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Goals for this TalkGoals for this Talk
Introduction to a variety of concepts, issues, 

and techniques
Mostly emphasis on improving your 

awareness – you won’t be experts (yet)
Dig down in a few places into some details 

to give you a flavor of operationalization
Examine some research issues in a little 

more depth to explore some strategies for 
extending the state of the art
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How Does DPS Relate to MAS?How Does DPS Relate to MAS?
Multi-Agent System: Emphasis on the fact 

that there are multiple agents, leading to 
concern about intrinsic properties such 
as: truth-revelation, manipulation, 
coherence, Pareto efficiency, …

Distributed Problem Solving: Emphasis is 
on solving one or more problems, through 
efforts of multiple agents, with concerns 
about extrinsic properties such as 
competence, robustness, resource 
efficiency, distraction, …
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What is “Problem Solving”?What is “Problem Solving”?
Search through a state (solution) space
Begin at an initial state (partial or empty 

solution)
Apply operators to states to generate 

successor states
Find a state (solution) that satisfies a goal 

test
Return state (solution) and/or path from 

initial to solution state.
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What Changes with “Distributed”?What Changes with “Distributed”?
Different portions of the state (solution) 

space are known to different agents
A “state” could be distributedly defined
Agents might have different operators to 

apply to (partial) states to generate 
successor states

Agents might have different goal tests
Solution state and/or path might require 

composition from multiple agents



The University of MichiganThe University of Michigan

Example 1: Hidden PicturesExample 1: Hidden Pictures
Simple (visual) search task
How would you work as part of a team to 

solve it?
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Example 1: Hidden PicturesExample 1: Hidden Pictures
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Example 1: DiscussionExample 1: Discussion
Decomposition into independent 

subproblems (search areas or objects)
Allocation of subproblems to team members
Pursuit of subproblem solutions
Overall solution synthesis:

Simple! When object is found by any member, 
the team knows it (if the member tells them!)

Someone needs to keep track of which tasks are 
done and which still need to be done.
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Homogeneous AgentsHomogeneous Agents
For some applications, agents are identical 

in their knowledge/expertise/capabilities
DPS with homogeneous agents therefore 

simply amounts to:
• Decomposing larger tasks into smaller tasks of 

the same kind
• Assigning smaller tasks
• Solving smaller tasks (possibly requiring 

recursive decomposition and assignment)
• Recomposing the results
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A Canonical ExampleA Canonical Example

Initial Problem
• n length of solution
• f(n) complexity of search
• k ratio of solution lengths between levels 

Move L-1-3

L-1-3M-1-2 M-2-3
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Search ReductionSearch Reduction
Single-Level Abstraction Hierarchy

• Time (& Space) Complexity

• For example:                          and

Single-Level, Multiple Agents

• Solve subproblems in parallel

• Time Complexity

• For example:                       and

O( nf( n))

bn => nb n n3 => n2

O(f( n))

bn => b n n3 => n n
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Search Reduction (cont.)Search Reduction (cont.)
Multi-Level Abstraction

• l levels of abstraction

• Time (& Space) Complexity  O(n)

• l must grow with n

Multi-Level, Multiple Agents

• Time Complexity

• l and number of agents must grow with n

(l = logkn)

O(logkn)
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Towers of HanoiTowers of Hanoi
Experimental ResultsExperimental Results
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Heterogeneous AgentsHeterogeneous Agents
For many applications, agents have 

complementary knowledge/capabilities
Challenge lies in matching tasks with agents 

that can carry them out
Strategies for doing so:

• Matchmaking
• Brokering: A broker for a particular kind of 

task accepts it and selects which agent will 
actually carry it out

• Contracting
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Contract Net ProtocolContract Net Protocol
1. Agent with a task decomposes it into 

subtasks to be contracted out
2. That manager announces the subtask
3. Contractor agents that are eligible to bid 

can submit bids
4. After enough time has elapsed, manager 

chooses from among submitted bids and 
makes one or more awards

5. Winning contractors provide interim and 
final reports of subtask accomplishment
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Contract Net Protocol 1Contract Net Protocol 1
1. Agent with a task decomposes it into 

subtasks to be contracted out
• Not as simple as you might think!
• Knowledge of how to decompose (and 

recompose) must be available to the 
manager

• Often, there are alternative decompositions
• Try them at the same time? Overcommitment?
• Pick the most promising one?  How? Tentative 

announcements?
• Permit decommitment?
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Contract Net Protocol 2Contract Net Protocol 2
2. That manager announces the subtask

