

For Intelligent Transportation Systems

Dr. Jong-Keun Lee

Oct. 4th 2002

Intelligent Systems Research Lab Department of Computer Engineering Hangkong University, Seoul, Korea

- *⊯* Background
- Z Design Methodology
- ∠ Case Study : I³D² Traffic Simulation System
- *⊯* Conclusions
- Reference Problems and Future Works

Background : Intelligent Transportation Systems

Motivation :

To maximize utilization rate of existing traffic equipments to reduce traffic congestion problems.

Collect Traffic Information Offers Processed Traffic Information Ultrashort waves Detector Image Detector Image Detector Image Detector Beacon Traffic Management Center Beacon Traffic Management Center

© 2002, HanKuk Aviation University

Systems Intelligent Systems Research Lab.

Background : Research trends for ITS

∠ Conventional :

K H/W-oriented (electronic, mechanical, civil engineering approaches)

∠ Current :

- ✓ There is a limitation in reducing traffic congestion from extending of existing traffic facilities.
- S/W-oriented approach is necessary for ITS
- - ↓ ATIS (Advanced Traveler Information System)
 - ∠ user-oriented
 - ∠ used for efficient traffic guidance
 - ↓ ATMS (Advanced Traffic Management System)
 - ∠ operator-oriented
 - \varkappa used for traffic system optimization

Background : Why Modeling and Simulation

∠ for ATMS

- « control policy analysis (efficiency, reliability).
- ✓ forecasting of congestion propagation depending on traffic accident, road construction
- *∝* optimal signal control algorithm generation.
- ∠ feasibility study of traffic effect.
- \swarrow for ATIS
 - *⊯* forecasting traffic congestions.
 - *⊯* dynamic travelling path finding.
 - \varkappa virtual driving.

Background : Conventional vs. DEVS Simulation

« Conventional Traffic Simulation Approach

- *∝* mathematical analytic approach.
- Mostly microscopic-oriented (where each car is separately injected to the road).

K Discrete Event Simulation Approach

- *⊯* support both microscopic & macroscopic.
- *⊯* provide hierarchical, modular system development environment.
- ✓ fit the dynamic characteristics of traffic system where state transition occurs when light signal change (event).

Layer I : Hierarchical, Modular and Distributed Modeling & Simulation

System Entity Structure / Model Base

- Z Proposed by Zeigler
- support hierarchical, modular discrete event modeling and simulation environment
- - ↓ AI-based tree-link knowledge representation scheme that combines the decomposition, taxonomic, and coupling relationships.
- \varkappa model base
 - Contains models that are procedural in character, expressed in DEVS(Discrete Event System Specification) formalism

∠ DEVS/HLA

- Solution EVS/HLA based distributed simulation environment
- simulation use of multiple computers for model execution is fast becoming the predominant form of simulation

Layer II : Model Abstraction

Layer III : Microscopic and Macroscopic Traffic Modeling

$\not { \ensuremath{ \ensuremath{$

- ∠ Based on the discrete-time approach
- Solution Generally applied and analyzed by the *car-following* model & the *lane changing* model. so as to trace the behavior of each vehicle at every time period.
 - ↓ Car-following
 - study of which how the driver of a following vehicle try to conform with the behavior of the lead vehicle
 - ↓ Lane-changing

 - ✓ relatively complex because of the intervention of driver's characteristics and decision making

Macroscopic Simulation Model

- Can be abstracted from the microscopic model, consists of nodes and links
 - ↓ CROSS, TRANSD (Transducer), GENR (Generator), ROAD

SES of Transportation Systems

Intelligent Systems Research Lab.

Conceptual Diagram of DEVS/HLA based Distributed Traffic Modeling

Layer IV : ITS Simulation Environment

- I³D² Traffic Simulation System

Layer IV : ITS Simulation Environment - NaeBu Freeway Traffic Simulation System

Simulation Model Structure of JOONGBOO Highway

Intelligent Systems Research Lab.

∠ The amount of vehicles generated between East Seoul T.G. and Gonziam I.C. according to collected real data.

K Real Data : Thursday, May. 31. 2001. am 05:00 ~ pm. 12:00

of Vehicle

Average travel time of vehicles that drive from East Seoul T.G. to Gonziam
 I.C according to time period.

✓ Although this has a little faster average travel time than real data, comprehensive traffic phenomena are expressed effectively.

Average Travel Time (m)

Processing Time of Simulation

- ∠ The result of simulation for 13 hours in 32Km block of JOONGBOO Highway.
 - *∠* about four times faster than real-time.
- ✓ But, processing time of simulation should be about 6 to 7 times faster than real-time (by Transportation Engineering)
 - ✓ Only so, it is efficient to apply the analysis of real world's traffic phenomena to real world

Decomposition concept of the large scale traffic network

Distributed Simulation Result (Abnormal)

∠ Distributed Traffic Simulation Result(abnormal situation)

- DEVS-based design methodology for the traffic simulation system has been discussed.
- T Discrete event modeling technique can be employed to describe macroscopic model.
- Level of abstraction supports an coherent integration between microscopic and macroscopic traffic modeling
- Four-layered approach provides a convenient means for evaluating the alternative signal control strategies at the operating level of ATMS as well as for generating the simulation-based forecasting information for ATIS.
- **†** I^3D^2 traffic simulation system has been successfully implemented and tested
- Finally, it is showed whether DEVS/HLA-based distributed simulation technique can be applied to traffic simulation field effectively.

- ✓ To consider scalability of traffic simulation, DEVS/HLA-based distributed simulation is applied.
- ∠ There is a doubt if it effectively enhances the performance
 - ✓ The stabilized system structure non-sensitive to fluctuation of objects is necessary.
 - Enhancement of distributed processing speed of DEVS/HLA is required.

 - Apply Predictive Quantization Multiplexer method to Distributed Traffic Simulation.

- ∠ Objective
 - Reformance Enhancement on DEVS/HLA based Distributed Traffic Simulation
- 🗷 Idea
 - Uses the Predictive Quantization Multiplexer method and performs the effective message filtering and compression between two Roads in distributed environment.
 - Reforms Distributed Traffic Simulation with reasonable communication overhead.
 - Z This idea is based on proposed Methodology by Prof. Bernard P. Zeigler et al.

Data Communication of Distributed Traffic Simulation Envir.

- Z Vehicle Information
- - ✓ transfers information of the front road every time. But it has less data amount at one time than vehicle information.

Intelligent Systems Research Lab.

Moving of Vehicle Information

- Method that minimizes individual variables in each vehicle information is necessary.
- *K* Individual transmission method of vehicle information is multiplexed and transferred.

As road information requires update of continuous information, Predictive Quantization Multiplex method should be used.

The End

Thank you very Much!

