
Agent Compromises in Distributed Problem

Solving

Yi Tang1,2, Jiming Liu3, and Xiaolong Jin3

1 Department of Mathematics, Zhongshan University, Guangzhou, China
2 Department of Mathematics, Guangzhou University, Guangzhou, China

tyi@guangztc.edu.cn,
3 Department of Computer Science, Hong Kong Baptist University

Kowloon Tong, Hong Kong
{jiming, jxl}@comp.hkbu.edu.hk

Abstract. ERA is a multi-agent oriented method for solving constraint
satisfaction problems [5]. In this method, agents make decisions based
on the information obtained from their environments in the process of
solving a problem. Each agent has three basic behaviors: least-move,
better-move, and random-move. The random-move is the unique behav-
ior that may help the multi-agent system escape from a local minimum.
Although random-move is effective, it is not efficient. In this paper, we
introduce the notion of agent compromise into ERA and evaluate its
effectiveness and efficiency through solving some benchmark Graph Col-
oring Problems (GCPs). When solving a GCP by ERA, the edges are
transformed into two types of constraints: local constraints and neighbor
constraints. When the system gets stuck in a local minimum, a com-
promise of two neighboring agents that have common violated neighbor
constraints may be made. The compromise can eliminate the original
violated neighbor constraints and make the two agents act as a single
agent. Our experimental results show that agent compromise is an effec-
tive and efficient technique for guiding a multi-agent system to escape
from a local minimum.

Keywords: Agent Compromises, Distributed Constraint Satisfaction Prob-
lem, Graph Coloring Problem, Distributed GCP Solving

1 Introduction

A distributed constraint satisfaction problem (distributed CSP) is a constraint
satisfaction problem where variables and constraints are distributed to multiple
agents. Several multi-agent system based problem solving methods have been
proposed for solving distributed CSPs [5] [9]. In these methods, each agent deals
with a subproblem that is specified by some variables and related constraints of
the given problem.

ERA (Environment, Reactive rules, and Agents) is an example of this kind
of methods [5]. In ERA, each agent represents several variables and stays in a



2 Y. Tang, J. Liu, & X. Jin

lattice-like environment corresponding to the Cartesian product of the variable
domains. The agent tries to move to a certain lattice so as to make as many
as possible constraints satisfied. To do so, at each step, it will select one of the
basic reactive behaviors: better-move, least-move, and random-move.

Graph Coloring Problem (GCP) is a class of CSPs. In this paper, we will
introduce the notion of agent compromise into ERA for solving GCPs. In solving
a GCP by ERA , each agent represents a group of vertices in the given GCP and
decides the colors of these vertices. The edges in the GCP are transformed into
two types of constraints: local constraints and neighbor constraints. The agent
needs to minimize the number of unsatisfied neighbor constraints in order to
solve the GCP. When the system gets stuck in a local minimum, we will adopt
not only the technique of random-move but also agent compromise to lead
the system to escape from the local minimum. An agent compromise is made
by two neighboring agents that have common violated neighbor constraints. It
aims at eliminating the original violated neighbor constraints. When an agent
compromise is made, the corresponding two agents will act as a single agent (we
call it compromise agent) to make their decisions, i.e., decide their common
local behaviors. The compromise will be abandoned after a reaction is finished.

The rest of the paper is organized as follows. In Section 2, we describe the
background of the paper. In Section 3, we introduce the notion of agent com-
promise and integrate the agent compromise strategy to ERA. In section 4, we
present our experimental results and discussions. Section 5 is the conclusion of
the paper.

2 Background

2.1 Graph Coloring Problems

Graph Coloring Problems (GCPs) are NP-hard. Many practical problems can be
transformed into GCPs [4]. There are several types of GCPs [10]. One of them
is as follows:

Given an undirected graph G = (V, E) where V is a set of vertices and E is a
set of pairs of vertices called edges, and a set of available colors S = {1, 2, ..., k}.
The problem is to find a mapping C: V → S such that C(u) �= C(v) if (u, v) ∈ E.

In short, a GCP is to determine whether or not it is feasible to color a graph
with a certain number of colors. Fig. 1 shows a simple GCP instance. This graph
contains 6 vertices and 7 edges. It can be colored with 3 colors.