• Announcement includes
• Eligibility specifications

Constraints on who is even allowed to bid
• Bid specifications

What a bid should tell the manager
• Timeout when award decision is to be made

• Eligibility might be overconstraining
• Balance can be difficult: too open means too many 

bids (and wasted resources); too closed might 
mean no acceptable bids, so have to retry
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Contract Net Protocol 3Contract Net Protocol 3
3. Contractor agents that are eligible to bid 

can submit bids
• A “bid” does not necessarily involve 

(monetary) compensation for services
• Often assumes available contractors 

implicitly accrue benefit from awards
• A bid often specifies how well (timeliness, 

completeness, confidence, precision) the 
contractor can accomplish the task
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Contract Net Protocol 4Contract Net Protocol 4
4. After enough time has elapsed, manager 

chooses from among submitted bids and 
makes one or more awards

• How the manager chooses is application 
dependent

• If no degrees of “how well” then choose 
randomly (or lowest cost)

• If degrees of “how well” then weigh the 
various factors

• Multiple awards can occur (for reliability, for 
example)
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Contract Net Protocol 5Contract Net Protocol 5
5. Winning contractor(s) provide(s) interim 

and final reports of subtask 
accomplishment

– Interim reports can serve as “heartbeats” to 
reassure manager that subtask is active

– Interim reports can help manager initiate or 
redirect activities of other contractors

– Final report provides subtask result to be 
synthesized into a complete task result
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Contract Net Protocol IssuesContract Net Protocol Issues
Contractors can decompose and manage 

their subtasks, recursively
Requires a shared ontology to understand 

each others’ tasks, bids, capabilities,…
“Greedy” approach: doesn’t look ahead to 

how current match will affect future 
match availabilities (decommitment)

Redundant activities: same subtask could 
arise in multiple subtrees and would be 
contracted and done redundantly
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Contract Net Protocol VariationContract Net Protocol Variation
Under high task loads, limiting factor is 

agent availability
Turn Contract Net around:

– Available agent announces what it can do
– Agents with tasks “bid” their tasks
– Available agent accepts the task that it is 

best suited to do (or that is most critical, or 
whatever)
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Other Task Passing ApproachesOther Task Passing Approaches
Matchmaker: Centralized registry of agent 

capabilities to be matched with needs
Broker: Accepts all tasks of a particular 

type, and then assigns agent to do each 
from a “stable” of capable agents

Supply chain: Contractor bids are 
“tentative” pending enlisting 
subcontractors – so entire tree formed 
before firm commitments are made
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Task Passing Task Passing 
as Resource Allocationas Resource Allocation

Matching agents (which are resources for 
task accomplishment) to tasks (which 
consume resources) can be viewed as a 
supply-and-demand problem

Market mechanisms can be employed to 
make the most efficient allocations
– Assuming a static set of supply/demand
– Otherwise, “continuously clearing” auction 

can make fewer guarantees
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Example 2: Cooperative MazesExample 2: Cooperative Mazes
Do you search a maze from start to end, or 

end back to start?
For cooperative search, you can work 

bidirectionally in parallel
Try it!
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Example 2: Cooperative MazesExample 2: Cooperative Mazes
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Example 2: DiscussionExample 2: Discussion
Perhaps not as easy as you might have 

thought?
Issues in “connecting up” the partial paths?
Redirecting partner’s search to approach 

your partial path?
No longer could really do your task without 

having a sense of the partial result of 
someone else
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Result SharingResult Sharing
For some problems, task assignment isn’t 

the hard part:
– Might be inherently given based on goals 

agents are “born” with
– Might be trivially accomplished

However, how a task is done could be very 
dependent on how other tasks are done!
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Performance MeasuresPerformance Measures
Completeness: Amount of the task(s) 

accomplished
Timeliness: How soon tasks will be 

completed
Precision: How close to optimal (rather than 

only satisfactory) the results will be 
Confidence: Certainty that task results are 

