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ABSTRACT
The difficulties in developing large-scale,distributed sensornet-
works arediscussedandour recentexperiencein developing and
analyzingdistributedproblemsolving methodsfor applicationsin
sensornetworksis overviewed.

Categoriesand Subject Descriptors
I.2.11[Artificial Intelligence]: DistributedArtificial Intelligence—
Multiagentsystems

GeneralTerms
Algorithms
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1. SENSORNETWORKS
In recentyears,thetechnology of micro-electro-mechanicalsys-

tems(MEMS) hasmaderapid advances. Varioussmartdevices,
suchassensorsandactuatorswith someinformationprocessing ca-
pabilitiesembeddedwithin, have beendeveloped anddeployed in
many real-world applications[4, 5]. To meettheneedsof vastde-
mandsof MEMS in variousapplicationdomains,suchasavionics
andplantautomation,it becomescritical to connect a largenumber
of sensorsandactuators,upto thousands,tensof thousandsor even
millions of units, and to integrateandembedsensing,signaland
dataprocessing andcontrol functionson individual devices.

To make our discussionconcrete,we now describetheproblem
of object detectionusing MEMS devices. Detectingand track-
ing mobile objectsin large openenvironmentsis a topic that has
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many real applicationsin differentdomains,suchassurveillance
androbotnavigation.Wearedevelopingsuchadetectionandtrack-
ing systemusingMEMS sensors,eachof which is operatedunder
restrictedenergy sources,i.e., batteries,and hasa small amount
of memoryand restrictedcomputational power. In a typical ap-
plicationof our system,a collectionof smallsensorsarescattered
in an openareato detectpossibleforeign objectsmoving into the
region. Eachsensorcanscananddetectanobjectwithin afixedra-
dius.However, theoveralldetectingareaof asensoris dividedinto
threeequalsectors,andthe sensorcanonly operatein onesector
at a time. Thesensorscancommunicatewith oneanotherthrough
radio communication. The radio channelis not reliable,in that a
signalmayget lost dueto, for instance,a collision of signalsfrom
multiplesensors,or distorteddueto environment noises.Moreover,
switchingfrom onescanningsectorto anothersectorandsending
andreceiving signalstake time andenergy.

Thesystemneedsto meettwo conflictinggoals.While attempt-
ing to detectall objectsasquickly aspossible,thesystemmustalso
preserveasmuchenergy aspossiblein orderto prolongits lifetime.
Theproblemis thusto find a distributedscanscheduleto optimize
anobjective functionthatbalancestheaboveconflictinggoals.The
key to theproblemis how individual unitsshouldbeprogrammed
to work asa coherent piecetowardachieving commongoals.

2. DIFFICUL TIES AND FEATURES
Many uniquefeaturesof MEMS devicesanddistributedappli-

cationsmake thedevelopmentof sensornetworks difficult. Using
a specialsensordevice,Berkeley Motes[2], andour applicationof
objectdetectionasexamples,wediscusssomeof thedifficultiesof
problemsolvingin sensornetworks.

� Restricted resources. MEMS devices are typically devel-
opedwith a low pricein mind. As aresult,thecomputational
resources,e.g.,theCPUspeedandmemory, arelimited. For
example,a Berkeley Mote carriesa slow 4 MHZ CPU,only
512Bytesof memoryfor instructions,anda small4 MBytes
memoryfor data. The computationalresourceson a sensor
determinestheamountof computationit canprovide within
a fixedperiodof time.

� Faulty devices. The applicationenvironments that sensor
networks areappliedto may be severe,suchasan environ-
mentof high temperatureandhigh pressureasin theavion-
ics domain. The reliability of MEMS sensorsmay be sig-
nificantly reducedundersuchenvironments. Therefore,the
lifetime of asingledevice is reduced, asis thereliability of a
sensornetwork asa whole.



� Unreliable communication. Wirelesscommunicationpro-
videsmuchflexibility andextendssignificantlytheapplica-
bility of sensornetworks. It is oneof themostdesirablefea-
turesof sensornetworks. However, wirelesscommunication
also introduces additionalproblemsto the development of
sucha system.Reliability of wirelesscommunicationis also
oneof theissuesthathasto beaddressed.

� Restrictive time bounds. Sensornetworks usually oper-
ateunderseveretimerestriction,sometimeswithin unknown
bounds on systemresponsetime. Adding informationpro-
cessingcapability to sensorsalleviatesthetime issue.Some
simpleandlow-leveldecisionmakingproblemscanbesolved
by coupling sensingand information processingon board.
However, it still remainsa challengeto fully utilize the on-
boardinformationprocessingfunctionality to increasethere-
sponsivenessof anintegratedsensor network.

� Limited energy. Due to physicalrestrictionsand the dis-
tributednatureof many applications,the sensorsandactua-
torsin distributedsensornetworksusuallyoperateon limited
energy sources,i.e.,batteries.It is animportant,but difficult,
problemto saveenergy to prolongthelife spanof a system.

Even thoughtherearemany difficult issuesinvolved whenus-
ing MEMS sensors,they areusedto build robust and large-scale
networkswith many desirablefeatures.

� Scalability. It is oneof thedesignobjectivesto haveasensor
network scalableto a large numberof components, perhaps
to tensof thousandsor evenafew million components.Scal-
ability meansthat thesystemperformancedoesnot degrade
disproportionally with thesizeof thesystemor evendoesnot
degeneratesatall whenthenumberof componentsincreases.

