
Building User Interfaces thanks to Eco-Resolution
David JULIEN
LIP6 - Pôle IA

8 rue du Capitaine Scott
75015 PARIS - FRANCE

Email: david.julien@lip6.fr

Zahia GUESSOUM
MODECO/CReSTIC, IUT de Reims

Rue des Crayères
51000 REIMS - FRANCE

Email: zahia.guessoum@lip6.fr

Mikal ZIANE
Université René Descartes

12 rue de l’école de médecine
75005 PARIS - FRANCE
Email: mikal.ziane@lip6.fr

Abstract— The development and maintenance of user inter-
faces, especially adaptable interfaces, is too complex. Model-
based approaches are promising but not as successful as was
expected. We thus propose to encapsulate interface models with
software agents and to rely on eco-resolution, a distributed
problem-solving algorithm, to reach the objectives of the interface
designer or users. This will lead to the development of a proactive
tool to actively assist the designer to build interface models.

I. INTRODUCTION

Despite many efforts to improve the specification of user-
interfaces, their development and maintenance are still too
difficult.

Most of these efforts focus on the presentation part, such as
the selection of the best widget to display a data, while few
efforts deal with other aspects which remain tedious to design.
For instance, to ensure the consistency between the application
state and the interface one, developers have to work directly
at the level of source code instead of describing this kind of
constraints at an abstract level.

Moreover, generated user interfaces are still too rigid and
do not easily adapt to new hardware, new software libraries
or changing users preferences.

To address these issues, developers and users should be
allowed to express their choices declaratively, to postpone
their choices until run-time, and to modify these choice at
any time. Model-Based Environments (see [10] for a survey)
aim at supporting some of these requirements. Models allow
to describe the most important aspects of user interfaces and
are then transformed into an operational user interface.

However, model-based environments are known to be dif-
ficult to use and their behavior difficult to predict [8]. So we
suggest to encapsulate models by software agents. Each agent
will monitor a model element and will rely on knowledge
attached to this element to transform it into executable code
as well as to adapt it to varying constraints.

This paper gives an overview of the eco-resolution algorithm
in a model-based approach to build user interfaces. GOLIATH,
a model-based environment to build user interfaces, is de-
scribed first. Then we present agents and the eco-resolution
principle, and we justify why they are suitable to design
models. Afterwards we describe how eco-resolution is applied
to GOLIATH. Then we briefly describe the implementation and
detail an example. Finally we give a short overview of related
work.

II. GOLIATH

When using GOLIATH [6], user interfaces are described
using a set of declarative models.

The application model describes application data, functions
and their pre-conditions, notifications, and consequences of
function-calls on application data.

The dialogue model describes user interfaces in terms of
abstract containers and relationships between these containers.
An abstract container defines views (what application data are
displayed), operations (what functions may be triggered by
users) and local variables. Each abstract container is linked to a
presentation element. A view defines mainly a link between an
application data (that is the result of a function call which does
not modify the application state) and a presentation data. An
operation defines mainly a side-effects function call when an
event occurs. Parameters of a function-call may be presentation
data, application data or local variables. These details will be
usefull to understand the example.

The presentation model describes native elements provided
by toolkits and presentation elements defined by developers.

The application model is defined by the application designer.
The goal of the interface designer is to build a dialogue model
and a presentation model to describe the interface.

GOLIATH is implemented and is able to generate a runnable
user interface described with models without using any heuris-
tics.

III. AGENTS, ECO-RESOLUTION AND USER INTERFACES

In this section we describe what is an agent and the eco-
resolution principle, and why they are suitable to build user
interfaces.

A. Agents

A multi-agent system is defined as a set of interacting
agents, capable of organizing themselves dynamically and
of adapting their own behavior to their environment. This
dynamic and adaptive approach eases the development, the
maintenance and the dynamic evolution of systems [4]. An
agent has the following properties:

• autonomy: each agent encapsulates its own state and
makes decisions about what to do based on this state;

• reactivity: agents are situated in an environment (for
instance a collection of agents), are able to perceive this



environment, and are able to respond to changes that
occur in it;

• pro-activity: agents are able to exhibit goal-oriented be-
haviour and take initiatives;

• social ability: agents interact with other agents trough an
agent communication language and are able to engage in
social activities, such as cooperation or negociation, to
achieve their goals.

