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Resumo

O processo de descoberta de grupos de vértices similares e conectados em um grafo,

conhecido como agrupamento em grafos ou graph clustering, possui aplicações interes-

santes em diversos cenários, tais como biologia, marketing e sistemas de recomendação.

Um dos grandes desa�os da área de agrupamentos em grafos é a avaliação da qualidade

dos agrupamentos, que é utilizada para medir a efetividade de algoritmos de agrupa-

mento. Existem muitas métricas de qualidade para avaliação de agrupamentos em

grafos, mas não há consenso sobre qual delas é melhor adequada para essa tarefa, e a

maior parte dos autores na literatura simplesmente assume que uma métrica escolhida

é boa o su�ciente, com pouco ou nenhum interesse em avaliar a força dessas a�rmações.

Para melhor compreender a efetividade das métricas de qualidade de agrupamen-

tos mais populares apresentadas na literatura, estudamo-las em diferentes cenários.

Descobrimos que essas métricas apresentam fortes tendenciosidades e inconsistências

estruturais que fazem com que a qualidade de seus resultados seja, no mínimo, duvi-

dosa. Nossos estudos demonstraram que, apesar dessas métricas de qualidade avaliarem

corretamente a esparsidade de conexões entre grupos, elas não avaliam adequadamente

a densidade interna dos mesmos, ignorando informações essenciais, como a número

de vértices pertencentes a cada grupo, ou mesmo ignorando, na prática, métodos de

avaliação de densidade interna devido ao seu alto custo computacional.

Tendo isso em mente, propusemos um novo método de avaliação da densidade

interna de um dado grupo, um que não apenas utiliza informações mais completas na

sua avaliação de densidade, mas que também leva em consideração as características

estruturais do grafo de origem. Com esse método, a densidade interna de um grupo

é avaliada em termos da densidade esperada de grupos similares oriundos do mesmo

grafo. Isso difere das outras métricas disponíveis, onde grupos de diferentes grafos

são comparados a partir dos mesmos parâmetros, um comportamento que penaliza

redes que sejam naturalmente mais esparsas. Então, propusemos uma nova métrica

de qualidade para agrupamentos em grafos, combinando nossa métrica de avaliação

da qualidade interna e Condutância, uma popular métrica de avaliação de esparsidade

xiii



externa. Dessa forma, a métrica proposta avalia as duas principais características

estruturais esperadas de grupos bem formados. Nossos experimentos mostraram que a

a métrica proposta é capaz de penalizar corretamente grupos mal formados que seriam

bem avaliados por outras métricas de qualidade presentes na literatura, ao mesmo

tempo que concedem boas pontuações a grupos bem formados.
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Abstract

The process of discovering groups of similar, connected vertices in a graph, known

as graph clustering, has interesting applications in several scenarios, such as biology,

marketing and recommendation systems. A major challenge concerning this problem is

the evaluation of cluster quality, which is used to measure the e�ectiveness of clustering

algorithms. Many quality metrics for graph cluster evaluation exist, but there is no

consensus on which ones are best suited for this task, and most authors in the literature

just assume that a chosen metric is good enough, with little or no interest in evaluating

the strength of such claims.

To better understand the e�ectiveness of the most popular cluster quality metrics

presented in the literature, we studied them in di�erent scenarios. We discovered that

they present strong biases and structural inconsistencies that cause the quality of their

results to be, at least, doubtful. Our studies demonstrated that, while in general those

popular quality metrics do a good job evaluating the external sparsity between clusters,

they do poorly when evaluating their internal density, ignoring essential information,

such as the cluster's vertex count, or having its internal density ignored in practice

because of computational costs.

With that in mind, we proposed a new method for evaluating the internal density

of a given cluster, one that not only uses more complete information to evaluate that

density, but also takes into consideration structural characteristics of the original graph.

With this proposed method, the internal density of a cluster is evaluated in terms

of the expected density of similar clusters in that same graph. That is in contrast

to the traditional quality metrics available, where clusters from di�erent graphs are

compared by the same standards, a behavior that penalizes naturally sparser graphs.

Then, we proposed a new quality metric for graph clusters, combining our metric

for internal quality evaluation and Conductance, a popularly used metric for external

sparsity evaluation. This way, the proposed metric evaluates the two main structural

characteristics expected from well formed clusters. Our experiments showed that the

proposed metric is capable of correctly penalizing badly formed clusters that were

xv



highly ranked by other quality metrics from the literature, while still awarding high

scores for good ones.
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Chapter 1

Introduction

A graph is a mathematical model that allows a simple, yet powerful, representation of

elements and their relationships. In a graph, the elements are represented by vertices,

and their relationships as edges that link them. They can be used as a representation

of any kind of network, even those based on real life entities, such as friendship, food

webs, protein interactions, power grids or airline routes, to name a few. When studied

as graphs, such real networks present some interesting characteristics that are not easily

found in random or homogeneous networks, such as a great variation on the number

of connections each element has, also known as their degree, and on the density of

relationships in di�erent parts of the network. Networks with such characteristics

suggest that there is some sort of internal ordering, or an underlying structure that

binds elements, and are named complex networks [Newman, 2003c].

When networks are mapped as graphs, it is possible to study them using existing

graph theory tools and techniques. One speci�c area of graph studies, called graph

mining [Chakrabarti and Faloutsos, 2006], uses those techniques to search graphs for

unusual, interesting, or signi�cant patterns in their structure. Such patterns can help

us understand the overall behavior of a graph's elements, providing interesting insights

about its structure and enabling, for example, the prediction of network growth or the

discovery of in�uential elements in the network structure.

One of those interesting patterns that may exist in such networks is the occurrence

of clusters, groupings of elements that are more similar among themselves than they

are with the rest of the network. The sub-area of graph mining responsible for the

discovery of such groupings is called graph clustering.

The automatic discovery of clusters can be interesting in many di�erent scenarios.

For example, recommendation systems can use the clustering of purchase relationships

(clients ands product they buy) for better results [Reddy et al., 2002]; clustering Web

1



2 Chapter 1. Introduction

clients by their interests and their network distances can be used to optimize server

usage [Krishnamurthy and Wang, 2000]; Web pages can be clustered to help identify

common topics and structures formed by several interconnected documents [Wong and

Fu, 2000]; in biology, clustering can be used to help in the classi�cation of gene ex-

pression data [Xu et al., 2002] and protein interactions [Pereira-Leal et al., 2004; King

et al., 2004], among many other possibilities.

However, discovering meaningful clusters in a graph is not a simple task. There

is no universally accepted de�nition of what should be the structure of a well-formed

cluster, but the most adopted and classical view is based on the concept of homophily,

which states that similar elements have a greater tendency to group with each other

than with other, less similar elements [Newman, 2003b]. When working with the

structure of edges and vertices only, similarity between vertices can be given by their

minimum distance, with closer vertices being more similar, for example. However,

the most accepted representation of similarity for simple, undirected and unweighted

graphs is evaluated in terms of edge densities, with a good cluster having more edges

linking its own elements among themselves (i.e., it has high internal edge density) than

linking them to the rest of the graph (i.e., it has sparser external connections).

The concept of edge densities being good descriptors for vertex similarity is very

well accepted in the literature, but discovering such edge-dense clusters in graphs is a

complex task. By this de�nition, cluster structure can be anything between a connected

subgraph and a maximal clique (an NP-complete problem), with the better results

leaning towards the latter [Schae�er, 2007].

Since the problem of clustering does not have an exact solution, many heuris-

tics have been proposed to �nd clusters which maximize both intracluster density and

intercluster sparsity. Examples of such algorithms are MCL [Dongen, 2000, 2008], K-

means [Steinbach et al., 2000a] and Spectral [Kannan et al., 2004; Schae�er, 2007].

However, those heuristics are not guaranteed to present optimal, or even good, clus-

tering results.

When a graph is small, with only a few vertices and edges, clustering results

found for it can be evaluated manually. For this kind of evaluation, an expert in the

subject represented by the graph evaluates each cluster by hand, identifying if they

make sense. This kind of evaluation has highly precise results, as expert knowledge

and human reasoning are very good to detect any subtleties that the structures found

might have and that have in�uence on cluster quality. However, as the size of the graph

grows, manual evaluation becomes unfeasible. In those cases, quality metrics that score

a given cluster, or even a full clustering, considering characteristics expected to exist in

well-formed clusters, may be used as quality indicators. The scores obtained through
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those metrics can be used to infer the quality (or optimality) of a given clustering, or as

a basis of comparison for di�erent clustering results. Some clustering approaches even

use heuristics to look for clusters that might maximize those metrics, since �nding

clusters by optimizing those quality metrics is computationally complex [�íma and

Schae�er, 2006; Brandes et al., 2008a; Shamir et al., 2004]. Examples of such metrics

are modularity [Newman and Girvan, 2004] and conductance [Kannan et al., 2004],

which evaluate clusters using only their structural characteristics.

But do those quality metrics really provide an accurate view of what a good

clustering should look like? There is no easy answer for this question. In order to

evaluate the quality of results obtained by those metrics, it would be necessary to

know what is the best clustering of a given graph and observe how the studied metrics

score this case. However, those metrics themselves were created because identifying a

graph's best clustering is a hard problem, making the evaluation of quality metrics a

problem as hard as evaluating the clusters themselves.

So, most of the evaluation done on the quality of those metrics was done on

graphs where the expected clustering was known beforehand. The only problem with

this solution is that most graphs that have a known solution are relatively small and

present very well-formed clusters. To assume that positive results obtained for those

kinds of networks can be easily extrapolated for larger, more complex networks without

any loss of generality is, at best, naive. However, that is what most of the works in the

literature do. More than that, most of the subsequent clustering works simply assume

that the existing metrics are good enough and use them indiscriminately.

We, however, consider the evaluation of cluster quality to be one of the most

important problems in the area, since it gives, when done correctly, the most approx-

imate view of what the ground truth looks like for a network with unknown expected

clustering. So, answering the question of the e�ectiveness of currently used quality

metrics for graph clustering is essential.

To answer this question, we studied and compared some of the most popular clus-

tering quality evaluation metrics used in the literature. We have done so by observing

the behavior of those quality metrics when applied to groupings of real world networks

obtained through classic clustering algorithms, with di�erent levels of granularity. Our

goal was to identify if those metrics correctly represented the classical structure of a

good cluster (internally dense and externally sparse), especially when applied to larger,

less predictable networks. What we discovered is that those popular quality indexes

have strong structural anomalies in their formulations, which cause them to be biased

and unreliable, a behavior that is more pronounced when those metrics are applied to

results from larger, real world graphs.
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With that knowledge in mind, we decided that there was a need to �nd other,

more accurate ways to evaluate cluster quality. So, we extend our evaluation of cluster

quality metrics in order to identify what causes the metrics considered to present any

biased behavior. We concluded that those metrics do not correctly evaluate one of the

two key elements of cluster quality: its internal density. Another problem identi�ed was

that those metrics evaluate all clusters by the same standards, causing clusters from

naturally sparser graphs (such as technological networks, for example) to be unfairly

penalized.

Hence, we proposed a new method to evaluate a cluster's internal density. Our

method uses more complete information to evaluate a cluster's internal density. Addi-

tionally, it uses the characteristics of the studied graph in order to discover what are

the density thresholds that identify interesting clusters for that particular case. This

allows for a more �local� evaluation, removing the penalization that sparser graphs

usually receive from current quality metrics. Using this new internal quality evalua-

tion metric, we then proposed a new quality metric, mixing both our new metric and

conductance, an external sparsity evaluation index, in order to build a new, more ef-

fective quality metric for graph cluster evaluation. We show thorough our experiments

that our proposed metric correctly evaluates the quality of clusters which would be

incorrectly evaluated by usual metrics, such as modularity.

1.1 Statement of Thesis

Currently used quality metrics for evaluating graph clusters cannot correctly evaluate

the two main characteristics of a good cluster, namely internal cluster density and

inter-cluster sparsity, at the same time. To correct that, we have studied some of the

most popular clustering quality evaluation metrics used in the literature, in order to

identify how to solve their limitations.

Based on the results obtained from this study, we have proposed a novel quality

metric that not only better evaluates both cluster characteristics, but also is e�ective

when applied to clusterings of di�erent types of networks.

1.2 Contributions

The main contributions of this work are:

• An in-depth study of currently used quality metrics for graph clustering.
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• Analysis on the shortcomings of those metrics.

• Proposal of a new technique to evaluate internal cluster density, one of the two

main characteristics of a well-formed cluster.

• A new quality metric to evaluate cluster quality in graphs.

1.3 Organization of the Text

The rest of this work is organized as follows: Chapter 2 describes in more detail the

concept of graph clustering, also presenting some of the most important clustering

algorithms. The most well known cluster quality evaluation metrics are described in

Chapter 3. In Chapter 4, we detail the scoring behaviors and biases of those quality

metrics through theory and experimentation. Based on the knowledge obtained from

our experiments on the previous chapter, in Chapter 5 we propose a new quality eval-

uation metric, which we test through experiments shown on Chapter 6. Conclusions

and possible future works are discussed in Chapter 7





Chapter 2

Graph Clustering

In this Chapter, we present the basic concepts of graph clustering. First, we discuss

what exactly is a cluster and the connection of this concept to the so-called complex

networks. Later, we discuss some of the techniques used to solve the problem of

automatically discovering cluster structures in graphs.

2.1 Graph Structure and the Existence of

Communities

A graph is a mathematical structure that can be used to model and represent the

elements of a collection and their pairwise relationships. It can be described as a pair

G = (V,E), where V is the set of elements that belong to the collection, which are

called vertices, and E is the set of pairwise relationships between the elements in V

(E ⊆ V × V ), which are called edges. So, an edge (u, v) connects two vertices, u and

v. The number of edges that touch a given vertex is said to be its degree.

Vertices and edges might have varying levels of additional information that is

linked to them, and this information de�nes the type of the graph. In a simple graph,

only one edge may link two given vertices, and no edge may have the same vertex as

source and target (i.e., @ {u, u} ∈ E). In a weighted graph, each edge has a weight value,

which represents the strength of that connection. For undirected graphs, there exists

an edge symmetry so that ∀ u, v ∈ V , if (u, v) ∈ E then (v, u) ∈ E. If this symmetry

does not exist, than the graphs is said to be directed. Also, vertices and edges may

have labels that describe their intrinsic characteristics, categories or functions. If that

happens, than the graph is said to be labeled.

The relationships between vertices might cause the occurrence of interesting struc-

7
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tures, such as the formation of communities or clusters. But is the occurrence of such

structures random or does it re�ect some kind of fundamental ordering existent in that

network? To answer this question, we will brie�y discuss how the structure and for-

mation of a given network might in�uence the existence of communities in it. Later,

we will discuss the structure of those clusters, specially on the kinds of graphs studied

in this work.

2.1.1 Random Networks

The concept of random network or graph was �rst proposed by Solomono� and

Rapoport [1951] and, independently, by Erdös and Rényi [1959]. According to it,

there is a p probability for an edge to link any two of the V vertices in a random graph.

For low values of p, the graph will posses only a few edges, and nodes will form a large

number of small, disjoint components. On the other hand, for high values of p, many

of those small components merge, generating larger components. The component with

the highest number of vertices is called the giant component or the largest connected

component (LCC).

(a) Random network (b) Complex network

Figure 2.1: Examples of random and complex networks. Both have small distances
between vertices, but complex networks have skewed degree distributions � few vertices
have high degrees while most of them have low degrees.

This kind of graph has some interesting characteristics. The average shortest

edge distance between two vertices in the same component is relatively smaller than

what would be expected, considering the size of the whole component (Figure 2.1a).

More than that, random graphs are very resilient to edge removals, which means that

it is hard to break its giant component into two smaller ones by randomly, or even

strategically, removing edges or vertices from it.

Although this graph generating model is simple, it still represents correctly at

least one characteristic of real networks: the small hop distance between vertices. This
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characteristic can be seen, among other places, in the famous �small world� experiment

by Travers and Milgram [1969], where a group of people received letters addressed to

a man living in another region of the USA, and they were to try to deliver that letter

only through people they knew.

2.1.2 Complex Networks

Although one important characteristic of real networks is accurately represented by

random graphs, that model is far from perfect. More thorough studies of real net-

works showed that they possess other characteristics that could not be mapped by

this kind of graph. Among those were power law vertex degree distributions and high

clustering coe�cients [Newman, 2003c], which will be described shortly. Graphs shar-

ing those characteristics can be collectively called complex networks [Newman, 2003c],

and examples can be found in diverse types of networks, such as social (e. g., e-mail

networks [Ebel et al., 2002], instant messaging networks [Smith, 2002]), information

(e. g., scienti�c paper citation networks [Egghe and Rousseau, 1990], World Wide

Web [Huberman, 2001]), technological (power lines [Watts and Strogatz, 1998a], air-

line routes [Amaral et al., 2000], etc) and metabolic (e. g.,metabolic networks [Jeong

et al., 2000], protein interactions [Ito et al., 2001]).

