manager, the node sub-
mits a bid (Fig. 2). The bid message supplies the position of
the bidder and a description of its sensors. A manager uses this
information to select a set of bidders that covers its area of
responsibility with a suitable variety of sensors, and then
awards a signal contract on this basis (Fig. 3). The award
message specifies the sensors that a contractor must use to
provide signal-feature data to its manager.

IV. THE CONTRACT NET PROTOCOL
We now describe the messages of the protocol and the en-

coding of information in their slots. We also describe the
processing of each message. The BNF specification of the
protocol is presented in Appendix B. The reader may find it
helpful to refer to the specification while reading the following
sections.

A. The Basic Messages

1) Task Announcements
A node that generates a task normally initiates contract

negotiation by advertising existence of that task to the other
nodes with a task announcement message. It then acts as the
manager of the task. A task announcement can be addressed
to all nodes in the net (general broadcast), to a subset of nodes
(limited broadcast), or to a single node (point-to-point). The
latter two modes of addressing, which we call focused ad-
dressing, reduce message processing overhead by allowing
nonaddressed nodes to ignore task announcements after ex-
amining only the addressee slot. The saving is small, but is
useful because it allows a node's communication processor
alone to decide whether the rest of the message should be ex-
amined and further processed. It is also useful for reducing
message traffic when the nodes of the problem solver are not
interconnected with broadcast communication channels.

As shown in the example, a task announcement has four
main slots. The eligibility specification is a list of criteria that
a node must meet to be eligible to submit a bid. This slot re-

To: 25
From: 42
Type: BID
Contract: 22-3-1
Node Abstraction:

POSITION LAT 62N LONG 9W
SENSOR NAME SI TYPE S
SENSOR NAME S2 TYPE S
SENSOR NAME Tl TYPE T

Fig. 2. Signal task bid.

To: 42
From: 25
Type: AWARD
Contract: 22-3-1
Task Specification:

SENSOR NAME S1
SENSOR NAME S2

Fig. 3. Signal task award.

duces message traffic by pruning nodes whose bids would be
clearly unacceptable. In a sense, it is an extension to the ad-
dressee slot. Focused addressing can be used to restrict the
possible respondents only when the manager knows the names
of appropriate nodes. The eligibility specification slot is used
to further restrict the possible respondents when the manager
is not certain of the names of appropriate nodes, but can write
a description of such nodes.1,2

The task abstraction is a brief description of the task to be
executed. It enables a node to rank the task relative to other
announced tasks. An abstraction is used rather than a complete
description in order to reduce the length of the message.3

The bid specification is a description of the expected form
of a bid. It enables the manager to specify the kind of infor-
mation that it considers important about a node that wants to
execute the task. This provides a common basis for comparison
of bids and enables a node to include in a bid only the infor-
mation about its capabilities that is relevant to the task, rather
than a complete description. This both simplifies the task of
the manager in evaluating bids and further reduces message
traffic.

The expiration time is a deadline for receiving bids. We
assume global synchronization among the nodes. However,
time is not critical in the negotiation process. For example, bids
received after the expiration time of a task announcement are
not catastrophic: at worst, they may result in a suboptimum
selection of contractors.

a) The Common Internode Language
It is useful to encode slot information in a single high-level

language understandable to all nodes We call this a common
internode language. Such a language, along with a high-level
programming language (for transfer of procedures between
nodes), forms a common basis for communicating slot infor-
mation among the nodes.

1 Note that focused addressing is typically a heuristic process, since the
information upon which it is based may not be exact (e.g., it may be inferred
from prior responses to task announcements).

2 We will see that all messages in the protocol that can be addressed to more
than one node have an addressee slot and an eligibility specification slot to
accommodate addressing by name and by description.

3 A numerical priority measure is not, in general, sufficient to allow po-
tential contractors to rank announced tasks. It assumes first, that all nodes
agree on what constitutes an important task, and second, that the importance
of a task can be captured in a one-dimensional quantity.

SMITH: CONTRACT NET PROTOCOL: COMMUNICATION AND CONTROL 1107

While the contract net protocol offers a framework that
specifies the type of information that is to fill a message slot, it
remains the difficult task of the user to specify the actual
content of the slot for any particular problem domain. In this.
sense, the protocol is similar to AI problem-solving languages
like PLANNER [4], which supply a framework for problem
solving (e.g., the notions of goal specifications and theorem
patterns), but leave to the user the task of specifying the con-
tent of that framework for any given problem.

CNET does, however, offer the user some additional assis-
tance. It provides a very simple language, based on an object,
attribute, value representation. The language includes a simple
grammar, predefined for each slot, and a number of predefined
domain-independent terms (e.g., TASK, TYPE, PROCEDURE,
and NAME). The representation, the grammars, and the do-
main-independent terms are offered to the user to help him
organize and specify the slot information. He must augment
the language with domain-specific terms (e.g., SENSOR) as
needed for the application at hand.