Multi-agent systems are considered as an important new
direction in software engineering for several reasons [5]:

• natural metaphor: many domains can be conceived as a
set of active agents interacting to reach some personal
goals;

• distribution of data and control: many systems do not
have a single locus of control to solve a problem but
many. In that case it is more efficient to distribute this
control through different autonomous agents;

• legacy systems: existing systems may be encapsulated in
agents to use them in a new system. Agents facilitate
interoperability.

• open systems: many systems are open because it is not
possible to know at design time all their components
and interactions between these components. Autonomy
and sociability are useful properties to allow future yet-
unknown evolutions.

Many solutions are available to design a multi-agent system
to solve a problem. In our case we choose the eco-resolution
principle.

B. Eco-resolution

Our multi-agent system relies on the eco-resolution algo-
rithm [2]. When possible, eco-resolution transforms a global
problem into a set of local problems. The local problems are
solved by a set of interacting agents. Under certain conditions,
the individual behavior of the agents globally converge towards
a stable state corresponding to a solution of the problem.

Contrary to traditional approaches where a program defines
the different steps to solve a problem, a program based on
eco-resolution defines agents and their interactions from an
organisational model. Agents interact in an environment and
a solution emerges from these interactions.

Systems based on eco-resolution exhibit two important
properties:

• They are able to find a solution without exploring all
the global state space. From an initial configuration, they
evolve until they reach a stable state corresponding to a
possible solution;

• They resist well to noise. A local perturbation induces a
local adaptation to reach a globally stable state.

An interesting point of view to design a system based on
eco-resolution consists to identify the different components of
this sytem, and then to associate an agent to each component
[3]. It allows to:

• describe a complex system with a set of simple interacting
models instead of a complex model;

• describe different levels of abstraction homogeneously
while offering possibilities to provide different point of
views and expertise;

• intervene at different levels to introduce local modifica-
tions;

• observe emergences of new design solutions, and conse-
quences of local modifications on these solutions.

C. Agents and Eco-resolution for user interfaces

Multi-agent systems provide interesting properties to design
GOLIATH’s models:

• natural metaphor: abstract containers, views, presentation
elements may be components encapsulated in agents.
Each agent will have specific knowledge to manage its
component. Components become pro-active.

• distribution of data and control: each component has
its own tasks and goals which are independent of other
components.

• legacy systems: agents may encapsulate existing toolkits
or functional cores. Therefore they allow to build user
interfaces for existing applications without modify them.

• open systems: to introduce new concepts with new
components only consists to introduce new agents and
possibilities of interactions.

Moreover eco-resolution allows to imagine a new way to
build models:

• Finding a solution from a partial description allows the
designer to describe the main aspects of the interface and
let the system evolves to a first solution.

• Perturbations allow the designer to “push” the agents to
propose another solution when the current solution is not
satisfactory.

• Agents may be kept at run-time to allow final users
themselves to update the interface.

In the next section we will describe how we use eco-
resolution with models of GOLIATH.

IV. ECO-RESOLUTION IN GOLIATH

Building user interfaces using eco-resolution targets two
objectives: to automatically generate a first solution from few
details and to improve easily the proposed solution.

Our first objective is to generate a user interface (that is a
dialogue model and a presentation model) from an application
model and some information about the targeted interface like
application data to display. In order to do that, we associate
an agent to each component defined in the models of GO-
LIATH. These components correspond for instance to abstract
containers, views, operations or presentation elements.

An agent uses knowledge specific to its encapsulated com-
ponent to solve local problems linked to this component. For
instance a view displays application data and thus has to insure
that the presentation is updated when the value of this data
is modified in the application; a function-call agent requires
data for each parameter of the function and thus contacts other
agents to get them.



Agents communicate thanks to the Contract-Net protocol [9]
(see figure 1). When an agent accepts a contract (for instance
“call a function”), a strategy is defined to fulfill it. A strategy is
composed of activities (find an operation, find the parameters),
and for each activity is defined a set of available techniques
to carry it out (use a presentation data or an application
data as a parameter). The selected technique may induce new
relationships with other agents.

Initiator Participant

CFP

refuse

propose

reject−proposal

accept−proposal

failure

inform−done

inform−result

Fig. 1. The Contract-Net protocol.

Figure 2 represents a set of interacting agents encapsulating
components. These components describe a part of a dialogue
model and presentation model. For instance the function-call
agent is linked to an operation agent, a local-variable agent
and a presentation-data agent. Its describes which operation
triggers the function call and what parameters are used to
make the call.

