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Abstract

In this paper, we examine the applicability of fuzzy Q-
learning to a multi-player non-cooperative repeated game.
First we formulate a transportation problem as a repeated
game where many agents (i.e., many game players) compete
with one another at several markets. Each agent is supposed
to choose one market for maximizing his own profit obtained
by selling his product at that market. It is assumed in our
game that the market price of the product is determined by
the demand-supply relation at each market. For example, if
many agents bring their products to a particular market, the
market price becomes low. On the contrary, the market
price is high if the total amount of products brought to that
market is small. In this manner, the price at each market is
determined by the actions of all agents. After formulating
the repeated game, we explain how Q-learning can be
employed by each agent for choosing a market. Then the
Q-learning is extended to fuzzy Q-learning for utilizing the
information about the previous market prices when each
agent chooses a market. The previous price of each market
is represented by two fuzzy linguistic values “low” and
“high.” By computer simulations on a numerical example
with 100 agents and five markets, we clearly show that the
Juzzy Q-learning can learn effective strategies as fuzzy if-
then rules for choosing a market.

Keywords: Repeated games, Q-learning,
systems, fuzzy rules, reinforcement learning.
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1. Introduction

Strategies for repeated games have been mainly
investigated for the Prisoner’s Dilemma [1]. Genetic
algorithms [2,3] were employed for evolving strategies of
the iterated Prisoner’s Dilemma game [4-6]. In this paper,
we try to apply a reinforcement learning scheme to a multi-
player non-cooperative repeated game. Our game, which isa
kind of quadratic transportation problem, involves much
more players (e.g., 100 players) and a more complicated
payoff mechanism than the Prisoner’s Dilemma. In our
game, each agent (i.e., each game player) is supposed to
choose one market from several ones and to sell his product
at the market price of the selected market. The aim of the
market selection is to maximize his own profit obtained by
selling his product at the market price. It is assumed in our
game that the market price is determined by the demand-
supply relation at each market. For example, if many agents
bring their products to a particular market, the price of the
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products at that market becomes low. On the contrary, the
market price is high if the total amount of products brought
to that market is small. In this manner, the price at each
market is determined by the actions of all agents. Thus the
profit of a particular agent depends on the actions of the
other agents.

In this paper, we first formulate the transportation
problem with many agents and several markets as a multi-
player non-cooperative repeated game. Then we show some
strategies for our game, each of which is based on Q-
learning [7] or fuzzy O-learning [8-11]. The Q-learning is
one of the most-well known reinforcement learning
schemes. A Q-value is assigned to each state-action pair, and
it is updated based on the reinforcement signal (i.e., reward
or punishment) given from the environment after a
particular action or after a series of several actions. The O-
learning dose not use explicit targets that are usually
required in supervised learning mechanisms such as the
back-propagation algorithm of multi-layer feedforward
neural networks. The fuzzy Q-learning [8-11] is an
extension of the O-learning to the case of continuous states
and/or actions. In the fuzzy Q-learning, the Q-value is
calculated by a fuzzy inference system based on a set of fuzzy
if-then rules. In our game, the action is not continuous while
the state variables (i.e., market prices) are handled as real
numbers. As an alternative strategy, we consider the optimal
choice for the previous actions, in which an agent chooses
the best market by assuming that the actions of the other
agents are exactly the same as the previous ones. By
computer simulations, we examine the performance of the
Q-learning and the fuzzy Q-learning by comparing them
with the optimal choice for the previous actions. Simulation
results clearly demonstrate that the fuzzy Q-learning
outperforms the Q-learning.

2. Formulation of a Repeated Game

In this section, we formulate a transportation problem
with many agents and several markets as a multi-player
non-cooperative repeated game.

1) Player of Game: i (i=12,...,n)

Each agent (i.e., game player) is indexed by i. We assume
that » agents are involved in our game (i.e., i=12,....,n).
2) Period of Game: ¢ (t=12,..,T)

The number of iterations of our game is indexed by . We
assume that our game is iterated 7 times (i.e., r=1,2.....,T).
3) Market:j (j=1,2,....,m)

Each market is indexed by j. We assume that m markets
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are given in our game (i.e., j=1,2,...,m). In Figure 1, we
show an example of our game where 100 agents and five
markets are given.

® Agent o Market

100/ g S o o

50 @ ..D. Ceo 0 %4 ©
™

Figure 1. An example of our game.