� Real-timeperformance. Many applications,suchasourob-
ject detectionand tracking, requirecontinuous andsponta-
neousresponses.Therearealsoproblemsin whichthedead-
line for a responseis unknown but canbecomeimminentat
any time. Therefore,a goodanytime performance is desir-
ablefor asensornetwork. Here,anytimemeansthatasystem
canbestoppedatany timewith a solution.

� Self-stabilization and fault tolerance. To toleratefaulty
componentsandsupportadaptation,it is expectedthatasen-
sornetwork is ableto toleratecomponents’failure. It is also
expectedthat the systembe ableto stabilizeitself in that it
is ableto eventually convergeto legalstates,underlocalper-
turbationsto restrictedpartsof thesystem.

3. APPROACHES AND INITIAL RESULTS
Multiagentsystem(MAS) technologiescanandwill playcritical

roles in developing effective andefficient problem-solvingstrate-
giesandmethodsin large-scalesensornetworks. They provide a
framework for building andanalyzingsuchsystemsandoffer spe-
cific mechanismsfor distributeddecisionmakingandcoordination
in the systems. In the pasttwo decades or so,MAS researchhas
produced techniquesfor distributedproblemsolving and reason-
ing [6].

However, many computation- andcommunication-intensivemeth-
ods,suchasnegotiation,may not be suitablefor distributedprob-
lem solving in sensornetworks wherecomputationalandcommu-
nication resourcesare limited. To accommodatethe physicalre-
strictionsandprovide someof thefeaturesneeded by high-perfor-

mancesensornetworks,it is desirableto applydistributedproblem-
solving methodsthat require little computation and communica-
tion. Suchmethods must useinformation local to the computa-
tional nodesandtheir neighbors,ratherthaninformationrelatedto
globalstatesof theoverall system.

In our currentresearch,we arebuilding a distributedsensornet-
work for mobile objectdetectionandtracking. We have beenfo-
cusingon distributed problem-solvingmethodsthat uselocal in-
formation. We have considereddistributedbreakout algorithm[3,
7] anddistributedstochasticalgorithm(DSA) [1] for solvinga few
combinatorial optimizationproblemsin sensornetworks[8, 9, 10].

Specifically, we proved that DBA is completeon acyclic con-
straint networks in that it is able to find an optimal solution in�����	��


stepson a network of
�

nodes. This implies that DBA
canbe usedfor self-stabilizationin acyclic networks, a desirable
propertyfor distributedproblemsolving. We alsoshowed a sim-
ple ring structureon which DBA may fail to find a solution and
proposed stochasticschemesto increaseits completenessin cyclic
networks [9]. In addition,we investigatedthe phase-transitionor
thrashingbehavior of DSA on sensornetworks[8, 10]. Our exper-
imentalevaluationrevealedthatDSA is usuallymoreeffective and
efficient thanDBA, in termsof solutionqualityandcommunication
cost.

In summary, our current experiencein developing distributed
sensornetworks leadsto theconclusionthatsimpledistributedal-
gorithmsthat uselimited, local information and communication,
suchas DSA and DBA, are capableand suitablefor distributed
anytime problemsolvingin distributedsensor networks.

4. REFERENCES
[1] S.FitzpatrickandL. Meertens.An experimental assessment

of a stochastic,anytime,decentralized,soft colourerfor
sparsegraphs. In Proc. 1st Symp. on Stochastic Algorithms:
Foundations and Applications, pages49–64, 2001.

[2] J.Hill, R. Szewcyk, A. Woo,D. Culler, S.Hollar, and
K. Pister. Systemarchitecturedirectionsfor networked
sensors.In Proc. ASPLOS, 2000.

[3] P. Morris. Thebreakout methodfor escapingfrom local
minima.In Proc. AAAI-93, pages40–45,1993.

[4] H. Reichl.Overview anddevelopment trendsin thefield of
MEMS packaging. invited talk givenat14thIntern.Conf.on
Micro ElectroMechanicalSystems,Jan.21-25, 2001,
Switzerland.

[5] M. Takeda.Applicationsof MEMS to industrialinspection.
invited talk, 14thIntern.Conf.on Micro ElectroMechanical
Systems,Jan.21-25, 2001.

[6] G. Weiss,editor. Multiagent Systems: A Modern Approach to
Distributed AI. MIT Press,2000.

[7] M. Yokoo.Distributed Constraint Satisfaction: Foundations
of Cooperation in Multi-Agent Systems. SpringerVerlag,
2001.

[8] W. Zhang,G. Wang,andL. Wittenburg. Distributed
stochasticsearchfor distributedconstraintsatisfactionand
optimization:Parallelism,phasetransitionsand
performance.In Proc. AAAI-02 Workshop on Probabilistic
Approaches in Search, to appear.

[9] W. ZhangandL. Wittenburg. Distributedbreakout revisited.
In Proc. National Conf. on AI (AAAI-02), to appear.

[10] W. ZhangandZ. Xing. Distributedbreakout vs.distributed
stochastic:A comparative evaluation on scanscheduling. In
Proc. AAMAS-02 Workshop on Distributed Constraint
Reasoning, to appear.