A message that does not have to be understood by many
nodes (e.g., messages exchanged by a manager and contractor
during execution of a contract) can be usefully encoded in a
private language. This can reduce both the length of the
messages and the overhead required to process them. In
CNET, such “private” information is preceded by an “escape”
character; this allows private information to be inserted in any
message, even one that includes some public information en-
coded in the normal manner.

2) Task Announcement Processing
In CNET, all tasks are typed. For each type of task, a node

maintains a rank-ordered list of announcements that have been
received and have not yet expired. Each node checks the eli-
gibility specifications of all task announcements that it re-
ceives. This involves ensuring that the conditions expressed in
the specification are met by the node (e.g., MUST-HAVE
SENSOR). If it is eligible to bid on a task, then the node ranks
that task relative to others under consideration.

Ranking a task announcement is, in general, a task-specific
operation. Many of the operations involved in processing other
messages are similarly task-specific. CNET defines a task
template for each type of task. This template enables a user to
specify the procedures required to process that type of task. In
Appendix E we describe the roles of the required procedures,
together with the default actions taken by CNET when the
user chooses to omit a procedure. In the following sections,
whenever reference is made to task-specific actions, the reader
may refer to Appendix E for further details.

3) Bidding
This announcement-ranking activity proceeds concurrently

with task processing in a node until the task processor (see
Appendix A) completes processing of its current task and be-
comes available for processing another task. At this point, the
contract processor is enabled to submit bids on announced
tasks. It checks its list of task announcements and selects a task
on which to submit a bid. If there is only one type of task, the
procedure is straightforward. If, on the other hand, there are
a number of task types available, the node must select one of

them. The current version of CNET selects the most recently
received task (older tasks are more likely to have been already
awarded).

An idle node can submit a bid on the most attractive task
when either of the following events occur: 1) the node receives
a new task announcement or 2) the expiration time is reached
for any task announcement that the node has received. At each
opportunity, the node makes a (task-specific) decision whether
to submit a bid or wait for further task announcements. (In the
signal task, a potential contractor waits for further an-
nouncements in an attempt to find the closest manager.)

The node abstraction slot of a bid is filled with a brief
specification of the capabilities of the node that are relevant
to the announced task. It is written in the form indicated by
the bid specification of the corresponding task announce-
ment.

The node abstraction slot can also include a number of
REQUIRE statements (e.g., REQUIRE PROCEDURE NAME
FFT). Statements of this form are used by a bidder to indicate
that it needs additional information if it is awarded the task.
REQUIRE statements can be made if two conditions are met:
1) the required objects were not preceded by MUST-HAVE
terms in the eligibility specification of the task announcement
and 2) the objects are transferable; that is, they can be trans-
ferred by message. (A procedure falls into this class, but a
hardware device does not.)

The task template is helpful here. If a node receives an an-
nouncement for a type of task with which it is not familiar (i.e.,
does not have the template), then it can request the template
as a convenient shorthand for the entire set of procedures as-
sociated with that type of task.

4) Bid Processing
Contracts are queued locally by the manager that generated

them until they can be awarded. The manager also maintains
a rank-ordered list of bids that have been received for the task.
When a bid is received, the manager ranks the bid relative to
others under consideration. If, as a result, any of the bids are
determined to be satisfactory, then the contract is awarded
immediately to the associated bidder. (The definition of sat-
isfactory is task-specific.) Otherwise, the manager waits for
further bids.

Because a manager is not forced to always wait until the
expiration time before awarding a contract, the average ne-
gotiation time for contracts is reduced over that of DCS
[2].

If the expiration time is reached and the contract has not
yet been awarded, several actions are possible. The appropriate
action is task-specific, but the possibilities include: awarding
the contract to the most acceptable bidder(s); transmitting
another task announcement (if no bids have been received);
or waiting for a time interval before transmitting another task
announcement (if no acceptable bids have been received). This
is in contrast to the traditional view of task allocation where
the most appropriate node available at the time would be se-
lected.

Successful bidders are informed that they are now con-
tractors for a task through an announced award message. The
task specification slot contains a specification of the data

 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 12, DECEMBER 1980

1108

needed to begin execution of the task, together with any ad-
ditional information requested by the bidder.

5) Contract Processing, Reporting Results, and Termi-
nation

Once a contract has been awarded to a node, it follows the
state transition diagram shown in Appendix C. The data
structures shown in Appendix D form a local context for
communication between the contractor and manager (and other
nodes) about the task being performed.

The information message is used for general communication
between manager and contractor during the processing of a
contract. (See Section IV-B.3 for further discussion of this
message.)

The report is used by a contractor to inform the manager
(and other report recipients, if any) that a task has been par-
tially executed (an interim report) or completed (a final report).
The result description slot contains the results of the execution.
Final reports are the normal method of result communication.
Interim reports, however, are useful when generator-style
control is desired. A contractor can be set to work on a task and
instructed to issue interim reports whenever the next result is
ready. It then suspends the task until it is instructed by the
manager to continue (with an information message) and
produce another result.