The power law degree distribution of a complex network means it is heavily

skewed. This is very di�erent from what happens in random networks (Figure 2.1b).

In complex networks, few vertices possess high degrees, while most of them present

low degrees, a behavior also known as �heavy tail�. This characteristic also causes

small hop distances between vertices, but in a di�erent way than with the random

model: in random networks, the random connections tend to create well distributed

�pathways� in the graph, allowing easy connections between all nodes, while in complex

networks, the high degree vertices, also known as hubs or authorities, are connected

among themselves and to almost all other nodes and serve as shortcuts. Those hubs,

however, are the backbone of the graph, and their removal easily disconnects the whole

graph, making complex networks not as resilient as random ones.

The clustering coe�cient evaluates how connected groups of vertices in a graph

are. It does so by measuring the proportion of �triangles�, trios of directly connected

vertices (3-cliques), that exist in the network. Evidences shown in the literature suggest

that complex networks tend to possess high values of clustering coe�cient, specially

when compared to Erdös-Rényi random graphs with of similar size and build [Newman,

2003c]. So, it is only fair to acknowledge that complex networks tend to have a higher

level of cohesion, at least in some of their parts, and that this cohesion might form
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community structures with a higher probability.

Also, it is valid to point out that new models for random graph generation were

proposed, trying to emulate those newfound characteristics from complex networks.

The Barabási-Albert model [Barabási and Albert, 1999], for example, adds power law

degree distribution to random graphs by using the mechanism of preferential attach-

ment, where the probability to create new links to vertices of high degree is higher. The

Watts-Strogatz model [Watts and Strogatz, 1998b] adds high clustering coe�cient by

using a regular lattice as the initial structure of the graph, and then randomly rewiring

part of its edges. Another model, by Newman [2009], allows the generation of graphs

with guaranteed cluster structures. Nevertheless, even though those new random graph

generation models are able to represent some characteristics from real networks, they

are not guaranteed to represent all of them. For this reason, we favor the use of real

graphs in all experiments done in this work.

2.1.3 Structure of a Cluster

The relationships between vertices might cause the occurrence of interesting structures,

such as the formation of communities or clusters. As explained in Chapter 1, a cluster is

a subset of vertices that present a remarkably high level of similarity among themselves

and dissimilarity to the rest of the graph. But, as was shown earlier in this Chapter,

a graph's elements might present di�erent characteristics that add extra information

that enriches it, and those extra layers of information have strong in�uence on the

expected structure of clusters.

When working with simple and undirected graphs, for example, vertex similarity

is usually evaluated in terms of edge densities. This way, a well-formed cluster is

expected to be formed by vertices who are densely connected among themselves, while

at the same time sparsely connected to the rest of the graph [Schae�er, 2007]. However,

this concept is so broad that a cluster's structure can be anything between a connected

subgraph and a maximal clique, with the better results leaning towards the latter.

For the case of graphs with richer structures, the problem of de�ning the structure

of a cluster grows. For example, if the graph is weighted, how do you consider the

proper importance of an edge's weight? Can a cluster be considered externally sparse

if it has only one edge connecting it to the rest of the graph, but this edge is ten times

stronger than any other edge in the graph? If the graph is directed, can it be considered

internally dense if it is highly connected, but not all vertices are reachable by all the

others?

So, de�ning adequate ways of using the extra information on dimensions of a
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graph in order to de�ne the concept of similarity between vertices is very complex.

Considering this, and also the fact that the quality evaluation metrics currently used

in the literature for simpler graphs already struggle to do so e�ectively 1, in this work

we will focus our e�orts on the edge structure of simple, undirected and unweighted

graphs as the only means to identify the level of similarity between vertices.

2.2 Clustering Techniques

Since the problem of clustering does not have an exact solution, many heuristics have

been proposed to �nd clusters which maximize both intracluster density and interclus-

ter sparsity. In this section, we will present some of the most important techniques

used to solve the problem of automatic discovery of clusters in graphs. First, we will

discuss the similarities and di�erences between clustering and partitioning, which are

related problems. Then, we will describe some implementations of graph clustering,

providing more detail for those that were used in our experiments. For a better presen-

tation of the algorithms, we will divide the clustering techniques in two main groups:

topological and semantic.

2.2.1 Clustering vs. Partitioning

In the literature, the problem of graph clustering is identi�ed in two ways: partitioning

and clustering. In partitioning problems, the number of clusters to be found must be

known beforehand, and the clusters found should have roughly the same size. One

example of partitioning algorithm is METIS [Karypis and Kumar, 1998], which uses a

multilevel approach for partitioning, �coarsening� the graph by removing its edges until

the graph is small enough to be easily partitioned and then �uncoarsening� it back to

its original form, while keeping the cohesiveness of the clusters found.

For clustering problems, the number of clusters may or may not be a parameter,

and there is no restriction on cluster size relationships. Some examples of clustering

algorithms will be discussed in the following sections.

Partitioning is useful, for example, in situations where it is necessary to divide

a graph for parallel processing, keeping in mind the problem of load balancing and

reference locality of the data. One such work is that of Sarkar and Moore [2010], who

uses the partitioning of the graph to help minimize the number of memory page faults

during their algorithm's execution. However, because the partitioning algorithms focus

1This will be discussed on Chapters 3 and 4
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on �nding clusters with similar sizes, and not the intrinsic communities existent in the

graph, they escape the focus of this thesis and will not be further discussed.

2.2.2 Topological Clustering

This category of clustering algorithms uses only the information obtained through

the relationships between the vertices of the graph. They use typical graph theoretic

techniques such as cuts, maximum �ow and shortest paths to derive vertex similarity.

Topological clustering techniques can be grouped in several ways, such as by

their clustering approach (top-down or bottom-up), the kind of graph they can handle

(with directed and/or weighted edges, for example), or the locality of the information

used for clustering (local or global). Here we will group them in some classic �fami-

lies� of algorithms, as it is our belief that this will make for a simpler, more concise

presentation.

2.2.2.1 Spectral clustering

Spectral clustering is a technique that uses the eigenvectors (spectrum) and eigenval-

ues of a graph's adjacency matrix to de�ne cluster membership [Kannan et al., 2004;

Schae�er, 2007; Nascimento and de Carvalho, 2011] . It is based on the fact that if a

graph is formed by k disjoint cliques, then it's normalized Laplacian will be a block-

diagonal matrix with eigenvalue of zero, having multiplicity k, with the eigenvectors

functioning as indicators of cluster membership. More than that, small perturbations

like adding a few edges linking clusters or removing edges from inside the clusters will

make the eigenvalues become slightly more than zero and change the eigenvectors, but

not enough to cause the underlying structure to be lost. This clustering technique

requires the number of desired clusters as an input.

The basic spectral clustering algorithm assumes the graph to be undirected, but

some work has been done to extend it to allow the clustering of more complex graphs.

Meil  [2007] adapts the spectral clustering paradigm so that it can deal with directed

and weighted graphs. She uses teleporting random walkers to obtain the transition

matrix needed by this kind of algorithm without having problems with of vertices

without any outgoing edges (also called sinkhole vertices).

Another extension of spectral clustering was proposed by Zhou et al. [2005] to

deal with directed graphs. This extension can also be used to classify unlabeled vertices

in a partially labeled graph.
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2.2.2.2 Cut-Based Methods

Another way to divide a graph into clusters is by recursively �nding the minimum cut

of a graph and to bisect it by removing the edges from this cut until doing so does

not result in a better quality clustering or a given set number of clusters is found.

There are many ways to �nd the best possible cuts. One is to use the betweeness of

the edges of the graph. The betweeness is a measure of the amount of minimum paths

between all vertices of the graph that use a given vertex or edge. So, an edge with

high betweeness is one used by many of the possible minimum paths and, therefore,

it may probably be connecting two di�erent clusters. Iteratively removing the edges

with highest betweeness until the graph is disjoint is the basis for the Betweeness Cut

algorithm [Girvan and Newman, 2002].

Another method using the same idea of clustering by cuts is the Iterative Con-

ductance Cut algorithm [Kannan et al., 2004]. It tries to �nd minimum conductance

cuts to divide the clusters from each other, while keeping the clusters themselves with

high values of conductance, since it means that those clusters are too internally dense

to have cheap cuts and, therefore, are structurally good. The formal de�nition of

conductance is described in more detail in Chapter 3.

2.2.2.3 K-means

In the traditional K-means algorithm [Hartigan and Wong, 1979], k elements are ran-

domly chosen as the centroids of each one of k clusters to be found and other elements

closer to a given centroid than to others are added to that cluster. With this basic clus-

ter at hand, a new centroid is calculated for each cluster, re�ecting their new �centers�,

and the process is repeated until the centroids calculated do not change anymore. It is

important to note that K-means is not bound to a graph representation of data, since

the �closeness� of two data elements can be derived in any way that is consistent with

their representation, like euclidean distance for points in a 2-D plane or cosine similar-

ity for text documents. When applied to graphs, the closeness between two vertices is

given by the edge distance between them.

Bisecting K-means [Steinbach et al., 2000a] di�ers from the traditional algorithm

in the following way: the whole graph is considered to be a cluster, which we bisect

using traditional K-means, using the topological (edge) distance between the nodes.

One of the new clusters is chosen to be once more bisected and the process repeats until

the desired number of clusters is found. In general, the biggest remaining cluster is the

one chosen for further partitioning, although other metrics can be used to guarantee

that an already structurally sound cluster will not be arbitrarily broken down.
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Zhou et al. [2009] present a K-means variant for labeled vertex graph clustering.

In that paper, possible label values are transformed into virtual vertices that will have

edges linking them to all vertices that possess the given label. A similarity matrix,

which presents the similarity values between all vertices of the graph, for this extended

graph is created using random walks to evaluate how close (i.e., similar) the vertices

are to each other. This matrix will be used as the basis for the traditional K-means

algorithm.

2.2.2.4 Markov Clustering

The Markov clustering algorithm (MCL) is based on the simulation of stochastic �ows

in a graph [Dongen, 2000, 2008]. The basic idea behind MCL is that the distances

between vertices are what identify a cluster, with small distances between vertices

indicating that they should belong to the same cluster and large distances meaning

the opposite. By that logic, a random walker would have greater probability to stay

inside a cluster than to wander to neighboring ones, and the algorithm explores that

to identify clusters.

The clustering process of MCL consists in two iterative steps: expansion and

in�ation. The expansion corresponds to the random walk itself, done by calculating the

power of the normalized adjacency matrix that represents the graph, using traditional

matrix multiplication. The in�ation step consists in taking the Hadamand power of

the expanded matrix, followed by a scaling step to make the matrix stochastic again,

with the elements of each column corresponding to a probability value. MCL does not

need to have a pre-de�ned number of clusters as input, it's only parameter being the

in�ation value, which a�ects the granularity of the clustering (the higher the value, the

�ner is the granularity).

Satuluri and Parthasarathy [Satuluri and Parthasarathy, 2009] extends the MCL

algorithm for better scalability. They use a coarsening or simpli�cation phase, similar

to the one used in METIS and discussed previously, to obtain a smaller and simpler

version of a large graph and then cluster it using stochastic �ows. After that, the graph

is �uncoarsened� back to its original form, but keeping the discovered cluster structure

coherent in the process.

2.2.2.5 Modularity-Based Methods

Modularity is a quality metric for clusterings that gives high values for clusters whose

number of internal edges surpasses the number of expected edges for a random graph

of the same size. The details on how to calculate this metric are detailed in Chapter 3.
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However, clustering searching for the optimal value of modularity is known to be a NP-

complete problem [Brandes et al., 2008a]. So, the Fast Modularity algorithm [Newman,

2003a] is a greedy optimization solution for cluster modularity. In the beginning, each

vertex is part of a di�erent cluster. At each step, the two clusters whose combination

would result in the greater modularity gain (or the lowest modularity reduction) are

merged in a single cluster. In the end, the result will be the con�guration that gives

the best modularity score during the process.

The original modularity formulation is only applicable to undirected graphs. Le-

icht and Newman [2008] propose a modularity-based algorithm for directed graph clus-

tering. In this case, modularity will be adapted to consider the direction of edges in

the following way: consider two vertices A and B, where A has high out-degree and

low in-degree, and B has the reverse con�guration. If there is an edge going from B

to A, since this con�guration is uncommon given the degree distribution of those two

vertices, it should weight more in the modularity calculation in the same way that the

number of �expected� edges inside a random graph were used in the classic modularity.

Then, it will use the eigenvalues and eigenvector of the modularity matrix, which is

a matrix with the modularity values each pair of vertices in the graph contribute to

the overall modularity of the clustering, to discover the best possible con�guration,

modularity-wise. Since this calculation requires a symmetric matrix, the modularity

matrix will be summed with its own transpose.

2.2.2.6 Other Approaches

There are many other approaches that do not fall into any of the more traditional

clustering methods. One of those is described by Lu et al. [2009], which uses the

simulation of a �naming game� to de�ne the clustering. In this game, every vertex

starts with a single, random word in its vocabulary. With each step of the game, one

vertex tries to communicate one of the words it knows to one random neighbor: if the

neighbor didn't have the word in its vocabulary, it will add it; if it already had the

word, both vertices would discard all other words from their vocabularies, except for

the common one. The authors show that, if there is a community structure in the

graph, this game won't converge, but if it is let running for a couple of rounds, the

densest communities will agree on one single word each.

The SCAN algorithm [Xu et al., 2007] uses a pairwise similarity metric based

on the number of common neighbors between two vertices to group them. If this

similarity is greater than a given threshold, those two vertices merge and start a new

cluster, trying to add their neighbors until no neighbor is similar enough to be added to
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that cluster. This algorithm also has the notion of vertices that do not have similarity

enough to be part of any cluster, which are called hubs if they are connected to more

than one cluster, and outliers if they are linked to only one cluster.

Another technique is presented by Bagrow and Bollt [2005]. Here a vertex is

randomly chosen to be the seed of a cluster and it starts to grow this cluster adding

its neighbors to it. This process grows the cluster, adding the next neighbors to the

cluster like ripples in a pond, while the result of the division between the edges linking

the border vertices with the rest of graph and this same value on the previous round is

lower than a alpha value, which is an algorithm parameter. This approach clearly has

problems with the choice of the seed, since the extremely regular evolution of the cluster

might cause problems with more irregularly shaped clusters, so multiple executions are

necessary for a more trustworthy answer.

The work by Palla et al. [2005] uses the idea of k-cliques as the basis for the

clustering. To do this, they have to �rst discover all cliques existent in the graph,

in decreasing order of size. Then they try to merge those cliques using the notion of

�k-clique template rolling�, where you �rst get one base clique and then try to �roll�

it to a neighboring cluster, keeping one vertex �xed and trying to �move� the rest of

the clique template to its other neighbors. This action that can only be done if the

second clique has k − 1 vertices in common with the �rst clique and k is the size of

the �rst clique. One interesting detail about this technique is that it allows for cluster

overlapping, meaning that one vertex can be a member of more than one cluster at the

same time.

2.2.3 Semantic Clustering

Sometimes the graph to be clustered has more information available than just its

topological features, such as vertex labels that describe intrinsic characteristics of it.

In cases like that, even ignoring the underlying structure linking its elements, a graph's

vertices can still possess enough similarity between themselves to be logically grouped.

Their similarity will be derived from other characteristics, such as cosine similarity for

their contents in the case of text documents or categorical attributes for example. Here

we will discuss some di�erent algorithms used to cluster this kind of data.

The K-means algorithm [Hartigan and Wong, 1979] can be adapted to work

with real world data containing categorical values. One of those adaptations [Huang,

Zhexue, 1998] uses a simple matching dissimilarity measure to deal with categorical

objects, replacing the means of clusters with its modes, and using a frequency-based

method to update modes in the clustering process to minimize the clustering cost
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function. This way, it can group elements who share common attributes.

Another algorithm used for semantic clustering is CURE [Guha, S., 2001]. It

achieves the clustering of a dataset by merging elements into clusters until the desired

number of clusters is found. It starts with every element being part of a single, di�erent

cluster (a singleton). Then, a certain �xed number of well scattered (distance-wise)

elements are chosen. Those elements will be �shrunk� toward the center of their nearest

cluster, e�ectively merging them to it. The authors of this work argue that this process

helps to avoid the negative e�ects caused by outlier elements in the dataset.

