JADE Test Suite — USER Guide

JADE Test Suite
USER GUIDE

Last update: 12-January-2005 JADE3.4
Authors: Elisabetta Cortese (TILAB)
Giovanni Caire (TILAB)

Rosalba Bochicchio (TILAB)

JADE - Java Agent DEvelopment Framework is a framework to develop multi-agent systems in compliance
with the FIPA specifications. JADE successfully passed the 1st FIPA interoperability test in Seoul (Jan. 99)
and the 2nd FIPA interoperability test in London (Apr. 01).

Copyright (C) 2000 CSELT S.p.A. (C) 2001 TlLab S.p.A. (C) 2002 TlLab S.p.A. (C) 2003 TILab S.p.A.
(C) 2004 TILAB

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation, version 2.1 of the License.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY:; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

¢ SWE

JADE Test Suite — USER Guide

1

1.1
1.2
1.3

1.4

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3

3.4

4.1
4.1

4.2

TABLE OF CONTENTS
INTRODUGCTION ...ttt ettt e e e et e e e e et eeaeat e e aeeet e e eensanaaaees 3
SCOPE aNd target AUAIENCEccueieicieie ettt raete e e s reesbeaneenneas 3
SYSTEIM FEOUITEMIBNTS. ...c.utiiiieitieie ettt sttt sttt et e be et e et esreesbeenbesneesbeenbenneas 3
HOW 10 INSTAIL......oec e 3
How to Compile and QUICK FUN.........oiiiiiieiieee e 3
THE TESTSUITE FRAMEWORK 3
(@] o] [T 11V SRS 3
The TeSt SUITE MOEN ... 4
IMIRIN CLASSES ...ttt b bbbttt b et e e n e 4
TESTGIOUP ArQUIMENTS. ...cciiiiiiiieeiiie ettt e et e bt e e sbb e e s bb e e ebe e e ssbe e e snbeeennneeens 5
THE TESTSUITEBAGENT. ...ttt et bt e b et e e e e beenbeaneenneas 5
XIMIL FHIES ettt 6
CREATING A TEST ittt e e ettt e e e e et e e e e et e e e eeaan e eeeenen 7
Test Suite directory/package SLFUCTUNEccoiveieiieiece e 7
Developing a FUNCHIONAITY-TEST......cccuiiiiie i e 8
Adding an atomic-test for a SPecifiC aSPECT.cccevviiieii e 8
AN BXAMPIE L.t b et et et bt be e nneas 9
RUNNING TESTS ..o e e e e e e e e e e e e 10
Running Tests from the TestSUIteAgeNt GUI ... 10
0]] 0] 01T [0 T 1] £ SRS 12
The TeSt SUITE DAEBIMON.......ciiiiiiiiieiete bbbt 12
2

JADE Test Suite — USER Guide

1 INTRODUCTION

1.1 Scope and target audience

This document describes the JADE Test Suite that is distributed as a JADE add-on since March 2004.
The JADE test suite is a framework designed to test JADE-based agent systems. We decided to develop a
new testing framework from scratch and not to take advantage of commonly used ones such as JUnit for the
following reason. The main difference between agents and normal objects is autonomy: objects expose
methods that external entities may invoke when and how they want. Agents do not expose methods. External
entities may interact with them by sending messages that agents will process when and how they (the agents)
“want”. Existing testing frameworks such as JUnit are designed to test objects and stimulate them by calling
their methods. Since agents do not expose methods we believe that existing testing frameworks are not suited
to test agent systems.

The JADE Test Suite is also used by the JADE team to test JADE itself. Developers discovering bugs,
problems or unexpected behaviors using JADE are encouraged to provide tests that can be executed by the
JADE test suite highlighting the problem they found. This ensures that the problem can be immediately
addressed (and hopefully fixed) by the JADE team or someone other in the community.

This document is intended for JADE developers and therefore we suppose the reader is already familiar
with JADE.

1.2 System requirements

In order to use the JADE Test Suite you need JADE 3.1 or later, and Sun Java SDK 1.4 or later.

1.3 How to install

The distribution file of the TestSuite must be unzipped into the directory where jade is installed. It does
not interfere either overwrite any existing file. It just adds this tutorial into the jade/doc/tutorials directory
and all the sources of the testsuite into the jade/add-ons/testSuite directory. Throughout this tutorial we will
refer to the jade/add-ons/testSuite directory as the “test suite home directory” and we will indicate it as <test-
suite-home>.