The manager can also terminate contracts with a termina-
tion message. The contractor receiving such a message ter-
minates execution of the contract indicated in the message and
all of its outstanding subcontracts.

6) Negotiation Tradeoffs
In this section, we discuss choices made in the CNET im-

plementation of the negotiation process. In the main, our
concern has been with problem solving. We have been more
interested in the types of information that must be passed be-
tween nodes than with these aspects of the negotiation process.
As a result, the choices are only tentative and warrant further
detailed analysis.

Because bids are binding and a node is allowed to have more
than one bid outstanding at a time, a node may receive multiple
awards. These are queued for processing in order of receipt.
The cost is potentially slower overall system performance (the
load may be less evenly balanced) than would be the case if
multiple awards were prevented.

If nodes could refuse awards (as in DCS [3]), multiple
awards could be prevented. However, the cost is at least one
additional acknowledgment message per transaction. In some
cases, it may be many additional messages (if an award is re-
fused by several bidders).

Similarly, if a node could only have a single bid outstanding,
multiple awards could be prevented. However, the cost would
be significant delay. Nodes would be forced to remain idle until
a task announcement had expired to find that their bids had
been rejected, and have to start the process again. This could
lower overall system performance.

The above delay could be reduced in some instances by ex-
plicitly informing unsuccessful bidders that their bids had been
refused. The cost, however, would likely be a very large in-
crease in message traffic, assuming that there are several

bidders per task. In addition, it would only lower the delay for
contracts that were awarded before the expiration times of
their task announcements were reached.

We have allowed a node to bid at intervals related to the
receipt of task announcements rather than at fixed intervals. It
is intuitively appealing, offers a reasonable compromise
between message traffic and delay in allocating tasks, and has
exhibited good performance in experience to date with CNET.

We have chosen to allow a node to submit, at most, a single
bid at each opportunity. This reduces message traffic and the
possibility that a single node could bid on far more tasks than
it could process. For the same reasons, we allow only idle nodes
to submit bids. Because of these choices, contracts are not-
centrally notarized as they were in DCS [2]. This further re-
duces message traffic and maintains the distributed nature of
the negotiation process.

The current version of CNET uses a nonpreemptive
scheduler in each node. It would appear to be useful, however;
to allow preemptive scheduling instead of simply queueing
contracts in order of receipt. This would help avoid the situa-
tion where time-critical tasks are not executed soon enough
because less important tasks are queued ahead of them. The
difficult question here is determining the criteria for
preemption and providing a place for them in the common
internode language. We are currently exploring this issue.

B. Complications and Extensions

In the following sections we consider some problems with
the basic negotiation mechanism and present extensions to
solve these problems. The extensions are evolving as we gain
more experience with using the protocol in practical applica-
tions.

1) Immediate Response Bids
We have, thus far, discussed the negotiation process under

the assumption that a node cannot submit a bid until it goes
idle and is actually ready to process a new contract. This
strategy can, however, lead to difficulty. For instance, a node
that issues a task announcement may not receive any bids for
one of several reasons: 1) there are no idle nodes; 2) some node
is both idle and eligible, but ranks the task too low; or 3) no
node is capable of working on the task even if it were idle (as
may happen if the eligibility specification is too stringent or
no node has the data necessary for executing the task). In the
first two cases, the task announcement may be usefully reissued
until a bid is obtained from an idle node; in the third case it
would be pointless. Therefore, a node requires a way of de-
termining what caused the lack of response.

A class of bids we call immediate response bids offers a
mechanism for doing this. Three such bids have been identified,
allowing a node to indicate that it is eligible but BUSY, that it
is INELIGIBLE, or that it gave the task a LOW RANKING. A
manager can specify that nodes are to respond in any of these
cases or to respond in a subset of the cases (e.g., respond if
eligible, but busy).

A node receiving a task announcement whose.bid specifi-
cation asks for an immediate response bid does not deal with

SMITH: CONTRACT NET PROTOCOL: COMMUNICATION AND CONTROL 1109

the announcement in the usual way (ranking it immediately,
but waiting until it is idle to submit a bid), but instead responds
immediately with either a standard bid or the appropriate
special form.

The immediate response mechanism permits a manager to
take a more appropriate course of action if a task announce-
ment elicits no bids. The normal procedure is to simply reissue
the task announcement. If this continues to elicit no bids, then
the manager can specify an immediate response bid. If the
response is uniformly BUSY, then the manager can wait and
reissue the task announcement later. If all nodes are INELI-
GIBLE, then the manager may loosen the eligibility specifi-
cation. If all nodes gave the task a LOW RANKING, the man-
ager can wait and reissue, in the hope that the more interesting
tasks currently occupying the nodes will soon be done. The
manager may also decide to execute the task itself when it
becomes idle.

