
Rouen University

PhD Thesis

Speciality: Computer Science

presented by

Khalaf KHATATNEH

Subject:

Operators for complex modeling

Defended on July 12th, 2005
For the obtention of

Doctorat de l’Université de ROUEN

Jury composition

Michel COTSAFTIS, Prof. LTME/ECE, Paris Referee
Mohammad S. OBAIDAT, Prof. Monmouth University - USA Referee

Saleh OQEILI, Prof. Al-Balqa University - Jordan, Referee
Joël COLLOC, Prof. Le Havre University, Examiner

Habib ABDULRAB, Prof. Rouen University, Guest
Éric LAUGEROTTE A. Prof. Rouen University Guest

Jean-Gabriel LUQUE, A. Prof. Gaspar Monge Institute, UMLV Guest
Gérard DUCHAMP Prof. Galilée Institute, Paris XIII Advisor
Cyrille BERTELLE A. Prof. Le Havre University Co-advisor

PRELIMINARY DOCUMENT
July 11, 2005

2

Contents

1 Introduction 11

2 Complex systems and self-organization 13
2.1 General system theory and the complex system paradigm 14

2.1.1 Closed systems and open systems 15
2.1.2 Complex systems . 16
2.1.3 Hierarchical representation 16
2.1.4 Development strategies 16
2.1.5 System evolution . 16
2.1.6 From natural to artificial complex systems 17

2.2 From interaction to organizations, emergence and self-organization 18
2.2.1 Interaction networks . 18
2.2.2 A classification for self-organization 19
2.2.3 Emergence . 20
2.2.4 Inherent computation . 21
2.2.5 Non-linear and non-equilibrium processes 21
2.2.6 Evolution . 21

2.3 From models to simulation, from calculability to operators in com-
plex systems - Some examples 24
2.3.1 L-system . 25
2.3.2 Adaptive behaviors for social robots from Samuel Landau 28

3 Semirings, Automata and applications 33
3.1 Functions on monoids . 35

3.1.1 Introduction . 35
3.1.2 Semirings: the scalars of Computer Science 35
3.1.3 Valued graphs for automata 38
3.1.4 Modules . 39

3.2 The case when X = M is a monoid: behaviour of automata 40
3.2.1 Series . 40
3.2.2 Products, inversion and star 42

3

CONTENTS

3.3 Automata with Multiplicities . 44
3.3.1 Generalites . 44
3.3.2 Behaviours . 47
3.3.3 Computation of A(w) by transfer matrices 47
3.3.4 Operations over automata 49

3.4 Kleene-Schützenberger, the jewel of Theoretical Computer Science 51
3.4.1 Rational expressions . 52
3.4.2 The equivalence of Kleene-Schützenberger 53

3.5 Tables . 57
3.5.1 Tables and operations on tables 57
3.5.2 Why semirings ? . 59
3.5.3 Total mass . 61
3.5.4 Algebraic remarks . 61

3.6 Applications of operations on tables 62
3.6.1 Specialisations and images 62
3.6.2 Application to evolutive systems 62

4 Evolutive agent behaviour modeling based on genetic automata 65
4.1 Introduction . 67
4.2 A general framework for agent description in operating way . . . 68

4.2.1 Basic agent description 68
4.2.2 A basic review on automata based description for agent

modeling . 70
4.2.3 An agent modeling framework based on automata with

multiplicities . 70
4.3 Deterministic agent modeling using transducers 71

4.3.1 General model description 71
4.3.2 Eco-Agent as basic interacting entity behaviour model . . 72
4.3.3 An application to self-organized fluid flow simulation . . . 74

4.4 An augmented agent representation for non deterministic behaviour
model . 78
4.4.1 Probabilistic automata for non determinist aspects 78
4.4.2 A global formalism for agent behaviour 80

4.5 Agent interaction and evolution modeling using algebraic compu-
tation . 81
4.5.1 Classical algebraic operators for agent aggregation basic

models . 82
4.5.2 Genetic operators for agent evolution model 83
4.5.3 Evolutive automata in terms of self-organization modeling 86

4

CONTENTS

5 Applications to economic complex modeling 89
5.1 Economic complex modeling 90

5.1.1 Simulation Approach . 90
5.1.2 Agent-based Computational Economics (ACE) 92
5.1.3 Bottom-up Modeling of Market Processes 94
5.1.4 Schumpeterian model . 94
5.1.5 Sugarscape Model . 95

5.2 Prisoner Dilemma : Automata based model for cooperation and
competition aspects . 98
5.2.1 Genetic algorithms on probabilistic automata 101
5.2.2 Evolutive adaptation for prisonner dilemma: implementa-

tion and simulation results 102
5.3 Cognitives sciences and Decision support systems 103

5.3.1 A multilayer and agent-based model for decision support
system . 104

5.3.2 Evolvable automata based strategies and behaviors layer . 106
5.3.3 The decision making layer 107

6 Conclusions and perspectives 111

5

CONTENTS

6

List of Figures

2.1 Basic system representation . 14
2.2 Open systems and closed systems after [57] 15
2.3 Crossover in genetic algorithms, showing three separate mecha-

nisms that can be invoked. Each box denotes a separate ’gene’,
which may be (say) a parameter in a model. In "crossover" , off-
spring are formed by selecting genes from one or other of the
parents. 23

2.4 A simple design produced by trutle geometry 28
2.5 Protein synthesis from [106] . 29
2.6 processus inspirated from protein synthesis from [106] 29
2.7 Global view of sphere project from [106] 30
2.8 ATN representation from [106] 31
2.9 ATN manufacturing from [106] 32

3.1 Example of automaton with multiplicities 46
3.2 A N-automaton. A simple letter x stands for x|1. 48
3.3 k=k automaton . 48

4.1 Multi-scale complex system description: from global to individ-
ual models . 69

4.2 TranducerAx for Eco-Agent behaviour 73
4.3 Self-organized structures detection 76
4.4 Structure perception of intruder 76
4.5 Structure escape . 77
4.6 Aggregation process as structure satisfaction 77
4.7 Transitions from one node in a probabilistic automata 78
4.8 A successful path: the probability to perceive abc is e1p1p2p3s1 . . 79
4.9 A probabilistic automatonA . 80

5.1 Model and reality . 90
5.2 Basic ACE representation . 92

7

LIST OF FIGURES

5.3 Sugarscape lattice with Agents 96
5.4 Agents vision directions . 97
5.5 Two prisoner dilemma strategies in term of tranducers 99
5.6 Probabilistic multi-strategies two-states automata for prisoner dilemma100
5.7 couples of emotions variables from OCC model 104
5.8 a multilayer model of decision 105
5.9 The emotion learning loop and psychological learning loop 106
5.10 a fuzzy logic membership function 107
5.11 Specialisation of agents involved in a Multi-Agent Decision Sup-

port System (MADSS) . 108

8

Acknowlegments

THANKS

A lot of people have supported this work in many different ways and I would like
to thank all of them and with the risk of forgetting someone I would like to point
out some people. I especially want to thank them for helping me during this work.

Without doubt the most important person has been my advisor Prof. Gérard
Duchamp with his sincere ambition to let me develop and find myself very privi-
leged and thankful for being allowed to pursue my work and guide me under his
supervision. “ Merci beaucoup Cher Gérard ”.

Also this work would not have been possible without my fourth brother co-advisor
Prof. Cyrille Bertelle. My deepest thanks go to my wonderful brother who put our
relationship in this way by his support and really I loved our trips to Paris together
that made me relax a lot.

Dear Gérard and Cyrille may be I can’t find the words to thank you as you
deserves.

Many thanks to my family - my father, my mother, and all my brothers and sisters
- for all of love and support which they have given to me, without forgetting Jehad
who was very near of me during all the difficult times.

I am grateful to Prof. Mohammad Obaidat for giving opportunity to be one of
referee members and for his great support of our workgroup.

Thanks also for all the referees Prof. Michel Cotsaftis and Prof. Saleh Oqeili who
will be also one of my best partner in BAU soon.

Also special thanks to the examiners for reading the manuscript and to have spent
their time to finish this work (Prof. Joel Colloc, Prof. Habib Abdulrab and Dr.

9

LIST OF FIGURES

Jean-Gabriel Luque)

To all my friends in France I am proud to be friend with each of you as individuals
(Hatem, Fisal, Jalol and Houda) thank you for your continued courage during this
period.

I would like to acknowledge the structural laboratory of LIFAR for their help dur-
ing my work, specialy the Director of LIFAR Prof. J.-F. Michon and all the staff
of the laboratory. Special thank also for Eric Laugerotte for his help, courage and
nice discusions with him, thanks also to all Engineering Department staff.

To all people who I have not named explicity or inadvertently left out, thank you.
Finally, I would like to thank those who have been my best teachers, the ones who
inspired me to learn and to continue learning: My parents.

Many thanks to all of you !

10

Chapter 1

Introduction

Computer Science finds its origins in computation and its development was highly
improved by the need of applications and modelizations. During the half-past
century, formal aspects were developed using the huge background of algebraic
structures. The aim of this scientific activities consists in finding versatile struc-
tures. The genericity is the essential need in terms of programming efficience.
In the same period, applications and modelizations grow fast in importance with
the hardware improvement. After a long period while technology focused its at-
tention to building mainframes and super-computers, more recently, distributed
computing shows its efficience because of the wide spreading of many computer
networks (see for example the review from M.S. Obaidat and G.I. Papadimitriou
[131]) and because of the fault-tolerent aspects allowed by such distributed com-
puting.

The work presented here take advantage of two domains in Computer Science.
The first one can be considered as the natural evolution of research on computa-
tion and efficient algebraic data stuctures in modern computation. The second one
can be considered as the novative development in modelization and found basis
inside artificial intelligence and its capability in problem solving, using distributed
approaches.

Complex systems are considered as a major concept for this new century. Gen-
eral system theory introduced by von Bertalanffy [157], are now largely spread in
a very huge spectrum of applications (see for example, M. Cotsaftis [52]). The
modelization of life cannot today propose some new models without taking into
account such a paradigm. The modelization of life is presently largely used as a
metaphor in numerous engineering applications. Evolutive systems, agent-based
modelizations are some of the new illuminating methodologies that are used for
complex modeling.

11

CHAPTER 1. INTRODUCTION

In this work, we first present in chapter 2, the general concepts of systemic as
the background of complex systems paradigm. Emergence and self-organization
are the basic phenomena that charaterize complex systems. How to compute in
an efficient way these phenomena is the lighting question of this chapter but also
of this whole work. We show some of these implementations which deal with
automata based models for self-organization.

Chapter 3 presents the basis of efficient algebraic data structures. As heralded
by Kleene-Schützenberger theorem in the [147] and confirmed by the recent de-
velopment of fast and distributed computation, well mastered algebraic structures
allow not only to gain in understanding but also to gain in efficiency. Automata
in their more general formulation are so introduced and are recently strengthen by
semirings support to allow operative aspects [66].

In chapter 4, we present how these operative aspects of automata can be used
for agent-based modeling as the basis of complex system simulation. Classical al-
gebraic operators are used for computation of aggregative aspects as an essential
key for self-organized structures. Genetic operators are well suited to the manage-
ment of the dynamic aspects which are indissociable of self-organized phenom-
ena, enlighted by the dissipative structures theory developed by I. Prigogine [140].

Chapter 5 is devoted to applications about economical domains. We show
how genetic automata are efficient structures in game theory and in the more ver-
satile way for all the modelizations that deal with cooperative and competitive
aspects. We end this application section with the use of evolutive computation
through feed-back processes for decision support systems, using cognitive sci-
ences paradigm.

The work presented here deals with a huge knowledge in both theoritical
aspects and application modeling in Computer Science. Its power consists in
showing the interest of mixing this two aspects. We focus our attention on the
needed background both in term of conceptual representation (complex systems
paradigm) and in computation theory. More than focus our attention on a specif-
ical application, the aim of this work is to show a huge range of modelization
developments which can be expanded in more specific ways in many future works.

12

Chapter 2

Complex systems and
self-organization

Contents

2.1 General system theory and the complex system paradigm . 14

2.1.1 Closed systems and open systems 15

2.1.2 Complex systems . 16

2.1.3 Hierarchical representation 16

2.1.4 Development strategies 16

2.1.5 System evolution . 16

2.1.6 From natural to artificial complex systems 17

2.2 From interaction to organizations, emergence and self-organization 18

2.2.1 Interaction networks 18

2.2.2 A classification for self-organization 19

2.2.3 Emergence . 20

2.2.4 Inherent computation 21

2.2.5 Non-linear and non-equilibrium processes 21

2.2.6 Evolution . 21

2.3 From models to simulation, from calculability to operators
in complex systems - Some examples 24

2.3.1 L-system . 25

2.3.2 Adaptive behaviors for social robots from Samuel Lan-
dau . 28

13

Complex systems and self-organization

In this first chapter, we introduce the basic concept of the modelling approach
with which we deal in this work. Systemic is the first basis and we draw up the
general context. We explain why and how we use it. Complex system theory
allows to introduce some additional concepts which give some functional descrip-
tion of a large kind of models dealing with various applications. We end this
chapter with the first ground of complex system building, as the interaction net-
works. As modelling activity finds its justification in the applications adressed, we
draw a general context of applications, concerning social sciences and life cycle
systems which means that evolution aspects is a major concept in the simulations
addressed here.

2.1 General system theory and the complex system
paradigm

Global Dynamics
and structures

Interacting Entities

Figure 2.1: Basic system representation

According to systemic, a system is a set composed with entities in mutual
interaction and interacting with outside environment. A system has characteristic
properties which confer its structural aspects:

• The set elements or entities are in interactive dependance. The alteration of
only one entity or one interaction reverberates on the whole system.

• A global organization emerges from interacting constitutive elements. This
organization can be identified and carries its own autonomous behavior
while it is in relation and dependance with its environment. The emergent

14

Complex systems and self-organization

organization possesses new properties that its own constitutive entities don’t
have. "The whole is more than the sum of its parts"

• The global organization retro-acts on its constitutive components. "The
whole is less than the sum of its parts" after E. Morin.

2.1.1 Closed systems and open systems

A system can be in one of the two following states:

• Open systems interact with its environment by means of energy, potential
information or matter flux transfer. These fluxes are the catalysts of organi-
zation formation which emerges and structures the system.

• Closed systems are cut from the outside environment. They are not able to
generate dynamically emergent formations.

Open System

Closed System

reactions
Intern

Figure 2.2: Open systems and closed systems after [57]

15

Complex systems and self-organization

2.1.2 Complex systems

Complex qualification on a system means heterogeneous caracteristics of the sys-
tem components. Naturals systems, biological ones for example, or artificial sys-
tems, economical ones for example.

J.-L. Le Moigne [112] dissociates "complicated systems" and "complex sys-
tems":

• A complicated system can be reduced to be better understood;

• A complex system cannot be reduced without losing its intelligibility. We
need to take into account at once all its components.

A complex system is ruled by the major principle of the preservation of some
kind of collective function, as survival or adaptation. For this reason, the system
uses a teleologic behavior which means that the system is led by its goals. To be
able to achieve this functionality, a system has to use some cybernetic rules. The
major one is the "feed-back" process which is a kind of global control.

2.1.3 Hierarchical representation

A complex system is generally composed of a lot of sub-systems which aggregate
each others in a hierarchical way. There is so a wide huge set of multi-scale
organizations, as the result of these aggregations.

2.1.4 Development strategies

The system development can be represented as the result of the application of
some of the two following strategies. These two strategies can be mixed or evolve
from one to the other:

• Adaptive strategy is based on structural reorganizations against some fluc-
tuations;

• Paradoxical strategy is based on the existence of antagonist and concurent
entities.

2.1.5 System evolution

The complex systems evolve in dynamical way as the succession of two kinds of
periods, self-organization ones and stress ones:

16

Complex systems and self-organization

• Self-organization is a period without major fluctuation. The system seems
to complexify itself in terms of the creation of many multi-scale emergent
organizations. Such systems develop a great aptitude for adaptive function-
ality.

• Stress is a period with one or more significant fluctuations. The system is
simplified and is being destructured partially or totally.

2.1.6 From natural to artificial complex systems

Natural complex systems are characterized by a set of natural entities of different
kind, like physical ones. The interactions system leads to a collective behavior
which influence the dynamic of the whole system. We give some samples of such
systems in the following:

• In Biology: organism cell behavior will contribute to define its global metabolism
which constraints each cell.

• In Ecology: the evolution of the major part of species depends on complex
organization describing many interacting other species. From this whole
organization, some global tendency can be defined. These tendencies are
able to increase or not the development of the constitutives populations.

• In Economy: each consumer acts according to its social behavior on the
global market which finally constraints each consumer.

• In Transport: the vehicles moves are the basis of traffic which can evolve in
organization like traffic jams which constraints in turn the vehicle evolution.

Besides these "natural" systems that we can try to modelize and implement
on computers, the present evolution of computation lead to buid complex sys-
tems. Decentralized approaches for computation leads to buid computable sys-
tems composed of formal communicating entities characterized with some kind of
autonomous behavior. In huge networks managing such decentralized program-
mation, we are facing an artificial complex system. We show in the following
(cf. interaction networks) how such systems can lead to some specific form of
self-organization.

17

Complex systems and self-organization

2.2 From interaction to organizations, emergence and
self-organization

Self-organization is a phenomenon which from interactions between elements and
other factors tends to create and improve order inside the whole complex system.
Such phenomenon go against the increase of entropy and leads to energy dissipa-
tion. This dissipation has as effect to maintain the structure generated in that way.

So this phenomenon is a natural tendency of physical dissipative systems or
social systems to generate organization from themselves [140].

2.2.1 Interaction networks

Complex systems consists of many very simple entities which interact. The amount
of interaction among entities partially determines the overall behaviour of the
whole system. On one extreme, systems with little interactions fall into static pat-
terns, while on the other extreme, overactive systems reach the chaos. Between
this two extrema exists an area where the phenomenon are particularly interest-
ing. One main key is the notion of interaction and the relationships generate by
this last one. So what are the interactions?

If it is difficult to answer to this question, one can be: influences between
parts due to their interconnections. These interconnections can be of many forms
(e.g. wiring, gravitational or electromagnetic fields, physical contact or logical
information channels). We assume that the influence can act in such a way as to
change the part state or to cause a signal to be propagated in some way to other
parts. Thus the extent of the interactions determines the behavioural richness of
the system.

This generate another question, how the interactions are organized? In a gen-
eral way, the answer is in a network. Thus an interactions network is constituted
by a set of interacting entities. Different kinds of interactions networks can be
identified [129]:

• social networks ;

• information networks ;

• technology networks ;

• biological networks.

18

Complex systems and self-organization

Each one shows an anatomy and characteristics.

Why is network anatomy so important to characterize? Because structure al-
ways affects function. For instance, the topology of social networks affects the
spread of information and disease, and the topology of the power grid affects the
robustness and stability of power transmission. From this perspective, the current
interest in networks is part of a broader movement towards research on complex
systems.

In the words of E. O. Wilson [162] "The greatest challenge today, not just
in cell biology and ecology but in all of science, is the accurate and complete
description of complex systems. Scientists have broken down many kinds of sys-
tems. They think they know most of the elements and forces. The next task is to
reassemble them, at least in mathematical models that capture the key properties
of the entire ensembles."

If the networks can be modeled by graphs they bare inherently difficult to
understand.

1. Structural complexity;

2. Network evolution;

3. Connection diversity;

4. Dynamical complexity: the nodes could be nonlinear dynamical systems;

5. Node diversity;there could be many different kinds of nodes.

6. Meta-complication: the various complications can influence each other.

Traditionally the study of complex interactions networks has been the field of
graph theory. Different structures has been observed:

• Random graph ;

• Small World network ;

• Scale free networks.

2.2.2 A classification for self-organization

We have four broad classes for self-organization each of which include both nat-
ural and artificial processes [26]:

19

Complex systems and self-organization

• Emergence.

• Inherent computation.

• Non-linear and non-equilibrium processes.

• Evolution.

and these classes account for most of current research and progress on self-organization
in complex systems.

The complex systems paradigm uses systemic inquiry to build fuzzy, multiva-
lent, multi-level and multi-disciplinary representations of reality, and systems can
be understood by looking for patterns with their complexity, patterns that describe
potential evaluations of the systems.

2.2.3 Emergence

The system diverges from its initial state and after a transient period settles into
some attractor states. These attractors may be a simple equilibrium or cycle, or
may be a strange attractor if the process is chaotic, so settling into the basin of an
attractor seems to be a general way for properties and patterns to emerge.

As concerns networks in social and life cycle systems we have to talk about
the pattern,the idea of a pattern of organization of a configuration of relationships
characteristic of a particular system become the explicit focus of systems thinking
in cybernetics and has been a crucial concept ever since.The study of pattern was
always present. It began with Pythagoras and Euclid in Greece and was contin-
ued by the alchemists, Newton and Galileo, the Romantic poets, arabic scientists,
Al-Kuwarizmi, Abu Jafar and various other intellectual movements. However, for
most of the time the study of pattern was eclipsed by the study of substance until it
re-emerged forcefully in our century, when it was recognized by systems thinkers
as essential to the understanding of life [34],[156]. The key to a comprehenive the-
ory of living systems lies in the synthesis of those two very different approaches,
the study of substance (or structure) and the study of form (or pattern). In the
study of structure we measure and weight things. Patterns, however, cannot be
measured or weighted; they must be mapped. To understand a pattern, we must
map a configuration of relationships. In other words, structure involves quantities,
while pattern involves qualities. The study of pattern is crucial to the understand-
ing of living systems because systemic properties, as we have seen, arise from
a configuration of ordered relationships. Systemic properties are properties of
a pattern. The components are still there, but the configuration of relationships
between them is destroyed, and thus the organism dies.

20

Complex systems and self-organization

2.2.4 Inherent computation

We refer with this denomination to systems which evolve with fixed rules. Usu-
ally, this rules are computed using automata [98] or discrete events systems or
interacting networks of automata or cellular automata [108, 54].

It provides a discrete basis for understanding condensed phase properties, this
is especially the case for systems that are discrete in structure and iterative in be-
havior.

Some examples of effective computations are described in the following para-
graph (2.3.1).