1.4 How to Compile and quick run

To compile the TestSuite you need ant 1.6.5 or later. Besides the src directory, containing all test suite
sources, the test suite home directory also contains an ANT build.xml file. Moving to the test suite home
directory and typing ant compiles the test suite and starts it. Of course be sure the JADE jar files are present
in the jade/lib directory before launching the compilation and startup process.

The Test suite sources includes both the framework classes and some sample tests that can immediately
be executed.

As a result of the compilation a jar file called testSuite.jar and located in the <test-suite-home>/lib
directory is produced. This can be linked to JADE based projects to create automatic tests as will be
described in the following sections.

2 THE TESTSUITE FRAMEWORK

2.1 Objective

The JADE Test Suite is a framework build on top of JADE that permits to create tests that can be
executed in a uniform and automatic way that is:
e Uniform: all tests follow the same pattern of execution and produce results in a similar format.
e Automatic: all tests do not require user intervention neither during execution nor to detect whether the
test passed or failed.

¢ SWE

JADE Test Suite — USER Guide

2.2 The Test Suite Model

The TestSuite framework is based on a two-level model. At the first level we identify macro
functionalities like the inter-platform communication functionality. In order to check whether a given
functionality works properly a number of different cases must be tested. This leads us to the second level
where we identify specific aspects of a functionality. For example, testing the sending and receiving of
messages across different platform is a specific aspect of the inter-platform communication functionality. In
the followings we will call “functionality-test” the set of tests related to all the aspects of a given
functionality. Tests on specific aspects, on the other hand, will be referred to as “atomic-test”.

2.3 Main classes

In order to reflect the two-level model presented in 2.2, the Test Suite framework provides the classes

1. test.common.TestGroup representing the group of all the tests related to a given functionality
(i.e. a functionality-test).

2. test.common.Test representing the test of a specific aspect of a given functionality (i.e. an atomic-
test).

A TestGroup object is basically a collection of Test objects. The list of atomic-tests to be included in a
TestGroup is described into an XML file according to the syntax presented in 2.6. The name of that file is
passed to the TestGroup in its constructor.

The TestGroup class provides the initialise() and shutdown() methods that are called by the Test
Suite framework just before and just after the execution of the group of tests. By re-defining these methods
the user can perform initialisation/clean-up operations common to all the atomic-tests in the group.

The Test class has the following methods:

1) Toad(). This method is intended to perform test-specific initializations and returns a Behaviour that is
responsible for actually executing the test.

2) clean(). This method is intended to perform test-specific clean-up operations.

In order to create a new test the user has to extend test.common.Test and redefine these two methods

as follows:
public class MyTest extends Test {
public Behaviour load(Agent a) throws TestException {
// Perform test specific initialisation
Behaviour b = // Create the Behaviour actually performing the test
return b;

}

public void clean(Agent a) {
// Perform test specific clean-up

}
}

Where a is the agent that is going to execute the Behaviour returned by the Toad() method.

3) passed() . This method must be called (typically from within the Behaviour performing the test) to
indicate that the test has been completed successfully.

4) failed() . This method must be called (typically from within the Behaviour performing the test) to
indicate that the test has failed.

Calling passed() or failed() automatically makes the test terminate as soon as the action()
method of the Behaviour performing the test returns (no matter of the value returned by the Behaviour
done () method).

5) log() - This method can be used to log some information. The current implementation just call
system.out.printin(), but we expect to produce some more sophisticated report in future versions.

6) setTimeout() . This method can be used to specify a maximum amount of time for the test. If the test
does not complete within the specified timeout it automatically terminates as if the fai led() method was
called.

[S

JADE Test Suite — USER Guide

In the Test Suite framework model a TestGroup object is executed by a “tester agent” i.e. an agent of a
class that extends test.common.TesterAgent. Each tester agent has a behaviour (instance of the
Jade_common.TestGroupExecutor class) that

- Calls the initial ise() method of the TestGroup
- For each test in the group {
- Gets the next Test from the TestGroup
- Calls the Toad() method of the Test and adds the returned Behaviour to the agent scheduler
- Waits for that Behaviour to complete and logs its result
- Calls the clean() method of the Test

}
- Calls the shutdown() method of the TestGroup

A tester agent gets the TestGroup to execute by calling its getTestGroup() method. The user has to
redefine this method so that it returns the right TestGroup object.

The Test Suite framework is completed by the test.common.TestUtility providing methods to
easily create and Kill agents and launch new JADE containers/platforms.

The classes described in this paragraph are summarized in the class diagram presented in Figure 1.