4) Action: xfj

We assume that each agent has a single product at each
iteration of our game. Each agent is supposed to choose one
market where his product is sold at the market price. The
action of the i-th agent at the 7-th iteration is to choose one
market. Let us denote the action of the i-th agent at the r-th

iteration of our game by xfj,jzl,2,...,m, t=12,....T,

where

@

¢ {1, if the i-th agent chooses the j-th market,

0, otherwise.
Because each agent is supposed to choose a single market

from the given m markets for selling his product, the
following relation holds:

Zxr—l fori=12,..,n
Jj=1
5) Market Price: p

The total amount of products that are sold in the.j-th
market at the ¢~th iteration is calculated from (1) as follows:

ct=12...T. Q)

n
=Y xf forr=12,--,T, 3)
i=1

where X7} is the total amount of products that are sold in the

j-th market at the ¢-th iteration. We assume that the market
price is determined by the following linear demand-supply
relation:

pi=a;-b;- X fort=12,--,T, ey
where p? is the price in the j-th market at the -th iteration,
; and b,

demand-supply relation in the j-th market.

and a are positive constants that specify the

6) Transportation Cost: ¢;
We assume that the cost c;; for the transportation of the

product from the i-th agent to the j-th market depends on the
distance between the agent and the market. Let us denote the
distance between the i-th agent and the j-th market by d;; .

We assume that the transportation cost ¢; Is given as
follows:
¢y =c-dy, %)

where c is the transportation cost for the unit distance.
7) Profit of Agent: r/

Let us denote the profit (i.e., reward) of the i-th agent at
the #-th iteration by /. We define the profit / as follows
when the i-th agent chooses the j-th market for selling his
product (i.e., when x =1):

r=pi-cy. (0)

This can be rewritten from (1)-(5) as

Zx F(Ph = cy)

l
M=
Ral
Rl

bi-Yxy—c-dy). (7
k=1

1

~
0

Thus we can see that our game is a kind of quadratic
programming problem. We can also see from (7) that the

profit ! depends on the actions of the other agents.

We assume that the aim of the i-th agent in our game is to
maximize the total profit » over T itcrations:

T
=2r. ®)
=1

In our game, each agent chooses a single market for
selling his product at each iteration (i.e., at each 1) in order to
maximize his own profit. It should be noted that all the
agents make such market selection at each iteration of our
game. Thus our game is a multi-player non-cooperative
repeated game. It should be also noted that the profit of each
agent can not be represented by a simple payoff matrix
because (i) many agents are involved in our game and (ii) the
profit of each agent is determined through the demand-
supply relation of each market in (4).

3. Strategies for Market Selection
3.1 Q-learning

When choosing a market for the r-th iteration, each agent
has the complete information about the actions of all the
other agents at the previous iteration (i.e., (¢—1)-th
iteration) while he has no information about the actions at
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the current iteration (i.e., t-th iteration). The total number of
possible combinations of the actions of the » agents at each

iteration of the game is m” because each agent chooses one
from the m markets. This is intractably huge when many
agents are involved in our game. For example, in the case of
Figure 1 with 100 agents (i.e., n=100) and five markets
(e, m=5), m" =5'% =7.9%x10% . Therefore the previous
actions of all agents can not be used as state variables.

The simplest way for applying the QO-learning to our
game 1s to use it with no state variables. A O-value of each
agent is assigned to each action. That is, a Q-value is
assigned to each market. Let us denote the O-value of the i-
th agent assigned to the j-th market at the #-th iteration by

Q,5 This @-value corresponds to the action “the i-th agent

chooses the j-th market at the ¢-th iteration of the game.” The
Q-value is updated as follows:

of - (A-a)- Ot +a v, if x} =1, o
7o ,5-"1 , otherwise,

where «a is a positive learning rate. From (9), we can see
that the Q-value of the i-th agent for the j-th market is
updated only when the j-th market is selected. It should be
noted that all the Q-values are initialized to a prespecified
value before the game.

The market selection by the /-th agent is done based on

the Q-values for the m markets. Let Pr(x} =1) be the
probability that the i-th agent chooses the j-th market at the
t-th iteration of our game. We define Pr(x}j =1) by the

roulette wheel selection mechanism with the linear scaling
[3] as follows:

O} — min{Qf;
Pr(xf =1)= — Gy} )

2(Qj - min{Q;})
J=1

(10

where min{Q}}=min{Q}|j=1.2,..,m}. At each iteration

of our game, each market is selected with the probability in
(10). It should be noted that the relation in (2) holds by this
market selection because ecach agent chooses only one
market at each iteration.