Our second objective is to allow the designer to easily
update the generated interface. For that, (s)he just has to
identify which agent has made an incorrect decision, that is
which agent has selected an inappropriate technique to solve a
problem. After disabling this technique or suggesting an other,
the agent cancels the consequences of the previous decision
(like relationships with other agents) and puts in place new
relationships to propose an other interface.

Figure 3 represents the agents after the designer identifies
that choosing a presentation data as parameter is not the better
solution. Disabling this decision leads the agent to cancel the
relationship with the presentation-data agent and afterwards
search an other date source, for instance an application data.
Consequently the sub-element which displayed the presenta-
tion data becomes useless and is therefore rejected by the

presentation element.

A B

Abstract container

View Operation Action

by agent A and accepted by agent B

Function call

Local variable

Presentation element

data
Presentation

Sub−element
Dependency between two agents asked

Fig. 2. Set of interacting agents managing user-interface components.

Abstract container

View Operation Action

Local variable
Application

Agents or dependencies called into question

New agents or dependencies

Presentation element

Sub−element

data
Presentation

data

Function call

Fig. 3. New organization when the function-call agent is not authorised to
use a presentation data as a parameter.

V. IMPLEMENTATION

Our approach has been implemented in Caml. Each agent
class is described through a module. Each module defines, for
each activity of an agent, an entry point to introduce techniques
to fulfill this activity. Thus we are able to add or remove
knowledge at any time.

The designer interacts with the multi-agent system through
a user interface (see figure 4). This interface is described and
runned thanks to GOLIATH. Our interface does not display the
whole interactions between agents. It allows to introduce new
agents, for instance by selecting through the interface which
functions the final user may trigger. Moreover it allows to
select an agent, to view its activities and selected techniques,
and to change its decisions (see figure 13).



Fig. 4. GOLIATH’s design tool.

VI. THE "COUNTER" EXAMPLE

To explain the behaviour of our eco-system, we choose a
simple example which consists to build a user interface for a
"Counter" application. This application defines four functions:
incr(), raz(), getValue(OUT Integer value),
setValue(IN Integer value).

Building the "Counter" interface requires two steps. First the
designer selects interesting functions and tells the environment
to generate a first version of the user interface. Second the
designer corrects bad decisions to improve the solution.

In this example, 28 agents are used and the contract-
net protocol is initiated in the neighbourhood of 350 times
during the first phase. However the run time is less than 0.1s
on a computer at 1Ghz. Obviously we give only a partial
description of these interactions by considering only what
happens around the "setValue" function call. To simplify too,
we give a sequencial description but in reality all activities
occur in parallel when possible.

A. First generation of the user interface

The designer wants to display the counter value and to allow
the final user to increment, reset and set this value. Thus (s)he
selects this four functions defined in the application model.
We will focus on what happens around the "setValue" agent.

• The environment creates an "abstract container" agent
since every interface has at least one container.

• The environment creates an agent for each selected func-
tion and sends a contract to each one to specify which
function has to be encapsulated (see figure 5).

• When a function-call agent receives a contract to manage
a function call (for instance setValue), it follows a
strategy composed of two activities (see figure 6) :

1) Determining the data source of each parameter of
the function call, in our case the integer value.
Many techniques are available for that: get the
data from the presentation, get the data from the
functional core, use a local variable. Agents are

setValue

Function call

Abstract container

MainContainer

Fig. 5. Initial organisation.

configured by default to privilege techniques in-
volving the participation of the final user. Thus the
function-call agent decides to get the data from the
presentation since it is possible. Consequently the
"setValue" agent creates a presentation-data agent
and sends it a contract to get an integer.

2) Finding an operation which will trigger the function
call. For that, it creates an operation agent and sends
it a contract to manage the triggering.

Operation

Abstract container

MainContainer

setValue

value

setValue

Presentation data

Function call

Fig. 6. The setValue agent has found a data source for the parameter
value and an operation to control the triggering of function.

• When an operation agent receives a contract to manage
a function call, it follows a strategy composed of two
activities (see figure 7):

1) Determining when the function call is triggered. For
that it has to identify at least one event like an other
function call, an application notification, an action
fired by the final user or a navigation signal. If it
selects an action, it creates an action agent and sends
it a contract to manage an action which triggers an
operation.

2) Finding an abstract container: search an existing
abstract container or create a new one. Here our
agent contacts the default abstract-container agent.