2.2 Definitions

Assume that the vertices in a GCP have been divided into n groups 4: {V1, V2, ...,
Vn}, where Vi ∩ Vj = φ and ∪n

i=1Vi = V . We further assume that a set of
agents: {agent1, agent2, ..., agentn} is used to represent vertex groups. Specifi-
cally, agenti represents the vertices in Vi.
4 Each vertex can be regarded as a variable whose domain is the color set.



Agent Compromises in Distributed Problem Solving 3

A

B

DC

E

F

Fig. 1. A 3 colorable graph.

Definition 1. (Local constraints, neighbor constraints, and local color vector)

1. Local constraints of agenti are the edges among vertices in Vi;
2. Neighbor constraints of agenti are the edges between vertices in Vi and those

in V − Vi.
3. A local color vector of agenti is a tuple of color assignments of all vertices

in Vi that satisfied all local constraints of agenti.

Definition 2. (Agent environment)
The environment of agenti is composed of lattices corresponding to all local

color vectors of agenti. The size of agenti’s environment is m, if and only if
agenti has m local color vectors.

An agent always stays in one of lattices in its environment. An agent stays
at a lattice indicates its vertices are assigned colors corresponding to the local
color vector.

For example, in Fig. 1, we can divide the vertices into two groups: {A, B,
C} and {D, E, F}. Two agents, agent1 and agent2, are used to represent them
respectively. Edges AB, BC and AC are local constraints of agent1, and edge
CD is its neighbor constraint with agent2. If S = {1, 2, 3} is the color set, (1, 2, 3)
is a local color vector of agent1 which means A, B, and C are colored with colors
1, 2, and 3, respectively. The local color vectors of agent1 are (1, 2, 3), (1, 3, 2),
(2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). The size of agent1’s environment is 6.

Note that based on the above definitions, the local constraints of agenti are
always satisfied in any states.

3 Distributed GCP Solving by ERA with Agent
Compromises

3.1 Reactive Behaviors of Agents

In order to solve a given GCP, at each step, an agent will probabilistically select
the following three predefined local reactive behaviors to decide which lattice it
will move to [5]:



4 Y. Tang, J. Liu, & X. Jin

• least-move: the agent moves to a lattice where it has the minimum number
of violated neighbor constraints;

• better-move: the agent moves to a random lattice where the number of vio-
lated neighbor constraints caused is fewer than that at its current lattice;

• random-move: the agent randomly moves to a lattice.

When an agent selects a least-move or a better-move, it may not move to a
new lattice because at its current lattice this agent has already a minimum num-
ber of violated neighbor constraints or it is in a zero-position [5]. When none of
the agents can move by a least-move or a better-move, it means the system gets
stuck in a local minimum. The random-move behavior is the unique reactive be-
havior that an agent can use to escape from a local minimum. Different random-
move ratios, namely, the probability ratios of prandom move:pleast move:pbetter move,
may yield different performances. In order to explore the optimal random-move
ratio, we conduct a set of experiments on an instance, myciel7.col, with different
random-move ratios by 64 agents. . The results in Tab. 1 show that a relative
small ratio is better than others. 5 : 1000 : 1000 is the optimal one.

Table 1. Comparisons among different random-move ratios. The results are obtained
by solving an instance, myciel7.col, with 64 agents. This instance, downloaded from
[10], contains 191 vertices and 2,360 edges. It can be colored with 8 colors. We run the
ERA algorithm 100 times in each case and calculate the average results.

random-move Ratio Num. of Movements

2 : 1000 : 1000 235
3 : 1000 : 1000 252

5 : 1000 : 1000 222
8 : 1000 : 1000 250
10: 1000 : 1000 235
20: 1000 : 1000 259

The random-move behavior is simple and effective, but it is not efficient.
Although we can select a suitable random-move ratio, we cannot slide over that
the results are broken away by the randomness caused by random-move. The
reason that we need randomness during a problem solving is that it can lead the
multi-agent system to escape from a local minimum. There are other techniques
to provide the function that lead the system out of a local minimum [7] [8]. In
the following, we will propose a new technique for helping agents escape from a
local minimum in a distGCP solving.

3.2 Agent Compromises

Why do there exist local minima when solving a given problem? An intuitional
explanation is that there is a set of primary variables. It is hard to find suitable



Agent Compromises in Distributed Problem Solving 5

values for these variables in a few steps, which satisfy all the related constraints.
After assigned values for these primary variables, the values of other variables
will be easily determined [1]. In the case of distGCP, since each vertex is rep-
resented by a certain agent, the characteristic of primary variables is partially
demonstrated by the hard neighbor constraints between agents. If we can make
them satisfied as early as possible, we might improve the solving. Motivated by
this view, we propose an agent compromise strategy for agents. We equip the
agents with the behavior of make-compromise.