2.2.5 Non-linear and non-equilibrium processes

A description of self-organized systems consists in open systems far from equi-
librum. They are crossed by energetic and matter flux which leads to such non-
equilibrium processes. In this context, feed-back phenomena occurs and are ex-
pressed in a mathematical way with non-linear equations[139].

Based on these concepts, a major representation of self-organized open sys-
tems is the theory of dissipative structures. This theory has been elaborated by
I. Prigogine [140]. Initially, he studies living organisms capabilities to maintain
live process in non-equilibrium conditions. In 1960s, I. Prigogine points out the
link between non-equilibrum and non linearity. Dissipative systems are able to
decrease entropy and so to increase order. This order can be expressed by the fact
that organizations emerge from such dissipative systems. These organizations can
be the cause of the reinforcement of some irregularities that grow into large scale
patterns.

2.2.6 Evolution

Evolution refers to the process of overall change in complex systems. Entities of
the system are represented in natural way or artificial one with a genetic informa-
tion. Advancing to ever smaller levels in their explorations of the phenomena of
life, biologists found that the characteristic of the living organisms were encoded
in their chromosomes in the same chemical substance, using the same code script.

Simultaneously, the problems which resisted the mechanistic approach of molec-
ular biology became ever more apparent during the second half of the century.

21

Complex systems and self-organization

The inspiration for how to conduct experiments of genetics and evolution the-
ory comes from Artifical Intelligence , it has been generally accepted that natural
selection is the mechanism by which species evolve (e.g genetic variation). The
idea is based on the way in which chromosomes serve a dual purpose, this can
represent what the organism will become, and also the actual material that could
be transformed to yield new genetic material which we can use it for the new or
next generation. Within the neo-Darwinian theory we can summarise it as :

• We can get more individuals born in a population that can stand the environ-
ment, so they must rival one another for water, food and all other resources
in the land.

• The individuals vary in their ’fitness’, that is their capability, efficiency and
the ability to subsist and reproduce.

• As a result of competition, suitable individuals produce more offspring, so
the frequency of their genes increases within a population.

• Natural selection removes incapable individuals from a population, with the
time the population becomes better and adapted with environment.

• New species arise when a population becomes isolated for long enough that
individuals are no longer capable of breeding with members of the parent
species.

Individuals are not fully able to analyze the situation and calculate their optimal
strategy.The results described earlier about criticality and connectivity can help
to explain some aspects of species evolution. The mechanisms that have let bi-
ological evolution to be very well at adaptation have been employed in artifical
intelligence technique called "genetic algorithm".

Genetic algorithms [82], [96] solve complex problems of search and optimi-
sation by emulating. The "standard" genetic algorithm (GA) works as follows:

1. START Generate a random population of n chromosomes as suitable solu-
tions for the problem.

2. FITNESS Evaluate the fitness f(x) of each chromosome x in the poplua-
tion.

3. NEW POPULATION Create a new popluation by repeating these steps until
we will have a complete population:

22

Complex systems and self-organization

• Selection select two parent chromosomes from a population accord-
ing to their fitness .

• Crossover With a crossover probability, cross over the parents to form
new offsprings (if no crossover was performed, the offspring is the
exact copy of its parents.

• Mutation With a mutation probability, mutate new offsprings at each
position in chromosome.

• Accepting Place the new offsprings in the new population

4. REPLACE use new generated population for a further run of the algorithm.

5. TEST if the end condition is satisfied, stop, and return the best solution in
current population.

6. LOOP start from step 2.

A A

Single Point Two Point Uniform

Parent A

Parent B B B B B B B B B B B B B B B B BBBB BBB B B B B B B B B

BBBBBBBBBBBB A A A A AAAAAAA BOffspring

Figure 2.3: Crossover in genetic algorithms, showing three separate mechanisms
that can be invoked. Each box denotes a separate ’gene’, which may be (say) a
parameter in a model. In "crossover" , offspring are formed by selecting genes
from one or other of the parents.

As we have seen above a string of genes on a chromosome can undergo ge-
netic transformations, such as mutation, then the initial population is constructed
from the allowable set (perhaps by simply picking at random). In each generation,
the effectiveness of each individual in the population is determined by running the
individual in the current strategic environment.

• Parameters, assumptions and other mutable features of the problem are all
expressed as "genes". The combination of genes for each model defines
its "genotype". For discrete parameters, possible values are represented as

23

Complex systems and self-organization

alleles. Numerical parameters are allowed to vary freely. however, un-
like biological genes, alleles that are paired together by Genetic Algorithms
(GA) usually represent different features entirely. So dominant and reces-
sive properties do not exist in the standard algorithm.

• The algorithm operates not on a single model, but on an entire population
of models, each represented by its set of genes.

• Each "generation" is an iteration of the algorithm. It consists of "reproduc-
tion", in which new models are generated from existing ones, and "selec-
tion", in which poor models are removed. The important procedures in the
reproduction phase are point mutation, by which individual parameters are
changed, and crossover, in which features of separate models are mixed in
their "offsprings" see the figure 2.3.

Genetic Algorithms (GA) have several practical uses. For instance they deal
with a whole population of examples, so they are ideal for exploring the variety in
a given system. The result might well be a population that is substantially more
successful in the given strategic environment than the orignal population. Finally
the genetic algorithm is a highly effective method of searching effective strategies
in a huge space of possibilities, the problem for evolution can be conceptualized
as a search for relatively high points in a multidimensional field of gene combina-
tions, where height corresponds to fitness.

2.3 From models to simulation, from calculability to
operators in complex systems - Some examples

In the previous sections, we present the major concepts about complex systems
and self-organization. This allows to describe the frame of the phenomena in
which we focus our attention. A phenomenon is firstly observed and the complex
system paradigm allows to draw some lighting to make pertinent observations.
Once the phenomena are observed, we need to define operative process to buid a
simulation. In this section, we focus our attention on some samples of operators
build with respect to the complexity of the phenomena observed.

Some of these operators are deeply inscribed in a decentralized computation
which is inspired from DAI (Distributed Artificial Intelligence) and MAS (Multi-
Agent Systems). Others show how rules can give efficient processes or elsewhere

24

Complex systems and self-organization

how some kind of automata can be powerful in term of operative aspect. Such
rules or automata can be the basis of emergent formations.

2.3.1 L-system

The name L-system is short of Lindenmayer system. Formally a L-system is a set
of syntactic rules and symbols (i.e. formal grammar) that represents discrete steps
and units in growth process, and it contains four elements:

• variables: are symbols denoting elements that can be replaced.

• constant: are symbols denoting elements that remain fixed.(i.e. we can re-
place each variables by constants English words or phrases to produce sen-
tences in English, such as ’That cat sat on the mat’, constants and variables
together constitute the alphabet of the system.

• Start (axioms) words are expression defining the system’s initial state.

• Rules (syntax) define how the variables are to be replaced by constants or
other variables.

〈 sentence 〉 →〈 subject 〉 〈 verb 〉 〈 predicate 〉
〈 subject 〉 →the cat.
〈 verb 〉 →sat.
〈 predicate 〉→the mat.

The language L(G) generated by a grammar G is the set of all words that can be
obtained from the axioms by applying rules in a finite number of steps.

A word which contains no variables is termed a sentence, we can classify
languages by properties of their syntax (following Chomsky classification).
- A syntax is said to be regular if every rule is of the form

A→ aB
A→ a

where A, B are variables and X, Y are any permissible expressions, the context-
sensitive grammar include rules of the form

AX → Y
XA→ Y

where X and Y are any permissible expressions. We can take an example to con-
sider the simple grammar.

25

Complex systems and self-organization

Example 1 Fibonacci numbers.

variables :A,B
constants :none
start :A
rules :A→ B

:B→ AB

This L-system produces the following sequence of strings

Stage 0 : A
Stage 1 : B
Stage 2 : AB
Stage 3 : BAB
Stage 4 : ABBAB
Stage 5 : BABABBAB
Stage 6 : ABBABBABABBAB
Counting the length of each string yields the famous Fibonacci sequence:

1 1 2 3 5 8 13 21 34

This simple sequence also demonstrates the way in which iterative properties
of L-systems do operate, and if we denote stage n above as Sn , then we observe
that for n ≤ 2 we have Sn = Sn−2Sn−1

Theorem 1 Let L(G) be a context-free language that is generated from the syntax
G, if there exists an integer m, such that Sm expressed in terms of Sm − i where
i < m, then this same relationship holds for Sn, for all n > m.

L-system employ two distinct kinds of semantics (i.e. the meaning of symbols). In
one approach a model gives a complete description of the structure at any growth
stage.

Theorem 2 Any context-free language can be generated by a grammar in which
all production rules are the form

A→ BC
A→ a

where A,B,C are variables and a is a constant.

26

Complex systems and self-organization

Some models introduce intermediate states simply to ensure that the timing of par-
ticular events is correct. The context-sensitive models are often more appropriate,
and we can see this by the next example:

Example 2 In L-system also we can model the animal behavior by representing
the turtle graphics, this idea finds its simplest expression is so-called "turtle ge-
ometry" , introduced by Seymour Papert (1973), deals with patterns produced by
the path of an imaginary turtle moving around on a plane. We can define by a
grammar such as the following:

Constant= {nF,nB,aR,aL,Stop}
Variables ={< Path >, < Design >, < Arm >,etc..}

Start =< Path >

where

nF denotes "n steps Forward"
nB denotes "n steps Back"

aR denotes "n steps turns a degrees Right"
aL denotes "n steps turns a degrees Left"

and basic production rules are:

< Path >→nF < Path >
< Path >→aR < Path >
< Path >→nB < Path >
< Path >→aL < Path >
< Path >→Stop.

In this grammar, the variables < Path > denotes part of the turtle’s trail. The
transitions represent moves made by the turtle.

At any time, the completed portion of the turtle’s path is specified by a se-
quence of individual moves, with the following rules we can use the variables
< Design >, < Arm >, etc... to describe the formation of a simple design (2.4).

< Path >→< Design > Stop
< Design >→4 < Arm >
< Arm > →4F3 < Corner > 1F
< Corner >→2F3 < Turn >
< Turn >→90RF.

From turtle geometry it is only a small step to syntactic models that describe the
organization of animal behavior, so we saw how any animal must interact with its
environment.

27

Complex systems and self-organization

Figure 2.4: A simple design produced by trutle geometry

2.3.2 Adaptive behaviors for social robots from Samuel Lan-
dau

We present in this part, the works of Samuel Landau concerning his PhD. The goal
is to generate with automatic process some adaptive behaviors for social robots.
These works is part of a major scientific project lead in LIP6 by Alexis Drogoul
and called "MICRobES". The corresponding basic thematics are

• autonomous robotic in a real environment,

• collective robotic,

• evolutionist robotic.

The evolutionist paradigm allows to go forward emergent and adaptive robots
behavior. This emergent behavior is not previously plan and come from complex
interactions between robotic society and its environment. We deal here with self-
learning.

S. Picault and S. Landau define a new concept called Ethogenetic which deals
with general principles for genetic models building applied to evolvables agent
behavior. The two major aspects are:

• Continuity: this notion concerns progressive adaptation in terms of progres-
sive adding of small improvments for individual, during few generations.
This notion is implemented using indirect codage which leads to separate
genetic substratum from evaluated behavior description.

28

Complex systems and self-organization

• Expressivity: This notion consist in the fact that agent behaviors are au-
tomatically created with a minimum limit concerning research space. The
generated structures are of arbitrary complexity but they are modular.

Stack use for the building of the semantic structure

The semantic structure is built using a stack. The principles are inspired from a
natural process: the protein synthesis (see figure 2.5).

Figure 2.5: Protein synthesis from [106]

Figure 2.6: processus inspirated from protein synthesis from [106]

The computed process is bio-inspired by the protein synthes (see figure 2.6),
using a framework composed of 2 elements:

• SFERES concerns artificial evolution for multiagent simulations;

• ATNoSFERES is based on SFERES and allows the automatic building of
evolvable agents which are represented with an oriented and labelled graph,
ATN.

29

Complex systems and self-organization

SFERES

This package which is described in figure 2.7 manages the evolutionist part. In
such a way, there is a separation between the genetic evolution and the simulation
part (evaluation).

Figure 2.7: Global view of sphere project from [106]

ATN based modelling

The basic model used called ATN is an oriented and labelled graph as described
in figure 2.8. This graph is evaluated like a automaton:

• We start in "Start".

• We manage the actions:

– the reachable edges are selected (the conditions on the edge must be
satisfied)

– one acceptable edges is choosen and then it’s crossed, realized the
labelled actions.

• We stop when we are on "End".

From binary genetic code to ATN

The genetic code is translated in lexemes which belong to one of the 3 following
kinds:

30

Complex systems and self-organization

Figure 2.8: ATN representation from [106]

• Agent lexemes: conditions and actions;

• ATN lexemes: nodes and connexions creation;

• Stack lexemes: stack management.

The interpret reads lexeme flux, build and manage stack, buid ATN:

• Stack lexemes are executed;

• Agent lexemes are stacked;

• Node creation lexeme stacked the node;

• connexion lexeme connect two internal nodes and unstack

In the figure 2.9, we find the array describing the ATN manufacturing, using
stack which are modified with new token.

31

Complex systems and self-organization

Figure 2.9: ATN manufacturing from [106]

32

Chapter 3

Semirings, Automata and
applications

Contents

3.1 Functions on monoids . 35

3.1.1 Introduction . 35

3.1.2 Semirings: the scalars of Computer Science 35

3.1.3 Valued graphs for automata 38

3.1.4 Modules . 39

3.2 The case when X = M is a monoid: behaviour of automata 40

3.2.1 Series . 40

3.2.2 Products, inversion and star 42

3.3 Automata with Multiplicities 44

3.3.1 Generalites . 44

3.3.2 Behaviours . 47

3.3.3 Computation of A(w) by transfer matrices 47

3.3.4 Operations over automata 49

3.4 Kleene-Schützenberger, the jewel of Theoretical Computer
Science . 51

3.4.1 Rational expressions 52

3.4.2 The equivalence of Kleene-Schützenberger 53

3.5 Tables . 57

3.5.1 Tables and operations on tables 57

33

Semirings, Automata and applications

3.5.2 Why semirings ? . 59

3.5.3 Total mass . 61

3.5.4 Algebraic remarks 61

3.6 Applications of operations on tables 62

3.6.1 Specialisations and images 62

3.6.2 Application to evolutive systems 62

34

Semirings, Automata and applications

3.1 Functions on monoids

3.1.1 Introduction

Language Theory deals with sets of words (or subsets of some free monoid), Sys-
tem Theory deals with actions (which constitute monoids), transducers deal with
correspondences (with or without weights). All these theories can be placed in a
unified framework: the space of functions on a suitable monoid and taking their
values in a suitable (commutative or not) semiring. In fact, we want to maintain
the non-commutative possibility as in the next chapter “Evolutive agent behaviour
modelling based on genetic automata” it will be made use of a transducer which,
for our needs, will just be an automaton with multiplicities taken in a noncommu-
tative semiring.

3.1.2 Semirings: the scalars of Computer Science

Etymologically, the word scalar has to do with scale and scaling. In physics,
scalar quantities are distinguished from vector quantities. The second add the
first add and multiply. In Computer Science, they are costs, probabilities, truth
values, words. This time they have kept the historical and functionnal virtues of
being able to add and multiply, but contrary to the philosophy of rings, aditive
symmetry is not required. In fact we ask the minimal properties for which com-
putations on matrices (with unit) can be performed.
For more details, and an impressive review covering not less than 400 references
(with applications in: Fuzzy logic and sets, Probability measures, Command alge-
bras, Information algebras, Automata theory, Operator theory, Schedule algebras,
Signal processing, Economic agents, Bi- and Multivalued Logic, · · ·), the reader
is referred to [80, 81].

In fact, the first semiring encountered by mankind through history (and chil-
dren during their classes) is not a ring. This is (N, +, .) where

N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, · · · , · · · , 10000, · · · , 10100, · · · } (3.1)

Let’s define the structure of semirings more formally.
Let k be a set. A structure of semiring n k is the data of two internal compostion
laws (+, .) with the following properties:

• SR1) (k, +) is a commutative monoid with neutral 0k

• SR2) (k, .) is a monoid with neutral 1k

• SR3) the product is (left and right) distributive with respect to the addition

35

Semirings, Automata and applications

• SR4) 0k is an annihilator (0k × x = x× 0k = 0k)

Remark 1 i) If the unity matrix is not required, one can withdraw the need of
neutrals. See
http://mathworld.wolfram.com /Semi ring .html
Such a semiring can be naturally embedded in a semiring in our sense.
ii) SR4 is unrelated to SR1..3 as shows the model (N, max, +).

The semirings form a category for which we give the morphims.

Definition 1 Let (k1, +1,×1) (resp. (k2, +2,×2)). We say that a mapping k1

φ

7→ k2

is a morphism of semirings iff φ is a morphism of the additive and multiplicative
monoid structure i.e.

• (∀x, y ∈ k1)(φ(x +1 y) = φ(x) +2 φ(y)); φ(0k1) = 0k2

• (∀x, y ∈ k1)(φ(x×1 y) = φ(x)×2 φ(y)); φ(1k1) = 1k2

As usual, if φ : k1 7→ k2 is an inclusion mapping, we say that k1 is a subsemir-
ing of k2. If φ is onto, we say that k2 is a quotient of k1.

As for the case of rings and fields, the subsemiring of k generated by 1k is of
great importance and gives rise to the notion of characteristic which, in this case,
is two fold.

Proposition 1 Let (k, +, .) then:
1) i) there is an unique morphisms of monoids φk : N 7→ k.
ii) one has, φ(n) = 1k + 1k · · · 1k

︸ ︷︷ ︸

n times

(denoted below n1k) and then, the subset φ(N)

is the additive submonoid generated by 1k i.e.

φk(N) = {0k, 1k, 1k + 1k, · · · 1k + 1k · · · 1k
︸ ︷︷ ︸

n times

· · · } (3.2)

iii) φ(N) is a subsemiring of k, in fact the smallest of all the subsemirings of k.
2) (Structure of φ(N)) [2] Either (∀n > 0)(φ(n) 6= 0k) and φ(N) ' N or it exists
an unique couple (e, p) ∈ N× N+ such that

1. {0, · · · e + p− 1} is a section of φ (hence |φ(N)| = e + p)

2. φ(m) = m1k if m < e and φ(m) =
(

(m− e mod p) + e
)

1k if m ≥ e

36

Semirings, Automata and applications

Definition 2 We say that the characteristic of a semiring k is 0 if k(0) ' N and
(e, p) ∈ N× N+ if (as above) |φ(N)| = e + p and φ(e) = φ(e + p) = 0k and one
sets ch(k) = (e, p).

Remark 2 i) The semiring φ(N) is called the basic semiring of k and denoted k(0)

in [80]. In [80], the characteristic is also 0 if k(0) ' N. Otherwise it is (e + p, e).
ii) We will denote by Ke,p the model of the basic semirings (which are all isomor-
phic) of characteristic (e, p), realized as follows.
One can endow Ke,p = {0, 1, · · ·e, · · · e+p−1} with a unique structure of semir-
ing such that the mapping r : N 7→ Ke,p defined by

r(n) =

{

n si 0 ≤ n ≤ e + p− 1
(n− e mod p) + e sinon

(3.3)

be a morphism. iii) A semiring of characteristic (e, p) is a ring iff e = 0.
iv) A semiring is additively idempotent (i.e. x + x = x identically, see below) iff
it is of characteristic (1, 1) which is equivalent to the fact that k(0) be the boolean
semiring.

Example 3 We have the following first examples

• a1) The boolean semiring (B, +,×).

• a2)(N ∪ {+∞}, min, +),

• a3) (R ∪ {−∞}, max, +) (known as the “Tropical semiring”) [79].

• b1) (Z, +,×)

• b2) (Z/nZ, +,×) with n composite (i.e. non-prime).

• c1) (Q, +,×), (R, +,×), (C, +,×) and (Z/nZ, +,×) with n prime

• c2) (H, +,×)

Comment. — "ai"s are pure semirings (i.e. not rings), "bi"s are rings but not
fields, "ci"s are fields and c2 (Cayley’s quaternion numbers) is not commutative.

A semiring k is said commutative if and only if the monoid (k,.) is commuta-
tive. If k is a semiring and Q is a finite set, the set kQ×Q of the square matrices
with coefficients in k is naturally endowed with a structure of a semiring by (the
usual matrix operations).

37

Semirings, Automata and applications

Remark 3 If 1 6= 0, k2×2 is not a commutative as in fact
(

0 1
0 0

)(

0 0
1 0

)

=

(

1 0
0 0

)

whereas (

0 0
1 0

)(

0 1
0 0

)

=

(

0 0
0 1

)

3.1.3 Valued graphs for automata

Extensive use will be made of weighted graphs, such a graph is the data of:

• a set of arrows E and of vertices V

• two functions tail t : E 7→ V and head h : E 7→ V

• two functions E
λ→ A and ω→ k.

Where A is an alphabet of commands and k is some set of coefficients where the
computations have to be done (indeed a semiring).

Usually the symbol e = p
a|α−→ q means

t(e) = p, h(e) = q, λ(e) = a, ω(e) = α (3.4)

A path is a sequence e1 · · · en = π of arrows such that (∀i < n)(h(ei) = t(ei+1)).
One extends at once the four functions t, h, λ, ω to the paths by

t(π) = t(e1)
h(π) = h(en)
λ(π) = λ(e1) · · ·λ(en) (Concatenation)
ω(π) = ω(e1) · · ·ω(en) (Product in the semiring)) (3.5)

From this definition we see that, given a family of paths.
PS) If they are in series π1 · · ·πk (which means that (∀i < n)(h(πj) = t(πj+1))
then

λ(π1 · · ·πk) = λ(π1) · · ·λ(πk) and ω(π1 · · ·πk) = ω(π1) · · ·ω(πk) (3.6)

PP) If the paths are in parallel (same head, tail and label) then

ω({π1 · · ·πk}) =
∑

i∈I

ω(πi) (3.7)

the axioms of semiring appear them as completely determined by this struc-
ture.