(or will be) satisfactory
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Distributed Constraint SatisfactionDistributed Constraint Satisfaction
A simple example of result sharing
An agent has the “task” of binding values to 

one or more variables
Interdependence arises because of 

constraints that must hold between the 
values assigned to variables that are 
managed by different agents
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Constraint SatisfactionConstraint Satisfaction

•• VariablesVariables
•• DomainsDomains
•• ConstraintsConstraints

<>

x1

x2

{1, 2}

{1, 3}
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Solving a CSPSolving a CSP

{1, 2, 3}

x1 <> x2

{1}

x1 x2

x3

{1, 2}

{1, 3}

x4
x4 <> x3

x 3
= x

2
+ 2

xx11 getsgets
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xx33 getsgets

1 2 3

1 2 1 2 1 2

1 3 1 3 1 3 1 3 1 3 1 3

1 1 1 1 1 1 1 1 1 1 1 1xx44 getsgets
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Variable OrderingVariable Ordering
•• Better Average Case PerformanceBetter Average Case Performance
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Most Constrained Variable HeuristicMost Constrained Variable Heuristic
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• A total ordering of the agents 
controls the concurrent search
– Information flow 
– Conflict resolution

• The total order greatly affects 
average search time

• Ordering heuristics aggregate 
information about variables, 
domains, and constraints on agents

Challenges With Challenges With AgentAgent OrderingOrdering

AA

BB

CC

Agents with Agents with 
VariablesVariables
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LeastLeast--Constrained Agent OrderingConstrained Agent Ordering
•• Harder in general since (in Harder in general since (in 

CDPS) each agent has CDPS) each agent has 
many local variablesmany local variables

•• Degree of constraint on an Degree of constraint on an 
agent (its variables) agent (its variables) 
evolves over time as some evolves over time as some 
(combinations of) values (combinations of) values 
are ruled outare ruled out

Package Delivery AgentsPackage Delivery Agents
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Example DCSP ProtocolsExample DCSP Protocols

•• Asynchronous BacktrackingAsynchronous Backtracking
–– parallel local CSP solvingparallel local CSP solving
–– concurrent, asynchronous, and optimistic passing of concurrent, asynchronous, and optimistic passing of 

bindings downward in agent orderingbindings downward in agent ordering
–– nono--goods passed back up triggering regoods passed back up triggering re--searchsearch

•• Weak Commitment SearchWeak Commitment Search
–– agent who discovers a noagent who discovers a no--good is moved to the top of good is moved to the top of 

the agent orderingthe agent ordering
–– assumed to reflect more constrained agentassumed to reflect more constrained agent

((YokooYokoo))
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Analysis of ProtocolsAnalysis of Protocols

•• ParallelismParallelism
•• Some search for a Some search for a 

good orderinggood ordering

•• Fixed ordering strategiesFixed ordering strategies
–– ABT: StaticABT: Static
–– WC: Fixed trigger/responseWC: Fixed trigger/response

•• Potential rediscovery of noPotential rediscovery of no--
goods due to different goods due to different 
orderingsorderings

AdvantagesAdvantages DisadvantagesDisadvantages

= A= A11

= B= B33

NG (ANG (A1 1 BB33))
= B= B33

NG (ANG (A1 1 BB33))
= A= A11
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Overall ProtocolOverall Protocol
•• Designated agent initiates an epoch upon start up Designated agent initiates an epoch upon start up 

or when reprioritization conditions metor when reprioritization conditions met
•• Epochs continue until a solution is found or an Epochs continue until a solution is found or an 

agent has an empty domainagent has an empty domain
–– Each agent calculates a local priority measure.Each agent calculates a local priority measure.
–– The agents form a total order by exchanging priority The agents form a total order by exchanging priority 

information.information.
–– The agents search for a solution using the modified The agents search for a solution using the modified 

version of asynchronous backtracking.version of asynchronous backtracking.
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Agent Behavior During EpochAgent Behavior During Epoch
•• Repeat until instructed to halt or Repeat until instructed to halt or 

reprioritizereprioritize
–– Pick values for the local variables consistent Pick values for the local variables consistent 

with the constraints and the (known) values of with the constraints and the (known) values of 
higher priority agentshigher priority agents