Yet another algorithm used in this kind of clustering is BIRCH [Zhang, Tian

et al., 1996]. It is a clustering method for very large datasets, making a large clus-

tering problem tractable by concentrating on densely occupied portions of the dataset

and using a compact summary of that information for quick evaluation. This sum-

marization also removes outlier data and is stored and is incrementally updated in a

height balanced tree. BIRCH then utilizes a traditional clustering algorithm, such as

K-means, on the summarized tree to obtain the desired clustering.

Other proposed algorithm is ROCK [Sudipto Guha and Shim, 1999]. In it, two

elements are said to be neighbors if they have a similarity value, that can be given

by the Jaccard Index for categorical data, greater than a given threshold. Elements

that share many neighbors are said to have strong links and their merging into a single

cluster will result in better, more meaningful clusters.

2.2.4 Hybrid Clustering

Not many works approach the problem of clustering data using both a graph's topo-

logical structure and the semantic derived from its labels. One of them is presented by

Lappas et al. [2009], where they try to discover optimal work groups for a given task.

It uses a graph where the vertices are people, the edges link two people that have a

good work relationship, and a vertex's labels indicate a person's pro�ciencies. The pa-

per proposes some heuristics to discover the best possible groups to solve the problem,

which means a set of vertices that have all needed pro�ciencies and are reasonably well

connected to each other.

Another work is the one by Zhou et al. [2009], where the semantic information

is incorporated into the graph topology by transforming all labels into virtual vertices

that are linked to all vertices that possess that label. With this extended graph in

hand, it uses traditional topological cluster to obtain the groupings. They also use

entropy as a way to measure the coherence of labels inside a cluster.





Chapter 3

Quality Metrics

There is no consensus on what the main characteristics that de�ne a good cluster

are, but the most accepted view is based on the concept of assortative mixing, which

states that elements have a greater tendency to form bonds with other elements with

whom they share common traits than with others [Newman, 2003b]. In other words, the

structure of a good cluster depends on two main characteristics: cluster elements should

be highly similar among themselves, while at the same time being highly dissimilar to

the other elements of the set. This similarity can be de�ned in many forms. For

example, if the studied set is formed by data points placed on a Cartesian plane,

similarity can be given by the Cartesian distance between the data points. This kind

of similarity is used by algorithms such as the KNN [Laboratories et al., 1966].

When clustering is applied to graphs, the idea of high internal similarity and

external dissimilarity persists, but the concept of similarity must change in order to

accommodate the inherent structure of this kind of data. In this new environment,

element similarity may be derived from di�erent edge or vertex characteristics, such

as edge density [Girvan and Newman, 2002], vertex distance [Tan et al., 2005] or

labels [Zhou et al., 2009].

In this chapter, we will present some of the most popular graph cluster quality

metrics in the literature. Some of them use only a cluster's structure to measure quality,

while some use satellite data, such as labels, and others use a combination of both.

Since the main focus of this work is the study and evaluation of cluster quality metrics

for simple, undirected and unweighted graphs, a greater focus will be given to quality

metrics that use only structural information.
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3.1 Graph De�nitions

A graph G = (V,E) is composed of a set V of vertices and a set E ⊆ {V ×V } of edges.
If nothing is said against it, we assume that the graphs discussed are undirected, so E is

symmetric. The number of edges of a graph G is |E(G)| = m, and the number of edges

linked to a given vertex v (its degree) is represented as deg(v). Edges may have an

associated weight w(u, v). In unweighted cases, we assume that w(u, v) = 1∀(u, v) ∈ E.
A clustering C is the set of all clusters of a graph, so that C = {C1, C2, . . . , Ck},

and the number k of clusters may be a parameter of some clustering algorithms. Also,

unless stated otherwise, Ci∩Cj = ∅,∀i 6= j. A cluster Ci that is composed by only one

vertex is called a singleton, and C̄i is the set of all vertices not in Ci. The weight of all

internal edges of a single cluster is given by w(Ci), a shortcut for
∑

e∈E(Ci)
w(e), where

E(Ci) = {(u, v) ∈ E|u, v ∈ Ci}. By the same logic, w̄(C) is the sum of the weights of

all inter-cluster edges.

Consider E(Ci, Cj)|i 6= j as the set of edges linking clusters Ci and Cj. Also,

E(C) is the set of all internal edges for all clusters in C, and Ē(C) is the set of all

inter-cluster edges in the graph {(u, v)|u ∈ Ci, v ∈ Cj, i 6= j}.
A graph cut K = (S, S̄), where S̄ = V \ S), divides a set of vertices V into two

disjoint subsets (S ∩ S̄ = ∅). The cost of a cut is given by the sum of the weights

of the inter-cluster edges. Another important concept is that of an induced graph,

which is a graph formed by a subset of the vertices and edges of a graph so that

G[Ci] = (Ci, E(Ci)).

3.2 Topology-Based Metrics

One possible way to evaluate similarity between vertices of a graph is to observe the

strength of their relationship considering the edges that connect them. Quality metrics

that use this kind of information are called topological, and in this section we will

present some of the most popular metrics of this kind used in the literature.

3.2.1 Modularity

One of the most popular validation metrics for topological cluster evaluation, modu-

larity states that a good cluster should have a bigger than expected number of internal

edges and a smaller than expected number of inter-cluster edges when compared to

a random graph with similar characteristics [Newman and Girvan, 2004]. The mod-

ularity score Q for a clustering C is given by Equation 3.1, where e is a symmetric
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matrix whose element eij is the fraction of all edges in the network that link vertices

in communities i and j, and Tr(e) is the trace of matrix e, i.e., the sum of elements

from its main diagonal, and the operator ||e|| represents the sum of all elements from

a matrix e (
∑n

i=1

∑n
j=1 e[i, j]).

Q(C) = Tr(e)− ||e2|| (3.1)

The modularity score Q often has values between 0 and 1, with 1 representing

a clustering with very strong community characteristics. Some speci�c cases can have

negative values, such as when many singleton clusters exist. Since those singletons

contribute with external density, but not with internal density, they cause a strong

imbalance on the modularity calculation that may lead to negative values.

Q(C) =
∑
c∈C

[
|E(c)|
m

−
(∑

v∈c deg(v)

2m

)2
]

(3.2)

The formula presented in Equation 3.1 is the most classical one. However, it has

a high computational cost, requiring a matrix multiplication. To avoid that cost, some

works propose di�erent, simpler ways to calculate modularity. One of those variants,

proposed by Good et al. [2010], can be seen in Equation 3.2. This new formulation is

cheaper to compute, but its results are only similar, not equal, to the ones obtained with

the original formula. Because of this di�erence of results, unless otherwise noted, any

reference to modularity in this text refers to the original formulation (Equation 3.1).

It is important to notice that those formulations assume the graph to be simple,

undirected and unweighted. One example of adaptations for other classes of graphs

can be found in the work by Leicht and Newman [2008], where the authors create a

variation of modularity to be used with directed graphs. However, since the main focus

of our study is on the evaluation of clusters from simple, undirected graphs, further

discussion on those expansions falls out of our scope.

3.2.2 Silhouette

Silhouette uses the distance between vertices as a measure of their similarity [Tan et al.,

2005]. It uses concepts of cohesion and separation of clusters in order to evaluate them.

The silhouette index assumes that two vertices are more similar if they have a low

minimum hop-distance between them, and that a good cluster should be formed by

vertices which have a low average distance between themselves (internally cohesive)

and a high average distance to vertices outside the cluster (externally separate).
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The silhouette index is computed for each vertex and averaged for each cluster

and/or the full clustering. Equation 3.3 is used to obtain a node i's silhouette index,

where ai is node i's average distance to all nodes inside its own cluster and bi is the

lowest average distance from node i to a cluster that is not it's own.

si =
bi − ai

max(ai, bi)
(3.3)

Silhouette values can vary between −1 and 1. Negative value are undesirable, as

they mean that the average internal distance is greater than the external one, making

it less cohesive.

3.2.3 Conductance

The conductance [Kannan et al., 2004] of a cut is a metric that compares the size of

a cut (i.e., the number of edges cut or the sum of their weights) of the edges in either

one of the two sub-graphs induced by that cut. The conductance φ(G) of a graph is

the minimum conductance between all of its clusters.

Consider a cut that divides G into k non-overlapping clusters C1, C2 . . . Ck. The

conductance of any given cluster φ(Ci) can be obtained as shown in Equation 3.4,

where a(Ci) =
∑

u∈Ci

∑
v∈V w(u, v) is the sum of the weights of all edges with at least

one endpoint in Ci. This φ(Ci) value represents the cost of one cut that bisects G into

two vertex sets Ci and V \ Ci. Since we want to �nd a number k of clusters, we will

need k − 1 cuts to achieve that number. In this paper we assume the conductance for

the whole clustering to be the average value of those (k − 1) φ cuts, as formalized in

Equation 3.5. Conductance values computed this way vary between 0 and 1.

φ(Ci) =

∑
u∈Ci

∑
v 6∈Ci

w({u, v})
min(a(Ci), a(C̄i))

(3.4)

φ(G) = avg(φ(Ci)) , Ci ⊆ V (3.5)

When a cut has high conductance, it means that many edges (or edges with high

values, since conductance is also usable for weighted graphs) had to be cut to divide

the graph, a situation that indicates this was a bisection of a tight group, which is

undesirable. This also shows that conductance is mainly an evaluation of external

cluster sparsity.

So, to better evaluate cluster quality, it is possible to de�ne the concepts of in-

ternal and external conductance. The conductance already discussed, which mainly
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evaluates the external sparsity of clusters, is the external conductance. The internal

conductance, which will evaluate the internal density of a given cluster, is the conduc-

tance value of a cut that bisects a subgraph induced by the vertices of that cluster.

To identify the most adequate cut to evaluate a cluster's internal density, a maximum

�ow minimum cut process is run. If the conductance value for the cut obtained from

the max-�ow min-cut is high, it means that the cluster is too dense to be adequately

cut and, therefore, internally good.

3.2.4 Coverage

Coverage measures the quality of a clustering by evaluating the proportion of edges from

the whole graph that connect vertices from di�erent clusters (i.e, external edges) [Bran-

des et al., 2008b]. It assumes that, if only a few edges connect di�erent clusters, than

not only it means that the clusters are externally sparse, but also that those clusters

are internally dense, since most of the graph's edges will be connecting vertices to other

vertices in the same graph. Equation 3.6 shows how coverage is computed.

coverage(C) =
w(C)

w(G)
, where (3.6)

w(C) =
k∑
i=1

∑
vx,vy∈Ci

w((vx, vy))

This metric gives scores between 0 to 1. Higher values mean that there are more

edges inside the clusters than edges linking di�erent clusters, which translates to a

better clustering. Also, this metric can be used for weighted graphs.

3.2.5 Single cluster editing

For Single Cluster Editing (SCE), similarity is given by edge counts. It assumes that a

perfect clustering structure would be formed by clusters that are completely connected

internally (cliques) and completely disconnected from the rest of the graph [Shamir

et al., 2004]. In order to evaluate the quality of a clustering, SCE counts the number of

editions (edge insertions and deletions) would be necessary to transform this clustering

into a structure similar to its conceptual �perfect clustering�.

εG(Ci) =

(
|Ci|
2

)
− |E(Ci)|+ cG(Ci) (3.7)
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The SCE value for a given cluster i can be obtained according to Equation 3.7,

where E(Ci) = {(u, v)|(u, v) ∈ E;u, v ∈ Ci} is the set of internal edges of cluster Ci
and cG(Ci) = {(u, v)|(u, v) ∈ E;u ∈ Ci, v ∈ V \ Ci} is the set of intercluster edges of
the same cluster. For any given graph, the higher the SCE, the worse the proposed

clustering is.

3.2.6 Performance

This is another quality metric that uses edge counts as a similarity measure [Dongen,

2000]. It counts the number of edges that link vertices in a same cluster to evaluate

internal cluster density. In order to evaluate a cluster's external connection sparsity,

instead of counting the number of edges that connect it to the rest of the graphs,

performance counts the number of edges that do not exist, but, if they did, would

connect the given cluster to the rest of the graph. The formula used to calculate

performance can be seen in Equation 3.8. This formulation assumes that the graph

considered is unweighted, but there are variants for weighted graphs [Brandes et al.,

2008b].

perf(C) =
f(C) + g(C)

1
2
n(n− 1)

, where (3.8)

f(C) =
k∑
i=1

|E(Ci)|

g(C) =
k∑
i=1

k∑
j>i

| {{u, v} 6∈ E|u ∈ Ci, v ∈ Cj}|

Performance values range from 0 to 1. Higher values indicate that a cluster is

both internally dense and externally sparse and, therefore, well-formed.

3.3 Semantic-Based Metrics

Sometimes data elements have extra dimensions of intrinsic information that help to

describe them and their relationships. One common type of extra information comes in

the form of labels, which are categorical descriptors which can represent intrinsic charac-

teristics of the data. There are many metrics, such as Goodall, overlap and Eskin, that

try to measure similarity between unstructured, categorical data elements [Shyam Bo-

riah and Kumar, 2008].
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Structured data represented by graphs can also have extra information in the form

of categorical labels. Vertex and edge labels add an extra level of information that,

while intrinsic to each element, has no direct connection with the underlying graph

topology. This kind of information can be a useful tool for identifying the quality

of graph clusters, and since it refers to a deeper knowledge about a graph's vertices

and/or edges, metrics that use them are said to be semantic-based.

3.3.1 Entropy

Entropy is the measure of chaos (or information) in a given system. Consider the

throwing of a fair coin. Since the outcome of each throw has the same probability of

happening, it is very hard to predict that outcome and, therefore, each throw carries

important information and thus this system has maximum entropy.

If the coin had a higher probability for one of the possible outcomes, then the

result of successive throws would start to be more predictable, carrying less information

and having lower entropy. Had we the situation of a coin with two heads (or tails), the

outcome of a throw would always be known and, because of that, throws would carry

no information and system entropy would be minimum. Entropy can be computed as

shown in Equation 3.9, where p(xi) is the probability mass function of attribute xi. It

is important to note that entropy is a local metric, calculated for each cluster found.

E = −
n∑
i=1

p(xi) log p(xi) (3.9)

When applied to the evaluation of clustering quality, entropy can be used to

evaluate how predictable is the distribution of labels in a given cluster. In this case,

low entropy clusters will be considered better because their elements share much of

their labels. This metric was used by Zhou et al. [2009] to evaluate the label-wise

quality of their clustering algorithm.

3.3.2 Coherence

Gustafson et al. [2006] presented a metric to evaluate a clustering based on vertex

labels. Consider, without loss of generality, that a resulting cluster of size k has x

vertices with label L1 and y vertices with label L2 (k = x + y). To better identify

how signi�cant and/or surprising is this label distribution, the authors compare it to

a random label distribution. Given the total number of vertices with labels L1 and L2
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in the graph, the total number of vertices and the total size of this cluster, the authors

calculate the probability that this exact proportion of labels could have occurred by

chance (from a hypergeometrical distribution), for each label present in the cluster.

The lowest value found will be called the p-value for that cluster.

To obtain the information on how the label distribution would occur in randomly

built clusters, the authors compute the average p-value p′ and the standard deviation

σp for a large number of randomly chosen clusters. With those values, it is possible

to compute the coherence index Z, as shown in Equation 3.10. Just like entropy,

coherence is also a local metric, giving results about each cluster and not the whole

clustering.

Z = −p− p
′

σp
(3.10)

3.4 External Quality Measures

In this situation, we have an external and reliable source of knowledge that can provide

the best clustering of a graph. This source usually is a specialist on the subject repre-

sented by the graph, such as a bio-engineer for a protein network graph. The problem

with this solution is that it is not scalable due to its �hands-on� approach.

Another possibility is to already have an optimal or semi-optimal clustering of

the desired data available, either collected with the data or based on a label that can

be considered a perfect cluster identi�er. In this case it is possible to use metrics

like entropy, precision and revocation to evaluate how well the result from applying a

clustering algorithm matches the expected result. Obviously, obtaining such optimal

clustering is a big problem in itself, and this approach is good only for testing purposes,

since in real situations you want to mine a graph to �nd the said optimal clusters exactly

because they are not known.

3.4.1 Entropy

Entropy can also be used to evaluate clusterings when the true clustering is known

beforehand. When used as an external quality metric for a clustering, it considers the

labels of the vertex to be the real world clusters that a vertex belongs to, and evaluates

the label diversity inside each cluster in the clustering [Steinbach et al., 2000b]. If one

given label appears either in a lot or too very few of the vertices in one cluster, then it's
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occurrence is predictable and the entropy for that cluster will be low, which indicates

a good cluster.