38

Semirings, Automata and applications

Diagram Identity
α→

p
β→ q α + (β + γ) = (α + β) + γ
γ→

p
α
→
β
→

q α + β = β + α

p
α→ q

β→ r
c|γ→ s α(βγ) = (αβ)γ

p
α
→
β
→

q
γ→ r (α + β)γ = αγ + βγ

p
α→ q

β
→
γ
→

r α(β + γ) = αβ + αγ

Remark 4 These axioms ensure at once that that the matrix computations with
coeficients in k are feasible.

3.1.4 Modules

This section is rather algebraic in flavor and can be skipped with no major harm.
However a deep understanding of the most efficient results would require it. For
further studies, the reader is referred to [80] where modules are called semimod-
ules.
Let (M, +), be a commutative monoid. A left K-module structure on M is de-
fined by the data of a mapping φ : K 7→ End(M) such that :

(MG) φ is morphism (3.8)

where, as this can be checked straightforwardly, End(M) is considered as en-
dowed with its natural structure of semiring (End(M), +, ◦).
In general αx denotes the element φ(α)(x) and this defines, in an equivalent man-
ner, an external law K ×M 7→M .
The data (MG) is the equivalent to the following requirements

(∀α, β ∈ K)(∀x, y ∈M)

1. α(x + y) = αx + αy; α0M = 0M

2. (α + β)x = αx + βx; 0Kx = 0M

3. α(βx) = (αβ)x; 1Kx = x

In a dual way, a right K-module structure on M is defined as soon as one has
an anti-morphism1 φ : K 7→ End(M). In order to express these axioms as

1(∀α, β ∈ K)(φ(αβ) = φ(β)φ(α))

39

Semirings, Automata and applications

natural, one creates at once an external law M × K 7→ M defined by (x, α) 7→
φ(α, x). The resulting axioms can be written without difficulty.

Notions of morphisms of modules, of submodules and bimodules are defined
as in standard linear algebra.

The bi-module of fonctions X 7→ K

Let X be a set and K a non-trivial (i.e. 0k 6= 1K) semiring. One calls K-subset

of X[72] (or set with multiplicities in K), every mapping X
f7→ K. Following the

general conventions [28], the set of Ksubsets of X is denoted KX .
This set in naturally endowed with a structure of K-bimodule by (given (α, x) ∈
K ×X)

αf : x 7→ αf(x); fα : x 7→ f(x)α (3.9)

some submodules, in particular those of finite type, of KM defined by automata,
will be of utmost importance in the sequel.

Definition 3 (Summability) A family (fi)i∈I of K-subsets will be said summable
[10] iff

(∀x ∈ X)((fi(x))i∈I is finitely supported) (3.10)

where the support of f is

Supp(f) = {x ∈ X|f(x) 6= 0} (3.11)

We are now in position of enriching our space with a natural pairing. Let k(M)

denote the space (set) of finitely supported f ∈ kM , that is

k(M) = {f ∈ kM |Supp(f) is finite} (3.12)

then, for (f, g) ∈ k(M) × kM or (f, g) ∈ kM × k(M), one defines the scalar
product of f and g with the finite supported sum

〈f |g〉 =
∑

x∈X

f(x)g(x) (3.13)

3.2 The case when X = M is a monoid: behaviour
of automata

3.2.1 Series

In case X = M is endowed with a structure of monoid, the K-subsets are usually
called series over the monoid M . The reason of this is the multiple specialisations

40

Semirings, Automata and applications

of this construction [27] which served, with a considerable amount of studies,
as spaces of series. This feature as even gained in importance with the advent
of Computer Science(s) where this functions serve to measure the behaviour of
automata. Let us summarize in a tabular form the different species of series.

41

Semirings, Automata and applications

Series Monomials Restrictions Space

Univariate in z zN = {zn}n∈N None Noted k[[z]]
Polynomials in z zN = {zn}n∈N Finite support Noted k[z]

Several commutative N(X), fonct. X 7→ N

variables (X) with finite support None Noted k[[X]]

Polynomials with several N(X), fonct. X 7→ N

commutative variables (X) with finite support Finite support Noted k[X]
Several noncommutative X∗, free monoid

variables (X) over the alphabet X None Noted k〈〈X〉〉
Polynomial with several X∗, free monoid

noncommutative variables over the alphabet X Finite support Noted k〈X〉
Laurent series zZ = {zn}n∈Z n ≥ N ; N ∈ Z Noted k((z))

Laurent polynomials zZ = {zn}n∈Z Finite support Noted k(z, z−1)
Puiseux series zQ+ = {zα}α∈Q

α≥0
None

Malcev series (Γ,≺) linearly Well ordered
ordered group support Noted k((Γ))

Taylor series zN = {zn}n∈N Convergence Noted k[[{z}]]
radius k = R ou C

Exponentials {enz}n∈N

Dirichlet {n−z}n>0 entier

Bertrand eαzln(z)βnγ

Thus, series must be understood as functions M 7→ k where M is the space of
monomials (endowed with a structure of monoid) and k, some semiring. Let us
examine the extra operations on the series induced by the product of M .

First, we remark that, given any function f : M 7→ k, the family (f(m)m)m∈M

is summable with sum f . This provides us another denotation for f (which de-
notes however the same object)

f =
∑

m∈M

f(m)m (3.14)

and we immediately, in case f, g be finitely supported, have the usual product
within the algebra k[M] of the monoid M .

3.2.2 Products, inversion and star

First extension: Cauchy product

When M is a monoid, one has an additional structure on the space k(M) which
is called the algebra of M . Let us recall it’s product called the convolution or

42

Semirings, Automata and applications

Cauchy product [10]. With f, g ∈ k(M) one has (all the sums can be checked to
be finite supported)

(∑

u∈M

f(u)u
)(∑

v∈M

g(v)v
)

=
∑

u,v∈M

f(u)g(v)uv =
∑

w∈M

(∑

uv=w

f(u)g(v)
)

w

so, we take it as definition of the Cauchy product which extends linearily the
product within M . Let us state

f ∗ g :=
∑

w∈M

(∑

uv=w

f(u)g(v)
)

w (3.15)

Proposition 2 The space (k(M), +, ∗) is a semiring which contains M as a (mul-
tiplicative) submonoid.

We are now looking to extend this product to series in kM and we see that the
sum (3.15) is well defined. This condition is the following [27]

Condition (D) (∀w ∈M)(#({(u, v) ∈M 2|uv = w}) < +∞) (3.16)

under this condition the space kM can be extended with a structure of semiring
extending that of k(M).

Proposition 3 Provided that M fulfills condition D, the space (kM , +, ∗) is a
semiring which contains (k(M), +, ∗) as a subsemiring.

Second extension: star

Star is unary operation which is of central importance in language theory [10,
104, 117, 144]. But, in the multiplicity real, when one has a ring of scalars and
M = A∗ (a free monoid), a series S has an inverse iff 〈S|1A∗〉 is invertible, in fact
this is true in a wider class, the locally finite monoids [72].

Definition 4 (Locally finite monoids) Let M be a monoid and set M+ = M −
{1M} then M is said locally finite iff

⋂

n≥1

(M+)n = ∅ (3.17)

in fact this is equivalent to the summability of the family
(

(M+)n
)

n≥0
(a sub-

set being identified with its characterisc function in NM) and the sum

(M+)∗ =
∑

n≥0

(M+)n = 1M + (M+) + (M+)2 + · · · (M+)k · · · (3.18)

makes sense. The star operation, which will be developped below, is of great
importance in Computer Science as it corresponds to the measures of iterations.

43

Semirings, Automata and applications

Definition 5 Let k be a semiring, we will say that y ∈ k is a right (resp. left) star
of x iff xy + 1 = y (resp. yx + 1 = y).

The case of series without constant term is of special interest as thy alway
admit a two-sided star.

Definition 6 Let k be a semiring and M a locally finite monoid. We call proper a
series S ∈ kM such that 〈S|1M〉 = 0.

Proposition 4 (Inversion and star) Let M be a locally finite monoid and S ∈ kM ,
then
1) If k is a ring, S has an inverse iff 〈S|1M〉 does.
2) If S is proper, the family (Sn)n≥0 is summable and

S∗ :=
∑

n≥0

Sn (3.19)

is the unique star of S. It is a two-sided star
3) In general S admits a star (left or right) iff 〈S|1M〉 does.

3.3 Automata with Multiplicities

3.3.1 Generalites

An autmaton is a device with permits to assign to every word a coefficient in a
semiring and this in an implementable form (mainly using matrix computations).
Let k a semiring, then an automaton (or, more precisely, a k-automaton) is the
data a five-uplet (Q, A, µ, λ, γ) with :

• Q: the (finite) set of states,

• A: a finite set (alphabet),

• µ : A→ kQ×Q, the transition function.

• λ ∈ k1×Q: the set of initial states together with initial values,

• γ ∈ kQ×1: the set of final states together with initial values.

Remark 5 i) For graphical reasons, one often derives the following

• T =
{

(q1, a|µ(a)q1,q2, q2)
}

q1,q2∈Q

µ(a)q1,q2 6=0

is the set of transitions of non zero

weight.

44

Semirings, Automata and applications

• I = {(q ∈ Q : λ(q) 6= 0)} the set of initial states,

• F = {(q ∈ Q : γ(q) 6= 0)} is the set of final states

the set T characterises (i.e. is equivalent to the data of) µ.
ii) When k = B (the boolean semiring), the B-automata are exactly the classic
automata (NFA) which are then often called boolean automata since to each tran-
sition we affect the coefficient 1 if it exists, 0 if not.

45

Semirings, Automata and applications

1

2

3

b|3
√

2

a|4

a| − 1

a|
√

3

Figure 3.1: Example of automaton with multiplicities

Example 4 Let A = (Q, A, λ, γ, µ) where

• Q = {1, 2, 3}
• A = {a, b}
• δ = {(1, b|3

√
2, 2), (1, a|4, 3), (2, a| − 1, 3), (2, a|

√
3, 2)}

Let f = (q1, a|α, q2) ∈ T a transition of an automatonA, we set :

• label(f) = a,

• tail(f) = q1,

• head(f) = q2,

• weight(f) = α.

A path c = f1 · · · fm is an element of T ∗ sush that for all i < m one has
head(fi) = tail(fi+1).

We also have, in accordance with the conventions about valued graphs:

• label(c) = labelf1) · · · label(fm) (concatenation)

• tail(c) = tail(f1),

• head(c) = head(fm),

• weight(c) = weight(f1). · · · .weight(fm) (product in the semiring).

46

Semirings, Automata and applications

3.3.2 Behaviours

We will define in a moment the local behaviour of an automatonA, but the philos-
ophy is as follow. For a path, the weight is the product of the weights of the arrows
(see above), for a set of paths with same origin (tail), target (head) and label, the
weight is the sum of the weights of the individual paths. The local behaviour of
A between two states p, q ∈ Q for the label w ∈ A∗ is the product of the initial
weight λ(p), the total weight of the set of paths between p and q with label w and
the final weight γ(q), it reads

Ap,q(w) =
∑

tail(c)=p; head(c)=q; label(c)=w

weight(c) (3.20)

and the global behaviour is

A(w) =
∑

p,q∈Q

Ap,q(w) (3.21)

one defines the behaviour as

Behaviour(A) =
∑

w∈A∗

A(w)w (3.22)

Example 5 With the data of figure (3.2), one has

λ = (1, 0, 0); γ =





0
0
1



; µ(a) =





3 1 0
0 0 1
0 0 1



;µ(b) =





3 3 2
0 0 1
0 0 4





3.3.3 Computation of A(w) by transfer matrices

Now the link with the usual matrix computation will become more transparent
and also the reason why we had to extend it to semirings. The one to one corre-
spondence, familiar to Scientists working in Markov processes

valued graph↔ matrix

has been implemented by means the sparse representation given by the set of
transitions (see remark (5) i). One calls the triplet (λ, µ, γ) (which characterises
A) the linear representation ofA. The matrices µ(a) are sometimes called transfer
matrices.

One can prove (using a recurrence on the length of w)

47

Semirings, Automata and applications

1

2

3

b|3, a

b|2

a, b

a, b|4
a|3, b

Figure 3.2: A N-automaton. A simple letter x stands for x|1.

1 2

a|3 b|4
b|
√

2

a|
√

3

Figure 3.3: k=k automaton

48

Semirings, Automata and applications

Proposition 5 Let (λ, µ, γ) the linear representation of an automaton and still
denote µ : A∗ 7→ kQ×Q the morphism which extends µ to the free monoid i.e.

µ(a1a2 · · ·an) = µ(a1)µ(a2) · · ·µ(an); µ(ε) = IQ×Q (identity matrix)

then, for w ∈ A∗

A(w) = λµ(w)γ (3.23)

Example 6 If k = R, then with the automaton (see figure 3.3) :
The word w = aab, corresponds to the product of the corresponding matrices.

µ(w) = µ(a)µ(a)µ(b) =




3 0√
3 0








3 0√
3 0








0
√

2
0 4



 =




0 9
√

2

0 3
√

6





3.3.4 Operations over automata

Let AUT k(A) denote the class of automata with multiplicities in k and alphbet
A (due to the ralabelling possibility, this is indeed a class and not a set). One
then has an arrow Behaviour : AUT k(A) → k〈〈A〉〉 (in a moment, we will see
that the image of this arrow is not the whole set of series but a subalgebra called
krec〈〈A〉〉. We define formally this set

Definition 7 Let k be a semiring and A an alphabet. We denote krec〈〈A〉〉 the set
of series that are the behaviour or some automaton.

One can here address the following questions

Q1 Is krec〈〈A〉〉 a semiring ?
Q2 Is i closed by the star, at least of series with no constant term ?
Q3 Can the operation for which krec〈〈A〉〉 is closed be lifted to the level of au-
tomata ?

The answer of all these questions is positive, moreover krec〈〈A〉〉 is a sub-
bimodule of k〈〈A〉〉 that is to say that it is closed for the operations of right and left
scalings (and some well-known others as the Hadamard, shuffle and infiltration
products [67]).
For the sake of clarity (and with no loss of generality, thanks to relabelling) we
will suppose that the sets of states are of the form {1, 2, · · ·n}. Let us state.

Proposition 6 [67] Let R (resp. S) be a rational series and Ar = (λr, µr, γr)
(resp. As = (λs, µs, γs)) be a K-automaton which recognizes R (resp. S). Let n
(resp. m) be the dimension of Ar (resp. Ar) . The linear representations of the

49

Semirings, Automata and applications

sum, the concatenation and the star are respectively
R + S :

Ar +As =

(
(

λr λs
)

,

(

µr(a) 0n×m

0m×n µs(a)

)

a∈A

,

(

γr

γs

))

, (3.24)

R.S :

Ar
. As =

(
(

λr 01×m

)

,

(

µr(a) γrλsµs(a)
0m×n µs(a)

)

a∈A

,

(

γrλsγs

γs

))

,(3.25)

If λsγs = 0, S∗ :

As
∗ =

(
(

01×m 1
)

,

(

µs(a) + γsλsµs(a) 0m×1

λsµs(a) 0

)

a∈A

,

(

γs

1

))

. (3.26)

Proof. —
The formula for the sum (3.24) is straightforward.
To prove the product formula (3.25), let (λ, µ, γ) = Ar

. As. One proves by
induction that

µ(w) =






µr(w)
∑

uw=w
v 6=1

µr(u)γrλsµs(v)

0m×n µs(w)




 ,

and then λµ(w)γ =
∑

uv=w

λrµr(u)γrλsµs(v)γs =
∑

uv=w

〈R|u〉〈S|v〉.

Concerning the star (3.26), let (λ∗, µ∗, γ∗) = As
∗. Again,

µ∗(w) =




M 0m×1

∑|w|
n=1

∑
u1···un=w

ui 6=1
(λsµs(u1)γs) · · · (λsµs(un−1)γs)(λsµs(un)) 0



 ,

where M ∈ Km×n. We then have
λ∗µ∗(w)γ∗ =

∑|w|
n=1

∑
u1···un=w

ui 6=1
(λsµs(u1)γs) · · · (λsµs(un)γs)

=
∑|w|

n=1〈Sn|w|〉 = ∑

n≥0〈Sn|w|〉 = 〈S∗|w〉.
�

Remark 6 1. Formulas (3.24) and (3.25) provide associative laws on triplets.
They can be found explicitly in [55].

2. Formula (3.26) makes sense even when λsγs 6= 0 (this fact is used for prov-
ing a density result in [67]).

50

Semirings, Automata and applications

3. Of course if S : (λ, µ, γ) and α ∈ K then α × S : (αλ, µ, γ) and S × α :
(λ, µ, γα).

4. For the sum (Ar +As), Ar andAs are just placed side by side.

The productAr
. As has the following components

- States: The union of the sets of states ofAr andAs.

- Inputs: Inputs of Ar.

- Transitions: Transitions of Ar and As and, for each letter a, each
state ri ofAr and each state sj ofAs, a new arc ri

a→ sj is added with
the coefficient (γr)i(λsµs(a))j .

- Outputs: The scalar product λsγs is computed once for all and there
is an output on each qi with the coefficient (γr)iλsγs, the outputs ofAS

being unchanged.

For A∗, one adds a new state qn+1 with an input and an output bearing
coefficient 1, every coefficient µi,j(a) is multiplied by (1 + γiλj) and new
transitions qn+1

a→ qi with coefficient
∑

k λkµk,i(a) (i.e. the “charge” of the
state qi after reading a) are added.

In case K = B, one recovers the classical non deterministic boolean con-
structions implemented in softwares such as Automate [44], AMoRE [122],
Grail [142] and a part of the great project MuPAD-Combinat [111].

As a corollary, we can state.

Corollary 1 Let k, A be as above. Then the space krec〈〈A〉〉 is closed under the
operations (+, α(?), (?)α, ., ∗).

3.4 Kleene-Schützenberger, the jewel of Theoretical
Computer Science

We are now in position to state and sketch one of the most beautiful and useful
result in Theoretical Computer Science : Kleene-Schützenberger’s theorem (KS).

51

Semirings, Automata and applications

The philosophy of this theorem is that we have now three ways to decribe some
special series : rational expressions which are expressions contructed from the
letters using the operations (+, α(?), (?)α, ., ∗), automata with multiplicities and
some specifications on the words (length, partial degrees etc..), KS theorem says
us not only that it is possible to pass from one representation to the other by how
to perform it.
First, we have to lay a solid frame for rational expressions.

3.4.1 Rational expressions

The universal algebra E cf(A, K) and the constant term function

Let A be an alphabet and k a semiring. The completely free formulas for the laws
(+, α(?), (?)α, ., ∗) is the universal algebra generated by A∪{0E} as constants and
the five preceding laws (1E will be constructed as 0∗

E and still be denoted ε). These
expressions, by a standard argument form a set which will be denoted E cf(A, K).

Note 1 For example (a∗)∗ ∈ Ecf(A, K). However, we will see later that this
expression is not to be considered as valid in our setting.

Now, we construct a pull-back of the “constant term” mapping of the series.

Definition 8 i) The function const : E cf(A, K) → K is (partially) recursively
defined by the rules:

1. If x ∈ A ∪ {0E} then const(x) = 0K .

2. If E, Ei ∈ Ecf(A, K), i = 1, 2 then

const(E1 + E2) = const(E1) + const(E2),
const(E1 · E2) = const(E1)× const(E2),

const(λE) = λconst(E), const(Eλ) = const(E)λ.

3. If const(E) = 0K then const(E∗) = 1K .

ii) The domain of const (i.e. the set of expressions for which const is defined) will
be denoted E(A, K) or E , for short (we then have (0K)∗ = ε ∈ E).
These expressions are called rational expressions.

Remark 7 i) The set E(A, B) is a strict subset of the set of free regular expres-
sions, but due to the (Boolean) identity (X +ε)∗ = X∗, the two sets have the same
expressive power.
ii) The class of rational expressions is a small set (in the sense of Mc Lane [119]),
its cardinal is countable if A and K are finite or countable.

52

Semirings, Automata and applications

Sticking to our philosophy of “following the Boolean track”, we must be able
to evaluate rational expressions within the algebra of series. It is a straightforward
verification to see that, given a mapping φ : A → A+, there exists a unique
(poly)morphism φ̄ : E → K〈A〉 which extends φ. In particular, let φ : A → A+

be the inclusion mapping, then the image of φ̄ will be denoted Krat〈〈A〉〉. Notice
here that φ̄(1E) = ε.

3.4.2 The equivalence of Kleene-Schützenberger

Matrices of series and series of matrices

For k a semiring and A, Q a finite sets, we have a straightforward isomorphism
k〈〈A〉〉Q×Q ' kQ×Q〈〈A〉〉 provided by the arrow Φ : k〈〈A〉〉Q×Q 7→ kQ×Q〈〈A〉〉

〈Φ(M)|w〉 = (〈M[q,r]|w〉)q,r∈Q (3.27)

Now, letA = (Q, A, µ, λ, γ) be an automaton, one has

Behaviour(A) =
∑

w∈A∗

(λµ(w)γ)w =

λ(
∑

w∈A∗

µ(w))w)γ = λ(
∑

a∈A

µ(a)a)∗γ (3.28)

Now, we recall that we had the inclusion krat〈〈A〉〉 ⊂ krec〈〈A〉〉 as the latter
contains A and is closed under (+, α(?), (?)α, ., ∗). To get the converse, is suffices
to prove that the coefficients of (

∑

a∈A µ(a)a)∗ are in krat〈〈A〉〉, which will be a
consequence the following contruction.

Recursive computation of the star

In this paragraph, we have followed [70]
Let M ∈ kQ×Q be given by

M =

(

a11 a12

a21 a22

)

where a11 ∈ kQ1×Q1 , a12 ∈ kQ1×Q2 , a21 ∈ kQ2×Q1 and a22 ∈ kQ2×Q2 such that
Q1 + Q2 = Q. Let N ∈ kQ×Q given by

N =

(

A11 A12

A21 A22

)

53

Semirings, Automata and applications

with

A11 = (a11 + a12a22
∗a21)

∗ (3.29)

A12 = a11
∗a12A22 (3.30)

A21 = a22
∗a21A11 (3.31)

A22 = (a22 + a21a11
∗a12)

∗ (3.32)

We have the following theorem.