–– If the values differ from the previous iteration If the values differ from the previous iteration 
then alert the next agent in the linear orderthen alert the next agent in the linear order

–– Else if no values possible then alert the Else if no values possible then alert the 
previous agent of a noprevious agent of a no--goodgood
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Reprioritization ConditionsReprioritization Conditions

•• When “Significant” NoWhen “Significant” No--good Discoveredgood Discovered
–– Avoid Frequent RestartsAvoid Frequent Restarts
–– The significance approximated by the number The significance approximated by the number 

of agents involved in the noof agents involved in the no--goodgood

•• Reprioritize when the size of the noReprioritize when the size of the no--good < good < 
m,m, a constanta constant
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Reordering Between Reordering Between 
ProblemProblem--Solving EpochsSolving Epochs

BB

CC

AA

Bad Ordering Good OrderingGood Ordering Dynamically Better?

AA

CC

BB

AA

BB

CC
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Most Constrained Agent HeuristicsMost Constrained Agent Heuristics

Agent A with Constraint GraphAgent A with Constraint Graph

•• How Many Local Solutions?How Many Local Solutions?
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Finding Most Constrained Agents:Finding Most Constrained Agents:
Reduce agent to a variableReduce agent to a variable

AA

BB

CC

AA

BB

CC

A: 1 PathA: 1 Path

B: 6 PathsB: 6 Paths

C: 2 PathsC: 2 Paths

(3 x)(3 x)
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Finding Most Constrained Agents:Finding Most Constrained Agents:
ApproximationsApproximations

•• Use total, average, or weighted average of Use total, average, or weighted average of 
variable’s domain sizesvariable’s domain sizes

•• Use number of noUse number of no--goods discovered or a goods discovered or a 
decaying average of nodecaying average of no--goods discoveredgoods discovered
– with exponential decay -> weak commitment

•• Search with a Genetic AlgorithmSearch with a Genetic Algorithm



The University of MichiganThe University of Michigan

Subset of ResultsSubset of Results
MessagesMessages TimeTime
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Evaluation of the HeuristicsEvaluation of the Heuristics

•• Good orderings had a significant impact.Good orderings had a significant impact.
•• The number of local solutions heuristic is best.The number of local solutions heuristic is best.
•• The number of noThe number of no--goods heuristic worked well.goods heuristic worked well.
•• The total number of noThe total number of no--goods is more important goods is more important 

than a decaying average of the number of nothan a decaying average of the number of no--goods.goods.
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DCSP SummaryDCSP Summary
•• Older algorithms were generalized to allow Older algorithms were generalized to allow 

flexible reordering between epochs of flexible reordering between epochs of 
(modified) ABT(modified) ABT

•• AgentAgent--level heuristics for aggregating level heuristics for aggregating 
variable information performed wellvariable information performed well

•• Dynamically acquired information can helpDynamically acquired information can help
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Negotiated SearchNegotiated Search
What if, as in distributed design, the 

constraints aren’t well-defined at outset, 
and problem might be overconstrained?
– Use a shared repository (e.g., blackboard) so 

that decisions made by one agent can be 
noticed by affected agents

– Permit agents to relax some “constraints”
Now, distributed search involves initiating, 

extending, and critiquing posted partial 
solutions, along with relaxation
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Constrained Heuristic SearchConstrained Heuristic Search
Essentially, view a variable as having an 

agent associated with it
Agent receives competing demands for the 

variable’s value assignment
Agent aggregates demands, and can inform 

agents that submitted demands of the 
aggregate demand

Process iterates until demands converge 
and assignments are made
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DCHS for Resource AllocationDCHS for Resource Allocation
1. Each agent has tasks and constraints between 

them (e.g., ordering)
2. Agent determines how much of which 

resources it needs and when
3. Agent sends these to “resource” agents
4. Resource tells agents of aggregate demands
5. An agent uses aggregate demands to adjust 

ordering decisions and resource assignment 
requests

6. Process can repeat, or an agent might ask 
resource to commit to a particular assignment

7. If request granted, propagate commitment 
effects and go to step 2; else change request
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Auctions for Resource AllocationAuctions for Resource Allocation
Enough said?
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Functionally Accurate, Functionally Accurate, 
CooperativeCooperative

Consider extreme case: which partial results should 
be pieced together and how is entirely 
unpredictable!