2) Directed Contracts
The normal contract negotiation process can be simplified

in some instances, with a resulting enhancement in the effi-
ciency of the protocol. If a manager knows exactly which node
is appropriate for execution of a task, a directed contract can
be awarded. No task announcement is made and no bids are
submitted. Instead, a directed award message is sent to the
selected node without negotiation.

In addition to the low-level acknowledgment used by an
underlying communication protocol to ensure reliable com-
munication, the contract net protocol uses a further high-level
acknowledgment message for directed award messages. This
allows a refusal or negative acknowledgment of the form, I
can't execute this contract because . . ., in addition to the low-
level negative acknowledgment of the form, I didn't receive
your message correctly.

If the node that receives a directed award either does not
meet the eligibility specification or does not have a template
for the task, then it transmits a refusal to the manager. Oth-
erwise, the node uses task-specific criteria to determine
whether to transmit an acceptance or refusal to the manager.
The refusal message contains a refusal justification slot that
specifies the reasons for the refusal (e.g., INELIGIBLE or NO
TEMPLATE).

The action taken by a manager upon receipt of a refusal is
also task-specific, in general.

3) Request and Information Messages
If a simple transfer of information is required, then a re-

quest–response sequence can be used without further embel-
lishment. The request message is used to encode straightfor-
ward requests for information. The information message is
used to respond to a request, and for manager/contractor
communication during the execution of a contract (Section IV-
A.5). This message is also used in result-sharing [9], a style of
distributed problem solving in which nodes cooperate by
sharing partial results.

If a node that receives a request message meets the eligibility
specification and has the necessary information, then it re-
sponds with an information message. No task-specific decisions
need to be made.

If a node that receives an information message meets the
eligibility specification, then the action it takes is task-specific.
If the contract named in the message is one that the node is
processing, then the appropriate action is determined by a
procedure associated with that contract. Otherwise, the node
takes a default action. (The latter possibility arises in result-
sharing because nodes communicate partial results to other
nodes without being requested to do so, and without being
explicitly linked by a contract.)

4) Node Available Messages
The protocol has been designed to allow a reversal of the

normal negotiation process. When the processing load on a net
is high, most task announcements will not be answered with
bids because all nodes will be busy. Hence, the protocol in-
cludes a node available message. A node that transmits such
a message is idle and searching for a task to execute. In this
case, the eligibility specification is a list of criteria that the node
will look for in a task. The node abstraction is a brief specifi-
cation of the capabilities of the node and the expiration time is
a deadline for receiving an award.

When a node receives a node available message, it tries to
determine if it can match the node with a task that it has an-
nounced, but not yet awarded. First, it tries to match the eli-
gibility specification in the node available message against the
task abstractions of the tasks that it has waiting. A task for
which this match succeeds is of interest to the volunteering
node. The manager then tries to match the eligibility specifi-
cation of the task against the node abstraction of the node
available message. If this match succeeds, then the node is the
sort which is required for the task. Hence, even in this case we
have the mutual selection aspect, as the volunteering node
selects a task and the task specifies the criteria necessary in a
volunteer. If the two matches are successful, the manager sends
a directed award message to the volunteer. If a node has several
tasks for which both matches succeed, then CNET selects the
oldest task (it is least likely to be awarded in the normal
way).

In CNET, a node maintains a list of unexpired node avail-
able messages. Before it announces a new task, a node first tries
to find a suitable volunteer in the list. If several volunteers are
suitable, the newest volunteer is selected (it is least likely to
have received an award).

A node can thus acquire a contract in one of two ways: it can
wait for a suitable task announcement and submit a bid; or it
can transmit a node available message and wait for a directed
award. The decision as to which method to use is net-load de-
pendent. If the net is not heavily loaded, then the use of the task
announcement is warranted in all cases, since the availability
of a task to be executed is the event of primary importance. If
the net is heavily loaded, then unlimited use of task an-
nouncements serves only to saturate the available communi-
cation channels. In this case, the availability of an idle node is
the event of primary importance and the use of node avail-
able messages is preferred.

In CNET, a node selects one of the two modes based on
experience with its own task announcements. The scheme is
rudimentary, however, and warrants further analysis.

 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 12, DECEMBER 1980

1110

V. DYNAMIC DISTRIBUTION OF INFORMATION
The contract net protocol enables dynamic distribution of

information (i.e., procedures and data) via three methods.
First, a node can transmit a request directly to another node
for the transfer of the required information. The response is
the information requested (e.g., the code for a procedure).
Second, a node can broadcast a task announcement in which
the task is a transfer of information. A bid on the task indicates
that the bidder has the information and is willing to transmit
it. Finally, a node can note, in its bid on a task, that it requires
particular information in order to execute the task. The
manager can then send the required information in the award
message if the bid is accepted.

Dynamic distribution enables effective use of available
computational resources: a node that is standing idle because
it lacks information required to execute a previously announced
task can acquire that information as indicated above. This also
means that nodes do not have to be preloaded with extensive
amounts of information which may or may not prove useful.
Dynamic distribution also facilitates the addition of a new node
to an existing net; the node can dynamically acquire the pro-
cedures and data necessary to allow it to participate in the
operation of the net. This is especially useful in the distributed
sensing application.