Theorem 3 If the right hand sides of formulas (3.29), (3.30), (3.31) and (3.32)
are defined, the matrix M admits N as a right star.

Proof. Suppose, without loss of generality, that Q = [1, n]N; n = p + q; Q1 =
[1, p]N; Q2 = [p+1, p+ q]N. We have to show that N is a solution of the equation
My + 1n×n = y. By computation, one has

MN + 1 =

(

a11 a12

a21 a22

)(

A11 A12

A21 A22

)

+

(

1p×p 0p×q

0q×p 1q×q

)

=

(

a11A11 + a12A21 + 1p×p a11A12 + a12A22

a21A11 + a22A21 a21A12 + a22A22 + 1q×q

)

where 0p×q is the zero matrix in kp×q. We verify the relations (3.29), (3.30), (3.31)
and (3.32) by:

a11A11 + a12A21 + 1p×p = a11A11 + a12a
∗
22a21A11 + 1p×p =

A11(a11 + a12a22
∗a21) + 1p×p = A11

a11A12 + a12A22 = a11a11
∗a12A22 + a12A22 =

(a11a11
∗ + 1)a12A22 = a11

∗a12A22 = A12

a21A11 + a22A21 = a21A11 + a22a22
∗a21A11 =

(1 + a22a22
∗)a21A11 = a22

∗a21A11 = A21

a21A12 + a22A22 + 1q×q = a21a11
∗a12A22 + a22A22 + 1q×q =

(a22a21a11
∗a12)A22 + 1q×q = A22

�

54

Semirings, Automata and applications

Remark 8 i) In [94] and [143], similar formulas are expressed for the computa-
tion of the inverse of matrices when k is a division ring (this can be extended to
the case of rings).
It must be emphasized that the converse of Theorem (3), of course, does not hold
as shows the example below (the coefficients are taken in a ring and here the star
is unique).

M =

(

1 −1
1 −1

)

M∗ =

(

2 −1
1 0

)

(3.33)

However, if the formulas are defined at each step of the computation (see below
for a formalization of this), it provides a recursive way to compute a star of a
matrix.
ii) Similar formulas can be stated in the case of a left star. The matrix N is the
left star of M with

A11 = (a11 + a12a22
∗a21)

∗

A12 = A11a12a22
∗

A21 = A22a21a11
∗

A22 = (a22 + a21a11
∗a12)

∗

iii) When all their terms are defined, formulas above (as well as (3.29), (3.30),
(3.31) and (3.32)) are valid with matrices of any size with any block partitionning.
Matrices of even size are often, in practice, partitionned into square blocks but,
for matrices with odd dimensions, the approach called dynamic peeling is applied.
More specifically, let M ∈ kn×n a matrix given by

M =

(

a11 a12

a21 a22

)

where n ∈ 2N + 1. The dynamic peeling [99] consists of cutting out the matrix in
the following way: a11 is a (n− 1)× (n− 1) matrix, a12 is a (n− 1)× 1 matrix,
a21 is a 1× (n− 1) matrix and a22 is a scalar.

If desired, formulation of Theorem (3) can be seen as recursive in essence.
In this respect, it implies that stars of submatrices could be already computed by
the same scheme. This type of computation will be formalized by the notion of
admissible tree of computation which we describe below.
Let Q be a finite set andA[Q] be the set of binary trees with leaves in Q. It can be
defined by the grammar

A[Q] = Q + (A[Q],A[Q]) (3.34)

55

Semirings, Automata and applications

or, if one prefers a graded version

{

A1[Q] = Q
An[Q] =

∑

i+j=n(Ai[Q],Aj[Q]) if n ≥ 2.

Now, the list of leaves of a tree T ∈ An[Q] is a word lv(T) ∈ Qn defined by

{

lv(T) = T if T ∈ A1[Q]
lv(T) = lv(T1)lv(T2) (concatenation) if T = (T1, T2).

The set of leaves of T is then alph(lv(T)), where alph(w) is classically the al-
phabet of the word w.
We will say that T ∈ A[Q] is an admissible tree of computation for M ∈ kQ×Q if

1. the word lv(T) is standard (with no repetition) and contains all the indices
(i.e. |lv(T)| = |Q| and alph(lv(T)) = Q)

2. if |Q| = 1 (thus M ∈ kQ×Q ' k is a scalar), M admits a star in kQ×Q

3. • if |Q| ≥ 2, set T = (T1, T2) and Qi = lv(Ti) (i = 1, 2) then T1

is admissible for the submatrix M
∣
∣
∣
Q1×Q1

and T2 is admissible for the

submatrix M
∣
∣
∣
Q2×Q2

.

• formulas above (3.29), (3.30), (3.31) and (3.32) are defined for the
partitionning Q = Q1 + Q2.

The conditions above assures that the recursive computation of Theorem (3) is
defined at each step and, in this case, we will say that the star of M is computed
along the (admissible) tree of computation T .

Formulas (3.29), (3.30), (3.31) and (3.32) allow to prove the rationality of the
star function on matrices (see [69] for deep consequences of this fact).

Proposition 7 Let M ∈ krat〈〈A〉〉Q×Q a matrix of proper series. Then the coeffi-
cients of M∗ are rational functions of the coefficients of M .

Now, we have the

Theorem 4 (Kleene-Schützenberger’s Theorem). —

krat〈〈A〉〉 = krec〈〈A〉〉

56

Semirings, Automata and applications

3.5 Tables

The following is intended to be a contribution in the area of what could be called
efficient algebraic structures or efficient data structures. In fact, we define and
construct a new data structure, the tables, which are special kinds of two-raws
arrays. The first raw is filled with words (or with elements taken in a semigroup)
and the second with some coefficients. This structure generalizes the (finite) k-
sets of Eilenberg [72], it is versatile (one can vary the letters, the words and the
coefficients), easy implemented and fast computable. Varying the scalars and the
operations on them, one can obtain many different structures and, among them,
semirings. Examples will be provided and worked out in full detail.

Here, we present a new semiring (with several semiring structures) which can
be applied to the necessity of automatic processing multi-agents behaviour prob-
lems. The purpose of this account is to present also the basic elements of this new
structures from a combinatorial point of view. These structures present bunch of
properties. They will be endowed with several laws namely : Sum, Hadamard
product, Cauchy product, Fuzzy operations (min, max, complemented product).
Two groups of applications are presented.

The first group is linked to the process of “forgetting” information in the ta-
bles and then obtaining, for instance, a memorized semiring.The latter is specially
suited to solve the shortest path with addresses problem by repeated squaring over
matrices with entries in this semiring.

The second, linked to multi-agent systems, is announced by showing a method-
ology to manage emergent organization from individual behaviour models.The
bases of this methodology will be developed in the following chapter from au-
tomata structures.

3.5.1 Tables and operations on tables

The input alphabet being set by the automaton under consideration, we will here
rather focus on the definition of semirings providing transition coefficients. For
convenience, we first begin with various laws on R+ := [0, +∞[including

1. + (ordinary sum)

2. × (ordinary product)

3. min (if over [0, 1], with neutral 1, otherwise must be extended to [0, +∞]
and then, with neutral +∞) or max

57

Semirings, Automata and applications

4. +a defined by x +a y := loga(a
x + ay) (a > 0)

5. +[n] (Hölder laws) defined by x +[n] y := n
√

xn + yn

6. +s (shifted sum, x +c y := x + y − 1, over whole R, with neutral 1)

7. ×c (complemented product, x + y − xy, can be extended also to whole R,
stabilizes the range of probabilities or fuzzy [0, 1] and is distributive over
the shifted sum)

A table T is two-rows array, the first row being filled with words taken in a
given free monoid (see [68, 117]). The set of words which are present in the first
row will be called the indices of the table (I(T)) and for the second row the values
or (coefficients)of the table. The order of the columns is not relevant. Thus, a table
reads

{

indices set of words I(T)
values bottom row V (T)

(3.35)

The laws defined on tables will be of two types :
pointwise type (subscript p) and convolution type (subscript c).
Now, we can define the pointwise composition (or product) of two tables.
Let us consider, two tables T1, T2 and a law ∗

T1 =
u1 u2 · · · uk

p1 p2 · · · pk
and T2 =

v1 v2 · · · vl

q1 q2 · · · ql

then T1∗pT2 is defined by Ti[w] if w ∈ I(Ti) and w /∈ I(T3−i) and by T1[w] ∗
T2[w] if w ∈ I(T1) ∩ I(T2)

In particular one has I(T1∗pT2) = I(T1) ∪ I(T2).

Note 2 i) At this stage one do no need any neutral. The structure automatically
creates it (see algebraic remarks below for full explanation).
ii) The above is a considerable generalization of an idea appearing in [42], aimed
only to semirings with units.

For convolution type, one needs two laws, say⊕,⊗, the second being distribu-
tive over the first, i.e. identically

x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z) and
(y ⊕ z)⊗ x = (y ⊗ x)⊕ (z ⊗ x) (3.36)

(see http://mathworld.wolfram.com.Se miri ng.ht ml).

58

Semirings, Automata and applications

The set of indices of T1∗cT2 (I(T1∗cT2)) is the concatenation of the two (finite)
langages I(T1) and I(T2) i.e. the (finite) set of words

I(T1)I(T2) = {uv}(u,v)∈I(T1)×I(T2). (3.37)

then, for w ∈ I(T1)I(T2), one defines

T1 ⊗c T2[w] =
⊕

uv=w

(

T1[u]⊗ T2[v]
)

(3.38)

the interesting fact is that the constructed structure (call it T for tables) is
then a semiring (T ,⊕p,⊗c) (provided⊕ is commutative and - generally - without
units, but this is sufficient to perform matrix computations). There is, in fact
no mystery in the definition (3.37) above, as every table can be decomposed in
elementary bits

T1 =
u1 u2 · · · uk

p1 p2 · · · pk
=

k⊕

i=1

ui

pi
(3.39)

one has, thanks to distributivity, to understand the convolution of these inde-
composable elements, which is, this time, very natural

u1

p1

⊗

c

u2

p2
:=

u1u2

p1 × p2
(3.40)

3.5.2 Why semirings ?

As was emphasized in the beginning of this chapter, the structure of semiring is the
most efficient for performing computations over paths. Indeed, in many applica-
tions, we have to compute the weight of paths in wome weighted graphs (shortest
path problem, enumeration of paths, cost computations, automata, transducers to
cite only a few) and the computation goes with two main rules: multiplication in
series (i.e. along a path), and addition in parallel (if several paths are involved).
This paragraph is devoted to showing that in these conditions, the axioms of
Semirings are by no means arbitrary and in fact unavoidable. A weighted graph is
an oriented graph together with a weight mapping ω : A 7→ K from the set of the
arrows (A) to some set of coefficients K, an arrow is drawn with its weight (cost)
above as follows a = q1

α→ q2.
For such objects, one has the general conventions of graph theory.

• t(a) := q1 (tail)

• h(a) := q2 (head)

59

Semirings, Automata and applications

• w(a) := α (weight).

Recall that a path is a sequence of arrows c = a1a2 · · ·an such that h(ak) =
t(ak+1) for 1 ≤ k ≤ n − 1. The preceding functions are extended to paths by
t(c) = t(a1), h(c) = h(an), w(c) = w(a1)w(a2) · · ·w(an) (product in the set of
coefficients).

For example with a path of length 3 and (k = N),

u = p
2→ q

3→ r
5→ s (3.41)

one has t(u) = p, h(u) = s, w(u) = 30.

As was stated above, the (total) weight of a set of paths with the same head
and tail is the sum of the individual weights. For instance, with

q1
α→
β→ q2 (3.42)

the weigth of this set of paths est α + β. From the rule that the weights
multiply in series and add in parallel one can derive the necessity of the axioms of
the semirings. The following diagrams shows how this works.

Diagram Identity
α→

p
β→ q α + (β + γ) = (α + β) + γ
γ→

p
α
→
β
→

q α + β = β + α

p
α→ q

β→ r
c|γ→ s α(βγ) = (αβ)γ

p
α
→
β
→

q
γ→ r (α + β)γ = αγ + βγ

p
α→ q

β
→
γ
→

r α(β + γ) = αβ + αγ

these identities are familiar and bear the following names:

Line Name

I Associativity of +
II Commutativity of +
III Associativity of ×
IV Distributivity (right) of × over +
V Distributivity (left) of × over +

60

Semirings, Automata and applications

3.5.3 Total mass

The total mass of a table is just the sum of the coefficients in the bottom row. One
can check that

mass(T1⊕ T2) = mass(T1) + mass(T2);
mass(T1⊗ T2) = mass(T1)ṁass(T2) (3.43)

this allows, if needed, stochastic conditions.

3.5.4 Algebraic remarks

We have confined in this paragraph some proofs of structural properties concern-
ing the tables. The reader may skip this section with no serious harm.
First, we deal with structures with as little as possible requirements, i.e. Magmas
and Semirings. For formal definitions, see [80] and

http: encyclopedia.thefreedictionar y.co m.Ma gma%2 0cat egory

http://mathworld.wolfram.com.Se mirin g.ht ml

Proposition 8 (i) Let (S, ∗) be a magma, Σ an alphabet, and denote T [S] the set
of tables with indices in Σ∗ and values in S. Define ∗p as in (3.5.1). Then
i) The law ∗ is associative (resp. commutative) iff ∗ is. Moreover the magma
(T [S], ∗) always possesses a neutral, the empty table (i.e. with an empty set of
indices).
ii) If (K,⊕,⊗) is a semiring, then (TK ,⊕,⊗) is a semiring.

Proof (Sketch) Let S(1) the magma with unit built over (S∪{e}) by adjunction
of a unit. Then, to each table T , associate the (finite supported) function fT :
Σ∗ 7→ S(1) defined by

fT (w) =

{

T [w] if w ∈ I(T)
e otherwise

(3.44)

then, check that fT1∗pT2
= fT1

∗1fT2 (where ∗1 is the standard law on S
(Σ∗)
(1)) and

that the correspondence is a isomorphism. Use a similar technique for the point
(ii) with K0,1 the semiring with units constructed over K and show that the corre-
spondence is one-to-one and has K0,1〈Σ〉 as image.

Note 3 (i) Replacing Σ∗ by a simple set, the (i) of proposition above can be ex-
tended without modification (see also K-subsets in [72]).

61

Semirings, Automata and applications

(ii) Pointwise product can be considered as being constructed with respect to the
(Hadamard) coproduct c(w) = w ⊗ w whereas convolution is w.r.t. the Cauchy
coproduct

c(w) =
∑

uv=w

u⊗ v (3.45)

(see [67]).

3.6 Applications of operations on tables

3.6.1 Specialisations and images

1. Multiplicities, Stochastic and Boolean. —

Whatever the multiplicities, one gets the classical automata by emptying the
alphabet (setting Σ = ∅). For stochastic, one can use the total mass to pin
up outgoing conditions.

2. Memorized Semiring. —

We explain here why the memorized semiring, devised at first to perform
efficient computations on the shortest path problem with memory (of ad-
dresses) can be considered as an image of a "table semiring" (thus proving
without computation the central property of [103]).
Let T be here the table semiring with coefficients in ([0, +∞], min, +).
Then a table

T =
u1 · · · uk · · · un

l1 · · · lk · · · ln
(3.46)

can be written so that l1 = · · · = lk < lm for m > k (this amounts to say
that the set where the minimum is reached is {u1, u2 · · ·uk}). Then, to such
a table, one can associate φ(T) := [{u1, u2 · · ·uk}, l1] in the memorized
semiring. It is easy to check that φ transports the laws and the neutrals and
obtain the result.

3.6.2 Application to evolutive systems

Tables are structured as semirings and are flexible enough to recover and amplify
the structures of automata with multiplicities and transducers. They give opera-
tional tools for modelling agent behaviour for various simulations in the domain
of distributed artificial intelligence [15]. The algebraic structures associated with
tables values are very promising to define automatic computations with respect
to the evolution of agents behaviour during simulation as we will explain in the

62

Semirings, Automata and applications

following chapter from automata structures.

One of our aims is to compute dynamic multiagent systems formations which
emerge from a simulation. The use of table operations delivers calculable au-
tomata aggregate formation. With the definition of adapted operators coming
from genetic algorithms, we are able to represent evolutive behaviors of agents
and so evolutive systems [15]. Thus, tables and memorized semiring are promiz-
ing tools for this kind of implementation which leads to model complex systems
in many domains. Let us consider the bases of the computation of evolutive agent
behaviour in the following chapter.

63

Semirings, Automata and applications

64

Chapter 4

Evolutive agent behaviour modeling
based on genetic automata

Contents

4.1 Introduction . 67

4.2 A general framework for agent description in operating way 68

4.2.1 Basic agent description 68

4.2.2 A basic review on automata based description for agent
modeling . 70

4.2.3 An agent modeling framework based on automata with
multiplicities . 70

4.3 Deterministic agent modeling using transducers 71

4.3.1 General model description 71

4.3.2 Eco-Agent as basic interacting entity behaviour model 72

4.3.3 An application to self-organized fluid flow simulation . 74

4.4 An augmented agent representation for non deterministic
behaviour model . 78

4.4.1 Probabilistic automata for non determinist aspects . . 78

4.4.2 A global formalism for agent behaviour 80

4.5 Agent interaction and evolution modeling using algebraic
computation . 81

4.5.1 Classical algebraic operators for agent aggregation ba-
sic models . 82

4.5.2 Genetic operators for agent evolution model 83

65

Evolutive agent behaviour modeling based on genetic automata

4.5.3 Evolutive automata in terms of self-organization mod-
eling . 86

66

Evolutive agent behaviour modeling based on genetic automata

This chapter is the central component of the work presented in this study. We
show how algebraic structures described in the previous chapter can be the basis
of complex systems modeling within agent based approaches.

4.1 Introduction

In the previous last chapters, we first presented general concepts for complex sys-
tems, based on interacting and adaptative components. In the end of this first
chapter, we presented some previous works based on formal models and compu-
tational structures to show how these concepts can be implemented. In the second
chapter, we have presented in detail the part of the theory which is relevent to ower
need. This showed the power of such formal models and computational structures.
Semiring is the central concept which must be understood as a powerful operating
structure.

In this chapter, we deal on modeling aspect for complex systems, in terms of
operative vision which must allow to represent the two bases of complex systems
entities: their interacting processes which can lead to self-organized structures
and their evolutive or adaptive behaviour which can be seen as the feed-back of
the system over its components.

We focus our attention on the fact that the self-organization simulation needs
to manage dynamics organizations which can be automatically created during the
simulation, but which can disappear because of dynamic modifications of some
interactions between specific entities.

We are looking for analysis and modelization which helps us to understand
such dynamic reorganizations through multiple interacting entities. Determining
the essential factors for such phenomena, give us a more precise modelization in
terms of micro-macro exchanges. Such exchanges are well known to be essential
for the whole system behaviour evolution. Aquatic complex flux is an example of
such a phenomenon [18, 134].

So, we need automatic computations which lead to manage dynamic organi-
zations. A adapted formalism must be used and many operations must be defined
on it. We suggest an agent description based on automata implementation as de-
scribed in the following. In this chapter, we follow the formalism initially pro-
posed in [15, 16].

Finite state automata are tools on which many interesting operations can be

67

Evolutive agent behaviour modeling based on genetic automata

defined [147, 45, 67] We suggest in the following, the use of some species of
automata, well-adapted to agent processing.

4.2 A general framework for agent description in
operating way

We draw a general model for agent behaviour representation, as operating entities
which composed a complex system. We first define the general context of the
agent description used in our work and we present the different kinds of automata-
based models used to describe them.

4.2.1 Basic agent description

In first chapter, we describe complex systems as composed of entities which can
be mainly described by two aspects. The first one concerns the interaction net-
work to whom they believe and which is able to generate emergent dynamics or
structures as schematically described in the part (a) of the figure 4.1. The sec-
ond concerns the evolutive aspect of the dynamicity of the system which lead to
generate adaptive behaviours of the entities as a kind of feed-back process of the
system on its constitutives components.

The interacting entities network as described in the part (b) of the figure 4.1
lead to each entity to perceive informations or actions from other entities or from
the whole system and to act itself.

A well-adapted modeling consist of using agent-based representation which
is composed of the entity called agent as an entity which perceives and acts on
an environment, using a autonomous behaviour as described in the part (c) of the
figure 4.1.

To compute a simulation composed of such entities, we need to describe the
behaviour of each agent. This one can be schematically describe using internal
states and transition processes between these states, as described in the part (d) of
the figure 4.1.

There are several definitions of “agents” or “intelligent agents” according to
their behaviour specificities [75, 161]. Their autonomy means that the agents try
to satisfy a goal and execute actions, optimizing a satisfaction function to reach it.

68

Evolutive agent behaviour modeling based on genetic automata

Agent

Agent

Agent

and structures

Global Dynamics
Global structures

Interacting Entities

Environment
Environment

actionsperceptions

behaviour

Agent

perceptions actions

Agent

behaviour

(a) Global complex system (b) Interacting entities network

(c) Agent−based model for entity (d) automata−based model for agent behaviour

Figure 4.1: Multi-scale complex system description: from global to individual
models

69

Evolutive agent behaviour modeling based on genetic automata

For agents with high level autonomy, specific actions are realized even when
no perception are detected from the environment. To represent the processing of
this deliberation, different formalisms can be used and a behaviour decomposed in
internal states is a effective approach. Finally, when many agents operate, the so-
cial aspects must also be taken into account. These aspects are expressed as com-
munications throw agent organisation with message passing processes. Sending a
message is an agent action and receiving a message is an agent perception. The
previous description based on the couple: perception and action is well adapted to
that.

4.2.2 A basic review on automata based description for agent
modeling

Finite state automata play an important role in the design of many applications
and in several areas of computer science: theory of languages [147, 45, 10, 43],
systems and networks, parsing, images compression [56, 55], genomic research.