In that case, each agent should share with all other 
agents each of its partial results

Eventually, pieces will come together at right agents 
to be combined into larger and larger results

Much effort could be wasted: functionally accurate 
means overall outcome achieves outcome but 
individual activities might be unproductive

Agents cannot act independently: cooperative 
means that co-routining is crucial
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Improving FACImproving FAC

“Each agent should share with all other 
agents each of its partial results” can be 
far too costly!

Avoid sharing every single partial result –
but what if a crucial one isn’t shared?

Avoid sharing partial results with all other 
agents – but what if the right agent 
doesn’t get it?
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Communication StrategiesCommunication Strategies
Sending too many partial results can consume 

bandwidth and computational resources, and can 
distract recipients into unproductive efforts, such 
as duplicating search going on elsewhere

Chicken-and-egg problem: Hard to know if a partial 
result is useful until it is sent!

Role of partial result:
– Contribute to solution: in that case, wait until the whole 

partial result is done before sending 
– Redirect other agents: in that case, send early piece to 

provide guidance
Example: Distributed Theorem Proving
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Organizational StructuringOrganizational Structuring
If agents know something about “interests” 

or responsibilities of others, can avoid 
sending them uninteresting messages

Knowledge of local organization can be 
used by an agent to target messages

In simple form, have templates for other 
agents: if a partial result matches its 
template, then send it to the agent

Richer forms to prioritize communication 
and processing, and even meta-level!
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OS Example: OS Example: 
Distributed Vehicle MonitoringDistributed Vehicle Monitoring
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Organization DesignOrganization Design

Given that what is desired is a combination of static 
roles/guidance (called the organization)..
... and runtime coordination mechanisms to 
revise/refine organizational structure...
... how do we analyze/predict the performance of 
such combinations to codesign the organization and 
the agents’ coordination mechanisms.
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Multilevel Hierarchical Organization

• N tasks (in example, 9: A-I)
• k subordinates (in example, 3)
• m tasks per role at leaves (in example, 1)
Task results passed back up and synthesized; 

A-I must all be done.

1

432

1098765 1211 13

((A B C D E F G H I))

((A B C)) ((G H I))
((D E F))

((A)) ((D)) ((E)) ((F)) ((G)) ((H)) ((I))((B)) ((C))
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Organization Reliability Through RedundancyOrganization Reliability Through Redundancy

• o out of k subordinates can fail (example, 1)
• potential duplication of effort (e.g., D, E, F, I)
• delays in completing tasks (in example, A)

1

432

1098765 1211 13

((A B C D E F G H I))

((A B C)
 (D E F))

((G H I)
 (A B C))((D E F)

 (G H I))

((A B)
 (D E))

((D E)
 (G H))

((E F)
 (H I))

((F D)
 (I G))

((G H)
 (A B))

((H I)
 (B C))

((I G)
 (C A))

((B C)
 (E F))

((C A)
 (F D))
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Purposes of Runtime CoordinationPurposes of Runtime Coordination
• When agents don’t fail, they should be 

working on complementary tasks
– less coordination needed if no redundancy

• When agents do fail, the remaining agents 
should occupy the most important roles
– less coordination needed if total redundancy
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Performance Measures: Performance Measures: 
Response TimeResponse Time

• Besides N, k, m, and o, parameters are
– γ = task execution time / comm delay (assumed to 

be 1 here)
– s = coordination strategy
– f = agent failure probability (assumed constant 

and independent here)
• Response time also depends on:

– which agents fail
– what the others do
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Response Distribution Response Distribution 
for a Configurationfor a Configuration

•• For a For a 
particular particular 
configurationconfiguration
of failed of failed 
agents, agents, 
response response 
depends on depends on 
task orderingtask ordering
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Response Distribution Response Distribution 
for an Organizationfor an Organization

For an For an 
organizationorganization, , 
response time response time 
is combined is combined 
distribution distribution 
given given ff (for (for 
probabilities of probabilities of 
configurations)configurations)
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Performance Measures: Performance Measures: 
ReliabilityReliability

•• Response time data only for when Response time data only for when 
organization respondsorganization responds
– minimized when no redundancy!