3.4.2 F-Measure

In information retrieval, precision and recall are the most notorious metrics used to

evaluate the quality of results. Precision measures the amount of correct entries in the

resulting cluster, while recall indicates how many of the correct entries are represented

in the resulting cluster. Since maximum recall can be guaranteed if all elements are in

the same cluster and maximum precision certainly occurs if the size of the clusters is

1, and those two cases are clearly bad clustering solutions, it is necessary to balance

those two quality indexes to obtain more interesting and useful results. The F-Measure

aggregates those two concepts into a single, monotonic function [Steinbach et al., 2000b]

and can be obtained using Equation 3.11. The F-measure gives values between 0 and

1, with higher values meaning that the clusters are more similar. Also, this measure is

local, giving results for a single cluster and not the whole clustering.

F =
2× precision× recall
precision+ recall

(3.11)

3.4.3 Rand Index

The Rand Index is a measure of the similarity between two data clusterings. This

index is computed according to Equation 3.12, where a is the number of vertex pairs

which are grouped in the same cluster in both clusterings, b is the number of vertex

pairs which are grouped in di�erent clusters in both clusterings and n is the number of

vertices in the graph. It gives results between 0 and 1, with higher values being more

desirable, and it is also a local metric.

R =
a+ b(
n
2

) (3.12)





Chapter 4

Evaluation of Graph Clustering

Quality Metrics

In the previous Chapter, we presented some of the most popular metrics for graph

clustering quality evaluation in the literature. However, if there are so many quality

metrics, which one of them gives the best, most accurate results? Do they correctly

score the structure of clusters?

To answer those questions, we studied some of the quality metrics previously

discussed, namely modularity, silhouette, conductance, single cluster editing, coverage,

and performance, in order to identify how well they perform when used to evaluate

clusters in simple, undirected and unweighted graphs � the simplest kind of graph

possible. We evaluated them in terms of their formulations and through experiments,

so that we could better understand their results.

4.1 Motivation

Many works in the literature use quality metrics, such as the ones presented in Chap-

ter 3, to evaluate the quality of clusterings. By discussing how some of those works use

such quality metrics, we intend to show why a deeper study on the accuracy of those

quality metrics popularly used in the literature is necessary.

For many works in the literature, quality metrics evaluate the similarity of a given

clustering and a believed-to-exist perfect or expected clustering of a network. Since

those metrics are believed to represent the �ground truth� for the network's clustering,

their scores can be used to compare the e�ciency of di�erent clustering algorithms.

One example of this kind of work is [Brandes et al., 2008b], which compares Markovian,

iterative conductance cut and geometric MST (minimum spanning tree) clustering al-

29
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gorithms using conductance, coverage and performance as evaluation metrics. Another

example is that of Gustafson et al. [2006], where the authors use modularity and silhou-

ette to compare K-means and hierarchical clustering techniques. [Danon et al., 2005]

compare many di�erent algorithms for graph clustering, including agglomerative, di-

visive and modularity maximization techniques, using modularity. Steinhaeuser and

Chawla [2010] also compare di�erent clustering algorithms using modularity, but they

also use external validation metrics, since the networks used had a known expected

partitioning. Other works, like those of Brandes et al. [2008a] and [Jiang et al., 2009],

extrapolate the notion of using a quality metric only to evaluate results and propose

algorithms that achieve clustering through modularity optimization.

Another work uses external conductance to identify the characteristics of com-

munity structures in graphs, such as the existence of a maximum or expected size for

well formed clusters [Leskovec et al., 2008]. To do so, the authors propose the Network

Community Pro�le (NCP) plots, which are graphs that present the best conductance

values for clusters of di�erent sizes. This kind of plot was used in works such as that of

Gleich and Seshadhri [2012] as a tool to evaluate clustering quality. Also, in a follow-

up work, Leskovec et al. [2010] extended their proposed NCP plots by using di�erent

metrics as objective functions that try to capture the classical cluster quality intuition

and are popular in the �eld like, for example, modularity.

However, in all those discussed works, the authors simply assume that the quality

metrics chosen for their experiments are good enough in the task of correctly evalu-

ating clusters, without concerning themselves with the strength of this claim. That

is problematic, as there is no consensus in the literature about the quality and e�ec-

tiveness of clustering evaluation metrics. For example, Brandes et al. [2003] notice

that minimum cuts have maximum coverage and, in this sense, would be considered

�optimal� clusterings. However, when evaluated manually, min-cut based clusterings

are not considered to be good. In another example, Gustafson et al. [2006] defend that

silhouette, as a metric, is not a good enough, deciding to use only modularity in their

studies. At the same time, Good et al. [2010] show that modularity maximization as

a clustering strategy generates results that should be interpreted cautiously, casting

great doubts on the e�ectiveness of modularity. Schae�er [2007] and Kannan et al.

[2004] go even further, claiming that, given the application-speci�c nature of clustering

problems, it is probably impossible that any one quality measure can be considered

universally �right�.

Considering the lack of consensus about this topic, we believe that it is crucial

to make a deep evaluation of the quality metrics for graph clustering already available

in the literature. Our goal is to identify which one of them, if any, correctly evaluate
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the structural quality of a cluster or clustering. If none of them �ts this description, to

gather enough information about their problems in order to be able to propose a new,

better structured quality metric.

Our proposed work is similar in approach to the one by Tan et al. [2002], where

the authors present a comparison between many metrics used to determine the �inter-

estingness� of association metrics like lift, con�dence and support, widely used in data

mining. They show that there is no single metric that is consistently better than the

others for all di�erent scenarios and, because of that, the metrics should be chosen

case-by-case to �t the expectations of the domain experts. Our work does a similar

comparison for graph clustering validation metrics.

Another work that presents a similar goal to ours is the one by Shyam Boriah

and Kumar [2008], which compares a large amount of similarity measures used for

categorical data clustering. Yet another paper with similar goals is the one by [Abra-

hao et al., 2012]. In that paper, the authors seek to identify how similar the results

from clustering algorithms are in comparison to the clusters obtained from external

annotations made on the same network. In order to compare those cluster structures,

the authors use many structural indexes, such as conductance, network diameter and

betweeness, among others. This paper does something similar to what we do: evaluate

the structure of the clusters themselves, instead of trying to simply compare clustering

algorithms. The greatest di�erence between both works is their use of external infor-

mation for quality evaluation. Our work uses only internal and structural information,

as we believe that external information might describe clusters that are based on char-

acteristics extrinsic to the graph structure itself and, therefore, incompatible with the

purely structural evaluation we pursue.

One other common detail in many of the previously mentioned works is that the

size of the networks used was rather small, with at most a couple hundred of vertices

each. This poses a problem, as evaluations performed on them can hardly be assumed

to remain true for larger networks, as characteristics and structures can change with

the network's scale [Faloutsos, 2010]. Since automatic clustering evaluation becomes

even more necessary for larger networks, as manual evaluation on those cases becomes

unfeasible, ways of testing the e�ectiveness of algorithms on larger networks must be

found. One way to do this is through the use of synthetic graphs, generated through

models such as the one presented by Lancichinetti and Fortunato [2009]. That paper

proposes a random graph generating model which respects complex network charac-

teristics, such as power law degree distributions, while at the same time generating

clusters that will be known a priori. This kind of model allows other researchers, such

as Pan et al. [2010], to evaluate results with external clustering quality metrics. How-
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ever, we cannot guarantee that the synthetic models for graph generation have the

expressive power in order to to correctly represent all characteristics that exist in real

networks. Because of that, the experiments done in this work use only graphs obtained

from real world networks.

4.2 Evaluating Cluster Quality Metrics

In this section, we take a closer look at the topological clustering quality metrics

discussed in Chapter 3. Our goal is to identify if those metrics' formulations correctly

score clusterings in terms of the internally dense, externally sparse �ideal� cluster. The

graph de�nitions used here are the same ones used in that chapter.

4.2.1 Modularity

Observe the classical modularity formula (originally shown in Equation 3.1):

Q = Tr(e)− ||e2||

It gives scores based on the matrix e, which is square and has in each position

eij the proportion of edges linking vertices from clusters Ci to Cj. So, it's �rst term,

Tr(e) =
∑i=1

k eii, mainly represents the global internal density of all clusters, as it

counts all internal edges of the graph. Notice, however, that the number of vertices

of each cluster is not factored in any part of this formulation, specially in its internal

density term.

When evaluating external sparsity, it is not a problem to use only edge counts and

ignore vertex count, as this is a relationship between two clusters and, therefore, has

little to do with the vertices in either of them by themselves. However, internal cluster

density does not bene�t from such restrictions. Density is a measure of concentration

and, as such, needs to represent not only the number of elements observed, but the

space they occupy. In this case, it means that the concept of internal cluster density

cannot be fully represented by just using the number of internal edges of a given cluster

and ignoring the number of vertices of that same cluster. For example, a clustering

composed by two clusters with one external edge and twelve internal edges can be

represented by many di�erent scenarios if we ignore the vertex count of each cluster.

For example, it can be formed by two 4-cliques connected by one edge (de�nitely dense

clusters), or by two 6-vertex trees connected by one edge (not dense at all). As they
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were proposed, both conductance and modularity would score those two clusterings

equally, and with very good scores of 0.14 and 0.34, respectively.

4.2.2 Silhouette Index

The silhouette index formula (originally shown in Equation 3.3) presents some limita-

tions. First of all, it is very computationally expensive to calculate, requiring an all

pairs shortest path execution, which is solvable in O(V 3) by Floyd's algorithm.

S(Ci) =

∑
v∈Ci

Sv

|Ci|
, where Sv =

bv − av
max(av, bv)

Other problem with silhouette is how it behaves in the presence of singleton

clusters. The way silhouette was proposed, since a singleton possesses no internal

edges, its internal distance will be 0, which causes it to be wrongly scored as perfect.

This way, clusterings with many singletons will tend to have high silhouette scores, no

matter the quality of the other clusters.

4.2.3 Conductance

Even though the use of both internal and external conductances would give a most

accurate assessment of both the internal density and external sparsity of a cluster, many

researchers, such as Leskovec et al. [2008] and Leskovec et al. [2010], use only external

conductance to evaluate cluster quality. This happens because internal conductance

calculation requires the identi�cation of minimum cuts with maximum �ow for each

subgraph induced by the clusters in C, a process that is computationally expensive

(O(V 3) with Edmonds�Karp algorithm).

Because of that, one negative characteristic of conductance, the way it is com-

monly used in the literature, is that it will give quality results that are biased towards

clusters which are sparsely connected to others, regardless of their sizes. This means

that conductance might have a tendency to give better scores to clusterings with fewer

clusters, as more clusters will probably have a higher number of external edges between

each cluster. Also, the lack of internal edge density information causes its evaluation

results to su�er from the same problems observed for modularity, and that can be seen

in Figure 4.1, where both clusterings shown would have the same conductance score,

even though the one in Figure 4.1b has a clearly better structure.
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(a) Two clusters. (b) Three clusters.

Figure 4.1: Two possible clusterings of a same graph.

4.2.4 Single cluster editing

SCE presents a fundamental problem when used as a quality metric: it is unbounded.

This lack of bounds makes it hard to evaluate the quality of a single clustering using

only its SCE value.

With that in mind, consider that SCE(C) =
∑|C|

i=1 SCE(Ci). With a little

arithmetical tinkering, we can obtain the following correlation:

SCE(C) =
∑
Ci∈C

(
|Ci|
2

)
− w(Ci) + |E(Ci, C \ Ci)|

SCE(C) =
∑
Ci∈C

(
|Ci|
2

)
+ w(Ci)−

∑
Ci∈C

w(Ci)

SCE(C) =
∑
Ci∈C

(
|Ci|
2

)
+ w(Ci)− w(C)

SCE(C) =
∑
Ci∈C

(
|Ci|
2

)
+ w(Ci)− coverage(C)× w(G) (4.1)

As high values of coverage and low values of SCE mean better clusters, we can

see that those two quality metrics have direct correlation. Since coverage is bounded,

we will ignore SCE in favor of coverage from this point on.

4.2.5 Coverage

Consider the formula for coverage (originally shown in Equation 3.6):

coverage(C) =
w(C)

w(G)

From its formulation, we can see that the main clustering characteristic needed

for a high value of coverage is inter-cluster sparsity. Internal cluster density is in no

way taken into account by this metric, and it tends to cause a strong bias toward

clusterings with less clusters. This can be seen in the example in Figure 4.1, where
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the clustering with two clusters would receive a better score than the clearly better

clustering with three clusters.

4.2.6 Performance

Consider the formulation for performance (originally shown in Equation 3.8), as shown

here:

perf(C) =
f(C) + g(C)

1
2
n(n− 1)

, where

f(C) =
k∑
i=1

|E(Ci)|

g(C) =
k∑
i=1

∑
j>i

| {{u, v} 6∈ E|u ∈ Ci, v ∈ Cj}|

It is clear that performance is based on two terms: f(C) counts the number of

internal edges of the clusters, while g(C) evaluates the external sparsity of clusters

by counting the edges that would connect those clusters if they were present. The

internal density evaluation term for performance, just like modularity, coverage and

conductance, does not use vertex info in its formulation, and should have the same

peculiarities in its behavior. However, the external sparsity term g(C) carries the

greater potential problem. When applied to larger networks, specially complex ones,

which are sparse by nature, there is a great possibility that g(C) becomes so high that

it will dominate all other factors in its formula, awarding high scores indiscriminately.

4.3 Experiments

This section presents the experiments used to help evaluate the quality metrics con-

sidered. We will brie�y describe our methodology and the graphs used �rst, and then

discuss our results.

4.3.1 Methodology

We implemented the �ve quality metrics discussed in the previous section. To evaluate

their behavior, we applied them to clusters obtained through the execution of four

classical graph clustering algorithms on �ve large, real world graphs that will be brie�y

discussed in the next subsection. This variety of clustering algorithms and graphs
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is necessary to minimize the pollution of the results by possible correlations between

metrics, algorithms, and/or graph structures.

We used freely available implementations for all clustering algorithms: the MCL

implementation by Van Dongen, which is available with many Linux distributions in a

package of the same name, the implementation of bisecting K-means available in the

Cluto suite of clustering algorithms 1, the spectral clustering algorithm implementation

available in SCPS [Nepusz et al., 2010] and the normalized cut clustering implementa-

tion GRACLUS [Dhillon et al., 2007].

Three di�erent in�ation indexes were chosen for the MCL algorithm, based on

the values suggested by that algorithm's documentation: 1.5, 2, and 3. The number

of clusters found using each MCL con�guration were used as the input for the other

algorithms, so that we could compare clusterings with roughly the same number of

clusters.

4.3.1.1 Graphs

We used seven di�erent datasets derived from real complex networks. Two of them

are smaller, with known expected partitions that could be used for comparison, and

the other �ve are bigger, with no known expected partitions. All graphs used are

undirected and unweighted.

The �rst small dataset is the Karate club network. It was �rst presented by

Zachary [1977] and depicts the relationships between the students in a karate dojo.

During Zachary's study, a �ght between two teachers caused a division of the dojo in

two, with the students more related to one teacher moving to his new dojo. Even though

this dataset is small (34 vertices), it is interesting to consider because it possesses

information about the real social partition of the graph, providing a ground truth for

the clustering.

The other small dataset used was the American College football team's matches

described by Girvan and Newman [2002], composed of 115 vertices and 616 edges. It

represents a graph where the vertices are football teams and an edge links two teams

if they played against each together. Since the teams play mostly with other teams in

the same league, with the exception of some military school teams, which belong to no

league and can play against anyone, there is also an expected clustering already known

for this graph.

The �ve remaining networks were obtained from the Stanford Large Network

1http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
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Dataset Collection2. Two of them represent the network of collaborations in papers

submitted to the arXiv e-prints in two di�erent areas of study, namely Astrophysics

and High Energy Physics. In those networks, researchers are the vertices, and they are

linked by edges if they collaborated in at least one paper. The Astrophysics network

is composed by 18,772 vertices and 396,160 edges, while the High Energy Physics has

12,008 vertices and 237,010 edges. Another network based on the papers submitted to

the arXiv e-prints was used, but covering the citation network of authors in the High

Energy Physics category. In this case, an edge links two authors if one cites the other.

This network has 34,546 vertices and 421,578 edges.

The last two networks are snapshots from a Gnutella peer-to-peer (P2P) �le

sharing network, taken in two di�erent dates. Here the vertices are the Gnutella

clients and the edges represent the overlay network connections between them. The

�rst snapshot was collected in August 4, 2002 and contains 10,876 vertices and 39,994

edges. The second one was collected in August 30, 2002 and has 36,682 vertices and

88,328 edges.

4.3.2 Results

We �rst considered the smaller datasets, Karate Club and College Football, to check

how the algorithms and quality metrics behave in small networks where the expected

result was already known. The results for the Karate Club dataset can be seen in

Table 4.1. The College Football dataset had similar results and was omitted for brevity.