FSMBehaviour

TesterAgent TestUtility

1

TestGroupExecutor TestGroup
evecutes]

#initialize(void
#zhute awen Qovaid

o.*
Test

T eliaviouy 1 creates

+lagd() Bahawiaur
+cleandvoid

Figure 1.Test Suite framework main classes

2.4 TestGroup arguments

FIXME: To be done.

2.5 The TestSuiteAgent

Functionality-tests can be executed by simply launching the associated tester agent (e.g. through the JADE
GUI).

A more convenient way to perform them however is by means of the TestSuiteAgent. This is an agent
(test.common.testSuite.TestSuiteAgent) that provides a GUI by means of which it is possible

[S

JADE Test Suite — USER Guide

to

e View information related to functionality-tests and all atomic-tests they include.

e Select and execute functionality-tests.

e Execute all functionality-tests in sequence and print a final report indicating, for each functionality-test,
the number of atomic-tests passed and failed.

As for the tests in a test group, the list of functionality-tests available for execution within the Test Suite

framework is described into an XML file whose syntax is presented in 2.6.

2.6 XML Files

As already mentioned the list of functionalities that can be tested by the JADE Test Suite and the list of
atomic-tests to be performed for each of them are described by means of XML files. More in details there is
a single XML file (test/testerList.xml) that contains the list of functionalities under test and one
XML file for each functionality that contains the list of atomic-tests to be executed.

The functionality list file structure is described through the following excerpt:
<?xml version="1.0' encoding="utf-8'?>

<TesterList>

<Tester name="Content" skip="false">

<ClassName>test.content.ContentTesterAgent</ClassName>
<Description> Test the ACL content message </Description>
<TestsListRif>test\\content\\contentTestsList.xml</TestsListRif>

</Tester>

</TesterList>

Every <Tester> element describes a functionality-test and has two attributes: name and skip, the first one
indicates the functionality name and the second one indicates (true or false) if this tester will be skipped
during the “RUNALL execution” (see 4.1). Each <Tester> element on its turn includes the following

elements

» <ClassName>: specifies the tester class name;

= <Description>: gives a brief description about the functionality to test;

» <TestsListRif>: specifies the path where to find the XML file including the list of atomic-tests
for that particular functionality.

The tests list file structure is described through the following excerpt:
<?xml version="1.0" encoding="utf-8" 7>

<TestsList>

<Test name="Integer" skip="false">

</Test>

<TestClassName>test.content.tests. TestInt</TestClassName>
<WhatTest> Tests a ACLMessage content.</WhatTest>
<HowWorkTest>

It includes a concept with an attribute of type int.

</HowWorkTest>

<WhenTestPass> Test passed if no exception is fired.</WhenTestPass>

<Test name="Boolean" skip="false">

</Test>

<TestClassName>test.content.tests. TestBoolean</TestClassName>
<WhatTest> Tests a ACLMessage content.</WhatTest>
<HowWorkTest>

It includes a concept with an attribute of type boolean.
</HowWorkTest>

<WhenTestPass> Test passed if no exception is fired.</WhenTestPass>

JADE Test Suite — USER Guide

</TestList>

Every <Test> element describes an atomic-test and has two attributes: name and skip, the first one
indicates the test name and the second one indicates (true or false) if this test will be skipped during the
execution (see 4.1). Each <Test> element on its turn includes the following elements

= <TestClassName>: specifies the test class name;

<WhatTest>: gives a description of the specific aspect that is going to be tested;
<HowWorkTest>: gives details about the test main steps;

<WhenTestPass>: describes the criterion used by the test to detect success or failure.

<Argument> (0 or more): defines an argument for the test that can be retrieved by means of the
getTestArgument() method of the Test class. The <Argument> element has two attributes:

0 key: the key to be passed to the getTestArgument() method

o value: the value that will be returned by the getTestArgument() method

3 CREATING ATEST

This section describes how to develop a new functionality-test and to add atomic-tests to it.
3.1 Test Suite directory/package structure

Build file to compile
the JADE Test Suite
using ANT

—
D
(2]
—

build.xml

testerList.xml XML File describing
all functionality-tests

common

—|:| TestGroup.java

—|:| Test.java
—|:| TesterAgent.java

b

All generic classes \/

composing the Test Suite
framework

fff

g

XML File describing

Al classes related to /

testing the fff
functionality

Test classes for all
atomic-tests of the fff
functionality

\f

—|:| fffTestsList.xml
—|:| FffTesterAgent.java

tests The tester agent
performing all the
TestCasel.java tests relat_ed to_the fff
functionality
TestCase2.java

all atomic-tests
related to the fff
functionality

Figure 2 Directory Structure

Figure 2 depicts the directory/package structure we recommend to set up to organize your tests. For each

7

wWace

JADE Test Suite — USER Guide

functionality fff under test add the package test/fff including the TesterAgent for the fff functionality
(FFfTesterAgent. java) and the xml file describing the atomic tests for the fff functionality
(FFfTestsList.xml). Moreover add the package test/fff/tests including all tests related to the
fff functionality.