3.2 Fuzzy Q-learning

As we have already mentioned, we can not use the
previous actions of all agents as state variables because the
number of possible combinations of previous actions is
intractably huge. On the contrary, the number of markets is
relatively small. Thus we can use the previous market prices
as state variables. Because the market prices are continuous
variables, we have to divide the domain of the market prices
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into several sub-domains. For such a partition of the
continnous domain, we employ a fuzzy partition. In
computer simulations, we use two fuzzy sets “Jow” and
“high” in Figure 2 for dividing the continuous domain of the
market price of each market.

Membership
1.0

L > Price
0 50 100

Figure 2. Fuzzy partition of the market price.

0.0

The Q-value of the i-th agent for the j-th market at the f-th
iteration is inferred from the previous market prices pj-‘l ,

j=12,...,m, using the following fuzzy if-then rules:
Rule R If pi~!is 4y and ... and pilis 4,

then O] = ¢, and ... and O}, =45,
s=12...N, (11

where R; is the label of the fuzzy if-then rule, s is the rule
index, 4 is an antecedent fuzzy set such as “/ow” and

“high,” qﬁ,j is a consequent real number, and N is the

number of fuzzy if-then rules. When we have the two
linguistic values in Figure 2 as antecedent fuzzy sets for each
of the m markets, the number of fuzzy if-then rules is

N =2"_1In the case of Figure 1 with 100 agents (i.e.,
n=100) and five markets (i.e., m=5), N=2°=32.

The Q-value of the /-th agent for the j-th market at the #-th
iteration is calculated by the fuzzy reasoning based on the N
fuzzy if-then rules in (11). First let us define the

compatibility of the previous market prices p’!=
(P74, pi7l, ., pil) with the fuzzy if-then rule R, by the
product operator as follows:

#s(P )= Aq (P A (P - A1) (12)
where Ag(-) denotes the membership function of the
antecedent fuzzy set Ay . The O-value of the i-th agent for
the j-th market at the r-th iteration is calculated as follows:
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N
> u(ph- gy
_ s=1
0) = =iy
T uph

s=1

(13)

The consequent qg,.j of each fuzzy if-then rule is adjusted

as follows:
t-1
{1 - -W&(p_..z_} .qéa_l
Zﬂs(pt—l)
s=1
#s(p'1) . 14
Q§,-J.= +a-_i___.riji, 1fxfj=1, (14)

N
> us(p™h)

s=1

-1 ;
Iy - otherwise.

From the comparison between (9) and (14), we can see
that the amount of the modification of the consequent q§,-j is

proportional to z,(p"™1) /> s, (p"™!) . The same learning
procedure of each fuzzy if-then rule was used in Horiuchi et
al.[10].

In the fuzzy Q-learning, the market selection is done in
the same manner as in the O-learning in Subsection 3.1
That is, the market selection is done according to the

probability Pr(x}; =1) in (10).

3.3 Other Strategies

For evaluating the Q-learning and the fuzzy Q-learning,
we compare them with other strategies. The most simple
strategy is the random strategy. The random strategy can be
obtained by specifying the market selection probability

Pr(xf =1)as
Pr(x; =D)=1/m. (15)
That is, each of the m market is randomly selected with the
same probability.
In the Q-learning and the fuzzy (-learning, each agent
did not use any information about the demand-supply

relation of each market. That is, each agent used only the

I

current profit 7/ in the Q-learning, and the current profit »/

and the previous market prices pz—1= (pf_l, pé"l, an—l)

in the fuzzy Q-learning. If the information about the
demand-supply relation of each market is available, each
agent can use a more complicated strategy. From the

definition of the current profit »/ in (7), we can see that the
optimal selection can be done when the i-th agent knows (i)

the actions of all the other agents, (ii) the demand-supply
relations of all the m markets (i.e., a ; and b; for all the m

markets), and (iii) the transportation cost from the i-th agent
to each market (i.e, ¢ and d; for all the m markets).

Because the market selection at each iteration of our game
has to be done simultaneously by all the » agents, each agent
does not know the current actions of the other agents when
he chooses a market. Thus let us consider the optimal market
selection strategy for the previous actions. In this strategy,
the optimal market is selected for the previous actions. That
is, the i-th agent selects the best market by assuming that the
other agents choose exactly the same markets as in the
previous iteration. Of course, this assumption 1S not always
valid. Thus the optimal market selection strategy for the
previous actions is not always optimal for the current
actions. It should be noted that every agent can not know the
current actions of the other agents before the market
selection. Thus the optimal market selection for the current
actions is impossible.