•• Need to factor in reliabilityNeed to factor in reliability
– penalize organization for brittleness
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Performance Measures: Performance Measures: 
Combined RT and ReliabilityCombined RT and Reliability

•• Give problem to organizationGive problem to organization
•• Restart if no result by max response time Restart if no result by max response time 

(assume random configuration)(assume random configuration)
•• Repeat until succeedsRepeat until succeeds
Probability of success onProbability of success on iithth iteration is iteration is 

f f ii--1 1 x (1x (1--f) f) 
ff is probability of failure on an iterationis probability of failure on an iteration
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Summary Performance ProfileSummary Performance Profile

Total area sums to 1

Overall performance is
the expected response
time of this profile

Distribution Across Configurations
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Runtime Coordination Strategies:Runtime Coordination Strategies:
Role/Task AssignmentRole/Task Assignment

...by (re)allocating roles ...by (re)allocating roles 
(same as tasks) at runtime(same as tasks) at runtime
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(A B C))((D E F)

(G H I))

((A B)
(D E))

((D E)
(G H))

((E F)
(H I))

((F D)
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(F D))

Increase the chances of a Increase the chances of a 
working configuration...working configuration...
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Effects of Role/Task (Re)AllocationEffects of Role/Task (Re)Allocation

Total area still sums to 1

Expected responseExpected response
time decreasestime decreases

Area decreases
Area decreases

Area increases
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Runtime Coordination Strategies:Runtime Coordination Strategies:
Task Coordination/SchedulingTask Coordination/Scheduling

...by (re)ordering tasks at ...by (re)ordering tasks at 
runtimeruntime
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Decrease the runtime of a Decrease the runtime of a 
working configuration...working configuration...
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Effects of Local Task ReorderingEffects of Local Task Reordering

Area under each curve constant

Expected responseExpected response
time decreasestime decreases
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Runtime Coordination Strategies: Runtime Coordination Strategies: 
CombinedCombined

...by (re)allocating roles ...by (re)allocating roles 
and (re)ordering tasksand (re)ordering tasks

Decrease runtime and Decrease runtime and 
number of tries...number of tries...
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Effects of Combined StrategiesEffects of Combined Strategies
Expected responseExpected response
time decreasestime decreases
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Experimental ComparisonsExperimental Comparisons
• Number of tasks N=36
• Organization 1: branching factor 3, 4 leaf 

tasks -> 13 roles

• Organization 2: branching factor 2, 9 leaf 
tasks -> 7 roles

1
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1

32

7654
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Organizational StructureOrganizational Structure
ComparisonComparison

Organization Comparison: r-o-s
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Figure 6

Small org more robust
Large org faster
Redundancy crucial at

high failure rates
For same redundancy,

(o =1) larger org
better at low failures,
smaller better at high
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Runtime Coordination StrategyRuntime Coordination Strategy
ComparisonComparison

Low failure:
Local Task
Reordering
dominates

High failure:
Role Realloc
dominates

Strategy Comparison for r=13, o=2
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Organizational FeaturesOrganizational Features
and Runtime Coordinationand Runtime Coordination

• When o =0 (no redundancy) neither strategy 
helps

• As o grows
– LTR matters more, due to more bad orders
– RR matters more, due to configurations that 

tolerate even more failures
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Factoring in Coordination CostsFactoring in Coordination Costs

Coordination costs 
rise as number of live 
agents and  number of 
possible redundancies
rise

Choice of org and
coord strategies
based on expected
operating conditions

∆RT =  [α*(m(o+1))a + β∗ a2 ] * RT 
Comparisons Including Coordination 

Costs
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Task StructuresTask Structures
An analysis about the relationships among 

the distributed tasks permits identification 
of agent relationships

Which (partial) results an agent shares, with 
whom, and when, can enable (or disable) 
another agent in accomplishing its tasks, 
or can facilitate or hinder its performance, 
along with affecting timeliness, 
confidence, and precision
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Other “Sharing” StrategiesOther “Sharing” Strategies
Sharing of knowledge or expertise 