Different representations of agent behaviour, seen as processes, are compared
in [75]. Many of them are based on classic automata or on their extensions. In
fact, classical representations for agents are Petri nets and register automata like
ATN (Augmented Transition Net). Petri nets and ATN are more expressive than
boolean finite state automata. Moreover, Petri nets allow the expression of par-
allel aspects of agent behaviour in a multi-agent system that classic finite states
automata are not able to do. An ATN can be defined as a finite state automa-
ton with registers changing when conditions are checked, and with transitions
between states labelled by actions [85]. Petri nets and ATN make use of memo-
rization mechanisms and therefore miss some properties of finite state automata.
Beside these classical representations, an automaton with multiplicities, as a for-
mal pattern for an agent behaviour, preserves classical rational operations on au-
tomata [66] and gives, with the output associated, a formalism to represent the
actions of an agent. Moreover, varying the scalars (e.g. change of semiring) one
can reach a wealth of an expected innovative outputs.

4.2.3 An agent modeling framework based on automata with
multiplicities

The formalism adopted in this work for the representation of the agent behaviour
induced by perceptions and actions is automata with outputs. The finite inputs al-

70

Evolutive agent behaviour modeling based on genetic automata

phabet corresponds to the perceptions set. The finite outputs alphabet corresponds
to the actions set. From this output alphabet, we build a semiring corresponding
to the polynomials over this output alphabet.

As described in chapter 3, an automaton with multiplicities over a finite alpha-
bet Σ and a semiring K is a 5− tuple (Σ, Q, I, T, δ), with Q a finite set of states
and I , T , δ being mappings such that

• I : Q→ K,

• T : Q→ K,

• δ : Q× Σ×Q→ K.

I (resp. T) is the set of initial states (resp. final states) and δ is the transition
function.

Such a structure is particularly useful when transitions have outputs: to each
input word of Σ∗ is associated an output element of K. Thus the behaviour of an
automaton with multiplicities is a series S = Σw∈Σ∗〈S|w〉w where 〈S|w〉 is the
output element associated to the input word.

4.3 Deterministic agent modeling using transducers

We describe in this section, how a specifical representation of automata with mul-
tiplicities can be used to represent a deterministic agent behaviour which is driven
by perceptions that induce internal state transitions and can lead to specific action
from the agent.

4.3.1 General model description

So, based on this first description, transducers as finite state automata is the adapted
formalism.

As far as agents are concerned, we consider the set Σ of the agent perceptions
and the set Π of its elementary actions. Let us consider K = A〈Π〉 as the set
of polynomials of these elementary actions with coefficients in A (a commutative
semiring), as the set of integers, for example.

To each transition by a given symbol of Σ is associated an output, which
is some symbol of K. Thus K is the set of all possible sequences of actions,

71

Evolutive agent behaviour modeling based on genetic automata

equipped with sum and concatenation product operations. An agent can be repre-
sented by a tranducer which is a particular form of automaton with multiplicities
over the alphabet Σ and the semiring (K,⊕,�). Thus the behaviour of an agent
is S = Σw∈Σ∗〈S|w〉w where 〈S|w〉 is the output action induced by the successive
perceptions a1, ..., an, such that w = a1...an.

The formalism described before is really suited for reactive behaviour describ-
ing actions induced from perceptions. To take into account some deliberative be-
haviours, we have to complete this description. We can use meta-automata where
the states are themselves some abstract processus. They can be associated to in-
ternal automata for exemple, which model deliberative mecanisms from another
level of description that the one described by the basic transducer. Multi-level
processes are so used, each one is relevant for specific agent signification or in-
terpretation. Automatic computations in terms of organisational or social aspects
between agents are defined for each level. In such a way, the organizations de-
duced from these operations are semantically relevant in the level of description
where these automatic computations are made.

In fact, usually, the agent framework able to manage dynamic organisations
are often based on reactive architecture for the agent behaviour and not on cogni-
tive architecture.

Another precision has to be given about the automata formalism which uses
initial state and final ones. What are the signification for the agent process? In
the one hand, this can describe a life cycle where each agent is born in initial state
and dies in final one. However, in many problems, agent are represented by a
permanent processus, birth and death are irrelevant in this formal descrition. In
such model, we have to introduce initial and final states to identify all the actions
sequences allowing the agent behaviour to be in specific states (final ones) from
another specific one (initial state). We describe in the following a metric tool to
compare these different sequences.

4.3.2 Eco-Agent as basic interacting entity behaviour model

Using our formalism, we can show that transition graph of the Eco-problem-
solving described in [75] can be expressed as transducer.

An eco-agent is characterized by:

• an internal state which is one of the following: to be satisfied (S), to search
satisfaction (SS), to flee (F) or to search to flee (SF); the initial state is

72

Evolutive agent behaviour modeling based on genetic automata

(SS) and the final state is (S); the final state of satisfaction corresponds to
the goal of the agent;

• percepting functions which are:

– to be attacked (by other agents): event denoted A;

– to perceive some intruder (such as other agents preventing it to be
satisfied): event denoted I .

• elementary actions which are:

– to flee (TF);

– to satisfy itself (TS);

– to attack other agents (TA);

– to do nothing (N1).

SF

SS

F
S

a,b|N1

c|TA

c,d|N1

d|TS

a,b|N1

a|TA

b|TF

c,d|TA

c,d|N1

a,b|N1

TE

TI

Figure 4.2: Tranducer Ax for Eco-Agent behaviour

This agent behaviour can so be reprented by the tranducer (see figure 4.2)
Ax = (Σ, Π, Q, I, T, δ), such that :

• Σ is the finite alphabet corresponding to transition conditions which are
based on agent perception. There we have Σ = {a, b, c, d}, where a =
(A, I), b = (A, I), c = (A, I), d = (A, I).

• Q is the set of states: Q = {S, SS, F, SF}

73

Evolutive agent behaviour modeling based on genetic automata

• Let Π = {TA, TF, TS, T I, TE, N0, N1} be the set of elementary agent
actions described before and completed with TI the agent initialization, TE
the end of the agent actions, N0 the absence of action (in fact no transition)
and N1 an action with no incidence (such as the F to SF transition in
Fig. 4.2). We consider the semiring (K,⊕,�) as defined above, where
K = N〈Π〉, the set of polynomials over Π, with integer coefficients. Notice
that the action N0 (resp. N1) is the neutral element of the ⊕ (resp. �)
operation.

• I : Q→ K is defined by I(SS) = TI and I(S) = I(F) = I(SF) = N0.

• T : Q → K is defined by T (S) = TE and T (SS) = T (F) = T (SF) =
N0.

• δ is defined by the transitions of the automaton described in Fig. 4.2.

The Eco-Agent behaviour give an interesting distributed method for problems
resolution. In [63], this model is used on a population of agents which collectively
solve the N-puzzle problem.

4.3.3 An application to self-organized fluid flow simulation

We present in this section how the eco-resolution automata with multiplicities has
been used for a study concerning a simulation leading to implement self-organized
processes inside a fluid flow.

Initially, this study concerns a research topic about aquatic ecosystem model-
ing [21, 22]. The goal is to describe a complex fluid flow using two-scales level:

• Elementary vortex particles evolve following vortex methods which is a
discrete formulation in terms of vorticity of the fluid flow based on Navier-
Stokes equations [53, 114].

• Emergent vortex structures that appear in the fluid and must be automati-
cally detected during the simulation.

Such multi-scale simulation must deal with two essential aspects:

• The management of the emergent detected structures. How to represent
such emergent self-organized systems inside and during the simulation?
How to make them involve? How to manage the entropy inside the self-
organized structure? Does the entropy or the order have to increase or
decrease? All these questions must be treated with pertinent phenomena,
dynamically and during the simulation.

74

Evolutive agent behaviour modeling based on genetic automata

• The micro-macro interactions. Multi-scale simulation has to manage this
important aspect which is the heart of the flux transfert throught the struc-
tures.

In the following, we explain how the structures are detected with geometrical
processes and then we explain the management of multi-scale simulation based
on an eco-agent automaton which is the heart of the self-organisation evolution.

Self-organized structures detection inside fluid flow

The fluid flow are represented with a set of rotational particles which each have a
rotational sense (positive or negative).

The self-organized structures which we deal with in this study is a cluster of
same rotational particles whose shape is physically pertinent, e.g. near a ellipsoid
shape and which does not contain inside its shape particles of opposite rotation.

The self-organized structures are detected using some steps which are sum-
merized inside the figure 4.3: a Delaunay triangulation is computed and allows
to build a minimal spanning tree where non pertinent edges are broken (e.g. the
edges which lie between different rotational particles or which are too long). We
obtain a set of clusters. The convex hull is then computed for each cluster. The
self-organized structures that we try to detect are vortex and their natural physical
shape is an ellipsoid. So we try to identify each convex hull with an ellipse, using
some specific methods. If some morphological constraints are respected, then the
cluster is validated and the self-organized vortex structure is created.

Automata-based modeling for structure evolution and stability simulation

Once the self-organized structures are detected, we have to modelize them and
create the associated entities inside and during the simulation. To make that, we
represent each structure by an eco-agent which has to manage the coherence of
the self-organized structure.

Using eco-agents as behaviour models for a specific problem, consists in the
definition of the two elementary perceptions: to be attacked and to perceive in-
truders, and the four elementary actions: to do nothing, to attack, to escape and
to satisfy. We now explain how these notions have to be defined for the structure
evolution:

• To perceive intruders means that the structure intercepts another or is on
his close trajectory (e.g. inside a specific interaction zone). The figure 4.4

75

Evolutive agent behaviour modeling based on genetic automata

positive rotation

negative rotation
Minimal Spanning Tree

Suppression of long edges and relative long edges Convex hulls and determination of ellipses

Suppression of edges between different rotation directions

Figure 4.3: Self-organized structures detection

Figure 4.4: Structure perception of intruder

76

Evolutive agent behaviour modeling based on genetic automata

sumerizes the differents cases of opposite rotation structures perceived in a
close neighbourhood.

• To attack a structure means to send it a message and to be attacked means
to receive a message.

• To escape means to be in unstable stage. In that case, the structure reduces
its shape and generate elementary particles on its frontier, preserving the
whole rotational value, as described on figure 4.5.

• to satisfy means to increase its stability. In that case, the structure try to
aggregate neighbouring particles of same rotational sense, using local span-
ning tree and new shape computation, as described on figure 4.6.

Figure 4.5: Structure escape

Figure 4.6: Aggregation process as structure satisfaction

As explained, the eco-agent modeling allows to compute the stability of the
self-organized process and this modelizes the micro-macro interactions.

77

Evolutive agent behaviour modeling based on genetic automata

4.4 An augmented agent representation for non de-
terministic behaviour model

In this section, we will focus our attention on probabilistic automata as a model for
non deterministic behaviour. Then we finally, propose a generic global formalism
which allows to mix the two previous descriptions, transducer and probabilistic
automata.

4.4.1 Probabilistic automata for non determinist aspects

An agent behaviour can sometimes be modelled with a probabilistic approach. For
example, in prey-predator simulation, a prey, at a given instant, can be in an inter-
nal state without the perception of any aggression. So, it can do nothing, or eat, or
move itself. This choice can be the result of a probability depending on individual
characteristics. Thus, for a given perception, we use probabilistic transitions to go
from an initial state to some particular ones, as described in Fig. 4.7.

1

2

3

a:0.2
a:0.5

a:0.3

Figure 4.7: Transitions from one node in a probabilistic automata

The framework of automata with multiplicities also allows us to model these
probabilistic aspects in agent behaviour: each internal transition produces a prob-
ability in output. Indeed, a stochastic (or probabilistic) automaton is a particular
case of one with multiplicities. In comparison with the definition given above, the
transition function δ defined above becomes δ : Q × Σ × Q → [0, 1], with the
constraint that:

∀a ∈ Σ, ∀q ∈ Q
∑

p∈Q

δ(q, a, p) = 1 (4.1)

that is, the sum of probabilities of all transitions for each perception, starting from
any state, must be equal to 1.

We use a the linear representation of automata. Such a representation of di-
mension n (number of states) is a triplet (λ, µ, γ) where λ ∈ [0, 1]1×n, with

78

Evolutive agent behaviour modeling based on genetic automata

n∑

i=1
λ1,i = 1, a row vector coding the input probabilities, γ ∈ {0, 1}n×1 a col-

umn vector coding the output probabilities and µ : Σ∗ → [0, 1]n×n a morphism of
monoids coding the transition probabilities between states for each letter a ∈ Σ,
with the row-stochastic matrix µ(a).

The constraint represented by expression (4.1) is equivalent to

∀a ∈ Σ, ∀q ∈ Q
∑

p∈Q

µq,p(a) = 1 (4.2)

A successful path is a path from an initial state to a final one. Then, for all
w ∈ Σ∗ corresponding to a successful path, λµ(w)γ is the probability of all suc-
cessful paths labelled by w (it is the probability that the successful succession of
perceptions, w, occurs).

1

1 2 3 4

b:p 32a:p

s

1

1
e

c:p

Figure 4.8: A successful path: the probability to perceive abc is e1p1p2p3s1

We show in Fig. 4.9 an example of probabilistic automaton (Notice that here,
the state 6 is not reachable: such a phenomenon can occur after some genetic
operations described below). A final state for an agent behaviour represents an
internal state which can be perceived by other agents. If a synchronism of the
whole system is required, we have to wait that all the agents have reach a final
state. That means that a state which are not intitial and not final one is considered
as private and is not perceived by the other agents.

From this automaton, the associated linear representation is:

λ = (0.5, 0, 0, 0, 0.5, 0) γt = (0, 1, 0, 1, 0, 0)

µ(a) =











0.2 0.5 0.3 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1











79

Evolutive agent behaviour modeling based on genetic automata

6

a,b,c:1

1 3 4

2
5

0.5

a:0.5

a:0.3

0.5

c:1

a,b:1

b,c:1

b:0.8
a,c:1

c:1

a,b:1

b:0.2

b:0.2

a,c:1
b:0.8

1

1

a:0.2

Figure 4.9: A probabilistic automatonA

µ(b) =











1 0 0 0 0 0
0 0 0.2 0.8 0 0
0 0 1 0 0 0
0 0 0 0.8 0.2 0
0 0 0 0 1 0
0 0 0 0 0 1











µ(c) =











1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1











These matrices allow us to obtain a quantitative information for measuring a
global agent answer to the perception p ∈ Σ. These tools define a metric on the
agent behaviours as described in the following.

4.4.2 A global formalism for agent behaviour

We have described previously two formalisms to represent an agent behaviour.
Both are based on automata with multiplicities. The first one is a tranducer where
the semiring of output data is the set of the polynomials in the elementary actions.

80

Evolutive agent behaviour modeling based on genetic automata

The second one is a probabilistic automaton and the semiring of output data is R+.

The second representation allows to represent non-deterministic aspects for
agent behaviour but it lacks the fact that we do not have agent actions in output.
In some case, we can solve this lack with the fact that the reached state by each
transition can be characteristic of the action made by the agent during the transi-
tion. We can find such kind of model in the strategy models used for the prisoner
dilemma in the section 5.2.

We propose here a complete representation which mixes the two previous
ones. For that purpose, we simply consider the semiring of output data as the
cartesian product of the two previous ones.

The agent behaviour is described with an automaton with multiplicities over
a finite alphabet Σ and a semiring K, as a 5 − tuple (Σ, Q, I, T, δ), with Q a
finite set of states. This automaton with the previous general definition, is fully
characterized by:

• The finite alphabet Σ which corresponds to the agent perceptions,

• We consider the set Π of its elementary actions,

• We consider A〈Π〉 as the set of polynomes of these elementary actions with
coefficients in A a commutative semiring, as the set of integers, for exemple.

• The semiring of output data K of the whole model is the cartesian prod-
uct of the two semirings: K = (A〈Π〉,⊕,�) × (R+, +, ·) with derivated
operations deduced by the cartesian product.

4.5 Agent interaction and evolution modeling using
algebraic computation

In this section, we deal with essential aspect of the formalism used for the agent
behaviour. Using automata with outputs as semiring, we can make such automata
operate with the deduced operations of the semiring. Then we define original
operators over the automata, using genetic operators.

81

Evolutive agent behaviour modeling based on genetic automata

4.5.1 Classical algebraic operators for agent aggregation basic
models

The advantage of the use of automata-based description for agent behaviour is the
feasibility to define classical operators on them [66]. This allows us to implement
automatic management on multi-agent systems.

The following of this section, is valid for any semiring (K,⊕,�). The classi-
cal rational operations on automata are applied over agent behaviour as follows:

• The Sum of the agent behaviours R and S

R + S =
∑

w∈Σ∗

(〈R|w〉 ⊕ 〈S|w〉)w

corresponds to a new agent having the whole behaviour of the two first
ones. Common actions give a composition of the original ones, other ones
are simply preserved in the new behaviour, as if only one agent was acting.

• The Cauchy Product of the agent behaviours R and S

R.S =
∑

w∈Σ∗

(
⊕

uv=w

〈R|u〉 � 〈S|v〉
)

w

allows to obtain a new agent behaviour given by all the possible successive
and successful actions of R then S, that is it would modelize a new agent
acting exactly as R and then as S (whatever the succession of actions it
would have executed “as” R),

• The Star of the agent behaviour S

S∗ =
∑

w∈Σ∗

⊕

n≥0

〈Sn|w〉w

gives the behaviour of an agent which possibly never terminates and reini-
tializes itself as long as needed (’loop’ agent).

• The Hadamard product of the agent behaviours R and S

R ◦ S =
∑

w∈Σ∗

(〈R|w〉 � 〈S|w〉)w

allows the creation of an extractor agent, extracting common behaviours
while composing it.

82

Evolutive agent behaviour modeling based on genetic automata

So, it is important to note that to represent collective behaviour, we use the
sum to simply aggregate some agent behaviours and we have to use the Cauchy
product each time it is necessary to respect sequentialization in the new agent
behaviour.

4.5.2 Genetic operators for agent evolution model

We describe in this section the bases of the genetic algorithm [96, 82] used on
the probabilistic automata allowing to manage emergent auto-organizations in the
multi-agent simulation.

Evaluation of agent behaviour and definition of agent fitness in terms of col-
lective criterium

For each agent, we define e an evaluation function of its own behaviour return-
ing the matrix M of values such that Mi,j is the output series from all possible
successive perceptions when starting from the initial state i and ending in the fi-
nal state j, without cycle. It will clearly be 0 if either i is not an initial state or
j is not a final one. Notice that the coefficients of this matrix, such as defined,
are computed whatever the value of the perception in Σ on each transition on the
successful path. That means that the contribution of the agent behaviour for col-
lective organization formation is only based, here, on probabilities to reach a final
state from an initial one. This allows to preserve individual characteristics in each
agent behaviour even if the agent belongs to an organization.

Thus, the evaluation of the automaton A in the Fig. 4.9, coding the agent x
behaviour is e(x) corresponding to the matrix M :

Mi,j =







λ1,1 (µ(a)1,2 + M1,4µ(b)4,5µ(c)5,2) γ2,1

if i = 1 and j = 2,
λ1,1 (µ(a)1,2(µ(a)2,4 + µ(b)2,4 + µ(c)2,4)+

µ(a)1,2µ(b)2,3µ(c)3,4+
µ(a)1,3µ(c)3,4) γ4,1

if i = 1 and j = 4,
λ1,5 (µ(c)5,2) γ2,1

if i = 5 and j = 2,
λ1,5 (µ(c)5,2(µ(a)2,4 + µ(b)2,4 + µ(c)2,4)+

µ(c)5,2µ(b)2,3µ(c)3,4) γ4,1

if i = 5 and j = 4,
0 otherwise

83

Evolutive agent behaviour modeling based on genetic automata

where probabilistic coefficients are not evaluated.

Let x and y two agents and e(x) and e(y) their respective evaluations as de-
scribed above. We define d(x, y) a distance between the two agents x and y as
‖ e(x) − e(y) ‖, a matrix norm on the difference of their evaluations. Let Vx a
neighbouring of the agent x, relatively to a specific criterium, for example a spa-
tial distance or linkage network. We define f(x) the agent fitness of the agent x
as :

f(x) =







card(Vx)
∑

yi∈Vx

d(x, yi)
2 if

∑

yi∈Vx

d(x, yi)
2 6= 0

∞ otherwise

Duplication, Crossover, Mutation and Selection mechanisms

We describe a genetic algorithm which usually manages a population which is
here the agent behaviours and which uses individual characteristic representations,
named chromosomes. We define the chromosome for each agent as the sequence
of all the matrices µ(a) associated to each perception a ∈ Σ. In the following,
genetic algorithms are going to generate new agents containing possibly new tran-
sitions from the ones included in the initial agents. To authorize only significant
behaviour, we have to consider the existence of a family of boolean transition
matrices (Ta)a∈Σ, associated to each type of agent, and coding its whole possible
transitions in accepting this perception. Its effective transition matrix associated
to each perception is a “subset” of it (in fact, each transition matrix associated to
a given perception a ∈ Σ, noted µ(a), is a matrix of same dimension as Ta, but
with probabilistic coefficients).

In the genetic algorithm, each couple of agents follows a reproduction iteration
broken up into three steps:

• Duplication where each agent of the couple generates a clone of itself;

• Crossing-over where a sequence of lines of each matrix µ(a) for all a ∈ Σ
is arbitrary chosen. For each of these matrices, a permutation on the lines
of the chosen sequence is made between the respective matrices of the two
agents corresponding to the reproduction couple.

• Mutation where a line for each matrix µ(a) is arbitrary choosen and, ran-
domly, a sequence of new values is given to this line, in respect of the prob-
abilistic nature of the matrix represented by the expression (4.2). The new
matrix obtained by mutation must respect the authorized transitions given

84

Evolutive agent behaviour modeling based on genetic automata

by the (Ta)a∈Σ family

Finally, the whole genetic algorithm scheduling for a full process of reproduc-
tion over all the agents is the evolutionary algorithms:

1. For all couple of agents (x, y), two children are created by duplication,
crossover and mutation mechanisms;

2. The fitness, for each agents, is computed;

3. For all 4-tuple composed of parents and children, the two performless agents,
in terms of fitness computed in previous step, are suppressed. The two
agents, still in live, result of the evolution of the two initial parents.

Some Elementary Operations on Probabilistic Automaton for Coding Ge-
netic Operations

For coding the operations of crossing-over and mutation, we have to define some
elementary operations over linear representations.