Dynamic distribution works, first, because all nodes know
the syntax of the contract net protocol, which enables them to
identify the slots that contain task-dependent information (e.g.,
the eligibility specification of a task announcement); second,
because they know how to parse the common internode lan-
guage, which enables them to identify the information in the
slots that they do not possess; and third, because a negotiation
process is used to effect task distribution, which makes it
possible for a new node to begin participating in the operation
of the net by listening to the messages being exchanged (spe-
cifically, task announcements) and submitting bids. This may
be contrasted with more traditional task allocation schemes
that explicitly assign tasks to nodes. In such schemes, new
nodes must be explicitly linked to other nodes in the net-
work.

VI. DISCUSSION
We have presented a high-level protocol for distributed

problem solving. The protocol facilitates distributed control
of cooperative task execution with efficient internode com-
munication. It has been designed to provide a more powerful
mechanism for connection than is available in current prob-
lem-solving systems. The message types have been selected to
capture the types of interactions that arise in a task-sharing
approach to distributed problem solving. The message slots
have been selected to capture the types of information that
must be passed between nodes to make these interactions ef-
fective.

The connection of nodes with tasks to be executed and nodes
that can execute those tasks is more general than load bal-
ancing. The difference can be illustrated by comparing the
information placed in the slots of the task announcement with
that used in DCS. In that system, a task announcement (re-

quest for quotation) contains only the name of the process to
be executed and the amount of memory required. A bid is a
measure of the excess memory available in a node. Note,
however, that this is only one of the possible dimensions along
which tasks and nodes can be evaluated. In general, such
evaluation is task-dependent (as we saw in Section III) and
may require a different form of information for each task.
Recognizing this, the contract net protocol takes a wider per-
spective and allows a range of descriptions to be passed be-
tween the manager and bidders. In more general terms, since
our concern is with problem solving, more attention is paid to
the type of information that must be transferred between nodes
to solve the connection problem. The connection that is effected
with the contract net protocol is an extension to the pattern-
directed invocation used in many AI programming languages
(see [8] for a more in-depth discussion).

There are several reasons for adopting a distributed ap-
proach to problem solving. These include speed, reliability,
extensibility, and the ability to handle applications that have
a natural spatial distribution. The design of the contract net
protocol attempts to ensure that these potential benefits are
indeed realized.

In order to achieve high speed we wish to avoid bottlenecks.
Such bottlenecks can arise in two primary ways: by concen-
trating disproportionate amounts of computation or commu-
nication at central resources and by saturating available
communication channels so that nodes must remain idle while
messages are transmitted.

To avoid bottlenecks we distribute control, data, and KS's.
Control is distributed through the use of negotiation to achieve
connections for task distribution. Every node is capable of
assigning and accepting tasks, and managers and contractors
simultaneously seek each other out. Data and KS's are also
distributed dynamically as part of the negotiation process or
with a request-response mechanism.

The contract net protocol includes several elements aimed
at avoiding communication channel saturation. First, the in-
formation in task announcements (like eligibility specifica-
tions) helps eliminate extraneous message traffic. Similarly,
bid messages can be kept short and “to the point” through the
use of the bid specification mechanism. Second, specialized
interactions, like directed contracts and requests, reduce
communication for transactions that do not require the com-
plexity of negotiation. Third, the protocol enables dynamic
distribution of information on an as-required basis. Finally, it
provides a very general form of guidance in determining
appropriate partitioning of problems: the notion of tasks exe-
cuted under contracts suggests relatively large task sizes. This
is important if the speedup obtained from distribution is not
to be outweighed by the effort required to effect that distri-
bution.

Distribution of control also enhances reliability and permits
graceful degradation of performance in the case of individual
node failures. There are no nodes whose failure can completely
block the contract negotiation process. In addition, recovery
from the failure of a node is aided by the presence of explicit
links between managers and their contractors. The failure of
any contractor, for example, can be detected by its manager;

SMITH: CONTRACT NET PROTOCOL: COMMUNICATION AND CONTROL 1111

the contract for which it was responsible can then be rean-
nounced and awarded to another node.

The use of a negotiation process for allocation of nodes to
tasks facilitates the extension of an existing net to include new
nodes. Such nodes can begin to participate in the operation of
the net without first explicitly informing the other nodes of
their presence. New node entry is also facilitated by the com-
mon internode language and dynamic distribution of infor-
mation.

The ability to handle applications with a natural spatial
distribution is facilitated by the local nature of negotiation.
A net is able to configure itself dynamically according to the
positions of the nodes and the ease with which they can es-
tablish communication.