(capabilities)
– Instead of moving tasks to agents that know 

how to do them, move “know how” to agents 
that have tasks

– Essentially allows “replication” of agent 
capabilities in the MAS

– Depending on the nature of the application, 
moving capabilities might be more efficient 
(especially for prolonged/repeated tasks) than 
moving tasks
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PlanningPlanning
How does planning differ from problem 

solving?
– Russell and Norvig: Planning combines PS 

and logic – assumes a logical representation 
of states, goals, and operators

– State is really of knowledge, and thus can be 
partial, representing multiple “real” states

– Operators manipulate logical expressions, and 
thus can also remain agnostic about specific 
worlds (recall Kripke structures?)
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Distributed PlanningDistributed Planning
In a sense, it is a subset of DPS

– Makes stronger assumptions about the 
representations of problem states and 
operators

– Assumes that the purpose of problem solving 
is to construct and/or execute a plan

Typically goes on concurrently with DPS
– DPS requires agents to work together in a 

coordinated manner
– Coordinating their current and future activities 

can be done, among other ways, by planning
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Kinds of Distributed PlanningKinds of Distributed Planning
Goal is to formulate a plan, but capabilities 

or expertise to do so is distributed: DPS 
with heterogeneous agents where the 
problem is to construct a plan

Goal is to have a distributed plan, where 
each agent has its piece of the plan that, 
in concert with others, achieves goal
– Could be formed in a centralized manner
– Could be formed in a distributed manner
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Cooperative Plan ConstructionCooperative Plan Construction
Employ DPS techniques: allocate portions 

of plan construction task to “experts”, 
discover and reconcile constraint 
conflicts, share and extend partial plans

Recall cooperative maze solving
Requires a plan representation and ontology 

that is understood across multiple agents
Requires implications of some design 

decisions to be understood by other 
agents
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Cooperative Plan Construction Cooperative Plan Construction 
ExamplesExamples

Manufacturing: general fabrication planner 
calls on specialists in geometry, fixturing

Logistics planning: overall mission requires 
contributions from specialists in path 
planning, vehicle loading and dispatching

End-to-end communications: experts in 
routing messages through regions 
cooperate to form an end-to-end plan
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Example 3: Pursuit TaskExample 3: Pursuit Task
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Example 3: DiscussionExample 3: Discussion
Deciding on an assignment of goals to 

agents
Finding non-conflicting plans for agents to 

achieve their goals
Timing the pursuit of those plans to 

converge at a solution at the right time
Assuming global awareness and control, a 

centralized planner can be very effective!
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Centralized Planning for Centralized Planning for 
Distributed PlansDistributed Plans

For known agents, search for a sequence of 
simultaneous operator executions 
(including no-op) that lead to a goal state:
– Model state as the global state
– Branching factor is the number of 

combinations of applicable local operators
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Centralized Planning for Centralized Planning for 
Distributed PlansDistributed Plans

For exploiting available (homogeneous) 
agents:

1. Generate a partial order plan with minimal 
ordering constraints

2. Assign strongly ordered threads to different 
agents

3. Insert synchronization actions to maintain 
ordering between agents

4. Allocate partial plans to agents using task-
passing

5. Initiate execution
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Example 4a: “Blocks World”Example 4a: “Blocks World”
Either vertically or horizontally:

Arrange the letters to have “B” and “S” next 
to each other
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Example 4a: “Blocks World”Example 4a: “Blocks World”
Either vertically or horizontally:

Arrange the letters to have “O” and “K” next 
to each other
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Example 4a: DiscussionExample 4a: Discussion
When agents are pursuing goals that can be 

achieved via independent plans, having 
each agent plan separately and not 
worry at all about the other(s) suffices

How would the agents have known?
Compare plans?
Compare goals?
Execute and deal with conflicts if and when they 

arise?



The University of MichiganThe University of Michigan

Example 4b: “Blocks World”Example 4b: “Blocks World”
Either vertically or horizontally:

Arrange the letters to have the sequence 
“LOCK” appear
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Example 4b: “Blocks World”Example 4b: “Blocks World”
Either vertically or horizontally:

Arrange the letters to have the sequence 
“SOB” appear
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Example 4b: DiscussionExample 4b: Discussion
In some sense, plans/goals were 

independent, but shared a (sharable) 
resource

How could you have quickly determined how 
to coordinate?