The results shown represent the case with two clusters, which is the expected number

for this dataset. It can be observed that the scores obtained were fairly high. Also,

the resulting clusters were very similar to the expected ones, with variations of two

or three wrongly clustered vertices. However, those two study cases were very small

and classical, so good results here were more than expected, as most of the quality

metric biases we pointed out in the beginning of this chapter were expected for bigger

networks with many clusters.

Algorithm SI Mod Cov Perf Cond
MCL 0.13 ± 0.02 0.29 0.71 0.55 0.55 ± 0.15
B. k-means 0.081 ± 0.001 0.37 0.87 0.62 0.26 ± 0.13
Spectral 0.13 ± 0.02 0.36 0.87 0.61 0.30 ± 0.15
Norm. Cut 0.14 ± 0.017 0.18 0.68 0.56 0.65 ± 0.32

Table 4.1: Karate Club dataset and its quality indexes for two clusters.

2http://snap.stanford.edu/data/
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Now, for the larger datasets. The quality metric values for the Astrophysics Col-

laboration network are shown in Table 4.2. It's already possible to observe some trends

on the quality metrics' behavior, no matter what clustering algorithm is used. For ex-

ample, modularity, coverage and conductance always give better results for smaller

numbers of clusters. Also, we can see that, as expected from our observations, per-

formance values have no discriminating power to compare any of our results. The

silhouette index presents a somewhat erratic behavior in this case, without a clear

tendency of better or worse results for more or less clusters.

Algorithm # Clusters SI Mod. Cover. Perf. Cond.
MCL 1036 -0.22 ± 0.038 0.35 0.42 0.99 0.55 ± 0.02
MCL 2231 -0.23 ± 0.026 0.28 0.31 0.99 0.70 ± 0.006
MCL 4093 0.06 ± 0.015 0.19 0.27 0.99 0.82 ± 0.003
B. k-means 1037 -0.73 ± 0.017 0.25 0.28 0.99 0.70 ± 0.002
B. k-means 2232 -0.48 ± 0.005 0.21 0.24 0.99 0.70 ± 0.002
B. k-means 4094 -0.21 ± 0.01 0.17 0.19 0.99 0.76 ± 0.001
Spectral 1034 -0.15 ± 0.036 0.34 0.38 0.99 0.53 ± 0.015
Spectral 2131 -0.26 ± 0.027 0.25 0.28 0.99 0.66 ± 0.007
Spectral 3335 0.04 ± 0.017 0.19 0.21 0.99 0.78 ± 0.004
Norm. Cut 1037 -0.69 ± 0.021 0.23 0.25 0.99 0.66 ± 0.006
Norm. Cut 2232 -0.51 ± 0.019 0.17 0.19 0.99 0.73 ± 0.015
Norm. Cut 4094 -0.31 ± 0.006 0.13 0.15 0.99 0.81 ± 0.0004

Table 4.2: Astrophysics collaboration network clusters and their quality indexes.

For the High Energy Physics Collaboration network, as we can see in Table 4.3,

the tendencies observed in the previous network are still true. Also, silhouette index

shows a more pronounced bias toward larger numbers of clusters. If we look at the

cumulative distribution function (CDF) of cluster sizes (as shown in Figure 4.2 for

just two instances of our experiments, but which are consistent with the rest of the

obtained results), we can see that bigger clusterings tend to have a larger number of

smaller clusters. So, this bias of the silhouette index is expected from our observations

in this chapter. Those same tendencies occur in the High Energy Physics Citation

network, as seen in Table 4.4.

The quality metric scores for one of the Gnutella snapshot networks can be seen

in Table 4.5. The scores for the other one were very similar, so we suppressed them for

brevity. It is possible to notice that the results for those graphs still present the same

tendencies shown in the other cases, but with a key di�erence: while silhouette and

performance results show no big di�erence from the other datasets, as they are easily

fooled by high numbers of singleton clusters and network size, respectively, modularity,
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Figure 4.2: Some cluster size's Cumulative Distribution Functions (bisecting k-means).

coverage and conductance give much lower quality results. This happens because the

structure of a Gnutella network, where common peers connect only to �superpeers�,

and those superpeers also connect to each other. This structure leads to a very low

occurrence probability for 3-cliques (0.5% in the Gnutella networks against 31.8% in

the Astrophysics Collaboration network, for example). Also, the Gnutella networks

presented here are way sparser than the other studied networks, with only 6.76% of all

possible edges present in the graph for the August 04 snapshot, against 32.88% for the

High Energy Physics citation network, for example.

4.3.2.1 Discussion

For all the generated cases, coverage, modularity and conductance have better values for

smaller numbers of clusters. This behavior is expected from the formulation of coverage,

since it observes the number of inter-cluster edges, which tends to be smaller if there

are less clusters to link to. The same thing happens to conductance, as more inter-

cluster edges mean more expensive cuts. Without balancing the external conductance

with the internal conductance, results will only give us partial and biased results.

Concerning modularity, we already know that singleton clusters have a very bad

impact on the modularity score, and the larger the number of clusters, the bigger the

chance of singletons occurring. It is interesting to notice that giving low scores to

singleton clusters is not wrong per se, but since those scores in�uence the overall score

of the clustering, they can obfuscate the existence of well scored clusters in the �nal

tally.

Silhouette Index generally gives better results for more clusters, which can also
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be attributed to the larger occurrence of singletons, which wrongly get optimal results

for SI.

Algorithm # Clusters SI Mod Cov Perf Cond
MCL 1002 -0.17 ± 0.037 0.35 0.52 0.99 0.51 ± 0.016
MCL 1742 -0.17 ± 0.028 0.33 0.42 0.99 0.62 ± 0.009
MCL 2650 0.005 ± 0.019 0.22 0.27 0.99 0.73 ± 0.005
B. k-means 1005 -0.54 ± 0.012 0.33 0.41 0.99 0.61 ± 0.007
B. k-means 1744 -0.30 ± 0.004 0.30 0.37 0.99 0.61 ± 0.006
B. k-means 2652 -0.14 ± 0.016 0.25 0.31 0.99 0.68 ± 0.003
Spectral 1005 -0.16 ± 0.037 0.34 0.44 0.99 0.53 ± 0.015
Spectral 1710 -0.04 ± 0.025 0.29 0.35 0.99 0.64 ± 0.009
Spectral 2525 0.019 ± 0.019 0.25 0.29 0.99 0.71 ± 0.006
Norm. Cut 1005 -0.59 ± 0.025 0.26 0.33 0.99 0.64 ± 0.02
Norm. Cut 1744 -0.37 ± 0.01 0.18 0.21 0.99 0.70 ± 0.01
Norm. Cut 2652 -0.25 ± 0.014 0.18 0.23 0.99 0.76 ± 0.015

Table 4.3: High energy physics collaboration network clusters and their quality indexes.

For performance, as we already expected from the discussion about the formula

itself, the sheer size of the networks we worked with eclipsed any kind of meaningful

results we could gather from the clusterings themselves. The results here serve as a

con�rmation that the predicted behavior really happens on real networks.

Algorithm # Clusters SI Mod Cov Perf Cond
MCL 814 -0.07 ± 0.037 0.41 0.43 0.98 0.58 ± 0.015
MCL 3898 -0.039 ± 0.017 0.26 0.26 0.99 0.81 ± 0.003
MCL 12911 0.41 ± 0.005 0.12 0.12 0.99 0.93 ± 0.0006
B. k-means 814 -0.71 ± 0.014 0.25 0.25 0.99 0.71 ± 0.005
B. k-means 3898 -0.64 ± 0.008 0.14 0.14 0.99 0.80 ± 0.004
B. k-means 12911 -0.077 ± 0.01 0.06 0.056 0.99 0.90 ± 0.0008
Spectral 812 -0.236 ± 0.04 0.34 0.35 0.99 0.59 ± 0.014
Spectral 3490 0.043 ± 0.016 0.20 0.21 0.99 0.81 ± 0.003
Norm. Cut 814 -0.74 ± 0.006 0.25 0.25 0.99 0.65 ± 0.003
Norm. Cut 3898 -0.70 ± 0.005 0.10 0.10 0.99 0.82 ± 0.002
Norm. Cut 12845 -0.004 ± 0.006 0.06 0.06 0.99 0.92 ± 0.0006

Table 4.4: High energy physics citation network clusters and their quality indexes.

Another important point raised by our experiments is that networks of di�erent

origins might have clusters with very di�erent characteristics. Clusters obtained from

technological networks (in our case, the Gnutella snapshots) got markedly poor quality
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metric results, specially when compared to the results from social networks (all the

other networks used). It could be argued that those technological networks in particular

might not have clusters, but we know that there should be community-like structures

in a Gnutella network: a superpeer and its neighboring peers form a fairly cohesive

subset, even though it may be considered sparse when compared to a social network

cluster.

Algorithm # Clusters SI Mod Cov Perf Cond
MCL 2189 -0.81 ± 0.039 0.0004 0.001 0.99 0.99 ± 0.0
MCL 4724 -0.037 ± 0.015 0.0003 0.0007 0.99 0.99 ± 0.0
MCL 6089 0.10 ± 0.011 0.00003 0.0003 0.99 1.00 ± 0.0
B. k-means 2189 -0.88 ± 0.0001 0.0004 0.001 0.99 0.99 ± 0.00034
B. k-means 4724 -0.52 ± 0.02 0.00007 0.0004 0.99 0.99 ± 0.0
B. k-means 6089 -0.18 ± 0.01 -0.00006 0.0002 0.99 1.00 ± 0.0
Spectral 2158 -0.90 ± 0.0006 0.0004 0.001 0.99 0.99 ± 0.0
Spectral 4079 -0.94 ± 0.0005 0.0001 0.0005 0.99 0.99 ± 0.0
Spectral 6089 -0.30 ± 0.02 -0.00007 0.0002 0.99 1.00 ± 0.0
Norm. Cut 2189 -0.90 ± 0.002 0.0003 0.001 0.99 0.99 ± 0.0
Norm. Cut 4616 -0.2 ± 0.012 0.00025 0.0006 0.99 0.99 ± 0.0
Norm. Cut 5690 0.1 ± 0.012 0.0002 0.0005 0.99 0.99 ± 0.0

Table 4.5: Gnutella peers network (08/04/2002) clusters and their quality indexes.

It seems that the network structure in this case, with its non clique-like com-

munities, a�ects very negatively the ability of both clustering algorithms and quality

metrics to identify any clusters. This observation, that di�erent kinds of cluster struc-

tures exist for technological networks and that the usual clustering methods wouldn't

work with them, was already discussed by Nepusz and Bazso [2007]. In that case,

the authors defended that, in a bipartite graph, each side of the bipartition should be

considered as a cluster. Kumar et al. [1999] also mention the existence of this kind of

cluster structure, pointing out that there are many on-line communities that behave

as bipartite subgraphs, o�ering the websites of cellphone carriers as an example: they

represent the same category of service, but will not have direct links to each other.





Chapter 5

Proposal for a New Quality Metric

In the previous chapter, we saw that the graph clustering evaluation metrics most

commonly used in the literature present strong biases, and those biases raise doubts

about the quality of their results. So, there is a strong need to �nd better ways to

evaluate cluster quality, structurally-wise. In this chapter, we will identify the most

critical problems not correctly addressed by the quality metrics studied so far and,

based on those observations, propose a new evaluation metric.

5.1 Problems of Current Quality Metrics

From our studies and experiments, shown in Chapter 4, we were able to identify two

main problems in the currently used structural quality metrics. The �rst one is the

way those metrics evaluate internal cluster density, which is one of the two main char-

acteristics classically associated to structurally good clusters. The other problem is the

fact that the studied quality metrics evaluate networks from di�erent origins by the

same standards. Those two problems will be better discussed now.

5.1.1 Incorrect Internal Density Evaluation

Observing the formulation of both modularity and conductance (Sections 3.2.1 and

3.2.3), for example, it is possible to see something in common � both metrics use only

edge counts, ignoring vertex counts, in order to infer the internal density and external

sparsity of a cluster. Modularity uses the matrix e, which counts edges connecting ele-

ments inside and outside each cluster as the basis of its formulation, while conductance

uses the ratio between edges connecting elements from the evaluated cluster to other

clusters and all edges with at least one endpoint in the evaluated cluster.

43
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When evaluating external sparsity, it is not a problem to use only edge counts,

as this is a relationship between two clusters and, therefore, has little to do with its

vertices in particular.

(a) Two dense clus-
ters.

(b) Two sparse clusters.

Figure 5.1: Very di�erent clusterings that are equally good for most of the currently
used quality metrics evaluated.

However, internal cluster density has strong dependency on the vertices of the

studied cluster. Density is a measure of concentration and, as such, needs to represent

not only the number of elements observed, but the space they occupy. In this case, it

means that the concept of internal cluster density cannot be fully represented by using

just the number of internal edges of a given cluster and ignoring the number of vertices

of that cluster. For example, a clustering with 2 clusters composed of 1 external edge

and 12 internal edges can represent many di�erent scenarios if we ignore the vertex

count of each cluster, like two 4-cliques connected by one edge (Figure 5.1a, de�nitely

dense clusters) or two 6 vertex trees connected by one edge (Figure 5.1b, not dense at

all). As they were proposed, both conductance and modularity would consider those

two clusters to be equivalent, and with relatively good scores of 0.14 (conductance)

and 0.34 (modularity).

5.1.2 Evaluation of Di�erent Types of Networks by the Same

Standards

Not all networks are made equal. Some might represent some kind of technological

infrastructure, like the airport network formed by �ight connections, or computers

connected via network cables and switches, for example. In those cases, creating each

connection has a real world monetary cost, and that tends to generate sparser, more

deliberate edge structures. Other networks can represent social relationships, such as

friendship networks on websites like Facebook or Twitter, where the cost of creating

new connections between users is negligible. Therefore, networks of that kind tend to

be denser.
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So, to assume that a cluster from a technological network that has the same inter-

nal density as one from a social network should be similarly scored can be unnecessarily

unfair to the naturally sparser network. Nevertheless, that's what quality metrics such

as conductance and modularity, among others, do.

The edge count-based scoring method adopted by those quality metrics causes

their results to be always lower, i.e., worse, for graphs that are naturally sparser, a be-

havior that can be seen in the results presented in Chapter 4 and in works such as Zaidi

et al. [2010]. Because of that, it's di�cult to compare how good a clustering algorithm

is for graphs of di�erent origins, as the metric results will be mostly incomparable.

This raises an interesting point: density is a malleable concept, since what is

considered dense for a given network is not guaranteed to be considered so for other,

di�erent networks. So, we believe that it is important to �nd ways to set the threshold

that de�nes what is dense and what is not, regarding any given network.

5.2 Proposal for a New Quality Metric

Based on all the information gathered so far, we propose a new quality metric that takes

into account the two main problems identi�ed and discussed in the previous section.

This metric structurally evaluates simple, undirected and unweighted graphs, using

only internal graph information. It is composed by two separate components, as works

in the literature suggest that bi-criteria measures are empirically observed to obtain

better results for cluster evaluation [Kannan et al., 2004]. One of the components

of our metric evaluates the internal density of each cluster, while the other evaluates

the external sparsity among them. Those components are combined to form a unique

metric, although taking the component values separately might also be useful to better

understand cluster structures.

5.2.1 Internal Density Component

According to Newman and Girvan [2004], the internal density of a cluster is one of

its two main structural characteristics. However, as discussed in Section 5.1, the cur-

rently used quality metrics do not evaluate this characteristic correctly. So, in order

to more e�ectively evaluate a cluster's internal density, our proposed metric takes the

two problems discussed in that section into consideration.

To solve the incorrect evaluation of internal density, vertex count information

should be considered during cluster evaluation. One possible solution for this could be
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to compare only subgraphs of the same size (vertex-wise). In that case, edge counts

can be correctly considered as density indicators.

As for the inherent di�erence in clusters structures for di�erent kinds of networks,

the quality metric must use information derived from the target graph to identify the

thresholds that indicate the density/sparsity of the clusters found. Doing so will allow

our method to positively score clusters that can be considered dense for a given graph,

even if they would not be considered dense in other graphs.

So, considering one cluster with s vertices from a given graph, we want to be able

to identify how its internal edge count compares to what is the expected from clusters

of size s in that same graph. If the evaluated cluster has more edges than expected,

than it should be scored accordingly. By doing that, we can evaluate a cluster in terms

of what is expected based on that speci�c graph, while also incorporating the number of

vertices of the cluster to the evaluation process, addressing the two problems discussed

previously.

(a) Original graph. (b) Population of size 3 subgraphs.

Figure 5.2: A simple graph and its subgraphs.