The protocol is best suited to problems in which it is ap-
propriate to define a hierarchy of tasks (e.g., heuristic search)
and a hierarchy of levels of data abstraction (e.g., audio or
video signal interpretation). Such problems lend themselves
to decomposition into a set of relatively independent subtasks
with little need for global information or synchronization.
Individual subtasks can be assigned to separate processor
nodes; these nodes can then execute the subtasks with little
need for communication with other nodes.

VII. CONCLUSION
The main contribution of the contract net protocol is the

mechanism it offers for structuring high-level interactions
between nodes for cooperative task execution. It stresses the
utility of negotiation as an interaction mechanism. Negotiation
can be used at different levels of complexity. At one extreme,
it is a means of achieving task distribution with distributed
control and shared responsibility for tasks to maintain reli-
ability and avoid bottlenecks. At the other extreme, the two-
way transfer of information and mutual selection attributes
of negotiation make possible a finer degree of control in making
resource allocation and focus decisions than is possible with
traditional mechanisms.

APPENDIX A
CONTRACT NODE ARCHITECTURE

We view a node as having four major functional components
(Fig. 4): a local database, a communication processor that
handles low-level message traffic with other nodes, a task
processor that carries out the computation associated with user
tasks, and a contract processor that processes high-level pro-
tocol messages and manages node resources. It is assumed that
the functions of the three processors are carried out concur-
rently.

APPENDIX B
CONTRACT NET PROTOCOL SPECIFICATION

The BNF specification of the contract net protocol is shown
in Fig. 5. Nonterminal symbols are enclosed by “(),” ter-
minal symbols are written without delimiters, and nontermi-
nals whose specific expansion is not germane to the discussion

Fig. 4. Contract node architecture.

<message> ⇒ <header> <addressee> <originator> <text> <trailer>
<header> ⇒ [line-header] [identifier] [time] [acknowledge]
<trailer> ⇒ [error-control] [line-trailer]
<addressee> ⇒ [net-address] | [subnet-address] | [node-address]
<originator> ⇒ [node-address]
<text> ⇒ [cctext] | <pstext>
<pstext> ⇒ <task-announcement> | <bid> | <announced-award> |

<directed-award> | <acknowledgment> | <report> |
<termination> | <node-available-message> |
<request-message> | <information-message>

<task-announcement> ⇒ TASK-ANNOUNCEMENT [name]
{task-abstraction} {eligibility-specification}
{bid-specification} [expiration-time]

<bid> ⇒ BID [name] {node-abstraction}
<announced-award> ⇒ ANNOUNCED-AWARD [name] {task-specification}
<directed-award> ⇒ DIRECTED-AWARD [name] {task-abstraction}*

{eligibility-specification} {task-specification}
<acknowledgment> ⇒ ACCEPTANCE [name]*

⇒ REFUSAL [name] {refusal-justification}
<report> ⇒ INTERIM-REPORT [name] {result-description}

FINAL-REPORT [name] {result-description}
<termination> ⇒ TERMINATION [name]
<node-available-message> ⇒ NODE-AVAILABLE {eligibility-specification}*

{node-abstraction} [expiration-time]
<request-message> ⇒ REQUEST [name] {eligibility-specification}*

{request-specification}
<information-message> ⇒ INFORMATION [name] {eligibility-specification}*

{information-specification}

Fig. 5. Contract net protocol specification.

are enclosed by “[].” Slots that are to be filled with infor-
mation encoded in the common internode language are en-
closed in “{ }.” Message types that need not be included in
a basic implementation are followed by “*.”

One possible set of low-level message slots is shown for
completeness. Other variations may be dictated by the specific
communication architecture for which the protocol is imple-
mented. Briefly: line-header delimits the beginning of a mes-
sage; identifier is a unique identifier for the message; time
specifies the time at which the message is transmitted; ac-
knowledge is set only if acknowledgment of receipt of the
message is required (this slot is included because delivery of
some messages is not essential to the operation of the protocol
(e.g., broadcast task announcements) and acknowledgments
for such messages might greatly increase message traffic);
error-control is used by an addressee to determine that the
message has been correctly received; and line-trailer delimits
the end of the message. Three forms of addressee slot are
shown. These are used for general broadcast, limited broad-
cast, and point-to-point messages, respectively.

There are two forms of text slot. cctext (communication
control text) indicates that the message is for checking net
integrity, acknowledging receipt of messages, maintaining

 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 12, DECEMBER 1980

1112

basic net communication data, such as routing tables, and so
on. Messages of the form Hello and I heard you, exchanged
periodically by IMP’s in the ARPANET as status checks, fall
into this category.

pstext (problem-solving text) indicates that the message is
for high-level problem solving (see Section IV).

APPENDIX C
CONTRACT PROCESSING STATES

Contracts are processed according to the state transition
diagram shown in Fig. 6, which uses the terminology of oper-
ating systems [1]. The contract processor of a node (Appendix
A) is responsible for moving a contract through the states of
the diagram. The standard progression through the states is
shown by solid lines. Optional progressions are shown by
dashed lines.