4. Computer Simulations

4.1 Specifications of Game

We applied the four strategies in Section 3 (i.e., the O-
learning, the fuzzy O-learning, the random strategy, and the
optimal strategy for the previous actions) to the
transportation problem in Figure 1. Our game was iterated
500 times (je., f=12,---500). We used the same
demand-supply relation for all the five markets:

ph=100-b-X". (16)

As the value of 5, we examined 11 cases: 5=0.0, 0.3,
0.6, ..., 3.0.
As the distance d;; between the i-th agent and the j-th

market, we used the Euclidean distance. The transportation
cost for the unit distance is specified as ¢ = 1.0. Thus the
transportation cost from the agent to the market is exactly
the same as the Euclidean distance in Figure 1.

In the Q-learning, the initial value of O, was specified as
Qf = 100 for all agents and all markets. In the same

manner, the initial value of g}; was specified as ¢; = 100

for all fuzzy if-then rules in the fuzzy O-learning. For the
fuzzy partition, we used the two linguistic values in Figure 2
in the fuzzy O-learning. Thus each Q-value was calculated
by 2° =32 fuzzy if-then rules because we have five markets.
For comparison, we also examined the crisp partition in
Figure 3 in the fuzzy Q-learning. In this case, the fuzzy O-
learning is equivalent to the Q-learning with 32 discrete
states for the previous market prices. We specified the value
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Membership
A

1.0
low

0.0 > Price
0 50 100

Membership
A

10~
high

0.0 > Price
0 50 100

Figure 3. Crisp partition.

of a (i.e., learning rate) as a =0.9 for the J-learning and
the fuzzy Q-learning.
In the optimal strategy for the previous actions, the initial

action was selected by assuming x,»(]’- =0fori=12,---,n and

j=12,em.

4.2 Simulation Results

First we used cach strategy for all the 100 agents. That is,
all the 100 agents employed the same strategy through the
500 iterations of our game. In computer simulations,
independent 10 trials were performed for each strategy for
each value of . Simulation results were summarized in
Figure 4 for the O-learning and the optimal strategy for the
previous actions, and in Figure 5 for the two versions of the
fuzzy Q-learning. For comparison, the simulation results by
the random strategy are shown in both figures. From Figure
4, we can see that the average profit by the Q-learning over
100 agents is smaller than that by the optimal strategy for the
previous actions when the value of b is not high (i.e., 0.0 <
b < 2.1). On the contrary, when the value of b is high (i.e.,
2.4 < b < 3.0), the average profit by the O-learning is larger
than that by the optimal strategy for the previous actions.
From Figure 5, we can see that the fuzzy partition in Figure
2 outperforms the crisp partition in Figure 3.

Next we examined the performance of the O-learning and
the fuzzy O-learning by the competition with the optimal
strategy for the previous actions. In our computer
simulations, one agent employed the Q-learning (or fuzzy
Q-learning) and the other 99 agents employed the optimal
strategy for the previous actions. This computer simulation
was performed 100 times for each value of 5 such that each
of the 100 agents was examined as the Q-learning (or fuzzy
QO-learning) agent just once. Computer simulations were
summarized in Figure 6 ~ Figure 8. From these figures, we
can see that both the Q-learning and the fuzzy Q-learning
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—O—Random —A— Optimal —®—Q-learning
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80

1;3\‘\;
20

0 0
-20
-60 I

1 1 1] )] (1 2 1 1

00030609 12 151821242730
The value of &

Average profit (Average of r{ )

Figure 4. Simulation results by the random
strategy, the Q-learning, and the optimal strategy
for the previous actions.

100 —O—Random ~——Crisp =O=Fuzzy
T ogp I
o .
2 40 O~
S 20
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5 20 ~4
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< 00030609 121518 2124 27 3¢

The value of b

Figure 5. Simulation results by the random
strategy and the two versions of the fuzzy Q-
learning (the fuzzy partition in Figure 2 and the
crisp partition in Figure 3).
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80
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20
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-60 \

-80 >
00030609 121518 2124 27 3C
The value of b

3

Average profit (Average of 7 )

Figure 6. Simulation results by the competitior
between the Q-learning and the optimal strateg)
for the previous actions.
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«=O==Fuzzy —&— Optimal
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Figure 7. Simulation results by the competition
between the fuzzy Q-learning with the fuzzy
partition and the optimal strategy for the previous
actions.
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The value of b