The compromise of agents is made by two neighboring agents (i.e. the two
agents have at least one common neighbor constraint) in the distGCP solving.
It can be viewed as a virtual agent whose variables and constraints are inherited
from the original two agents. We call the two agents as component agents and the
virtual agent as compromise agent. The local constraints of compromise agent
are not only inherited from the local constraints of the two agents, but also from
the neighbor constraints between them. Once a compromise has been made,
a compromise agent is activated and the two component agents are deacti-
vated. The environment of the compromise agent is composed of those of the
two component agents. The same as an agent in a distGCP solving, when the
compromise agent stays in its environment, its local constraints are satisfied.
Furthermore, the compromise agent will inherit some reactive behaviors of the
two component agents and determine its local reactive behavior based on its
local environment. This implicitly makes the two component agents moving in
coherence. The compromise will be abandoned after the above reaction is fin-
ished. At the same time, the two component agents are recovered and they in-
herit the moving results of the compromise agent. This means that all neighbor
constraints between these two component agents are satisfied.

3.3 The Process of a Make-compromise

When solving a given GCP, if an agent wants to make a compromise with other
neighbor agents, it will start the procedure of a make-compromise. And, we will
call this agent master.

The master will choose one of its neighbors, called slave, to form a compro-
mise agent based on a criterion that the number of violated neighbor constraints
between the master and the slave is the largest. If several masters select the
same slave, the one that has the largest number of violated neighbor constraints
with the slave will win the competition and form a compromise agent with the
slave finally. The reactive behaviors of the compromise agent can be least-
move, better-move, and random-move. After finishing a selected behavior, the
compromise is abandoned. The values of the variables in the compromise are re-
turned to the master or the slave. The neighbor constraints between the master
and the slave are satisfied. The state of the multi-agent system is then updated
and the system will continue running from the updated state.



6 Y. Tang, J. Liu, & X. Jin

4 Experimental Results and Discussions

4.1 Experiments and Results

In the following experiments, we classify reactive behaviors into two types:
random and non-random, and set the probability ratio of these two types behav-
iors as 5:2000. We set better-move and least-move with the same probability. We
further introduce the make-compromise ratio, denoted by the probability ratio,
pmake compromise : pnon random. For example, if this ratio is 5:100, it means that
the probability ratio of the four reactive behaviors prandom move:pmake compromise

:pleast move: pbetter move is 5:100:950:950. The vertices in each GCP instance are
equally partitioned into groups according to the label sequence. A corresponding
number of agents will be used to represent these vertex groups.

In the experiments, the asynchronous operations of distributed agents are
simulated by means of sequentially dispatching agents and allowing them to sense
the current state of their environments. All agents are dispatched randomly and
are given the same random-move ratio. For simplicity, we assume least-move is
the unique reactive behavior of a compromise agent.

1. Comparisons between different make-compromises ratios

In this set of experiments, we show what is the optimal make-compromises
ratio by solving an instance, myciel7.col, in [10]. Tab. 2 shows the results of
the experiments. It shows that if choosing the ratio between 5 and 10, the
performance is better.

Table 2. Comparisons between different make-compromises ratios. The results are
obtained by solving an instance, myciel7.col, with 64 agents. The instance is from [10]
and contains 191 vertices and 2,360 edges. It can be colored with 8 colors. We run the
solver 100 times in each case and calculate the average number of movements and that
of compromises.

make-compromise Ratio Num. of Num. of
pmake compromise : pnon random Movements Compromises

- 222 -
1 : 100 182 8
2 : 100 169 13
5 : 100 141 23
8 : 100 142 33
10 : 100 139 33
15 : 100 152 59
30 : 100 146 88
40 : 100 155 110



Agent Compromises in Distributed Problem Solving 7

2. Comparisons between the performances with/without make-compromises

We select 8 instances from [10] to compare the performances of ERA with-
out/with agent compromises. We run each instances in each case 100 times.
In each run with compromises, we set the make-compromise ratio as 5:100.
Tab. 3 shows the experimental results. It shows that ERA can reduce the
number of movements on average 26% (ranging from 14% to 44%) if adopting
make-compromise.