When a contract is awarded to a node (IN), it is placed in
the READY state where it waits until the task processor is
available. At that time, the contract is placed in the EXE-
CUTING state and its processing is started. If subcontracts are
generated, they are placed in the ANNOUNCED state. A sub-
contract may either be awarded to another node (OUT) or to
this node (READY).

If execution cannot continue on the contract until some
event occurs (e.g., receipt of a subcontract report), then the
contract is placed in the SUSPENDED state; and another con-
tract in the READY state is selected for processing. When the
awaited event occurs, the contract is transferred back to the
READY state where it awaits further processing.

When processing of the contract has been completed, it is
placed in the TERMINATED state; and another contract in the
READY state is selected for processing. Recently completed
contracts are held in the TERMINATED state in order to fa-
cilitate recovery from the failure of a manager.

If a contract in the EXECUTING state is moved to either the
SUSPENDED or TERMINATED state and if there are no con-
tracts in the READY state, then the node attempts to acquire a
new contract—either by making a bid on a recent task an-
nouncement or by transmitting a node available message
(Section IV).

The scheduler used by a contract processor in the current
version of CNET is nonpreemptive and gives priority to a
contract whose execution can continue (e.g., due to receipt of
a report) over a contract whose execution has not yet been
started.

APPENDIX D
CONTRACT SPECIFICATION

A node maintains a structure of the form shown in Fig. 7 for
each task for which it is the contractor. Such a structure forms
a local context for the execution of a task.

name is a unique identifier for the contract. manager is the
node that generated the task. report recipients are the nodes
to which reports for the contract are to be sent. The default
report recipient is the manager. related contractors are the
nodes that are working on related contracts (e.g., subcontracts
of the same contract).

The report recipients and related contractors slots facilitate
more flexible communication and cooperation. They give IN

Fig. 6. Contract processing states.

<contract> ⇒ [name]
 [manager]
 [report-recipients]
 [related-contractors]
 <task>
 [results]
 <subcontract-list>

Fig. 7. Contract structure.

node an explicit indication of other nodes in the net with which it
may be useful to communicate (e.g., to enable use of focused
addressing in task announcements) and help to reduce message
traffic. Messages from one related contractor to another, for
example, can be addressed directly and therefore do not have to
follow the communication paths of the control hierarchy.

task is filled with a structure of the form shown in Fig. 8. The
structure lists the type of the task, its specification, and the
procedures that are required to handle the task in a contract
net. These procedures are described in Appendix E.

results are the outcome of executing a task. They are
transmitted to the report recipients of the contract. subcon-
tract-list is the collection of subtasks generated from the initial
contract. This slot is filled with a list of structures of the form
shown in Fig. 9. Such structures contain the information held
by a manager for a subtask.

name is a unique identifier for the subcontract. contractor
is the name of the node responsible for its processing. task is
the task structure (Fig. 8). results are the outcome of executing
the subtask. predecessors are the names of subcontracts that
are preconditions for the subcontract and successors are the
names of subcontracts for which the subcontract is a precon-
dition. Predecessors and successors are necessary for tasks that
must be performed in a particular order, such as those that
occur in planning applications [6]. A subcontract will not be
announced (Section IV-A.1) until its predecessors have been
completed.

APPENDIX E
TASK PROCESSING PROCEDURES

In this appendix, we discuss the task-specific procedures,
the roles they play, and the default actions taken in CNET
when no procedure is provided by the user. In the terms of the
functional model of a node presented in Appendix A, the ex-
ecution procedure runs in the task processor. The rest of the
procedures run in the contract processor.

Announcement Procedure: Called each time a subtask is
generated. Its role is to determine whether the task should be
announced or awarded directly. In either case, it must deter-
mine the addressee. It must also compute the information re-

SMITH: CONTRACT NET PROTOCOL: COMMUNICATION AND CONTROL 1113

<task> ⇒ [name]
 [type]
 [specification]
 [announcement-procedure]
 [announcement-ranking-procedure]
 [bid-procedure]
 [bid-ranking-procedure]
 [award-procedure]
 [acknowledgment-procedure]
 [refusal-processing-procedure]
 [report-acceptance-procedure]
 [termination-procedure]
 [information-acceptance-procedure]
 [execution-procedure]

Fig. 8. Task structure.

<subcontract> ⇒ [name]
[contractor]
<task>
[results]
[predecessors]
[successors]

Fig. 9. Subcontract structure.

quired to fill the slots of a task announcement or directed
award and indicate the names of any predecessor subcontracts.
The default is to announce the task to all nodes with a task
abstraction that states the task type and a default expiration
time.

Announcement Ranking Procedure: Called when a task
announcement is received. Its role is to rank the new an-
nouncement relative to others under consideration. The default
is to give the most recently received task announcement the
highest ranking.

Bid Procedure: Called when a node has an opportunity to
submit a bid. Its role is to decide whether or not to submit a bid
and to add any common internode language statements to
those called for in the bid specification of the associated task
announcement. No default action is taken.