Figure 8. Simulation results by the competition
between the fuzzy Q-learning with the crisp
partition and the optimal strategy for the previous
actions.
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The number of fuzzy Q-learning agents

Figure 8. Simulation resuits by the competition
between the fuzzy Q-learning with the crisp
partition and the optimal strategy for the previous
actions.
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Figure 10. Simulation results by the competition
between the fuzzy Q-learning with the fuzzy
partition and the optimal strategy for the previous
actions.

can not outperform the optimal strategy for the previous
actions when the value of b islow (i.e., 0.0 < b < 1.8). On
the contrary, they outperform the optimal strategy for the
previous actions when the value of 5 is high.

We also performed similar computer simulations by
varying the number of fuzzy O-learning agents. The value of
b was specified as 5=3.0. As the number of fuzzy O-
learning agents, we used 11 values: 0, 10, 20, ..., 100. For
each specification of the number of fuzzy Q-learning agents,
we performed 20 independent trials by randomly selecting
the fuzzy (-learning agents. Simulation results were
summarized in Figure 9 and Figure 10. From these figures,
we can see that better results were obtained by the optimal
strategy for the previous actions when the number of fuzzy
Q-learning agents is large (i.e., when the number of the
optimal strategy agents is small). On the contrary, when the
number of fuzzy Q-learning agents is small, the average
profit by the fuzzy Q-learning was larger than that by the
optimal strategy for the previous actions. We can also see
that the performance of the fuzzy Q-learning with the fuzzy
partition was higher than that of the fuzzy Q-learning with
the crisp partition.

4.3 Discussion

From Figure 4 and Figure 6 ~ Figure 8, we can see that
the optimal strategy for the previous actions performed very
well when the value of b is low, but it did not perform wetll
when the value of b is high. This is because each agent tends
to choose the market with the highest previous price in the
optimal strategy for the previous actions. This leads to the
concentration of the products at that market. From the linear
demand-supply relation in (4), the concentration of the
products and the higher value of 4 make the market price
very low. Thus the optimal strategy for the previous actions
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did not work well when the value of b was high. The effect of
such concentration of products was slight when the number
of the optimal strategy agents was small. Thus the optimal
strategy for the previous actions worked well when the
number of fuzzy Q-learning agents was large (see Figure 9
and Figure 10).

The random strategy evenly distributes the products
among the given markets on the average. Thus such
concentration of products never happens when all the agents
employ the random strategy. This is the reason why the
random strategy relatively worked well in Figure 4 and
Figure 5 when the value of b was large.

The fuzzy O- learmng with the fuzzy partition in Figure 2
worked well for various situations (see Figure 5, Figure 7
and Figure 10). This is because the previous market prices
were effectively utilized for determining the Q-values by
fuzzy if-then rules.

Some of the 32 fuzzy if-then rules obtained by the fuzzy
Q-learning with the fuzzy partition in Figure 2 are shown in
Table 1 for the case of b = 30 and a single fuzzy O-learning
agent (the other 99 agents used the optimal strategy for the
previous actions). These fuzzy if-then rules in Table 1 are
typical fuzzy if-then rules among all the 32 rules. From this
table, we can see that the Q-values are high for the markets
with low previous market prices. Those fuzzy if-then rules
suggest the product concentration at the current iteration by
the other 99 agents with the optimal strategy for the previous
actions. It should be noted that those rules were
automatically extracted by the fuzzy O-learning.

5. Conclusion

In this paper, we first formulated a transportation
problem with the demand-supply relation at each market as
a multi-player non-cooperative repeated game. The
characteristic features of our game compared with the
iterated Prisoner’s Dilemma game are (i) many agents are
involved and (ii) the profit of each agent is not represented
by a simple payoff matrix. Next we illustrated how the Q-
learning and the fuzzy Q-learning can be applied to our
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game. Finally, we demonstrated by computer simulations
that the fuzzy Q-learning worked well in comparison with
the Q-learniing, the random strategy, and the optimal
strategy for the previous actions.
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Table 1. Some examples of fuzzy if-then rules generated by the fuzzy Q-learning.

Antecedent: Market price Consequent: Q-value
P! Py P! py! ps7! 5t 952 43 954 s
low high low high low 36.3 -30.7 54.0 -76.8 75.9
high low high low high -34.2 72.7 -52.1 62.5 -26.1
high high low high low 36.3 -31.3 54.0 54.3 75.9
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