One way to discover the expected internal edge count for a cluster of size s is

to consider the whole population of all possible connected induced subgraphs of that

same size in the network at hand. For example, consider that we want to de�ne the

density thresholds for a size 3 cluster obtained from the graph in Figure 5.2a. If we

enumerate all possible size 3 induced connected subgraphs from this graph (as shown in

Figure 5.2b), we can see that most of them have only 2 edges, while only one subgraph

has 3 edges. Since a 3-edged subgraph is more edge-dense than 80% of all possible

subgraphs of that same size from that particular network, then a size 3 cluster with

3 internal edges found in this same graph should be positively scored based on this

information.

However, the example in Figure 5.2 is small and very simple. As the graph grows

in size, the population of possible connected subgraphs of a given size becomes so

large as to be intractable to enumerate. So, it is necessary to use a sample from that

population in order to use that approach.
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5.2.1.1 Sampling for Density Evaluation

Most works in the literature use cluster quality metrics to evaluate results from tradi-

tional graph clustering algorithms. Some examples of this kind of work are [Brandes

et al., 2008b], [Du et al., 2007], [Brandes et al., 2003] and [Leskovec et al., 2008]. In

all those cases, the universe of evaluated clusters is limited to what the clustering al-

gorithms used identify as a (good) cluster. This kind of �ltering may introduce biases

on what kinds of structures will be evaluated and, therefore, may bias the �nal quality

evaluation results.

To avoid this kind of bias in our evaluation method, we propose to use samples

from the universe of all possible connected induced subgraphs with s vertices that exist

in a given graph. By doing so, our results will represent, within statistical guarantees,

the expected internal density values for a size s cluster found in a given graph, and

not just the ones that are deemed to be �interesting� by a given clustering algorithm.

To simplify the discussion here, we leave the description of a sampling process that

provides such guarantees for Section 5.2.1.2.

Using this technique, Figure 5.3 shows the number of sampled 25-vertex sub-

graphs by edge count for three complex networks of di�erent origins: Amazon Co-

purchases, Yeast protein interactions and Google websites (social, biological and tech-

nological, respectively). Those networks will be better described in Section 6.1.2.
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Figure 5.3: Example of internal densities in subgraph samples (s = 25).

Since we are looking at induced subgraphs with a �xed vertex count, it is valid

to equate edge count and density in this case. It is possible to see that those density

curves reach their peaks very near the minimum possible density (|s| − 1 edges, since

the subgraphs are connected), and that they are somewhat heavy-tailed. That means
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that not only most of the sampled subgraphs of a given size are way too sparse to

be considered good clusters, but also that there are a few subgraphs that are denser

than what is expected from the average case. We believe that it is possible to use the

information presented in this kind of graph to evaluate cluster quality in a way that

bears more signi�cance to the graph considered.

5.2.1.2 Sampling Process

Given a graph G = (V,E), we want to identify the expected edge count for a connected

induced subgraph with s vertices. Also, we want to do it without having to enumerate

all possible subgraphs, as this can be unfeasible for larger graphs.

One way to do that is through sampling of the universe of all possible s-sized

connected induced subgraphs from G. In order to obtain an estimate of the proportion

of edge densities in that universe, with a con�dence level of 99% and margin of error

of 1%, we can perform a simple random sampling without replacement of at least 2477

subgraphs from that universe, a value obtained through Equation 5.1 [Lohr, 2010;

Berman, 2012], which assumes that the universe in question is of unknown size, but

is known to be considerably large. In this equation, Z = 1 − α
2
(α is the con�dence

level desired), ME is the margin of error desired and p is the probability for one

sampled element to have a given characteristic. Variable p was set with the suggested

(conservative) value of 0.5, which guarantees that a sample of the calculated size would

have at least the level of con�dence and at most the measurement error chosen. We

were even more conservative and used samples of 8000 subgraphs, more than enough

to ensure the measuring error and con�dence level desired.

n =
[Z2 × p× (1− p)] +ME2

ME2
(5.1)

The process of choosing one random connected subgraph from a given universe

is done as follows: we pick one vertex randomly from all vertices in the graph (Fig-

ure 5.4a). We pick the next vertex randomly from the immediate neighborhood of that

vertex (Figure 5.4b). For the third and following vertices, we pick randomly one of the

vertices from the set of the immediate neighbors to any of the vertices already chosen

(Figure 5.4c). It is important to note that if one vertex is in the neighborhood of more

than one vertex already chosen, this does not make it more likely to be picked. This

process aims to be as random as possible in order to emulate the process of randomly

picking one element from the universe of all s-sized connected induced subgraphs of G.
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(a) One vertex chosen. (b) Two vertices chosen. (c) Three vertices chosen

Figure 5.4: Example of the sampling process. Black vertices were chosen and gray
vertices are the extended neighborhood.

5.2.1.3 Di�erence Between Subgraph Sampling and Graph Sampling

It is important to notice that what we are doing is di�erent from the problem of graph

sampling. We use a number of samples from the set of all possible subgraphs of the

same size to estimate the internal edge density of that set, based on the samples.

Graph sampling, as discussed by Leskovec and Faloutsos [2006] , Ribeiro and Towsley

[2010] and Clauset and Moore [2005], aims to discover subgraphs that present the

same characteristics (such as degree distribution, clustering coe�cient and diameter,

for example) as the original graph, only in a smaller scale. Such kind of sample is used

when the original graph is too large to be analyzed.

Graph sampling adds many restrictions to the sampling process, making simple

random sampling inadequate to obtain a sample that can be considered valid, as can

be seen in the works mentioned. Fortunately, our goal is not as complex as graph

sampling. For example, consider that the universe we want to sample is a cake with

�lling and frosting. For a simple random sampling, one could cut the cake into small

cubes and randomly pick some of them. With a large enough sample, it would be

possible to identify the proportion of each one of the components on the original cake.

This kind of information is good enough for our problem, but would be inadequate for

the problem of graph sampling, as it would not be possible to infer the structure of the

cake, i.e., you could not guarantee that the frosting was indeed covering the cake. For

graph sampling, a slice would be a better sample.

5.2.1.4 Internal Density Index

With those internal density distributions in mind, we should be able to de�ne a model

that implements the proposed method for internal density evaluation, which will be

used as the internal quality component of our quality metric.
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For this model, to evaluate the density of a given cluster of size s and e edges

from a given graph, we will use the expected number of edges for a subgraph of the

same size in the same graph. To do so, we could use the percentile of value e in the

internal density curve obtained from the sampling of size s clusters in the graph as the

quality score for that cluster. This simple model would allow better scores for larger

internal density values, with the 50th percentile of the distribution being assumed to be

a �neutral� score. Higher percentiles would mean better scores, and lower percentiles,

worse ones.

However, this schema would have poor discerning power to compare internal

density values in the tail of the curve. For example, Figure 5.5 presents 3 di�erent

clusters of the same size, but with di�erent densities, obtained from the college football

graph. If we use this simple percentile model, than the cluster in Figure 5.5a would

get a score of 0.2598, the one from Figure 5.5b would score 0.9623 and the one from

Figure 5.5c would score 0.9999. The �rst cluster, which is almost as sparse as a tree,

presented a low score, as expected. The two other graphs received high, but relatively

close, scores. The problem here is that the third cluster has more than 50% more edges

than the second one, and their scores should better re�ect that disparity.

(a) 12 Edges (b) 20 Edges (c) 32 Edges

Figure 5.5: Example of sampled subgraphs of size s = 10 from the College Football
graph.

One way to improve this model would be to create a two-phase scoring system.

In such a system, we could shift the percentile value that would score as the �neutral�

value (0.5) to a higher percentile, so that the �rst scoring phase (lower than the shifted

percentile) would cover a wider range of sparse density values, leaving a smaller range

of possible density values to be scored in the second phase of the model.

IDI =


P (X<x)

2D
if [P (X < x)] < D

[P (X<x)]−2D+1
2D−2 if [P (X < x)] ≥ D

(5.2)
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This simple model is presented in Equation 5.2. It has a parameter D, which

represents the percentile that will mark the threshold which will be scored as �neutral�.

For example, if we assumed a value of D = 0.75, it would mean that the 75th percentile

would score 0.5 in our internal density index (IDI). This shift allows for an ampli�ed

discriminative power when evaluating the density values that matter the most: the

ones in the tail of the density curve. One illustration of how this scoring method would

work for D = 0.75 can be seen in Figure 5.6, with the values of the IDI rising slowly

until the de�ned percentile and faster afterwards.
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Figure 5.6: Representation of the IDI's scoring method (D = 0.75).

For the same example in Figure 5.5, the �rst subgraph would now score 0.1732,

the second 0.9246 and the third, 0.9998. This simple adjustment penalized even further

the sparser subgraph, while accentuating (even if slightly) the di�erence in density of

the other two.

5.2.2 External Sparsity Component

The second component of our metric deals with the evaluation of the level of separation

between clusters. From what we have seen so far in our studies (Chapter 4), even

though (external) conductance does not correctly evaluate internal cluster density, it is

e�ective in the evaluation of the external sparsity between clusters. Considering this,

we decided to use it as our metrics external component.

φ(Ci) =

∑
u∈Ci

∑
v 6∈Ci

w({u, v})
a(Ci)

(5.3)

In our formulation, conductance will be calculated based the formula presented

on Equation 5.3, which is a slightly simpli�ed version of the one presented on Equa-

tion 3.5 in Chapter 3. In this new formulation, instead of using the minimum between
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a(Ci), a(C̄i) as the denominator of the equation, we use only a(Ci). This is done be-

cause we want, as much as possible, to evaluate each cluster only in terms of itself,

and with this simpli�cation we will not need to evaluate any other clusters in order to

calculate a given cluster's conductance score.

5.2.3 Complete Metric

In order to create a metric that can provide a more accurate indicator regarding a

given cluster's structural quality, it is necessary to aggregate the internal and external

density metrics discussed. To do that, we propose a simple, yet e�ective formulation,

presented on Equation 5.4:

Q(Ci) =
IDI(Ci) + (1− φ(Ci)

2
) (5.4)

This quality formulation will consider both the internal and external quality in-

dexes equally when evaluating a cluster's quality. The complement of conductance

(1− φ(Ci)) is used so that both indexes present the same scoring scheme, with larger

values being better than lower ones. Considering this scoring method, it is fair to as-

sume that clusters with quality value of 0.5 are either very good internally or externally,

but not both. So, that score indicates clusters that are, at best, neutral, but never

globally good. Clusters with quality scores higher than 0.5 are considered increasingly

better, while clusters with lower scores are worse.

However, if the user wishes to consider the impact of internal and external cluster

quality to be di�erent from one another, then a simple weighting scheme can be used.

Equation 5.5 presents such a scheme:

Q(Ci) = α× IDI(Ci) + (1− α)× (1− φ(Ci)) (5.5)

In this alternative formulation, a parameter 0 ≤ α ≤ 1 de�nes the importance

of each of the two components in the �nal score. With α = 0.5, for example, both

internal density, represented by the Internal Density Index (IDI), and external sparsity,

represented by the conductance (φ), are considered to be equally important for the

evaluation of cluster quality, and this formulation will yield the same results as the one

in Equation 5.4.

The next chapter presents an evaluation of the quality metric proposed here. This

evaluation will take into consideration the metric's scoring behavior and also how it

compares against other metrics from the literature.
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Experimental Evaluation

This chapter presents the experiments done in order to compare the performance of

our proposed metric to some of the most popular quality metrics used in the literature.

First, the methodology used will be presented. Later, some of the most interesting

results will be discussed.

6.1 Methodology

The motivation of these experiments is to study the behavior of our metric when

applied to clusters in complex networks of di�erent origins. The following subsections

will discuss the process used to obtain the clusters, the complex networks evaluated

and Kendall's Tau coe�cient, which was used to compare the di�erent metrics.

Each one of the clusters obtained was scored using modularity, silhouette, conduc-

tance and our metric. Since our metric gives �ne-grained, by-cluster quality evaluation

scores, the modularity function used here is the one from Equation 3.2 (Chapter 3), as

it makes it easier to evaluate the contribution from each cluster to the global modular-

ity score. So, when we discuss modularity values for individual clusters, we mean the

contribution from that given cluster to the modularity score for the full clustering.

The proposed metric has a couple of parameters, which were set as follows. The

sample size was set to 8000 subgraphs, which is more than enough to cover the stip-

ulated minimum of 2477 de�ned in Chapter 5, Section 5.2.1.2. The density cuto� D,

which separates the density values which are considered interesting by the Internal

Density Index was set to 0.75, a value chosen by empiric observation of the behavior

of the internal density of sampled subsets of di�erent kinds of networks. Our quality

metric is the one presented in Equation 5.4, which is equivalent to Equation 5.5 with

α = 0.5 (both equations can be found in Chapter 5). In our discussions we present

53
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results for both the full metric and its components, making it easier to assess their

impact in the quality scores obtained .

6.1.1 Clustering Algorithms

The clustering algorithm implementations used in this experiment are the same ones

used in the experiment discussed in Chapter 4: MCL (Markovian), Cluto (bisecting

k-means), SCPS (spectral) and Graclus (normalized cut). MCL was ran for three

di�erent values of in�ation index, namely 1.4, 2 and 4, in order to obtain clusterings

of di�erent levels of granularity. Those values are among the ones suggested by MCL's

author as good starting values. The other three algorithms assume that the number

of clusters to be found is an input parameter. So, for each graph to be clustered,

the number of clusters found by MCL with the chosen in�ation indexes were used as

input parameters. This procedure is the same one used for the experiment shown in

Chapter 4. Also, it is important to notice that not all algorithms could be run for all

di�erent algorithms and parameters due to time/memory limitations.

6.1.2 Graphs used

The datasets used in our evaluation, which can be seen in Table 6.1, can be roughly

grouped in 3 di�erent kinds of complex networks: social, biological and infrastructure

(or technological).

Type Network # Vertices # Edges

Social

Les Miserables 77 254
Slashdot (11/2008) 77360 905468
General Relativity Collab. 5242 28980
Condensed Matter Collab. 23133 186936

Technological
College Football 115 616
Power Grid 4941 6594
Gnutella Snap. (31/08/02) 62586 147892
Gnutella Snap. (30/08/02) 36682 88328

Biological
C. Elegans Neural Net. 297 2359
Yeast 2361 7182

Table 6.1: Datasets studied.

In social networks, edges represent relationships between humans (or other social

animals). For our experiments, we used the graph of character interactions in the

novel Les Miserables, by Victor Hugo [Knuth, 1993]; the graph generated from the
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discussions between Slashdot users, a popular tech-related news site; and the scienti�c

collaboration graphs of researchers from General Relativity and Condensed Matter

areas [Leskovec, 2012].

As for biological networks, edges represent connections that happened between

biological entities. Examples used here are the protein-protein interaction network in

yeast [Bu et al., 2003] and the C. Elegans neural network [Watts and Strogatz, 1998a].

The edges in an infrastructure or technological network connect its vertices

through an algorithmically de�ned process. Also, each edge has a real world cost,

making them generally sparser then other kinds of complex networks. Examples of

such networks evaluated here are the topology of the Western States Power Grid of the

United States [Watts and Strogatz, 1998a]; the network of American football games

between Division I-A colleges during regular Fall 2000 season [Girvan and Newman,

2002]; and two snapshots, took at di�erent times, of the connections between clients of

the Gnutella peer-to-peer network [Leskovec, 2012].

6.1.3 Kendall's Tau Correlation Index

The scores obtained through the quality metrics evaluated cannot be directly compared

to each other, as they do not have the same bounds nor have consistent scoring policies.

Therefore, the solutions must be compared based on their relative values for each

metric. Based on that, we ranked clusterings using their value for each metric in

decreasing order of quality. The di�erences in the behavior of the multiple metrics

can lead to di�erent rankings for a given set of clusterings with di�erent metrics. To

evaluate if two metrics are consistent (if they produce the same ordering), we compare

the resulting ranks (with k positions) in pairs using Kendall's Tau ranking correlation

coe�cient [J., 1980], given by Equation 6.1. We say that a pair is concordant for two

metrics when the two objects appear in the same order in the rankings produced by

the two metrics; otherwise, they are discordant.

τ =
(#concordant pairs)− (#discordant pairs)

1
2
n(n− 1)

(6.1)

The Kendall's Tau metric gives values between −1 and 1, with −1 representing

a total dissimilarity between the rankings, and 1, a perfect match between them. This

metric provided us with a way to observe how the quality measures compare to each

other in terms of the rankings they yield.
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6.2 Results

In this section, we will use the results obtained from the previously described exper-

iments to discuss the scoring behavior of our quality metric. Manually evaluating all

clusters found in our experiments in order to check the coherence of the scores would

be prohibitively expensive. So, we compare the results obtained using our metric with

results from two classic quality metrics: modularity, which is one of the most popular

metrics in the literature, and silhouette, which uses di�erent graph characteristics to

measure cluster quality.