We will denote Idn,0
i the modified identity matrix of dimension n where the

ith row is replace by the null row, and Idn,1
i the modified identity matrix in which

all rows have been nulled excepted the ith. Let x (resp. y) an agent verifying
the authorized transitions given by the (Ta)a∈Σ family and (λx, (µx(a))a∈Σ, γx)
(resp.(λy, (µy(a))a∈Σ, γy)) a linear representation coding its behaviour. With these
notations, the crossing-over between two similar states i of agents of the same T -
family gives two new agents x′ and y′ of respective representations (λx′, (µx′(a))a∈Σ, γx′)
and (λy′, (µy′(a))a∈Σ, γy′). It can be written by :

(λx′, (µx′(a))a∈Σ, γx′) :=

(λx, (Idn,0
i µx(a) + Idn,1

i µy(a))a∈Σ, γx),
(λy′, (µy′(a))a∈Σ, γy′) :=

(λy, (Idn,0
i µy(a) + Idn,1

i µx(a))a∈Σ, γy).

The mutation of the state i of the agent x, giving an agent x′, is applied over a
subset Σ′ ⊂ Σ of perceptions, the input and output probabilities being preserved.
Let R[0,1] be a random function in [0, 1]. For each perception a ∈ Σ′, we compute

a new matrix µ′
x′ by µ′

x′(a)i,j = Ta(i, j)R[0,1]. We will denote Si(a) =
n∑

j=1
µ′

x(a)i,j

85

Evolutive agent behaviour modeling based on genetic automata

the sum of output probabilities, from the state i, for each a. The new agent is then
represented by the triplet (λx′, (µx′(a))a∈Σ, γx′) with:

(µx′(a))i,j :=







µ′
x′(a)i,j

Si(a)
if Si(a) > 0 and

i the mutated state,
0 if Si(a) = 0 and

i 6= j if i is the mutated state
1 if Si(a) = 0 and

i = j if i is the mutated state,
(µx(a))i,j otherwise

The stochastic property is preserved by the crossing-over and the mutation op-
erations defined above.

4.5.3 Evolutive automata in terms of self-organization model-
ing

In the previous computation, we defined a distance between two agents. This
distance is computed using the linear representation of the automata with multi-
plicities associated to the agent behaviour. This distance is based on successfull
paths computation which needs to define initial and final states on the behaviour
automata. For specific purposes, we can choose to define in specific way, the ini-
tial and final states. That means we try to compute some specific action sequences
which are chararacterized by the way of going from some specific states (defined
here as initial ones) to some specific states (defined here as final ones).

Based on this specific purpose which leads to define some initial and final
states, we compute a behaviour distance and then the fitness function defined pre-
viously. This fitness function is an indicator that returns high value when the
evaluated agent is near, in the sense of the behaviour distance defined previously,
to all the other agents belonging to a predefined neighbouring.

Genetic algorithms will compute in such a way to make evolve an agent popu-
lation in selective process. So during the computation, the genetic algorithm will
make evolve the population to a newer one with agents more and more adapted
to the fitness. The new population will contain agents with better fitness, so the
agents of a population will become nearer each others to improve their fitness. In
that way, the genetic algorithm reinforce the creation of a system which aggregate
agents with similar behaviour, in the specific way of the definition of initial and

86

Evolutive agent behaviour modeling based on genetic automata

final states defined on the automata.

The genetic algorithm proposed here can be considered as a modelization of
the feed-back of emergent systems which leads to gather agents of similar be-
haviour, but these formations are dynamical ones and we cannot predict what will
be the set of these aggregations which depend of the reaction of agents during the
simulation. Moreover the genetic process has the effect of generating a feed-back
of the emergent systems on their own contitutive elements in the way that the fit-
ness improvement lead to bring closer the agents which are picked up inside the
emergent aggregations.

For specific solving problems, we can consider that the previous fitness func-
tion can be composed with another specific one which is able to measure the
capability of the agent to solve one problem. This composition of fitness func-
tions leads to create emergent systems only for the ones of interest, that is, these
systems are able to be developed only if the aggregated agents are able to satisfy
a problem solving evaluation.

87

Evolutive agent behaviour modeling based on genetic automata

88

Chapter 5

Applications to economic complex
modeling

Contents

5.1 Economic complex modeling 90

5.1.1 Simulation Approach 90

5.1.2 Agent-based Computational Economics (ACE) 92

5.1.3 Bottom-up Modeling of Market Processes 94

5.1.4 Schumpeterian model 94

5.1.5 Sugarscape Model 95

5.2 Prisoner Dilemma : Automata based model for coopera-
tion and competition aspects 98

5.2.1 Genetic algorithms on probabilistic automata 101

5.2.2 Evolutive adaptation for prisonner dilemma: imple-
mentation and simulation results 102

5.3 Cognitives sciences and Decision support systems 103

5.3.1 A multilayer and agent-based model for decision sup-
port system . 104

5.3.2 Evolvable automata based strategies and behaviors layer 106

5.3.3 The decision making layer 107

89

Applications to economic complex modeling

5.1 Economic complex modeling

This section deals with the use of the simulation approach in analysing and un-
derstanding pheomena in the domain of economics. A variety of simulation ap-
proaches to analysing economic development and two main streams of models
and agent-based approach, are characterized.

5.1.1 Simulation Approach

Computer simulation methods are widely used for operational research and eco-
nomic science modern modeling. The model representation depends on the aims
of our inquiry and on all constraints related to the processes. Having collected
records of a real process behaviour for a given input u(t) and an output ym(t),
the modeller tries to adjust the models behaviour to reality either by selecting the
proper values of the model’s parameters or by changing the model’s structure.

Real
process

Model

Comparison

ym(t)

Model’s
modification

procedure

Evaluation of

similarities and

discrepancies

Q− overall

 criterion

 of evaluation

stylized
facts

output y(t)− records

correctness
consistency
universality
simplicity
fecundity
usefulness+

−

u(t)

Figure 5.1: Model and reality

A schematic vue of the model adjustment process is represented in Figure 5.1.
This kind of adjustment is sometimes called a behaviour replication test whose
main aim is to compare the model behaviour with the behaviour of the system
being modelled.

When historical time series data of the results of a real system development in
the factory or laboratory are available, the model must be able to produce similar

90

Applications to economic complex modeling

data. Socio-economic system are higly interrelated, and disaggregation into semi-
isolated subsystems is frequently impossible. We are typically in the description
of systems complexity. It seems that in the social sciences and in economics the
main aims of building are: better understanding of mechanisms of development of
observed phenomena or process; then building different, alternative scenarios of
development for a given socio-economic systems. Evaluation of socio-economic
models must proceed in systemic approach, that is, following [102]:

1. Isolating a specific sphere of socio-economic reality.

2. Specifying all relations of phenomena within the sphere with the external
environment.

3. Building a model which describes all important parameters observed within
the chosen sphere , with all essential influences of the external environment
included.

The important relations with the external environment, the building of relevant
mathematical models and optimizing the choice of suitable policies are almost
impossible.

The socio-economic systems differs from the classical engineering ones be-
cause of the great different approaches for testing and validating the developed
models. The engineering systems compare numerical data (records of develop-
ment of real systems) with numerical ouputs of the model. In socio-economic
systems, collection of reliable set of proper data (records) is frequently impossi-
ble to obtain. Therefore, validation of socio-economic models is frequently done
on the base of so-called stylized facts and subjective sub-criteria. It seems that the
most important and the most popular sub-criteria are :

1. correctness- consequences of the model ought to be very close the results of
experiments and/or observations.

2. consistency- the model ought to be consistent not only internally but also
with other commonly accepted theories used to describe similar or related
phenomena.

3. universality - consequences of the model ought not to be confined to indi-
vidual cases.

4. simplicity - the model ought to create order in the formerly isolated phe-
nomena.

5. fecundity - the model ought to throw new light on well-know phenomena.

91

Applications to economic complex modeling

6. usefulness - the practical criterion dominates frequently in sciences, being
very close to engineering and industry.

5.1.2 Agent-based Computational Economics (ACE)

Evolutionary
Economics

Cognitive
Science

Computer
Science

 ACE
Agent−Based
Computational
Economics

Figure 5.2: Basic ACE representation

Following [102], we can define agent-based Computational Economics (ACE)
as the computational study of economics modelled as dynamic and complex sys-
tems of interacting agents. Here agent refers to a bundle of data and behavioral
methods representing an entity constituting part of a computationally constructed
world.

Artifical life (Alife) [108] is the name of a growing field of research that at-
tempts to develop mathematical models and use computer simulations to demon-
strate ways in which living organisms grow and evolve. Alife is the one of roots
study of basic phenomena commonly associated with living organisms, such as
self-replication, evolution, adaptation, self-organization, competition, and social
network formation. The study of evolutionary economics has of course been
pursed be many researchers, focusing on the potential economic applicability of
evolutionary game theory. This consists to define game strategies distributed over
a fixed number of strategy types and to reproduce over time in direct proportion
to their relative fitness.

ACE researchers have been able to extend previous evolutionary economic
works in several directions. First, much greater attention is generally focused on
the endogenous determination of agent interactions. Second, a broader range of

92

Applications to economic complex modeling

interactions is typically considered, with cooperative and predatory associations
increasingly taking center stage along with price and quantity relationships. Third,
agent actions and interactions are permitting generalizations across specific sys-
tem applications. Fourth, the evolutionary process is generally expressed in terms
of genetic algorithm acting directly on agent characteristics. The evolutionary se-
lection pressures result in the continual creation of new modes of behaviour and
ever-changing network of agent interactions.

The central problem for ACE researchers is to understand the apparently spon-
taneous appearance of regularity in economic processes, such as the unplanned
coordination of trading activites in decentralized market economies.

The decentralized market economies consist of large number of economic
agents involved in distributed local interactions. These local interactions give
rise to macroeconomic regularities such as trading protocols, socially accepted
monies, and widely adopted technological innovations which in turn feed back
into the determination of local interactions.

The ACE modeler starts by constructing an initial population of agents. These
agents can include both economic agents (e.g. consumers, producers, intermedi-
aries,..) and agents representing various other social and environmental phenom-
ena . The ACE modeler specifies the initial state of the economy by specifying
the initial attributes of the agents. The initial attributes of any one agent might
include type characteristics, internalized behavioral norms, internal modes of be-
havior (including modes of communication and learning) and internally stored
information about itself and other agents. The economy then evolves over time
without further intervention from the modeler.

The number of researchers now making use of the ACE methodology is grow-
ing, however, and the number of issues being addressed by these researchers is
rapidly expanding and other computationally oriented social scientists have used
a broad range of representations for learning processes of computational agents.
These include reinforcement learning algorithms, neural networks, genetic algo-
rithms, and a variety of other evolutionary algorithms that attempt to capture as-
pects of inductive learning.

On the other hand, for computational models of economic processes with
diverse human participants the salient characteristics of actual human decision-
making behavior if predictive power is to be attained. In this case it will generally
be necessary to introduce local learning schemes in which individual agents or
groups of agents separately evolve their strategies on the basis of their own per-

93

Applications to economic complex modeling

ceived local benefits.

5.1.3 Bottom-up Modeling of Market Processes

The self-organizing capabilities of specific types of market processes is now one
of the most active areas of ACE research. For example financial, electricity, labor,
retail, business-to-business, natural resource, entertainment and automated inter-
net exchange systems.

Robert Marks was one of the first researchers to use an ACE framework to ad-
dress the issue of market self-organization. His research highlighted for economists
- in compelling constructive terms - the potential importance of history, inter-
actions, and learning for the determination of strategic market outcomes. One
outcome observed by Marks in his experiments was the emergence of globally
optimal “joint maximization” pricing across firms without any explicit price col-
lusion1.

5.1.4 Schumpeterian model

We can start description of Schumpeterian models from the work of Nelson and
Winter. Usually the economy is disaggregated into diverse individual firms influ-
encing each other by nonlinear dynamic interactions describing search for inno-
vation, competition and investment.

In most simulation models, agents use boundedly rational behavioural proce-
dures. Learning and searching for innovation is modelled by allowing for mutation
and imitation rules operating on the firms operational parameters. Mutations are
usually local within the routine space.

The first model presented in Nelson and Winter (1982, ch 9) can be seen as
the first evolutionary growth model. The state of the evolutionary process of an
industry at any moment t is described by the capital stock and the behavioural
rules of each firm. The state in the next moment t+1 is determined by the state in
a previous moment. In this growth model firms use production techniques which
are characterized by fixed labor and capital coefficients. Firms manfacture homo-
geneous products, so the model that firms produce using a Leontief production
function. Therefore substitution between labor and capital is not present in the
model. Changes of these both coefficient are not coefficient and not correlated,

1See http://www.econ.iastate.edu/tesfatsi/asocnorm.html for pointers to ACE-related resources
on the evolution of norms

94

Applications to economic complex modeling

therefore a phenomenon that ressembles substitution between labor and captial
may be observed in the simulated process.

Search activites are determined by satisfying behaviour, in a sense that a new
technique is adopted only if the expected rate of return is higher than the firm’s
present rate of return.

The search process may take two different forms: local search (mutation) or
imitation. In the first case, firms search for new techniques, yet not present in the
industrial pratice. The term local search indicates that each undiscoverd technique
has a probability of being discovered which linearly declines with a suitably de-
fined technological distance from the current techonology.

In the other hand, Schumpeter’s model of economic development have stimu-
lated an active programme of research since the publication of his seminar work
(Schumpeter 1919, 1939 Schumpeter 1997).

Schumpeter’s starting point is the steady state, or rather, a smoothly expand-
ing economy. His population growth was exogenous and his savings rate rather
constant. In Schumpeter’s view,the driver of “development” (as apposed to boring
“growth”) were discontinuous punctuated changes in the economic environment.
These, he claimed, were brought about by a veriety of things (e.g sudden discov-
eries of new factor supplies), but entrepreneurial innovation was the central one.

Schumpeter claimed that there were ratchet effects in innovation so that enterpreneurial-
driven spurts of economic activity led to progressively higher levels of income and
there is no mong run need to slow down. Schumpeter claimed that there were no
diminishing returns to innovation. The only reason one may be driven towards
slower, steady-state is that all the entrepreurs in a generation might be already
“used up”.Schumpeter abandoned Say’s law and claimed that credit made present
activity independent of past activity and thus enabled entrepreneurship. Hence,
since entrepreneurial innovation could be arrested by lack of credit, then financial
innovation was also an important factor for increasing growth. Schumpeter did
have long-run elements in his theory which induced a breakdown in growth. The
concept of “steady-state” was still primitive in Schumpeter .

5.1.5 Sugarscape Model

Sugarscape (SSC) model is buid from cellular automata concept. In this model,
there is two-dimensional lattice representing an environment, with a particular dis-
tribution of various resources called Sugar (see figure 5.3). Agents move in this
environment according to rules of behavior, that the agents need to survive and

95

Applications to economic complex modeling

eat. So they have to search the regions which are rich in sugar, some regions are
poor in sugar. Agents can see their local metabolism and certain traits like vision
and move from one side to another searching the food to eat the sugar with every
movement an agent burns a particular amount of sugar, equal to its metabolic rate.
Agents with vision can see α units in four principal lattice directions, north, south,
east and west. Agents have no diagonal vision. All agents are given with some
initial endowment of sugar, which they carry with them as they move about the
Sugarscape lattice.

Figure 5.3: Sugarscape lattice with Agents

The Sugarscape model : There are two kinds of rules for environment and agents
as we will show.

Initial state variables and fixed parameters may be randomly selected on fixed
domains.

Environment Rules: Environment (behavior) governed by a set of rules (RE).

• Two dimensional grid (lattice).

• Each point (x,y) which mean (current sugar level, capacity).

• Distribution: peaks of 4 directions.

96

Applications to economic complex modeling

Figure 5.4: Agents vision directions

• Sugar levels.

Sugarscape (SSC) growback rule Gα. At each lattice position, sugar grows back
at a rate α units per time interval up to the capacity at that position.

Agents rules: Agents are characterized by a set of fixed and variables states
by:

• Active in expression

• Basic internal state (fixed)
- field of vision: random distance.
- metabolim: random amount of sugar m burnt per round.

• Basic internal state (variables).
- Amount of sugar, agents are given some initial endowment of sugar, initial
level a.
- Location random grid position (x,y).

The agent can only see in the direction of the arrows, it does not see the shaded
areas , as we have shown in figure 5.4, also agents move according to the following
Agents movement rules M:

• Look out as far as vision permits in four lattice directions and identify un-
occuped site(s) with max (r) within distance v with random start.

97

Applications to economic complex modeling

• Move to this site.

• Adjust sugar level a← a + r −m.

• If a<0 agent dies and is removed from sugarscape so it can not move.

The sugar level of the agent is incremented by the amount of sugar available on
the grid point, and decrements by its metabolic rate.

Agents replacement rule R[a,b]

When an agent dies it is replaced by an agent of age 0 having random initial at-
tributes, random position on the (SSC) random initial endowment, and maximum
age randomly selected from the range [a,b]. The agents replacement rules can be
defined as:

• agents created with maximum age am chosen randomly from [a, b] and ac-
tual age aa = 0

• at each round aa ← aa + 1

• an agent dies when aa = am

• the relpacement agent’s location, sugar endowment and genetic makeup are
random on the appropriate intervals.

5.2 Prisoner Dilemma : Automata based model for
cooperation and competition aspects

In multi-agent systems, interactions correspond to social behaviour. They are
often described in terms of cooperation or competition aspects. We focuse our
attention with prisoner dilemma [4] which is a model for negociation behaviour,
allowing alternance of cooperation and competition between agents of the same
system.

The prisoner dilemma is a two-players game where each player has two pos-
sible actions: cooperate (C) with its adversary or betray it (C). So, four outputs
are possible for the global actions of the two players. A relative payoff is defined
relatively to these possible outputs, as described in the following table where the
rows correspond to one player behaviour and the columns to the other player one.

98

Applications to economic complex modeling

C C
C (3,3) (0,5)
C (5,0) (1,1)

Table 5.1: Prisoner dilemma payoff

C:C

C:C

1 2

C:C

C:C

 C

Strategy A : Tit-for-tat strategy

C:C

C:C

1 2

C:C

C:C

 C

Strategy B : Vindictive strategy

Figure 5.5: Two prisoner dilemma strategies in term of tranducers

99

Applications to economic complex modeling

In iterative version of the prisoner dilemma, successive steps can be defined.
Each player don’t know the action of its adversary during the current step but he
knows it for the precedent step. So different strategies can be defined for player
behaviour, the goal of each one is to obtain maximal payoff for himself. In the
figure 5.5, we describe two strategies with transducers. Each transition is labeled
by the input corresponding to the player perception which is the precedent adver-
sary action and the output corresponding to the present player action. The only
inital state is the state 1, recognizable by the incomming arrow labeled only by the
output. The final states are the states 1 and 2, recognizable with the double circles.
In strategy A, the player has systematically the same behaviour as its adversary at
the previous step. In strategy B, the player chooses definitively to betray as soon
as his adversary does once.

These previous automata represent static strategies and so they are not well
adapted for the modelization of evolutive strategies. For this purpose, we propose
a model based on a probabilistic automaton described by the figure 5.6.

C:p2

C:1−p4
C:p4

C:1−p2

C:p5

C:1−p3
C:1−p5

C:p3

21 1−p1p1

Figure 5.6: Probabilistic multi-strategies two-states automata for prisoner
dilemma

This automaton represents all the two-states strategies for cooperation (C) and
competitive (C) behaviour of one agent against another in prisoner dilemma. The
transitions are labeled in output by the probabilities (pi) of their realization. The
state 1 is the state reached after cooperation action and the state 2 is reached after
betrayal.

For this automaton, the associated linear representation, as described previ-
ously, is:

λ = (p1, 1− p1) γt = (1, 1)

100

Applications to economic complex modeling

µ(C) =

[
p2 1− p2

p3 1− p3

]

µ(C) =

[
1− p4 p4

1− p5 p5

]

In the following section, we describe a general genetic algorithm on proba-
bilistic automata and we show how it can be applied for modelling an adaptive
strategy for the prisoner dilemma based on the previous particular probabilistic
automaton.

5.2.1 Genetic algorithms on probabilistic automata

We describe a genetic algorithm managing a population that is the agent be-
haviours coded with probabilistic automata. Genetic algorithms use individual
characteristic representations, named chromosomes. We define the chromosome
for each agent as the sequence of all the matrices µ(a) associated to each percep-
tion a ∈ Σ. In the following, genetic algorithms will generate new agents con-
taining eventually new transitions from the ones included in the initial agents. To
authorize only significant behaviours, we have to consider the existence of a fam-
ily of boolean transition matrices (Ta)a∈Σ, associated to each type of agent, and
coding its whole possible transitions for each perception. The effective transitions
matrix associated to each perception is a “subset” of it (in fact, each transition
matrix associated to a given perception a ∈ Σ, denoted µ(a), is a matrix of same
dimension as Ta, but with probabilistic coefficients).

In the genetic algorithm, each couple of agents follows a reproduction iteration
broken up into three steps:

• Duplication where each agent of the couple generates a clone of itself;

• Crossing-over where a sequence of lines of each matrix µ(a) for all a ∈
Σ is arbitrary chosen. For each of these matrices, a permutation on the
lines of the chosen sequence is made between the respective matrices of the
two agents corresponding to the reproduction couple. In term of automata
operator, the crossing over consists in the permutation of all the transitions
outgoing from all states/lines selected by the crossed operation.

• Mutation where a line for each matrix µ(a) is arbitrary choosen and, ran-
domly, a sequence of new values is affected to this line, according to the
probabilistic nature of the matrix represented by the expression (4.2). The
new matrix obtained by mutation must respect the authorized transitions
given by the (Ta)a∈Σ family.

101

Applications to economic complex modeling

The reproduction steps generate new agents behaviours. Genetic algorithms
have to select over these behaviours, some of them which have the best values of
a given function called fitness. In dilemma prisoner, the fitness function returns,
for a given behaviour automaton, the corresponding payoff value.

Finally, the whole genetic algorithm scheduling for a full process of reproduc-
tion over all the agents is the evolutionary algorithm:

1. For every couple of agents (x, y), two children are created by duplication,
crossing over and mutation mechanisms;

2. The fitness, for every agent, is computed;

3. For every 4-tuple composed of parents and children, the two performless
agents, in term of fitness computed in previous step, are removed. The two
agents, still alive, result of the evolution of the two initial parents.