• When an abstract-container agent receives a contract
to integrate operations (whose linked to incr, raz,
setValue) and views, it follows a strategy composed
of three activities (see figure 8):

1) Verifying that the container may be closed. For that
a new operation agent is created with a contract to



setValue

Function call

Abstract container

MainContainer

setValue

Operation

Presentation data

value

setValue

Action

Fig. 7. The operation agent creates an action agent to trigger the operation
and contacts the abstract-container agent.

close the container. This agent will search an event
to control the closure (for instance a presentation
action).

2) Looking for a presentation element if views or
operations depend on presentation data or actions.
For that a new presentation-element agent is created.
It receives a contract to manage all presentation data
and actions defined in views or operations linked to
the abstract container.

3) Verifying that the abstract container may be trig-
gered. For that a navigation-link is created to allow
the opening (for instance when the interface is
launched).

Presentation data

Abstract container

MainContainer

setValue

Operation

value

setValue

Action

setValue

MainContainer_Screen

Action

Operation

close

close

activate

Presentation element

Navigation link

Function call

Fig. 8. New agents are created by the abstract-container agent.

A similar behaviour allows to create the presentation part
linked to this dialogue (see figure 9). These two descriptions
correspond to a dialogue model and a presentation model.
They can be interpreted to obtain the user interface of the
figure 10.

B. Improving the user interface

This first solution may be improved. For that, the designer
just has to identify incorrect decisions, that is which agent has
selected an inappropriate technique to solve a problem. The
inappropriate techniques are then disabled and the designer

MainContainer_Screen

Sub−element Sub−element

value_sevalue_getValue_se

Sub−elementSub−element

close_se setValue_se

Donnée de présentationAction

setValue

Action

close

Action

value value_modified

mainContainer

Sub−element

Presentation element

Fig. 9. Agents linked to the presentation part.

Fig. 10. The first solution suggested by the agents. A final user may increment
the counter, reset it, set its value when an integer is specified in the text field.
The presentation is updated each time the counter value changes. Moreover,
the setValue button is disabled when the text field does not contain an
integer.

may choose directly the best one or let the system tries an other
solution. Modifications are then taken into account to generate
a new solution. Here are some examples of corrections:

• Figure 11. Texts may be replaced: Main commands are
capitalized and the "close" button is translated in french.
For that, the designer just has to select the agent which
manages a button, select the activity which associates a
text to this button, and imposes a new text to replace the
default one.

Fig. 11. The designer corrects some texts.

• Figure 12. Layout may be improved. For instance to
move the "Fermer" button on the third line, the designer
just has to select the agent which manages this button,
search the layout activity to identify which agent manages
the container. Then, the designer identifies which activity
layouts the button and corrects the solution. For instance
(s)he updates coordinates and dimensions.

Fig. 12. The designer corrects layout.



• Figure 13. A widget may be replaced by an other. For
instance, it is possible to choose an other widget to get
the value assigned to the counter. For that the designer
just has to select the agent which manages the widget
and changes the widget selected.

Fig. 13. The designer imposes an other solution for a widget.

• Figure 14. The designer may decide that the final user
does not have to enter the value used to set the counter.
For that, (s)he just has to start from the widget agent,
identify that this agent has been created by a presentation-
data agent, which has been created by the "setValue"
agent. Then the designer modifies the technique selected
to choose the function-call parameter. For instance (s)he
may specify directly which value will be used instead of
asking the final user.

Fig. 14. A default value defined by the designer is used when the final user
clicks on the SET button.

VII. RELATED WORK

Agents have already been used to design a user interface,
but only at run-time. Chiron-1 [11] defines "artists" to en-
capsulate decisions of presentation and dialogue linked to
each application data. These artists create an initial graphical
representation, manage events modifying their handled data,
and communicate with a server responsible of the presentation.
These agents are able to update the presentation when an event
modifies an application data and to process user actions on the
representation of the data. Vesuf [1] suggests to use agents to
design adaptative interface. Agents select a dialogue model
and a presentation model according to the run-time context
like the display screen.

Using knowledge to facilitate the construction of user
interfaces is a well-known idea. ITS [14] defines transfor-
mation rules to improve a dialogue model and to generate
a presentation model. But according to the authors, it is
difficult to maintain a consistent set of rules. TRIDENT [13]
and then SEGUIA [12] use rules and heuristics to select
widgets and layout them in a window. However knowledge
is used to solve well defined problems and is not applied
in the overall interface. In Just-UI [7], the designer may
provide a partial description of the desired user interface
through instances of interface patterns. This description is then
automatically completed like us. However it is not possible to
know alternatives to correct the produced solution. Moreover
the patterns are simple and predefined, and the generation of
the interface relies on hard-coded principles. Consequently all
the generated user interfaces have the same visual aspect.