This package/directory structure perfectly reflects the model presented in 2.2. Moreover adopting it
ensures that all xml files are properly handled by the bui Id.xml file required to compile the test suite
using ANT. Both the bui Id . xml file and the testerList.xml file describing the functionalities under
test are located in the test directory.

The files composing the Test Suite framework are all included into the test/common package.

3.2 Developing a Functionality-Test

As mentioned in 2.3, developing a functionality-test for a given functionality means developing a new
tester agent executing a TestGroup including tests addressing specific aspects of that functionality. The steps
necessary to develop a tester agent for a generic fff functionality are listed below.

1) Create a new package test. fff.

2) Create the file test/fff/fffTestsList.xml describing the list of atomic-tests to perform
according to the syntax presented in 2.6.

3) Develop the class test. FFF.FFfTesterAgent extending test.common.TesterAgent and re-
defining the getTestGroup() method as follows:

public TestGroup getTestGroup() {
TestGroup tg = new TestGroup(“test//fff//fffTestsList.xml™) {

// Re-define the initialize() method to perform initializations common to all
// tests in the group
public void initialize(Agent a) throws TestException {

// Perform initializations common to all tests in the group

}

// Re-define the shutdown() method to perform clean-up operations common to all
// tests in the group
public void shutdown(Agent a) {

// Perform clean-up operations common to all tests in the group

}
}

// Specify group arguments (if any) to be inserted by the user

return tg;

}

4) Add a <Tester> element to the test/testerList.xml file to make the new functionality-test
executable from the TestSuiteAgent GUI. The <ClassName> element must be
test.fff_FffTesterAgent.

3.3 Adding an atomic-test for a specific aspect.

The steps necessary to develop an atomic-test for a specific xxx aspect of a generic fff functionality are listed
below.

1) Create the package test. fff.tests (unless already present).

2) Develop the class test. TFf.tests. TestXxx extending test.common.Test and re-defining the
load() and clean() methods as described in 2.3.

3) Add a <Test> element to the test/FFf/fffTestsList.xml file. The <TestClassName> element
must be test . Fff.tests._TestXxx.

[S

JADE Test Suite — USER Guide

3.4 An example

Suppose you want to test the functionality of sending and receiving messages across different platforms.
The steps are:

1. Develop a new tester agent:
a. Create the test.interPlatform package

b. Create the file interPlatformTestsList.xml and put it into the test/interPlatform
directory

c. Extends TesterAgent to create the
test.interPlatform. InterPlatformCommunicationTesterAgent
class

d. Override the getTestGroup() method to return a TestGroup object that gets the
tests list from the file
test/interPlatform/InterPlatformTestsList.xml

e. Override the TestGroup methods that you need (initialize(), ...);

f. Update the testerList.xml file with a new <Tester> element to make the newly developed
InterPlatformCommunicationTesterAgent executable from the
TestSuiteAgent GUL.

2. Develop an atomic test for the functionality of sending and receiving messages across different
platforms:

a. Create the test. interPlatform.tests package

b. Extends Test to create the test. interPlatform.tests.TestRemotePing
class

c. Override the oad() method to return a Behaviour which actually executes the test;

d. Override the clean() method if you need to clean some structure.

The test/interPlatform/interPlatformTestsList.xml file will look like the following:

<?xml version="1.0" encoding="utf-8" ?>
<TestsList>
<Test name="Basic inter platform communication” skip="false">
<TestClassName>test. interPlatform.tests.TestRemotePing</TestClassName>
<WhatTest> Tests sending and receiving a message to/from an agent on a remote
platform.</WhatTest>
<HowWorkTest>An agent is created on a remote platform and then a ping message is sent
to it</HowWorkTest>
<WhenTestPass>
The test passes if the agent on the remote platform receives the ping message and
replies correctly and no exception is fired.
</WhenTestPass>
</Test>
</TestsList>