5.2.2 Evolutive adaptation for prisonner dilemma: implemen-
tation and simulation results

Genetic solvers have yet been experimented on the iterative prisoner dilemma. In
[97], the chromosomes of the algorithm is a 64 positions string corresponding to
each player memory of the past three outputs. We propose a more generic ap-
proach using genetic algorithms for prisoner dilemma as a particular application
of the genetic algorithm on general probabilistic automata, as described in previ-
ous section. So, this algorithm is applied to the particular probabilistic automaton
described in figure 5.6. This allows to simulate adaptive behaviours in term of
evolutive strategies. Implementations have been described in [17] using the Mad-
kit platform [89] developped in LIRMM (Montpellier - France). It shows adaptive
strategies improving the player payoff.

A first sequence of experimentations has been made. These experimentations
consist in building on one hand, an adaptive agents population described by the
probabilistic automaton of the figure 5.6 and on the other hand, some agents whith
static behaviour. The adversary players in prisoner dilemma are build from these
two kinds of agents. Genetic algorithms are used on the adaptive agents popula-
tion whose fitness is the player payoff. Against the static tit-for-tat strategy, the
adaptive behaviour converges, after 250 iterations, to the strategy described by the
linear representation:

µ(C) =

[
0.99637 0.00363
0.99259 0.00741

]

102

Applications to economic complex modeling

µ(C) =

[
0.88216 0.11784
0.98521 0.01479

]

So, the emerging strategy seems to be the one which consists in cooperating
whatever the perception. — valeur moyenne du payoff —

Another sequence of experimentations has been made. Two agents popula-
tions are opposed. The first one is composed of 12 static strategies. The other one
is composed of adaptive agents which evolve genetically to a strategy which must
be efficient against many strategies. The first result obtained is a effective conver-
gence, after 250 iterations, to the strategy described by the linear representation:

µ(C) =

[
0.08589 0.91411
0.93810 0.06190

]

µ(C) =

[
0.75001 0.24998
0.37071 0.62929

]

This strategy emerging from genetic algorithm is quite different from the tit-
for-tat one. The agent payoff average is 2.4 which is still worth than the tit-for-tat
strategy payoff (considered like one of the best one) which is 2.6.

This first results show that the adaptive strategy modelization gives a conver-
gent proces able to improve the payoff. Some parameters have to be fixed like the
mutation rate whose value has been fixed to 0.5% in the previous experimenta-
tions. Complementary experiments have to be studied to confirm the efficient of
the method.

5.3 Cognitives sciences and Decision support systems

In this section, we study an application of evolutive automata in human decision
processus, following [48]. Human decision in complex domains like management,
medecine, environment is stressed by the time and many emotional or psycholog-
ical constraints that are seldom included in Decision Support system (DSS).

Some DSS have been proposed to help workers during their job to cope with
the steps of the decision making in complex domain like management, medecine
and environment. In these DSS, we use available knowledge sources or stored
experience (ref....). However these DSS have no representation of each actor’s
ability to take appropriate decisons. In stressfull domains, for a more realistic sys-
tem, we need to model as well the impact of emotion and the psychologic structure

103

Applications to economic complex modeling

Figure 5.7: couples of emotions variables from OCC model

of each actor making a decision.

The purpose in this section is to provide a Multi-Agent Decison Support Sys-
tem (MADSS) to model the emotion and the psychological structure of interacting
actors making decisions in complex domains and stressfull contexts. This model
will be used to build simulators of agent attitude in various situations such as
emergency medicine, trading, education, environment and industrial catastrophes,
military conflicts? In all these domains, modelling the emotional aspect and the
psychological structure of the agents is essential.

5.3.1 A multilayer and agent-based model for decision support
system

Most available computationally models of emotion rely on the OCC model devel-
oped in 1988 [135]. The OCC model defines events, agents and objects. Events
are considered to induce emotional consequences. Agents are able of actions that
have effects on the environment. Objects have imputed properties. The OCC
model represents emotions as valenced reactions to the perception of the world.
That is: one can be pleased about the consequences of an event or not (pleased/
displeased); one can endorse or reject the actions of an agent (approve/disapprove)
or one can like or not aspects of an object (like/dislike). Then, the events can have
consequences for others or for oneself and on acting agents. Thus, the different
emotional balances are depicted by couples of (positive/negative) reactions rep-
resented by variables. For short, we do not provide the specialization tree of the
OCC model but we just summarize the couples of variables in figure 5.7.

The aim of our proposition about model of decision is to use a multilayer

104

Applications to economic complex modeling

Figure 5.8: a multilayer model of decision

description with 4 layers. The base of this model is the psychological structure as
described in figure 5.8.

The psychological structure layer

First, we describe the psychological structure which are able to act on the de-
cision making behavior which is influence by emotional aspects. In figure 5.9,
we present how and where the psychological structure intervene in the emotional
learning loop.

Psychological structure can be studied through neurotic aspects of the consid-
ered personality. We show in the table 2, a description of such personality, while
table 3 shows a neurosis classification.

The emotional state layer

The emotional state layer relies on the Ortony Clore Collins (OCC) model of
appraisal which is the most widely accepted. The OCC model defines a set of
22 emotion parameters representing a certain positive and negative intensity of 11
items. The emotion quickly changes over time.

We use a sigmoid fuzzy logic function to describe each couple of parameters
of the OCC model table1. The figure 5.10 depicts the example of Joy/distress
concerning the effect of an event k evaluated by a score [-1,1] that is considered
as desirable when is near to 1 or undesirable when it is near toăăă-1, neutral when
it is near 0. All other couples of variables of the OCC classification table 1 are
represented in a similar way. The item k could represent the consequences of an

105

Applications to economic complex modeling

Figure 5.9: The emotion learning loop and psychological learning loop

event, the impact of agent actions for self or others and the aspects of an object.

5.3.2 Evolvable automata based strategies and behaviors layer

This layer has to manage previous layers, psychological level and emotional states
and to define behaviors taking into account them.

The formalism proposed is based on finite-state automata composed of:

• a set of internal states characterizing mental situation, for example;

• transitions which describe the way going from one state to another. In the
following, the event k evaluated by the score in the interval [-1,1] is the
shutter release of the transitions.

We proposed to complete this formalism allowing us to introduce stochastic
aspects in behavior descriptors. For this, each transition has to output a proba-
bility which indicates the chance that the transition was really done. To achieve
this aspect, we base our model on automata with multiplicities or probabilistic
automata as a sub-class of them.

Thus, the mathematical formalism for the behavior representation at each time
t is a probabilistic automata as the following 5-uple :

106

Applications to economic complex modeling

Figure 5.10: a fuzzy logic membership function

• is the finite set of internal behavior states;

• is the set of perceived event k. As previously indicated, each event k is
evaluated by the score in the interval [-1,1]

• and are respectively the set of initial and final states from whom a behavior
(or specific strategy, for example) can start and finish respectively.

• is a mapping from to [0,1] which describe all transitions associated to a cou-
ple of states and a event in input. The output of the mapping is a stochastic
value.

We have proposed a computable formalism (automata-based) for modeling
the behavior in respect of the emotional aspect. One of the major aspects in this
operating automata description is the introduction of the coefficients for each tran-
sition j, each emotion parameter I at the instant t. These coefficients are obtained
from the psychological structure and a database knowledge about them. So, via
these parameters, the psychological structure acts on the behavior model, taking
into account nevrotic personality, for example. Another aspect of the efficiency of
these parameters is based on the fact that they can evolve, using genetic processus.
This aspect can confer to the behavior some adaptive aspects.

5.3.3 The decision making layer

This layer is mainly described in a previous article [10]. We briefly summarize
the architecture of a Multi-Agent Decision System which provide the necessary
knowledge sources to take appropriate decisions but don’t take into account the

107

Applications to economic complex modeling

Figure 5.11: Specialisation of agents involved in a Multi-Agent Decision Support
System (MADSS)

emotion and the psychological structure of the decision-maker.

A MADSS is using four agent categories that are specialized from a generic
type (GCAT) described in [10]. A first specialization provides Knowledge Model
Agent Types (KMAT), which are specific according to the knowledge model (rules,
evaluation functions, Case-Based Reasoning?) but independent to the applica-
tion purpose. The second specialization supplies Domain Specific Agent Types
(DSAT), which inherit reasoning and knowledge model capabilities from the ap-
propriate KMAT and apply them to the specific domain e.g. in medicine: (infec-
tious disease diagnosis, poisoning prognosis, epilepsy therapy, patient and treat-
ment follow-up, previous clinical case retrieval?)? Then, Task Specialized Agents
(TSA) are instantiated from DSAT and commit to tasks elected by the supervisor
agent that coordinates the whole decision process. The TSAs access the domain
relevant bases containing knowledge and data (represented with the appropriate
model) when necessary.

108

Applications to economic complex modeling

The ontological agent type is a DSAT, which formalizes the terminology,
and the entity definitions used during the information transaction between agents
[16]ă[17].

The supervisor agent type provides a unique instance named the supervisor
agent that make an intensive use of finite state automata which define the neces-
sary tasks to build the appropriate decision. The decision-making layer is consis-
tent with the other layers of the model defining the emotion and the psychological
structure of the decision-maker.

Thus, the model both represents the necessary decision steps, the psycholog-
ical and emotional ability of the decision-maker to actually take the appropriate
decision. Such a model is much more suited to realistically simulate the agent at-
titude and behavior in stressful situations or when the agent’s personality hinders
to take a decision.

109

Applications to economic complex modeling

110

Chapter 6

Conclusions and perspectives

The work presented here deals with the construction of operators coming from
algebraic data structures for the modelization of complex systems. Complex sys-
tems are presently widely spread in many scientific domains. Emergence and
self-organization are central aspects which can be considered as invariants through
these numerous domains. We deal in this study about building effective operators
for managing individual behaviors which can produce aggregative self-organized
systems or which can be controlled by means of feed- back of the self-organized
system over its own constitutive elements.

Automata associated to general semirings as sets of outputs are powerful tools
for such purposes. Agent-based models are used for modeling constitutive ele-
ments of complex systems. They are well-suited to be the nodes of interaction
networks. Agent-based modeling needs some autonomous characteristic concern-
ing the behavior of these entities. These behaviors are so simulated by automata
with multiplicities. The outputs of these automata are found inside a set which
is the cartesian product of the set of (noncommutative) polynomials on elemen-
tary actions and the interval [0,1] as probabilistic values. Defining a semiring
with this cartesian product, we can operate on actions and on probabilities which
can be seen as a non- deterministic representation of the agent behavior. The
powerful operational capabilities of semirings allows to define on the one hand
some aggegative systems based on the active rôle of the agent and on the other
hand adaptative behaviours with the implementation of genetic algorithms over
the probabilistic value fitting. We deal in this way with the two aspects of com-
plex system formation: aggregative aspect and adaptative behavior which can be
seen as feed-back of the system over its own contituants.

The development of versatile tools based on algebraic data structures lead us
to propose a new one that we called tables as a generalization of the k-sets of

111

Applications to economic complex modeling

Eilenberg. All the power of this generic structure is not completly developped in
this work and need some advanced studies for enhancing new relevant operators
well-suited for the specific need of the modelization of complex systems.

Concerning the evolutive representation of the behavior, we used in our study
genetic algorithms over the automata probabilistic weights which have to fit an
objective function on the whole behavior or the whole system. Such a process and
representation allows us to define a metric over the agent behaviour but leads to
high constraints over the automata topology. Some more sophisticated evolution
processes could be considered to improve the expressivity of these evolutive rep-
resentation. In such way, we could think to investigate the genetic programming
which can lead to propose to build during the simulation, some original processes
for the agents behavior, breaking the restrictive framework given at present with a
fixed automata topology.

Concerning the application domains, we have investigated in this work, the
economic modeling. We only defined here a sketch of possible modelling pur-
poses and the studies concerning an advanced analysis for the results in terms of
qualitative efficience of the models and in terms of quantitative validation are still
to be done. Many further specialized works inside these applications domains
could be developped, using the formal bases proposed in this work.

112

Annexe:
Data structure implementation in
MuPAD

In this annexe, we will show the implementation of new data structures (Ta-
bles,Memorized semirings and semirings). In fact, we define and construct this
new data structure which are a special kind of two-rows arrays. The first row is
filled with words and second with some coefficients.

We present a new semiring which can be applied to the necessity of automatic
processing multi-agents behaviors problems, and we present the implementation
of our semiring to prove all its laws.

(1 First we define the two different tables with their
coefficients,the third table is a void table.

L1 := table([
x = .5
yz = .3])

L2 := table([
u = .5
y = .1
yz = .5])

L3 := table([
xy = .1
yz = 1.2
uu = .5])

Lneutral:=table(); {We create a void table}

113

Applications to economic complex modeling

Lneutral := table([])

2) The second step is to prove that the adding operation is commutative
over the tables.

{Commutativity of (+)}

addt(L1,L2);

table([
u = .5
x = .5
y = .1
yz = .8])

> addt(L2,L1);

table([
u = .5
x = .5
y = .1
yz = .8])

3)In this step we have proved that addition is commutative
over the tables.

evalb(op(op(addt(L2,L1)))=op (op(a ddt(L1,L2)))) ;

{true}

addt(L3,addt(L1,L2));

table([
u = .5
x = .5
y = .1
xy = .1
yz = 2.0
uu = .5])

114

Applications to economic complex modeling

addt(L2,L3);

table([
u = .5
y = .1
xy = .1
yz = 1.7
uu = .5])

addt(L1,addt(L2,L3));

table([
u = .5
x = .5
y = .1
xy = .1
yz = 2.0
uu = .5])

addt(L1,Lneutral); (The void table is the neutral element of +)

table([
x = .5
yz = .3])

addt(Lneutral,L1);(The void table is the neutral element of +)

table([
x = .5
yz = .3])

4) In this step we have proved that the addition is associative
over the tables.

{Associativity of (+)}

evalb(op(op(addt(L1,addt(L2,L3)))) =(op(op(a ddt(L3,ad dt(L 1,L2))))));

{true}

115

Applications to economic complex modeling

{Neutral element of (+)}

evalb(op(op(addt(Lneutral,L1)))=(op(o p(add t(Ln eutra l,L1)))));

{true}

{Associativity of product}
5)In this step we want to prove that product is associative.

eqtab:=proc(S,T) evalb(op(op(S))=op(op(T))) end;

eqtab := proc(S, T) evalb(op(op(S)) =
op(op(T))) end

eqtab(mm1,mm2);

true

evalb(op(op(mm1))=op(op(mm2)));

true

After we defined the semiring and its laws over this new data structure (over
table T) with two-rows array, the first row being filled with words taken in a given
free monoid, the second row are the values or coefficients :

{

indices set of words I(T)
values bottom row V (T)

(6.1)

If we consider, two tables T1, T2 and law (+) then the results will be as:

S1:=table(a=p1,ab=p2,ba=p3);

table(
ba = p3,
ab = p2,
a = p1

)

116

Applications to economic complex modeling

S2:=table(a=q1,ba=q2,bb=q3);

table(
bb = q3,
ba = q2,
a = q1

)
add(S1,S2);

table(
ab = p2,
bb = q3,
a = p1 + q1,
ba = p3 + q2

)

If we consider the two tables for product operation we can get this results
(T1 × T2):

prod(S1,S2);

table(
babb = p3 q3,
baba = p3 q2,
baa = p3 q1,
abbb = p2 q3,
abba = p2 q2,
abb = p1 q3,
aba = p1 q2 + p2 q1,
aa = p1 q1

)

117

Applications to economic complex modeling

118

Bibliography

[1] H. Abbad and E. Laugerotte. Symbolic computation on weighted automata.
In JICSSE’04. BAU Jordan, 2004.

[2] F. Alarcón and D. Anderson. Commutative semirings and their lattices of
ideals. Houston J. Math., 20, 1994.

[3] J.-L. Austin. Quand Dire C’est Faire. Le Seuil, 1970.

[4] R. Axerold. The evolution of cooperation. New York Basic Book, 1984.

[5] P. Bak. How Nature Works - the Science of self-organized criticaly.
Springer Verlag, 1996.

[6] A. L. Barabási and R. Albert. Emergence of scaling in random networks.
Science, 286:509–512, 1999.

[7] A.-L. Barabási, R. Albert, and H. Jeong. Mean-field theory for scale-free
random networks. Physica A, 272:173–197, 1999.

[8] O. Barreteau and F. Bousquet. Jeux de rôles et validation de systèmes
multi-agents. In Hermès, editor, Ingénierie des systèmes multi-agents -
JFIADSMA’99.

[9] N.A. Bass. Emergence, hierarchies and hyperstructures. In C.G. Langton,
editor, Artificial Life III, SFI Studies in the Sciences of Complexity, volume
XVII, pages 775–797. Addison Wesley, 1994.

[10] J. Berstel and C. Reutenauer. Rational Series and Their Languages.
EATCS, Monographs on Theoretical Computer Science. Springer Verlag,
1988.

[11] C. Bertelle, A. Cardon, and D. Olivier. Modélisation et implémentation des
systèmes complexes. Cours du DEA Informatique Théorique et Applica-
tions, Ecole Doctorale SPMI Rouen-Le Havre, 184 pages, 2001.

119

Applications to economic complex modeling

[12] C. Bertelle, A. Dutot, F. Guinand, and D. Olivier. Dimants: a distributed
multi-castes ant system for dna sequencing by hybridization. In Nettab
2002, aamas 2002 conf., Bologna (Italy), July 2002.

[13] C. Bertelle, A. Dutot, F. Guinand, and D. Olivier. Distribution of agent
based simulation with colored ant algorithm. In Ess 2002 conf., Dresden
(Germany), October 2002.

[14] C. Bertelle, A. Dutot, F. Guinand, and D. Olivier. Dna sequencing hy-
bridization based on multi-castes ant system. In Bixmas 2002, aamas 2002
conf., Bologna (Italy), July 2002.

[15] C. Bertelle, M. Flouret, V. Jay, D. Olivier, and J.-L. Ponty. Automata with
multiplicities as behaviour model in multi-agent simulations. In SCI, Or-
lando (USA), 2001.

[16] C. Bertelle, M. Flouret, V. Jay, D. Olivier, and J.-L. Ponty. Genetic al-
gorithms on automata with multiplicities for adapta tive agent behavior in
emergent organisations. In SCI, Orlando (USA), 2001.

[17] C. Bertelle, M. Flouret, V. Jay, D. Olivier, and J.-L. Ponty. Adaptive be-
haviour for prisoner dilemma strategies based on automata with multiplici-
ties. In Ess 2002 conf., Dresden (Germany), October 2002.

[18] C. Bertelle, V. Jay, S. Lerebourg, D. Olivier, and P. Tranouez. Dynamic
clustering for auto-organized structures in complex fluid flows. In ESS
2002 Conf., Dresden (Germany), October 2002.

[19] C. Bertelle, V. Jay, and D. Olivier. Une approche multi-agent pour la simu-
lation d’environnement estuarien. In Colloque seine-aval, page 40, Rouen
(France), November 17-19 1999.

[20] C. Bertelle and D. Olivier. Les simulations multi-agents : concept et outil
de modélisation non-linéaire pour l’émergence de systèmes organisés. In
3ème colloque chaos temporel et chaos spatio-temporel, Le Havre, Septem-
bre 2001.

[21] C. Bertelle, D. Olivier, V. Jay, P. Tranouez, and A. Cardon. A multi-
agent system integrating vortex methods for fluid flow computation. In
16th imacs congress 2000, volume 122-3, Lausanne (Switzerland), August
21-25 2000. electronic edition.

[22] C. Bertelle, D. Olivier, P. Tranouez, and V. Jay. Agent-based simulation
of water flow for environment modelling in estuaries. In Workshop 2000
agent-based simulation, pages 115–122, Passau (Germany), May 2-3 2000.

120

Applications to economic complex modeling

[23] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelligence - from
natural to artificial systems. Santa Fe Institute Studies in the Sciences of
Complexity. Oxford University Press, 1999.

[24] E. Bonabeau, F. Henaux, S. Guérin, D. Snyers, P. Kuntz, and G. Théraulaz.
Routing in telecommunications networks with "smart" ant-like agents. In
Proceedings of Intelligent Agents for Telecommunications Applications’98,
1998.

[25] E. Bonabeau and G. Theraulaz. Intelligence collective. Hermès, 1994.

[26] T.R.J. Bossomaier and D.G. Green, editors. Complex systems. Cambridge
university press, 2000.

[27] N. Bourbaki. Algebra Ch 1-3. Springer, 1989.

[28] N. Bourbaki. Theory of sets. Springer, 2004.

[29] T. Bouron. Structures de communication et d’organisation pour la
coopération dans un univers multi-agents. PhD thesis, Pierre et Marie
Curie University, 1993.

[30] J.-P. Briot. Modélisation et classification de langages de programmation
concurrente objets : L’expérience Actalk. In LMO’94, pages 103–125,
Grenoble, 1994.

[31] J.-P. Briot and R. Guerraoui. Objets pour la programmation paralléle et
rèpartie : Intérets, évolutions et tendances. TSI, 15(6):765–800, 1996.

[32] Jean-Pierre Briot and Yves Demazeau, editors. Principes et architecture
des systèmes multi-agents. Hermès, 2001.

[33] J.P. Briot. Actalk : A testbed for classifying and designing actor lan-
guages in the smalltalk-80 environment. pages 3–15, Nottingham, UK,
1989. ECOOP’89.

[34] F. Capra. The web of life. Anchor books, 1996.

[35] A. Cardon. Modélisation des systèmes adaptatifs par agents : vers une
analyse-conception orientée objet. Rapport de recherche 011, LIP6, 1998.

[36] A. Cardon. Système de gestion de crises coopératif : un processus
d’interprétation de points de vues multiples. Journal of Decision Systems,
Hermès, 1:39–67, 1998.

121

Applications to economic complex modeling

[37] A. Cardon. Conscience artificielle et systèmes adaptatifs. Eyrolles, 2000.