Bid Ranking Procedure: Called when a bid is received. Its
role is to rank the new bid relative to others under consideration
and determine whether the contract should be awarded to any
of the current bidders. The default is to insert the new bid into
the list of bids so that bids that REQUIRE the least information
(Section IV-A.3) are ranked highest.

Award Procedure: Called when the expiration time for a task
announcement is reached and the contract has not yet been
awarded. Its role is to decide what action is to be taken. The
default is to award the contract to the bidder that REQUIRE’s
the least additional information (or the first bidder in case of a
tie) or to transmit another task announcement if no bids have
been received.

Acknowledgment Procedure: Called when a node receives
a directed contract for which it is eligible and has a task tem-
plate. Its role is to decide whether to accept or reject the con-
tract. The default is to accept.

Refusal Processing Procedure: Called when a refusal mes-
sage is received. Its role is to determine what action is to be
taken. The default is to transmit a task announcement.

Report Acceptance Procedure: Called when a report mes-
sage is received. Its role is to determine what to do with the
contents of the result description slot. The default is to add the
contents of the slot to the results slot of the contract.

Termination Procedure: Called when a contract that has
been terminated is about to be deleted from the local database.

(CNET maintains a list of the recently terminated contracts
[Appendix C].) Its role is to take any specialized action that is
required before the contract is deleted (e.g., storing contract
slot information in the local database). No default action is
taken.

Information Acceptance Procedure: Called when an infor-
mation message is received. Its role is to determine what to do
with the contents of the information specification slot. The
default is to store the information in the local database.

Execution Procedure: Called when processing is started on
the contract. Its role is to perform the computation required to
execute the task.

ACKNOWLEDGMENT
Some aspects of this work are being pursued in collaboration

with R. Davis at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology, Cambridge. The
contributions of B. Buchanan and G. Wiederhold are also
gratefully acknowledged.

REFERENCES

[1] P. Brinch Hansen, Operating System Principles. Englewood Cliffs,
NJ: Prentice-Hall, 1973.

[2] D. J. Farber and K. C. Larson, “The structure of the distributed com-
puting system—Software,” in Proc. Symp. on Comput.-Commun.
Networks and Teletraffic, J. Fox, Ed. Brooklyn, NY: Polytechnic
Press, Polytechnic Inst. of Brooklyn, Apr. 1972, pp. 539-545.

[3] D. J. Farber, J. Feldman, F. R. Heinrich, M. D. Hopwood, K. C. Larson,
C. Loomis, and L. A. Rowe, “The distributed computing system,”
IEEE COMPCON Spring, 1973, pp. 31-34.

[4] C. Hewitt, “Description and theoretical analysis (using schemata) of
PLANNER: A language for proving theorems and manipulating models
in a robot,” Mass. Inst. Technol., Cambridge, MA, AI TR 258, Apr.
1972.

[5] V. R. Lesser, “Cooperative distributed processing,” Dep. Comput. In-
form. Sci., Univ. of Massachusetts, Amherst, MA, COINS TR 78-7,
May 1978.

[6] E.D. Sacerdoti, “A structure for plans and behavior,” SRI Int., Menlo
Park, CA, AIC TN 109, Aug. 1975.

[7] R. G. Smith and R. Davis, “Applications of the contract net framework:
Distributed sensing,” in Proc. ARPA Distributed Sensor Net Symp.,
Pittsburgh, PA, Dec. 1978, pp. 12-20.

[8] R. G. Smith, “A framework for problem solving in a distributed pro-
cessing environment,” Dep. Comput. Sci., Stanford, CA, STAN-CS-78-
700 (HPP-78-28), Dec. 1978.

[9] R. G. Smith and R. Davis, “Cooperation in distributed problem solving,”
in Proc. /979 Int. Conf Cybern. Soc., Oct. 1979, pp. 366-371.

[10] R. G. Smith, “Applications of the contract net framework: Search,” in
Proc. 1980 Nat. Conf. Canadian Soc. for Computational Studies of
Intell., May 1980, pp. 232-239.

[11] R. F. Sproul and D. Cohen, “High-level protocols,” Proc. IEEE, vol. 66,
pp. 1371-1386, Nov. 1978.

[12] W. Teitelman, INTERLISP Reference Manual. Palo Alto, CA: Xerox
Palo Alto Research Center, Dec. 1975.

Reid G. Smith (S’67-M’69-S’75-M’78) was born
in Toronto, Ont., Canada, on October 4, 1946. He
received the B.Eng. and M. Eng. degrees in electri-
cal engineering from Carleton University, Ottawa,
Ont., Canada in 1968 and 1969, respectively, and the
Ph.D. degree in electrical engineering from
Stanford University, Stanford, CA in 1979.

He has been associated with the Defence Re-
search Establishment Atlantic in Dartmouth,
N.S., Canada since 1969. He is currently engaged
in research in artificial intelligence and distri-
buted problem solving.