VIII. CONCLUSION

Multi-agent systems and eco-resolution allow to generate
interface models from a very simple description. Moreover the
produced models may be improved afterwards by modifying
incorrect decisions. The tedious tasks are fully managed by
the agents (for instance the consistency of the presentation
regarding the application state) and the designer just has to
correct some decisions made by the agents.

Therefore, eco-resolution paves the way to proactive design
tools. This kind of tools goes further than basic assistants
which advise the designer. They make the best part of the
work and get the designer a position of expert who evaluates
the result and corrects the decisions.



REFERENCES

[1] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Using a
model-based interface construction mechanism for adaptable agent user
interfaces. In T. Finin and Z. Maamar, editors, Proceedings of AAMAS
Workshop 16 - Ubiquitous Agents on Embedded, Wearable, and Mobile
Devices. Facoltà di Ingegneria Bologna, 7 2002.

[2] Jacques Ferber. Multi-Agent System: An Introduction to Distributed
Artificial Intelligence. Addison Wesley, 1999.

[3] Rémy Foisel, Alexis Drogoul, Olivier Cayrol, Mondher Attia, and
Nicolas Chauvat. Des écosystèmes artificiels d’aide à la conception
: l’exemple du projet CAROSSE. In Actes des JFIADSMA99. Gleizes
M.-P. et Marcenac P. (eds), pages 313–326. Hermés, 1999.

[4] Nicholas R. Jennings and Stefan Bussmann. Agent-based control
systems: Why are they suited to enginneering complex systems. IEEE
Control Systems Magazine, 23(3):61–74, 2003.

[5] Nicholas R. Jennings, Katia Sycara, and Michael Wooldridge. A
roadmap of agent research and development. Autonomous Agents and
Multi-Agent Systems, 1(1):7–38, 1998.

[6] David Julien, Mikal Ziane, and Zahia Guessoum. GOLIATH: An extensi-
ble model-based environment to develop user interfaces. In Proceedings
of the Fourth International Conference on Computer Aided Design for
User Interfaces (CADUI’2004), sponsored by ACM and jointly organized
with IUI’2004, pages 95–106. Kluwer Academics Publishers, January
2004.

[7] Pedro J. Molina, Santiago Melia, and Oscar Pastor. Just-ui: A user
interface specification model. In Ch. Kolski and J. Vanderdonckt
(Editors), editors, Proceedings of the 3rd International Conference on

Computer- Aided Design of User Interfaces CADUI’02, pages 63–74.
Kluwer Academics Publisher, May 2002.

[8] Brad A. Myers, Scott E. Hudson, and Randy Pausch. Past, Present,
and Future of User Interface Software Tools. ACM Transactions on
Computer-Human Interaction (TOCHI), 7(1):3–28, 2000.

[9] James Odell, H. Van Dyke Parunak, and Bernhard Bauer. Representing
agent interaction protocols in UML. In First international workshop,
AOSE 2000 on Agent-oriented software engineering, pages 121–140.
Springer-Verlag New York, Inc., 2001.

[10] Paulo Pinheiro da Silva. User Interface Declarative Models and Develop-
ment Environments: A Survey. In Ph. Palanque and F. Paternò, editors,
Proceedings of DSV-IS2000, volume 1946 of LNCS, pages 207–226,
Limerick, Ireland, June 2000. Springer-Verlag.

[11] Richard N. Taylor, Kari A. Nies, Gregory Alan Bolcer, Craig A. MacFar-
lane, and Kenneth M. Anderson. Chiron-1: A Software Architecture for
User Interface Development, Maintenace, and Run-Time Support. ACM
Transactions on Computer-Human Interaction (TOCHI), 2(2):105–144,
June 1995.

[12] Jean Vanderdonckt. Assisting designers in developing interactive busi-
ness oriented applications. Proc. of 8th Int. Conf. on Human-Computer
Interaction of HCI International’99, 1:pp. 1043–1047, 1999.

[13] Jean M. Vanderdonckt and François Bodart. Encapsulating knowledge
for intelligent automatic interaction objects selection. In Proceedings of
the SIGCHI conference on Human factors in computing systems, pages
424–429. ACM Press, 1993.

[14] C. Wiecha, W. Bennett, s. Boies, and J. Gould. Generating highly
interactive user interfaces. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 277–282. ACM Press,
1989.