Also, to better understand how our proposed metric reacts when applied to di�er-

ent kinds of complex networks, we will show some results obtained for social, technolog-

ical and biological networks. For simplicity, only a subset from the datasets studied will

be discussed here, but the behaviors we describe, unless otherwise noted, are similar

for all networks of the same type.

6.2.1 Performance for Social Networks

We �rst discuss how our metric performs when applied to graphs from social networks,

using results obtained from the Condensed Matter collaboration network. Figure 6.1

presents a comparison between our proposed metric and modularity through a series

of scatter plots, where each graph represents the results of a clustering produced by a

given algorithm, using a given set of parameters. In each graph, each point represents

one cluster found, and its position shows it's score for both our metric (X axis) and

modularity (Y axis). One interesting thing that can be seen in that �gure is that there

is a signi�cant number of clusters that contribute little to the overall modularity score

(i.e., have low modularity), but that our metric still considers highly. On the other

hand, there are just a few clusters that behave the opposite way.

# Vert. # Edg. Mod SI Cond. IDI P. Metric

# Vert. 1 0.48 0.47 0.039 -0.17 0.071 -0.075
# Edg. 0.48 1 0.99 -0.023 -0.16 0.59 0.3
Mod 0.47 0.99 1 -0.024 -0.15 0.59 0.31
SI 0.039 -0.023 -0.024 1 0.11 -0.048 0.02
Cond. -0.17 -0.16 -0.15 0.11 1 -0.036 0.42
IDI 0.071 0.59 0.59 -0.048 -0.036 1 0.55
P. Metric -0.075 0.3 0.31 0.02 0.42 0.55 1

Table 6.2: Kendall's Tau for the Condensed Matter Collaboration network results,
clustered by Graclus with k = 1515.
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To better understand those cases, we can evaluate the ranking behavior of those

metrics using Kendall's Tau correlation index. Table 6.2 presents the correlation in-

dexes not only between the quality metrics considered, but also cluster size (number of

vertices), internal edge count, and the internal density index (IDI), the internal quality

component of our metric. We chose the results for Graclus with k = 1515 for it presents

easily identi�able clusters with di�ering scores for the two metrics evaluated.

(a) Graclus (k = 1515) (b) Graclus (k = 3209) (c) Graclus (k = 5923)

(d) MCL (i = 1.4) (e) MCL (i = 2) (f) MCL (i = 4)

(g) SCPS (k = 1515) (h) SCPS (k = 3209) (i) SCPS (k = 5923)

Figure 6.1: Our metric versus Modularity for clusters from the Condensed Matter
Collaboration dataset. Ranges on the Y axis vary.

From Table 6.2, we can see that modularity and our metric present just a small

level of agreement on their rankings, a behavior that can also be seen in Figure 6.1a,

where a great number of clusters with low modularity have high scores of our metric.

Other interesting information that can be gathered is that modularity ranks almost the

same as just sorting the clusters by their number of internal edges. This comes as no

surprise, as our previous studies showed that modularity considered internal density to



58 Chapter 6. Experimental Evaluation

be just the number of internal edges. Also, silhouette shows a ranking behavior that

is almost independent from the rest of the studied metrics.

C. ID # Vert. # Edg. Mod SI Cond. IDI P. Metric

457 977 2326 0.0092 -0.99 0.88 0.99 0.55
386 29 274 0.0015 0.68 0.52 1 0.74
584 41 240 0.0013 -0.017 0.74 1 0.63
714 31 212 0.0011 -0.99 0.62 1 0.69
690 28 208 0.0011 -0.49 0.42 1 0.79
226 27 200 0.0011 -0.99 0.76 1 0.62
682 40 198 0.0011 -0.98 0.78 1 0.61
617 32 179 0.00095 -0.96 0.75 1 0.63
1126 21 174 0.00093 0.29 0 1 1
283 26 171 0.00091 -0.99 0.32 1 0.84

Table 6.3: Best 10 clusters (modularity-wise) from the Condensed Matter Collaboration
dataset, clustered by Graclus with k = 1515.

Even though the correlation index does con�rm our suspicion about the high level

of disagreement between the scoring done by our metric and modularity, it does not

shed any light on which of the two metrics is correct on contested cases, such as the

lone point at the top of Figure 6.1a, which has the best modularity score for Graclus

with k = 1515, but is considered barely good by our metric, for example.

To answer this question, Table 6.3 presents some information about the 10 clusters

with the highest modularity scores for that particular experimented con�guration. It

is possible to see that the cluster previously discussed, with ID 457, is indeed internally

dense. With 977 vertices and 2326 edges, even our internal quality index agrees that

this is among the densest clusters of this size that may exist in that network. However,

conductance shows us that that cluster is extremely connected to the rest of the graph,

with 88% of its total edges being external. So, even though fairly internally dense, this

cluster cannot be considered well formed. Overall, modularity considers it to be the

best in this clustering, silhouette and conductance give it bad scores and our metric

says that it is borderline good.

Scores from our metric and silhouette rarely agree on the quality of a given cluster,

with their correlation index, shown in Table 6.2, indicating that their scoring behavior

is almost independent. We can see good examples of their disagreement on clusters 283

and 690 from Table 6.3, which are both fairly dense and externally sparse, receiving

good scores from our metric, while at the same time receiving very low silhouette

scores. Based on the results from Figure 6.2, which presents the comparison between

the scores from our metric and silhouette for di�erent clustering scenarios, it is possible
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(a) Graclus (k = 1515) (b) Graclus (k = 3209) (c) Graclus (k = 5923)

(d) MCL (i = 1.4) (e) MCL (i = 2) (f) MCL (i = 4)

(g) SCPS (k = 1515) (h) SCPS (k = 3209) (i) SCPS (k = 5923)

Figure 6.2: Our proposed metric versus Silhouette for clusters from the Condensed
Matter Collaboration network dataset.

to see that those two metrics present no discernible correlation between their scoring

patterns.

6.2.2 Performance for Technological Networks

To evaluate the behavior of our metric when applied to technological networks, we use

results obtained from the Power Grid network. In Figure 6.3, we compare the results

of our metric and modularity for that network. Again, scores for our metric are on the

X axis and for modularity on the Y axis. It is important to notice that the results

for the �nest cluster granularities evaluated (Figures ??, 6.3e, 6.3h and 6.3k) do not

always show results for all clusters found on those test scenarios. This happens because

most of the clusters found are too small, with the case presented on Figure 6.3k, for
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example, having only 198 out of its 2892 clusters with 3 or more vertices. Clusters with

only 1 or 2 vertices present problems to the sampling process of IDI, as they normally

lack a large enough universe of possible clusters to be sampled. So, those cases become

impossible to evaluate through our metric. Nonetheless, since they are too small to be

considered good clusters anyway, this poses no great problem for our evaluation.

(a) Cluto (k = 422) (b) Cluto (k = 1597) (c) Cluto (k = 2892)

(d) Graclus (k = 422) (e) Graclus (k = 1597)

(f) MCL (i = 1.4) (g) MCL (i = 2) (h) MCL (i = 4)

(i) SCPS (k = 422) (j) SCPS (k = 1597) (k) SCPS (k = 2892)

Figure 6.3: Our proposed metric versus Modularity for clusters from the Power Grid
dataset. Ranges on the Y axis are variable.
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C. ID # Vert. # Edg. Mod SI Cond. IDI P. Metric

1 63 123 0.0092 -0.76 0.1 0.97 0.94
2 54 83 0.0062 -0.9 0.19 0.96 0.88
4 49 69 0.0052 0.099 0.1 0.92 0.91
39 26 67 0.005 -0.84 0.22 1 0.89
5 45 62 0.0047 -0.97 0.1 0.89 0.89
6 42 58 0.0044 -0.95 0.24 0.91 0.83
3 53 56 0.0042 -0.35 0.19 0.088 0.45
8 39 46 0.0035 -0.92 0.18 0.49 0.65
36 27 44 0.0033 -0.85 0.21 0.98 0.88
7 41 44 0.0033 -0.89 0.33 0.2 0.43

Table 6.4: Best 10 clusters (modularity-wise) of the Power Grid dataset, clustered by
MCL with i = 1.4.

One interesting thing to notice is that there is a slightly bigger agreement between

what those two quality metrics believe to be the best clusters, at least for the coarsest

settings tested (Figures 6.3a, 6.3d, 6.3f and 6.3i). Even so, there are still many clusters

where the disagreement between those two metrics is strong. On Table 6.4, we present

the 10 clusters with highest modularity found by MCL with i = 1.4, a case that clearly

presented this kind of disagreement. It is possible to observe that the top 6 clusters,

modularity-wise, are also very well regarded by our metric. However, it can also be seen

that modularity's bias in favor of clusters with high internal edge counts still makes it

score positively clusters that are barely denser than trees (IDs 3 and 7, for example).

On the other hand, our metric correctly penalizes those same clusters because of their

internal sparsity.

Concerning the silhouette index, once again it and our metric present a great level

of disagreement, with relatively few clusters having consistent scores for the two met-

rics. To better understand the disagreements between their scores, Table 6.5 presents

the clusters with higher silhouette found by MCL with i = 1.4, the same scenario

evaluated for modularity, and one which presents clusters with high silhouette and low

scores of our quality metric. It is possible to see that silhouette tends to favor very

small clusters, even though they are almost tree-like, given their internal edge counts.

One interesting point is the situation of cluster 402 from that same table, which

presents a very high score for our metric, even though it is very small. This cluster is

a 3-clique connected to the rest of the graph by only one edge, as can be seen by its

conductance score. Considering the canonical structure of a cluster, this is the best

con�guration a cluster with 3 vertices can have without being disconnected from the

rest of the graph. However, this does not mean that a cluster this small is interesting.
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(a) cluto-k422 (b) cluto-k1597 (c) cluto-k2892

(d) graclus.part.422 (e) graclus.part.1597

(f) MCL-i1.4 (g) MCL-i2 (h) MCL-i4

(i) scps-k422 (j) scps-k1597 (k) scps-k2892

Figure 6.4: Our proposed metric versus Silhouette for clusters from the Power Grid
dataset.

Some ways to avoid giving good scores for structures like that could be excluding

clusters with too few vertices, or to give a scoring advantage for larger clusters, for

example.
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Clust. ID # Vert. # Edg. Mod SI Cond. IDI P. Metric

403 3 2 0.00015 0.94 0.33 0 0.33
369 4 3 0.00023 0.94 0.4 0 0.3
396 3 2 0.00015 0.93 0.33 0 0.33
387 4 3 0.00023 0.92 0.25 0 0.38
355 5 4 0.0003 0.9 0.5 0 0.25
402 3 3 0.00023 0.89 0.25 0.93 0.84
247 7 6 0.00045 0.88 0.62 0 0.19
377 4 3 0.00023 0.88 0.4 0 0.3
371 4 3 0.00023 0.88 0.73 0 0.14
386 4 3 0.00023 0.87 0.4 0 0.3

Table 6.5: Best 10 clusters (silhouette-wise) of the Power Grid dataset, clustered by
MCL with i = 1.4.

6.2.3 Performance for Biological Networks

To evaluate our metric's performance when applied to biological networks, we use the

results from the Yeast protein interaction dataset. Figure 6.5 presents some of those

results, with scores from our metric on the X axis and modularity on the Y axis as

before. It is possible to see that the disagreement which occurred in the other kinds of

networks still persists, with clusters of low modularity receiving relatively high scores

of our metric.

Clust. ID # Vert. # Edg. Mod SI Cond. IDI P. Metric

69 12 20 0.0015 -0.65 0.13 0.97 0.92
14 34 91 0.0068 -0.93 0.25 1 0.87
87 6 7 0.00053 0.74 0.12 0.85 0.86
13 34 64 0.0048 0.027 0.27 0.99 0.86
23 29 106 0.0079 -0.76 0.38 1 0.81
11 37 73 0.0054 -0.85 0.39 0.99 0.8
77 10 15 0.0011 -0.55 0.35 0.94 0.79
25 28 68 0.0051 -0.93 0.45 1 0.78
10 38 117 0.0086 -0.53 0.47 1 0.76
1 109 387 0.027 -0.94 0.51 1 0.74

Table 6.6: Best 10 clusters (quality-wise) of the Yeast dataset, clustered by SCPS with
k = 167.

Table 6.6 presents the 10 clusters with better scores by our metric. Through

those results, it is possible to see that, in general, the best cluster for our metric are

also the ones with highest modularity. However, in some cases, those two metrics

disagree. Cluster 87 presents a high score of our metric and silhouette, although it
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(a) Cluto (k = 167) (b) Cluto (k = 521) (c) Cluto (k = 910)

(d) Graclus (k = 167) (e) Graclus (k = 521) (f) Graclus (k = 910)

(g) MCL (i = 1.4) (h) MCL (i = 2) (i) MCL (i = 4)

(j) SCPS (k = 167) (k) SCPS (k = 521) (l) SCPS (k = 910)

Figure 6.5: Our proposed metric versus Modularity for clusters from the Yeast dataset.
Ranges on the Y axis are variable.

has low modularity. The low modularity is easily explained by the cluster's small edge

count. But, with only 6 vertices and 7 edges, cluster 87 seems like a bad �t for a well

structured cluster.

Looking at the structure of cluster 87, which can be seen in Figure 6.6, it is

possible to notice that all its vertices are connected to a �hub�, which also connects
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Figure 6.6: Structure of cluster 87 from SCPS with k = 167 (Yeast dataset). White
vertices belong to the cluster, and the black vertex represents the rest of the graph.

the cluster to the rest of the graph. Silhouette scores it positively because of the short

paths between member vertices caused by the hub, and our metric does so because it

is denser than most 6-vertex subgraphs in this graph, while also being very sparsely

connected to the rest of the graph. This kind of structure is more similar to the type

of cluster described in [Zaidi et al., 2010], and, as the authors of that paper state, are

better evaluated by metrics that use vertex distance as the similarity function, like

silhouette does. Our metric considers it to be good not by evaluating it as an structure

similar to the one Zaidi et al. defend to be good, but because it �ts the canonical view

as much as this speci�c graph can, with its sparser nature. Had that cluster fewer

internal edges, our metric would probably consider it inadequate, even if silhouette

kept scoring it positively.

The comparison between our metric and silhouette can be seen on Figure 6.7. In

this case, the same trends observed in the other kinds of networks are visible. There is

a great level of disagreement between those two metrics, and most of the clusters where

they agree are considered bad by both of them. For the �ner clusterings (shown in the

third column of that �gure), silhouette keeps the behavior discussed on Chapter 4, with

the tendency to give better scores to smaller clusters, which are much more common at

that granularity. Our metric, on the other hand, has a greater tendency to give worse

scores for those cases. When taking a closer look at the best silhouette results for the

�nest granularity setting of the SCPS experiments (Figure 6.7l), a test con�guration

with easy to �nd clusters with perfect silhouette and low scores of our metric, it is

possible to see that those excellent silhouette clusters had only one vertex each, falling

on silhouette's �blind spot�.

6.2.4 Overview of Our Proposed Metric's Scoring Behavior

We now discuss the scoring behavior of our proposed metric. As we saw in Chapter 4,

the clustering quality metrics commonly used in the literature present some bias to-

wards clusters of a given size, even to the detriment of the kind of structure classically

associated with good clusters. We want to be sure that our metric does not have such
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(a) Cluto (k = 167) (b) Cluto (k = 521) (c) Cluto (k = 910)

(d) Graclus (k = 167) (e) Graclus (k = 521) (f) Graclus (k = 910)

(g) MCL (i = 1.4) (h) MCL (i = 2) (i) MCL (i = 4)

(j) SCPS (k = 167) (k) SCPS (k = 521) (l) SCPS (k = 910)

Figure 6.7: Our proposed metric versus Silhouette for clusters from the Yeast dataset.

bias, assigning its scores fairly.

To do so, we study how our metric evaluates clusters given their size. Figure 6.8

presents the results for our metric by cluster size, for all clustering algorithms evaluated

on their coarsest settings, applied to the Condensed Matter Collaboration (social),

Power Grid (technological) and Yeast (biological) networks. We chose those settings

because they presented the widest range of cluster sizes for each clustering. Based on
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(a) Power Grid (Cluto k =
422)

(b) Yeast (Cluto k = 167)

(c) Cond. Mat. (Graclus k =
1515)

(d) Power Grid (Graclus k =
422)

(e) Yeast (Graclus k = 167)

(f) Cond. Mat. (MCL i = 1.4) (g) Power Grid (MCL i = 1.4) (h) Yeast (MCL i = 1.4)

(i) Cond. Mat. (SCPS k =
1515)

(j) Power Grid (SCPS k =
422)

(k) Yeast (SCPS k = 167)

Figure 6.8: Quality by cluster size for all clustering algorithms, using their coarsest set-
tings, applied to the Condensed Matter Collaboration, Power Grid and Yeast datasets.

those results, it is possible to see that, no matter the size or origin of the network, a

large part of the clusters found is rather small, with only a few clusters with more than

50 vertices. Also, it is noticeable that the cluster size has a small impact on quality
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scores, specially when compared to the results obtained from modularity (Figure 6.9),

which show a very consistent tendency to give better scores for larger clusters, no

matter what.