The modified part of the test/testerList.xml will look like the following:

<Tester name="Inter Platform Communication" skip="false">
<ClassName>test. interPlatform. InterPlatformCommunicationTesterAgent</ClassName>
<Description> This item includes tests related to agent communication across different

platforms. </Description>
<TestsListRif>test/interPlatformn/interPlatformTestsList.xml</TestsListRif>

</Tester>

[S

JADE Test Suite — USER Guide

4 RUNNING TESTS

4.1 Running Tests from the TestSuiteAgent GUI

Having compiled the TestSuite source code as described in 1.3, the following command can be used to
launch the TestSuiteAgent:

java —cp <classpath> test.common.testSuite.TestSuiteAgent

A quicker way to execute the same command is “ant run” (to be executed in the jade/src/test working
directory).

A snapshot of the TestSuiteAgent GUI is shown in Figure 3

Bloertestsuee ol
EJI Ii J w '-_f! % Bf D c j—) E i E; Jooe
Exit | Connect | Open Config | Select Run Runall | Debug Next Log Weh
Current functionality: | Inter Platform Communication > |
Progress:
Executed: 3 /3 Passed: 3 Failed: 0 Elapsed time: 23.363 secs
|j Inter Platfarm Communication
. @ [TestsList
Tests n Iy E’" Basic inter platform cornmunication
execution Message Envelope transfer
Ineoming messaoe ruting
HEEE Done
Figure 3 Test Suite command bar
where:

Button “Exit”. exits the TestSuiteAgent.

Button “Connect”. The TestSuiteAgent connects to a remote Test Suite Daemon (see 4.2) to launch
other JADE instances remotely. This is particularly useful when communication involving different
hosts must be tested.

Button “Open”. The TestSuiteAgent displays the test selection panel where it is possible to view a
description of all functionality-tests and atomic-tests available and select a tester agent to load. A
snapshot of the test selection panel is shown in Figure 4.

10 -
dE)clE

JADE Test Suite — USER Guide

£ Test List Details x|

[T JADE Test Suite
@ [TesterList
&] Content languages and ontologies
@ [5L Operatars
& [Inter Platform Cammunication
D ClassMame
D Description
@ [TestsList
&[] Basic inter platform communica
& [Messane Envelope transfar
o | Incoming messadge routing
D TestClassMame
[} wihatTest
[HowaniorkTest
[y whenTestPass
&] Behaviours
@ [AMS
© [DF
& 3 Persistent_DF

i T LT kA + +
v

| Test the "inc oring meszage routing” mechanism
-&. the case where a message is delivered to an
agent on a remote platform and bving on a
container different frorm that where the MTP that
ecefves the message is installed.

4]

| OK | | Cancel

Figure 4: Test List Details

= Button “Config”. Allows to set the arguments, if any, required by the currently loaded tester agent.
= Button “Run”. Execute the currently loaded tester agent.

= Button “Run all”. Execute all functionality-tests that are listed in testerList.xml.

= Button “Select ”. Select which tests to execute and which ones to skip.

= Button “Debug”. To debug the currently loaded tester agent, i.e. to execute it test-by-test.

= Button “Next”: Execute the next test when you have chosen the debug execution mode.

= Button “Log”: Select where to log tests result. Allowed loggers are console, text file and HTML file.
= Button “Web”: Allows user to browse the Jade Web Site.

= Label “Current Functionality”: Displays the currently loaded tester agent.

= Label “Progress”: Displays the progress status in the execution of the current test.

= Label “Executed”: Displays how many tests among the ones selected has been already run.

= Label “Passed”: Displays how many tests among the ones selected have been passed.

= Label “Failed”: Displays how many tests among the ones selected have failed.

= Label “Elapsed Time”: Displays the time elapsed from the beginning of tests execution.

= Tests in execution: the list of tests in execution is displayed on the graphical interface and a green

s
= =| =

11

JADE Test Suite — USER Guide

check is used to sign them when passed. Red checks are used to sign tests not passed.

4.1 Skipping tests

At run-time you can decide to modify the testers or the tests list to execute; for example sometime you
may prefer to run only a subset of all the testers. In order to do that you have two options:

= in the file testersList.xml you can set to “true” the value of the skip attribute for the testers that you
don’t want to execute.

= in the file xxxTestList.xml you can set to “true” the value of the skip attribute if you don’t want to
run all the tests of a tester.

Yellow checks on the graphical interface are used to sign skipped tests.

4.2 The Test Suite Daemon

FIXME: to be done

12