[38] A. Cardon and F. Lesage. Toward adaptive information systems : consid-
ering concern and intentionality. In KAW’98, Banff, Canada, 1998.

[39] A. Cardon and J.-P. Vacher. Genetic algorithm using multi-objective in a
multi-agent system. Robotics and Autonomous Systems, Elsevier, 1999.

[40] P. Cariani. Emergence and artificial life. In C.G. Langton, C. Taylor, J.D.
Farmer, and S. Rasmussen, editors, Artificial Life II, SFI Studies in the
Sciences of Complexity, volume X, pages 515–537. Addison Wesley, 1991.

[41] G. Di Caro and M. Dorigo. Antnet: A mobile agents approach to adaptive
routing. Technical report, IRIDIA, Université libre de Bruxelles, Belgium,
1997.

[42] J.-M. Champarnaud and G. Duchamp. Brzozowski’s derivatives extended
to multiplicities. In Lectures Notes in Computer Science, volume 2494,
pages 52–64, 2001.

[43] J.-M. Champarnaud and G. Duchamp. Derivatives of rational expressions
and related theorems. T.C.S., (313):31, 2004.

[44] J.-M. Champarnaud and G. Hansel. Automate, a computing package for
automata and finite semigroups. J. Symbolic Comput., 12:197–220, 1991.

[45] J.-M. Champarnaud, J.-L. Ponty, and D. Ziadi. From regular expressions to
finite automata. International Journal of Computer Mathematics, 72:415–
431, 1999.

[46] G. Clergue. L’apprentissage de la complexité. Hermès, 1997.

[47] J. Colloc. Un système multi-agents neuronal: vers des systèmes
d’information épigénétiques,. Revue Systèmes d’Information et Manage-
ment, ESKA, 5(4):55–71, 2000.

[48] J. Colloc and C. Bertelle. Multilayer agent-based model for decision sup-
port system using psychological structure and emotional states. In ESMc
2004, Paris, 2004.

[49] J. Colloc and M.-H. Cuvelier. A multi-agent approach of modelling
metacognition and emotion in education. In SEG’04 in JICCSE, Al-Salt,
Jordan, 2004.

122

Applications to economic complex modeling

[50] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. second Edition, 2003.

[51] D. Costa and A. Hertz. Ant can colour graphs. JORS, (48):295–305, 1997.

[52] M. Cotsaftis. Comportement et contrôle des systèmes complexes: Introduc-
tion aux méthodes algébriques, qualitatives et fonctionnelles. Sciences an
actes: mathématiques pour l’ingénieur. Diderot arts et sciences, 1980.

[53] G.H. Cottet and P.D. Koumoutsakos. Vortex methods - theory and practice.
Cambridge University Press, 2000.

[54] J. Crutchfield. Discovering coherent structures in nonlinear spatial systems.
In A. Brandt, S. Ramberg, and M. Shlesinger, editors, Non linear dynamics
of ocean waves, pages 190–216, Singapore, 1992. World scientific.

[55] K. Culik and J. Kari. Finite state transformations of images. In Proceedings
of ICALP 95, volume 944 of Lecture Notes in Comput. Sci., pages 51–62.
Springer, 1995.

[56] K. Culik and J. Kari. Image compression using weighted finite automata.
In G. Rozenberg and A. Salomaa, editors, Handbook of formal languages,
pages 599–616. Springer, 1997.

[57] J. de Rosnay. Le macrocosme. Points - Essais. Editions du Seuil, 1990.

[58] Y. Demazeau. From interactions to collective behaviour in agent-based
systems. In Proceedings of the European Conference on Cognitive Science,
Saint Malo, 1995.

[59] M. Dorigo. Optimization, learning and natural algorithms. PhD thesis,
Department of Electronics Politecnico di Milano, Italy, 1992. In italian.

[60] M. Dorigo and L.M. Gambardella. Ant colony system: A cooperative learn-
ing approach to the traveling saleman problem. IEEE Transactions on Evo-
lutionary Computation, 1(1):53–66, 1997.

[61] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: optimization
by a colony of cooperating agents. IEEE Trans. Systems Man Cybernet.,
26:29–41, 1996.

[62] A. Drogoul. De la simulation multi-agents à la résolution collective de
problèmes. PhD thesis, Université de Paris 6, 1993.

123

Applications to economic complex modeling

[63] A. Drogoul and C. Dubreuil. Eco-problem-solving: results of the n-puzzle.
In Y. Demazeau and E. Werner, editors, Decentralized Artificial Intelli-
gence III, pages 283–295. North Holland, 1992.

[64] A. Drogoul and C. Dubreuil. Eco-problem-solving: results of the n-puzzle.
In Y. Demazeau and E. Werner, editors, Decentralized Artificial Intelli-
gence III, pages 283–295. North Holland, 1992.

[65] Alexis Drogoul. Systèmes multi-agents situés. Habilitation à diriger des
recherches, Université Pierre et Marie Curie, 2000.

[66] G. Duchamp, M. Flouret, and E. Laugerotte. Operations over automata with
multiplicities. In J.-M. Champarnaud, D. Maurel, and D. Ziadi, editors,
WIA’98, volume 1660 of Lecture Notes in Computer Science, pages 183–
191. Springer-Verlag, 1999.

[67] G. Duchamp, M. Flouret, E. Laugerotte, and J.-G. Luque. Direct and dual
laws for automata with multiplicites. In Theoret. Comput. Sci, pages 105–
120, 2001.

[68] G. Duchamp, Hatem Hadj Kacem, and Éric Laugerotte. On the erasure of
several letter-transitions. In JICSSE’04. BAU Jordan, 2004.

[69] G. Duchamp and C. Reutenauer. Un critère de rationalité provenant de la
géometrie noncommutative. Invent. Math., 128:613–622, 1997.

[70] G.H.E. Duchamp, H. Hadj Kacem, and E. Laugerotte. Algebraic elimina-
tion of ε-transitions. DMTCS, 7(1):51–70, 2005.

[71] S. Durand, F. Lesage, , and C. Moulin. Utilisation des systèmes multiagents
dans la modélisation des systèmes adaptatifs. pages 475–480, Bucarest,
Mai 1997. International Symposium of Economics and Informatics.

[72] S. Eilenberg. Automata, languages and machines, volume Vol A. Academic
Press, 1974.

[73] S. Eilenberg. Automata, languages and machines, volume Vol B. Academic
Press, 1976.

[74] J. Ferber. Les systèmes multi-agents : vers une intelligence collective. In-
terEditions, 1995.

[75] J. Ferber. Multi-agent system. Addison-Wesley, 1999.

124

Applications to economic complex modeling

[76] M. Flouret. Contribution à l’algorithmique non commutative. Thèse de
l’université de rouen, 1999.

[77] S. Forrest and T. Jones. Modeling complex adaptive systems with echo.
Complex Systems : Mechanisms of Adaptation, pages 3–21, 1994. R.J.
Stonier and X.H. Yu, eds.

[78] Stephanie Forrest, editor. Emergent Computation. MIT Press, 1991.

[79] S. Gaubert. A few introductive texts on (Max, +) algebra and discrete events
systems. http://Amadeus.inria.fr.

[80] J. S. Golan. Power algebras over semirings with applications in Mathemat-
ics and Computer Science. Kluwer, 1999.

[81] J. S. Golan. Semirings and affine equations over them: Theory and appli-
cations. Kluwer, 2003.

[82] D. E. Goldberg. Genetic algorithms in search, optimization and machine
learning. Addison-Wesley, 1989.

[83] M. Gondran and M. Minoux. Graphes et algorithmes. Eyrolles, 1979.

[84] D.M. Gordon. The expandable network of ant exploration. Animal Be-
haviour, 50:995–1007, 1995.

[85] Z. Guessoum. Un environnement opérationnel de conception et de réalisa-
tion de systèmes multi-agents. PhD thesis, Pierre et Marie Curie University,
1996.

[86] Z. Guessoum. Dima, une plate-forme multi-agents en smalltalk. Objet,
3(4):393–409, 1997.

[87] Z. Guessoum. A hybrid agent model: reactive and cognitive behavior. In
ISADS’97, pages 25–32, 1997.

[88] Z. Guessoum and J.-P. Briot. From concurrent objects to autonomous
agents. In 8th European Workshop on Modelling Autonomous Agents in
a Multi-Agent World, Ronneby, 1997.

[89] O. Gutknecht and J. Ferber. Madkit: Organizing heterogeneity with groups
in a platform for multiple multi-agents systems. Technical report, LIRMM,
Montpellier University, http://www.madkit.org, 1997.

[90] H. Haken. Advanced synergetics. Springer-Verlag, 1983.

125

Applications to economic complex modeling

[91] T. Haynes and S. Sen. Evolving behaviour strategies in predators and prey.
In G. Weiss and S. Sen, editors, Adaptation and Learning in Multi-Agent
Systems, LNAI, pages 113–126, IJCAI’95 Workshop, Montreal, Canada,
August 1995. Springer.

[92] J.-C. Heudin. La vie artificielle. Hermès, 1994.

[93] M. Heusse, D. Snyers, S. Guérin, and P. Kuntz. Adaptive agent-driven
routing and load balancing in communication networks. In Proceedings of
the 1st International Workshop on Ant Colony Optimization, Oct. 15-16,
Brussels, Belgium, 1998.

[94] A. Heyting. Die Theorie der Linearen Gleichungen in einer Zahlenspezies
mit nichtkommutativer Multiplikation. Math. Ann., 98:465–490, 1927.

[95] J. Holland. Adaptation in natural and artificila systems. University of
Michigan Press, Ann Arbor, 1975.

[96] J. H. Holland. Adaptation in natural and artificial systems: an introduction
analysis with applications to biology, control and artificial intelligence.
University of Michigan Press, 1975.

[97] John H. Holland. Hidden Order - How adaptation builds complexity. Helix
Book, 1995.

[98] J.E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata
theory, languages and computation. Addison-Wesley, 2001.

[99] S. Huss-Lederman, E.M. Jacobson, J.R. Johnson, A. Tsao, and T. Turn-
bull. Implementation of Strassen’s Algorithm for Matrix Multiplication. In
Proceeding of the ACM/IEEE conference on supercomputing, Pittsburgh,
Pennsylvania, USA, 1996.

[100] M.R. Jean. Emergence et sma. In JFIADSMA’97, 1997.

[101] K. Jensen. Coloured Petri Net - Basic concepts, analysis method and prac-
tical use. Springer Verlag, 1997.

[102] W. Kawasnicki. Evolutionary economics and simulation. In T. Bren-
ner, editor, Computational techniques for modelling learning in economics.
Kluwer Academic Publisher, 1999.

[103] Khalaf Khatatneh. Construction of a memorized semiring. Master’s thesis,
University of Rouen DEA ITA Memoir, 2003.

126

Applications to economic complex modeling

[104] W. Kuich and A. Salomaa. Semirings, Automata, Languages. In EATCS,
Monographs on Theoretical Computer Science, volume 5. Springer Verlag,
1986.

[105] L. Lamport. Latex : user’s guide and reference manual, 2nd edition.
Addison-Wesley, 1994.

[106] Samuel Landau. Des AG vers la GA - Sélection darwinienne et Systèmes
multi-agents. PhD thesis, Paris 6, 2003.

[107] Samuel Landau and Sébastien Picault. Developping Agents Populations
with Ethogenetics (accepted). In Proc. of the Workshop on Radical Agent
Concepts, 2001.

[108] C. Langton. Studying artificial life with cellular automata. Physica D, 22,
1986.

[109] C.G. Langton, editor. Artificial Life. Addison Wesley, 1987.

[110] E. Laugerotte. Combinatoire et calcul symbolique en théorie des représen-
tations. Thèse de l’université de rouen, 1997.

[111] E. Laugerotte and H. Abbad. Mupad-Automat. http://mupad-
combinat.sourceforge.net/.

[112] J.-L. Le Moigne. Modélisation des systèmes complexes. Dunod, 1994.

[113] J.-L. LeMoigne. La modélisation des systèmes complexes. Bordas, Paris,
1990.

[114] A. Leonard. Vortex methods for flow simulation. J. Comp. Phys., 37:289–
335, 1980.

[115] S. Lerebourg. Clustering dynamique appliqué aux écoulements fluides
complexes. Master’s thesis, Le Havre University, 2002.

[116] M. Lothaire. Algebraic Combinatorics on Words. Cambridge University
Press, April 2002.

[117] M. Lothaire. Combinatorics on words. Cambridge University Press, Jan-
uary 2002.

[118] J.-G. Luque. Monoïdes et automates admettant un produit de mélange.
Thèse de l’université de rouen, 1999.

127

Applications to economic complex modeling

[119] S. Mac Lane. Categories for the Working Mathematician. Springer, 1988.
4th ed.

[120] P. Marcenac. Modélisation de systèmes complexes par agents. T.S.I.,
16(8):1013–1037, 1997.

[121] Pierre Marcenac. Modélisation et simulation par agents - application aux
systèmes complexes. Habilitation à diriger des recherches, Université de la
Réunion, 1997.

[122] O. Matz, A. Miller, A. Potthoff, W. Thomas, and E. Valkena. Report on the
Program AMore. Technical report, Institut für Informatik und Praktische
Mathematik, Christian-Albrechts Universität, 1995.

[123] N. Minar, R. Burkhart, Ch. Langton, and M. Askenazi. The swarm simu-
lation system : A toolkit for building multi-agent simulations. Technical
report, SantaFe Institute, 1996.

[124] M. Minsky. La société de l’esprit. 1960.

[125] M. Mohri. Finite-state transducers in language and speech processing.
Journal of Computational Linguistics, 23(2):269–311, 1997.

[126] E. Morin. La méthode I : la nature de la nature. Seuil, 1977.

[127] J.P. Müller. Vers une méthologie de conception de systèmes multi-agents
de résolution de problèmes par émergence. In Editions Hermès, editor,
JFIADSMA’98, pages 355–371, 1998.

[128] M. E. J. Newman, C. Moore, and D. J. Watts. Mean-field solution of the
small-world network model. Phys. Rev. Lett., 84:3201–3204, 2000.

[129] M.E.J. Newman. Models of the small world: a review. J. Stat. Phys.,
101:819–841, 2000.

[130] P. Nicopolitidis, M.S. Obaidat, and G.I. Papadimitriou. Wireless Networks.
John Wiley & Sons, 2003.

[131] M.S. Obaidat and G.I. Papadimitriou, editors. Applied System Simulation.
Kluwer, 2003.

[132] C. Olivier and C. Bertelle. Lagrangien model of suspended matter in a
fluvial out-flow used with a multi-agent system. In Ess’2001, Marseilles,
France, Octobre 2001.

128

Applications to economic complex modeling

[133] D. Olivier and C. Bertelle. Modèles d’identification et d’évolution de struc-
tures hydrodynamiques dans des flux complexes par des systèmes multi-
agents. In Xxvii colloque de l’union des océanographes de france, Vil-
leneuve d’Asq, Septembre 2001.

[134] D. Olivier, V. Jay, and C. Bertelle. Distributed multi-agent system used for
dynamic aquatic simulation. In D.P.F. Müller, editor, Ess’2000 congress,
pages 504–508, Hambourg (Germany), September 28-30 2000.

[135] A. Ortony, G.L. Clore, and A. Collins. The cognitive structure of emotions.
Cambridge University Press, 1988.

[136] G.I. Papadimitriou, P.A. Tsimoulas, and A.S. Obaidat, M.S.and Pomport-
sis. Multiwavelength Optical LANs. Wiley, 2003.

[137] J.L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice
Hall, 1981.

[138] Philippe Preux. Réflexions sur les systèmes complexes comme outil
d’optimisation, leur modélisation et leur simulation. PhD thesis, Université
du Littoral Côte-d’Opale, 1999.

[139] I. Prigogine. La fin des certitudes. Editions Odile Jacob, 1996.

[140] I. Prigogine and D. Kondepudi. Thermodynamique, des moteurs ther-
miques aux structures dissipatives. Editions Odile Jacob, 1999.

[141] I. Prigogine and I. Stengers. La nouvelle alliance. Folio essais, 1979.

[142] D.R. Raymond and D. Wood. Grail: A C++ library for automata and ex-
pressions. J. Symbolic Comput., 17:341–350, 1994.

[143] A. R. Richardson. Simultaneous Linear equations over a division ring.
Proc. Lond. Math. Soc., 28:395–420, 1928.

[144] J. Sakarovitch. Eléments de théorie des automates. 2003.

[145] A. Salomaa and M. Soittola. Automata-Theoretic Aspect of Formal Power
Series. Springer-Verlag, New York, 1978.

[146] R. Schoonderwoerd, O. E. Holland, and J. L. Bruten. Ant-like agents for
load balancing in telecommunications networks. In Proceedings of the 1st
ACM International Conference on Autonomous Agents, Feb. 5-8, Marina
del Rey, CA, US, pages 209–216, 1997.

129

Applications to economic complex modeling

[147] M.P. Schützenberger. On the definition of a family of automata. Inform.
and Control, 4:245–270, 1961.

[148] J. R. Searle. Speech Acts. Cambridge University, 1969.

[149] R. Sedgewick. Algorithms in C. Addison-Wesley Publishing Company,
1990.

[150] Y. Shoham. Agent oriented programming. Journal of Artificial Intelligence,
60:51–92, 1993.

[151] G. Theraulaz and F. Spitz, editors. Auto-organisation et comportement.
Hermès, 1997.

[152] R. Thom. Stabilité structurelle et morphogénèse. InterEditions, 1977.

[153] P. Tranouez. Contributin à la modélisation et à la prise en compte informa-
tique de niveaux de descriptions multiples. Thèse de l’université du havre,
Le Havre University, Le Havre university, 2005.

[154] P. Tranouez, C. Bertelle, and D. Olivier. Changing the level of descrip-
tion of a fluid flow in a agent-based simulation. In ESS 2001 Conference,
Marseilles (France), October 2001.

[155] P. Tranouez, S. Durand, F. Lesage, and A. Cardon. Représentation par
des organisations d’agents des connaissances échangées dans un système
d’information. In Hermès, editor, Proceedings of JFIADSMA’99, 1999.

[156] F. Varela. Autonomie et Connaissance, Essai sur Le Vivant. 1989.

[157] L. von Bertalanffy. Théorie générale des systèmes. Dunod, 1973.

[158] K. Walkowiak. Graph coloring using ant algorithms. In Proceedings of
the Conference on Computer Recognition Systems KOSYR, Miłkòw, May
28-31, pages 199–204, 2001.

[159] B. Walliser. Systèmes et Modèles. Seuil, Paris, 1977.

[160] G. Weisbuch. Complex systems dynamics. Santa Fe Institute Studies in the
sciences of complexity. Addison-Wesley, 1991.

[161] G. Weiss, editor. Multiagent Systems. MIT Press, 1999.

[162] E. O. Wilson. Consilience: the unity of knowledge. Alfred A. Knopf, 1998.

130

Applications to economic complex modeling

[163] W. Woods. Transition network grammars for natural language analysis.
Communication of Association for Computing Machinery, 13(10):591–
606, 1970.

[164] M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley &
Sons, LTD, 2002.

[165] M. Wooldridge and N.R. Jennings. Intelligents agents : theory and practice.
The Knowledge Engineering Review, 10(2):115–152, 1995.

131

Khalaf KHATATNEH

Operators for complex modeling
ABSTRACT: The aim of this work concerns the definition of efficient operators within Computer
Science for the automatic treatment of self-organized phenomena which appear in complex sys-
tems. For that purpose, we define efficient algebraic data structures as automata with multiplicities
and tables which are a generalization of k-sets of Eilenberg. This work shows practical applica-
tions concerning economic aspects. A first application class is the use of automata in game theory
based on probabilistic automata which evolve with genetic algorithms and can produce models for
adaptive strategies. These strategies are a kind of more general models which mixed cooperative
and competitive aspects. So the model proposed is versatile and give the bases of a generic frame-
work for modelling many kinds of interacting agents in various systems. With this first kind of
development for economic model, we show how to use many simple automata and how they are
able to generate by interaction, a kind of self-organization. The second kind of developement uses
a more sophisticated model based on cognitive sciences. The aim is to build a framework for deci-
sion support system as a complex system where knowledge database interact with decision process
and where emotional aspects interact too. This work describes some bases for operators for com-
plex system modeling and sketches some innovative methods for various applications which deal
with self-organization and complexity of description for natural and artificial systems.

KEYWORDS: Complex systems, automata with multiplicities, genetic algorithms, decision sup-
port systems, self-organization.

Opérateurs pour modéliser la complexité
RESUME : L’objectif de ce travail consiste à définir des opérateurs informatiques efficaces pour
le traitement automatique des phénomènes d’auto-organisation qui se développent au sein des
systèmes complexes. Pour cela nous proposons des structures de données algébriques efficaces
que sont les automates à multiplicités et les tables qui sont une généralisation des k-ensembles
d’Eilenberg. Ce travail propose aussi des applications pratiques dans le domaine économique.
Une première classe d’application concerne l’utilisation des automates en théorie des jeux basée
sur des automates probabilistes qui évoluent avec des algorithmes génétiques et peuvent produire
des stratégies adaptatives. Ces stratégies sont une sorte de modèles généraux qui mixtent des
aspects coopératifs et compétitifs. Ainsi ce modèle est générique et donne une base pour une plate-
forme générique pour modéliser de nombreuses sortes d’agents en interaction dans des systèmes
variés. Avec ce premier type de développement de modèles économiques, nous montrons comment
utiliser de nombres automates simples et comment ils sont capables de générer par interaction, une
sorte d’auto-organisation. Le second type de développement utilise un modèle plus sophistiqué
basé sur les sciences cognitives. Le but est de construire une plate-forme pour des systèmes d’aide
à la décision en tant que système complexe où une base de données interagit avec des processus
de décision et où des aspects émotionnels interagissent aussi. Ce travail décrit quelques bases
pour des opérateurs pour modéliser la complexité et dresse quelques méthodes innovantes pour
des applications variées qui concernent l’auto-organisation et la complexité de la description des
systèmes naturels et artificiels.

MOTS-CLEF : Systèmes complexes, automates à multiplicités, algorithmes génétiques, systèmes
d’aide à la décision, auto-organisation.