(a) Power Grid (Cluto k =
422)

(b) Yeast (Cluto k = 167)

(c) Cond. Mat. (Graclus k =
1515)

(d) Power Grid (Graclus k =
422)

(e) Yeast (Graclus k = 167)

(f) Cond. Mat. (MCL i = 1.4) (g) Power Grid (MCL i = 1.4) (h) Yeast (MCL i = 1.4)

(i) Cond. Mat. (SCPS k =
1515)

(j) Power Grid (SCPS k =
422)

(k) Yeast (SCPS k = 167)

Figure 6.9: Modularity by cluster size for all clustering algorithms, using their coars-
est settings, applied to the Condensed Matter Collaboration, Power Grid and Yeast
datasets.
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This tendency of modularity is expected, as larger clusters have a greater proba-

bility of also having more edges to connect their vertices, and modularity is very biased

towards larger internal edge counts. Our metric showed no such biases, the exception

being found on the clusters from the social network, where it has the tendency to also

give better scores for the larger clusters. However, since this behavior is consistent for

all clustering methods, at the same time that it does not occur as strongly on any other

studied networks, social or not, it is probably a particular tendency of that network

itself, and not from our metric.

As for the silhouette index, its results show a slight bias towards giving worse re-

sults to larger clusters, and better results to small ones. However, this bias is nowhere

as strong as the one displayed by modularity. It is important to notice that, as clus-

terings get larger (i.e., with more clusters), each cluster will get smaller, and the biases

shown here will only increase in strength, as described in Chapter 4.

6.2.5 Evaluation of Internal and External Quality

By isolating the internal and external components of our metric, it is possible to com-

pare the di�erent clustering algorithms used in our experiments. This kind of evaluation

is helpful not only to understand the di�erences between clustering algorithms, but also

to better comprehend the inner workings of our metric. We will �rst discuss our qual-

ity results for the clusterings of the Condensed Matter Collaboration dataset (a social

network). Figure 6.11 presents scatter plots of the solutions obtained by the clustering

algorithms mentioned before, with each dot representing a cluster's internal (X axis)

and external (Y axis) quality values. In those plots, the best scored clusters are those

found in the lower right quadrant (higher internal and lower external densities).

One important thing that can be seen from Figure 6.11's plots is that Graclus,

MCL and SCPS present a rather similar clustering behavior. Most of the clusters found

by those algorithms are not good in at least one of the two cluster characteristics. This

is expected, as it is unreasonable to believe that all elements of the network are part

of one, and only one, well structured cluster. The graphs studied are snapshots of very

dynamic networks and, because of that, will always be incomplete. However, this is

one more reminder that evaluating only one of the two main graph characteristics will

undoubtedly generate untrustworthy results.

Another interesting insight is that, for those three clustering algorithms, most

of the clusters found were among the densest possible for this graph, as can be seen

by their internal quality indexes. Those clusters, however, frequently are not well

separated from the rest of the graph, as can be seen from their external quality in-
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(a) Power Grid (Cluto k =
422)

(b) Yeast (Cluto k = 167)

(c) Cond. Mat. (Graclus k =
1515)

(d) Power Grid (Graclus k =
422)

(e) Yeast (Graclus k = 167)

(f) Cond. Mat. (MCL i = 1.4) (g) Power Grid (MCL i = 1.4) (h) Yeast (MCL i = 1.4)

(i) Cond. Mat. (SCPS k =
1515)

(j) Power Grid (SCPS k =
422)

(k) Yeast (SCPS k = 167)

Figure 6.10: Silhouette by cluster size for all clustering algorithms, using their coars-
est settings, applied to the Condensed Matter Collaboration, Power Grid and Yeast
datasets.

dexes (conductance), and this lack of well de�ned separation gets more acute for �ner

clusterings (i.e., with smaller clusters). Considering that conductance is given by the



6.2. Results 71

(a) Graclus (k = 1515) (b) Graclus (k = 3209) (c) Graclus (k = 5923)

(d) MCL (i = 1.4) (e) MCL (i = 2) (f) MCL (i = 4)

(g) SCPS (k = 1515) (h) SCPS (k = 3209) (i) SCPS (k = 5923)

Figure 6.11: Internal vs. external quality values for clusters from the Condensed Matter
Collaboration dataset.

proportion of all edges with at least one endpoint inside the evaluated cluster that

connect it to vertices outside, it is fair to assume that it is easier for smaller clusters to

have worse conductance values, as they need fewer external edges to cause conductance

values to rise. This behavior is shared by almost all of the social networks evaluated,

with the exception being General Relativity Collaboration, as can be seen on Fig-

ure 6.12. For this particular network, the four clustering algorithms used presented no

discernible tendency on the characteristics of clusters found. So, even when working

with networks of similar origins, each one of them might present unique characteristics

that are hard to predict. One more reason to use the network itself in order to establish

what kind of cluster structure is interesting or not.

Also, as the granularity of the clustering gets �ner, the resulting clusters have

a tendency to be either very internally dense or very internally sparse, with very few
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(a) Cluto (k = 614) (b) Cluto (k = 1040) (c) Cluto (k = 1497)

(d) Graclus (k = 614) (e) Graclus (k = 1040) (f) Graclus (k = 1497)

(g) MCL (i = 1.4) (h) MCL (i = 2) (i) MCL (i = 4)

(j) SCPS (k = 614) (k) SCPS (k = 1040) (l) SCPS (k = 1497)

Figure 6.12: Internal vs. external quality values for clusters from the General Relativity
Collaboration network dataset.

clusters staying in-between those two extremes. Their external sparsity levels, however,

still present a reasonable level of variation, regardless of clustering granularity. Those

two behaviors were observed for all networks studied, with the two collaboration net-

works showing them in a weaker form than the rest. The behavior of internal densities

raises an interesting point: are clusters found in real networks formed by very dense
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cores, which get gradually sparser as vertices get farther away from them? If that is

the case, then �ner clusterings would probably cause the removal of the outer �layers�

of the core clusters, keeping the cores relatively intact and generating new, very small

clusters, instead of breaking the core into similarly sized blocks. Other possibility

could be the existence of overlapping communities, which would �blur� the division

between clusters for non-overlapping clustering algorithms, such as the ones used in

our experiments. In both cases, as granularity gets �ner, there would be a tendency

of having greater numbers of very small, even unitary, clusters, all the while having

a few large ones. This behavior is observable in our results, but we cannot guarantee

that one of those situations is the cause of this behavior, as our evaluation only uses

edge counts, and that kind of characteristic would take into account stronger structural

characteristics.

When looking at the results obtained for the Yeast biological dataset, presented

in Figure 6.13, most clusters found are not very externally sparse. It is easy to see

that, for all algorithms tested, most of the clusters found have conductance scores

higher than 0.5, which means half of their total edges connect their vertices to other

clusters. As for their internal densities, as discussed previously, the results show a

slight tendency to have clusters that are either very dense or very sparse. Nevertheless,

a larger part of the clusters found are on the internally sparser spectrum of the results,

no matter the clustering algorithm used. Because of the way our internal density index

works, we know that there exists similarly sized clusters which are denser than those

very sparse clusters found; they just were not found by the clustering techniques used.

However, since we don't know anything else about those denser clusters possible, i.e.,

their external density, we can't a�rm if they are globally better than the ones found

by those clustering algorithms. On the other hand, the clusters found were, in general,

not good neither internally nor externally, which raises doubts about the e�ectiveness

of those algorithms when applied to this kind of network. The same behavior can be

observed in the C. Elegans neural network results, which are not shown for brevity.

As for the technological networks, they show di�erent kinds of results, depending

on the network itself, and not only its origin. The results for the Power Grid network,

presented on Figure 6.14, have internal density scores that are well spread through

the spectrum of possible IDI values. However, this behavior is not coherent with the

ones from the Gnutella networks studied. Figure 6.15 presents only the results for

the 30/08/2002 Gnutella network snapshot, but its results are representative of both

snapshots. From the Gnutella scores, it is easy to identify a trend of clusters being

either very good or very bad IDI-wise, with very few clusters getting scores in-between

those two extremes.
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(a) Cluto (k = 167) (b) Cluto (k = 521) (c) Cluto (k = 910)

(d) Graclus (k = 167) (e) Graclus (k = 521) (f) Graclus (k = 910)

(g) MCL (i = 1.4) (h) MCL (i = 2) (i) MCL (i = 4)

(j) SCPS (k = 167) (k) SCPS (k = 521) (l) SCPS (k = 910)

Figure 6.13: Internal vs. external quality values for clusters from the Yeast dataset.

But what causes this di�erence in scoring behavior? This could happen because of

extreme sparseness, a characteristic of Gnutella networks, causing abnormal behavior

in the IDI evaluation process, but the Power Grid network, with roughly 1.33 edges

for each vertex, is sparser than the Gnutella snapshots studied, with 2.41 and 2.36

edges per vertex, respectively. One probable cause for this behavior might be the way

those edges are distributed through the graph. Even for the roughest granularity tested
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(a) Cluto (k = 422) (b) Cluto (k = 1597) (c) Cluto (k = 2892)

(d) Graclus (k = 422) (e) Graclus (k = 1597)

(f) MCL (i = 1.4) (g) MCL (i = 2) (h) MCL (i = 4)

(i) SCPS (k = 422) (j) SCPS (k = 1597) (k) SCPS (k = 2892)

Figure 6.14: Internal vs. external quality values for clusters from the Power Grid
dataset.

(MCL with i = 1.4), the Gnutella networks have smaller clusters, with an average of

7.6 and 7.3 vertices by cluster, against 11.8 for the same clustering con�guration of the

Power Grid network.

The excess of clusters found on the Gnutella Networks caused them to be very

small and very sparse, since having more clusters, in general, means that more external
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(a) Cluto (k = 4817) (b) Cluto (k = 9448) (c) Cluto (k = 14049)

(d) Graclus (k = 4817) (e) Graclus (k = 9448) (f) Graclus (k = 14049)

(g) MCL (i = 1.4) (h) MCL (i = 2) (i) MCL (i = 4)

(j) SCPS (k = 4817)

Figure 6.15: Internal vs. external quality values for clusters from the Gnutella P2P
network (30/08/02) dataset.

edges will exist. Also, the structure of a Gnutella network, mostly composed by star-like

formations of leaf nodes connected to one, and only one, super-node, has the tendency

to make the smaller possible connected subgraphs to be, in general, trees. That causes

most small clusters that are even slightly denser than a tree to be considered dense,

according to our proposed method for internal density evaluation. This is a degener-
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ate case, brought out by the kind of cluster and granularity found by the clustering

algorithms used, but it should be better handled by our metric nonetheless. Variations

on the parameter D of the IDI, the use of di�erent weights for di�erent cluster size or

clustering granularity might be possible solutions for this kind of situation.

6.3 Final Remarks

In this chapter, we have shown the results from experiments done in order to test the

performance of our proposed quality metric, specially when compared to other popular

ones. We saw that our metric presented strong disagreements with the results from

other metrics, and by looking at the details of some of those cases, we saw that our

metric gave scores that were more closely related to the canonical representation of a

good cluster, structurally-wise. Also, we saw that our metric did not present strong

biases, for or against, clusters based only on their size. This is true for neither silhouette

nor for modularity.





Chapter 7

Conclusions

Quality evaluation metrics, an essential part of the graph clustering problem, does

not receive the necessary attention. Many quality metrics were proposed in the liter-

ature, but few authors went beyond the most simple kinds of validation and testing

procedures. So, there is no consensus on the existence of one quality metric that per-

forms better than the others, or even if they correctly evaluate cluster quality in more

complex scenarios.

Because of that, we have studied some of the most popular quality metrics avail-

able in the literature. We compared their scoring behaviors for clusters obtained from

real world graphs of di�erent sizes and origins, using di�erent clustering strategies and

granularity levels. We discovered that those quality metrics present strong biases that

were consistent for di�erent types of graphs and clustering algorithms. Those biases

caused some of the quality metrics considered to always favor results with fewer clus-

ters, while others favored clusterings with more clusters. This is problematic, as those

biases had no correlation to the kind of structure expected from a well-formed cluster.

Also, this kind of behavior was more easily seen on the larger graphs than in the smaller

ones. Since those smaller clusters have known optimal clusterings and, because of that,

were the ones generally used to validate the e�cacy of those metrics, this casts doubts

on the ability of those metrics to correctly evaluate cluster quality.

Based on that, we evaluated some of those popular quality metrics even further,

in order to discover the reason that caused them to present such undesirably biased

scores. Our conclusion was that those quality metrics did not correctly evaluate the

internal density of clusters, one of the two key aspects that de�ne the structure of a

well-formed cluster, the other being inter-cluster sparsity. Another problem we have

detected was that those metrics used the same standards to evaluate clusters from

graphs with wildly di�erent structural characteristics, such as social and technological

79
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ones. This causes clusterings from naturally sparser graphs to be severely penalized in

their quality scores, making it hard to compare results from them.

To solve this problem, we proposed a novel method to evaluate internal cluster

density. To do so, it uses the expected edge count from connected subgraphs of the

same size as the cluster, induced from the graph being studied. This way, not only

are we using both vertex and edge information to evaluate internal density, giving

a more complete view of the clusters density, but we are also using the graph itself

to determine the threshold that identi�es what is dense and sparse in the context at

hand. Through the aggregation of this internal quality index and Conductance, an

external sparsity index, we obtained a new quality evaluation metric that provided

a better view of a cluster's structural quality. When compared to results from the

classical clustering quality evaluation metrics, we showed that our metric was capable

to correctly penalize badly formed clusters that would nevertheless be well regarded

by those metrics, while at the same time giving high scores to clusters that presented

good structural characteristics.

7.1 Future Work

Even though our quality metric presents some nice improvements over other quality

metrics from the literature, it is not perfect. It still has some room from improvement,

as follows.

The �rst problem of our metric is that smaller clusters have a greater tendency

of presenting high IDI values than larger ones. This is only natural, as smaller clusters

need signi�cantly fewer internal edges to become closer to a clique structure of the

same size, which is the best structure possible, internal density-wise. Since complex

networks are naturally sparse, the larger the cluster, the smaller the chance of it being

very dense. However, since it is harder to have such dense and large cluster, when that

happens, it might be fair to give it a higher overall rating. More testing to evaluate

this possibility is necessary, though, to properly evaluate the e�ect of such approach.

Another problem regarding our metric is that, sometimes, being denser than

expected might still be too sparse. Consider a graph with k vertices and k edges,

where k is a fairly large number. In this case, most clusters of a given size s will

be trees, since this graph is not a tree only because of one extra edge, but clusters

might possess that extra edge. So, for IDI, those clusters with the extra edge will

have very high scores because of the graph's structure, even though they are not well

structured. Of course, this case is very speci�c, but it is important to identify the
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impact of this kind of behavior. For example, for larger clusters, specially approaching

the size of the graph itself, most clusters of the same size will be mainly equal, with just

a few di�erent vertices among them. Since they are almost the same, the variability

of expected internal edge counts will be small, causing a problem similar to the one

described earlier. More work would be necessary to determine if that kind of limitation

on the cluster sizes would be enough to avoid this kind of problem.

A third problem is that the sampling process used to evaluate the expected val-

ues of cluster density is computationally costly. Considering that the other metrics

evaluated are also expensive, requiring large matrix multiplications, all pairs shortest

paths or min-cut max-�ow computations, this is not one of our metrics' biggest �aw.

Nevertheless, �nding a way to decrease, or even outright remove the necessity for sam-

plings would be highly positive. If there is a way to model the curve that describes

the distribution of internal densities and uses characteristics from the target graph as

parameters to do so, than this might be possible.

7.2 Published Articles

Part of the results presented here have already been published. The evaluation of cur-

rently used quality metrics and detection of their biases was presented in the European

Conference on Machine Learning and Principles and Practice of Knowledge Discovery

in Databases (ECML PKDD) [Almeida et al., 2011]. The in-depth study of those qual-

ity metrics' biases and proposal of a new method for internal cluster density evaluation

was published in the Journal of Information and Data Management (JIDM) [Almeida

et al., 2012].
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