Table 3. Comparisons between different distributed GCP solving with/without make-
compromises. The results are obtained by solving 8 instances from [10]. We run the
ERA algorithm 100 times in each cases. The number of movements(with/without com-
promises) are on average and the reduction(%) is the percents of the movements re-
duced after introducing agent compromise.

Instance ID Num. of Num. of Movements Reduction
(vertices, edges, colors) Agents (with/without compromises) (%)

anna.col (138, 493, 11) 46 187 / 334 44
jean.col (80, 254, 10) 27 43 / 51 16

miles250.col (128, 387, 8) 43 169 / 296 43
queen5 5.col (25, 160, 5) 8 38 / 44 14
queen6 6.col (36, 290, 7) 12 1,960 / 2,291 14
queen7 7.col (49, 476, 7) 16 2,363 / 2,834 17
myciel6.col (95, 755, 7) 32 51 / 71 28

myciel7.col (191, 2360, 7) 64 141 / 222 36

4.2 Discussions

In order to help agents escape from a local minimum, we endue each agent
with the behavior of make-compromise. An agent compromise is made by two
neighboring agents that have common unsatisfied constraints. It can eliminate
these constraints. Behind the introduction of agent compromise is the existence
of the primary variables. Since these variables are hard to set a suitable values
that satisfy all related constraints, it is one of the main reasons why the agents get
stuck in local minima. The compromise between two agents gives the multi-agent
system more chances to set these variables with suitable values. As compared
with the random-move behavior, the make-compromise behavior is addressed
the structure of a problem. This is based on that the hard constraints are often
associated with the primary variables, especially when the system has been
running a few time steps.

On the other hand, the behavior of a compromise agent can be viewed as
a partially global behavior, because it is a temporary union of two neighboring
agents and the corresponding two component agents can make decisions in co-



8 Y. Tang, J. Liu, & X. Jin

herence. According to the results of our experiments, the employment of this
kind of global behavior can improve the performance of ERA in solving a GCP.

However, we cannot exempt the agents from the behavior of random-move.
Although a compromise agent can make the violated neighbor constraints sat-
isfied, the variables changed might not belong to the primary variables. This
may lead to the different reduction of agent movements. We need further study
on the structure of a problem.

5 Conclusion

In this paper, we introduce the notion of agent compromise to the ERA method
in distributed GCP solving. When solving a given GCP with ERA, we equip
each agent with the behavior of make-compromise. This behavior provides an-
other ability for agents to escape from a local minimum. As compared with the
random-move behavior, this behavior integrates two neighboring agents and
makes them. moving in coherence. We have examined the compromise strategy
in distributed GCP solving. The experimental results show an obvious improve-
ment of ERA with agent compromises in solving some benchmark GCPs.

Acknowledgements. This project is supported in part by a HKBU FRG
grant and conducted at the Computer Science Department of HKBU.

References

1. Gomes, C. P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satis-
fiability and constraint satisfaction problems, Journal of automated reasoning, 24,
(2000), 67-100.

2. Gu, J.: Efficient local search for very large-scale satisfiability problem, SIGART
Bulletin, 3, (1992), 8-12.

3. Hoos, H.H., Stutzle, T.: Systematic vs. Local Search for SAT, Proc. of KI-99, LNAI
1701, Springer, (1999), 289-293.

4. Leighton, F.: A graph coloring algorithm for large scheduling problems, Journal of
Research of the National Bureau of Standards, 84, (1979), 489-503

5. Liu, J., Jing, H., Tang, Y.Y.: Multi-agent oriented constraint satisfaction, Artificial
Intelligence. 138, (2002) 101-144.

6. Nareyek, A.: Using global constraints for local search, Constraint Programming and
Large Scale Discrete Optimization, DIMACS, 57, (2001) 9-28.

7. Schuurmans, D., Southey, F., Holte, R. C.: In Proceedings of the 17th International
Joint Conference On Artificial Intelligence (IJCAI-01), (2001) 334–341.

8. Shang, Y., Wah,B.W.: A discrete Lagrangian-based global-search method for solving
satisfiability problems, Journal of global optimization. 12(1), (1998) 61-99.

9. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint sat-
isfaction problem: Formalization and algorithms, IEEE Transaction on Knowledge
and Data Engineering. 10(5), (1998) 673-685.

10. http://mat.gsia.cmu.edu/COLOR02