– Compared plans?
– Compared specific goal state options?
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Plan MergingPlan Merging
Given the candidate plans of the agents, 

consider all possible combinations of 
plans, executed in all possible orderings 
(interleavings or even simultaneous)

Generate all possible reachable sequences 
of states

For any illegal (inconsistent or otherwise 
failure) states, insert constraints on 
which actions are taken or when to 
ensure that the actual execution cannot 
fail
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Plan Merging AlgorithmPlan Merging Algorithm--11
Each action has pre-conditions, post-conditions, 

and during-conditions (optional)
1. Compare an agent’s actions against each action 

of the other agents (O(n2a) comparisons) to 
detect contradictions between pre, post, and 
during conditions

2. If none, pair of actions commute and can be 
carried out in any order.

3. If some, determine if either can precede the 
other (post-conditions of one compatible with 
pre-conditions of other)

4. All simultaneous or ordered executions not safe 
are deemed “unsafe”
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Plan Merging AlgorithmPlan Merging Algorithm--22
Ignore actions that commute with all others
Complete safety analysis by propagation
1. Beginning actions a and b is unsafe if 

either consequent situation (adding 
post-conds of a to b, or b to a) leads to 
an unsafe ordering

2. Beginning a and ending b is unsafe if 
ending a and ending b is unsafe

3. Ending a and ending b is unsafe if both 
of the successor situations are unsafe
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Plan Merging AlgorithmPlan Merging Algorithm--33
In planning, assumption is that plan step 

interactions are exception
Therefore, dropping commuting actions 

leaves very few remaining actions
Examining possible orderings and inserting 

synchronization actions (messages or 
clock-times) therefore becomes tractable
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Example 4c: “Blocks World”Example 4c: “Blocks World”
Either vertically or horizontally:

Arrange the letters to have the sequence 
“SLOB” appear
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Example 4c: “Blocks World”Example 4c: “Blocks World”
Either vertically or horizontally:

Arrange the letters to have the sequence 
“LOCK” appear
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Example 4c: DiscussionExample 4c: Discussion
In this case, plans most certainly are not 

independent.  
In fact, goals are conflicting given 

constraints and resources!
How would you have discovered this 

efficiently?
– Compared goal states?
– Compared plans?
– Compared constraints?
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Example 4d: “Blocks World”Example 4d: “Blocks World”
Horizontally:

Arrange the letters to have “B” and “C” 
separated by 1 or more letters, and “C” 
and “K” separated by 1 or more letters
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Example 4d: “Blocks World”Example 4d: “Blocks World”
Horizontally:

Arrange the letters to have the sequence 
“COSK” in the final arrangement
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Example 4d: DiscussionExample 4d: Discussion
Solvable (in various ways) but definitely 

interacting
Order in which plans are carried out can 

make a difference:
– Put “COSK” down, and have other work 

around is easier than other order
– Relationship to “most constrained first”?

More abstract representation can come in 
handy

– Isolate and focus on the “C” to “K” portion
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Iterative Plan FormationIterative Plan Formation
Sometimes, forming plans first and then 

coordinating them fails because of 
choices in initial plans formed

Instead, iterate between formation and 
coordination to keep alternatives alive
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Plan Combination SearchPlan Combination Search
Given initial propositions about the world
1. Agents form successor states by proposing 

changes to current propositions caused by one 
action (or no-op)

2. Successor states are ranked using A* heuristic 
by all agents, and best choice is found and 
further expanded

Agents are simultaneously committing to a plan 
(corresponding to actions in solution path) and 
synchronizations (when actions are taken 
relative to each other)
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Hierarchical ExampleHierarchical Example

Solve-sussman-anomaly

Put-on-table

Put-on-block

Put-on-block

Grasp-block

Lift-block

Move-left

Lower-block

Ungrasp-block
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Another Hierarchical ExampleAnother Hierarchical Example

A
DA



The University of MichiganThe University of Michigan

HierarchicalHierarchical
PlanPlan

A
DA
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MultiMulti--level Coordination & Planninglevel Coordination & Planning

A

B

DA

DB

A

B

DA

DB

A

B

DA

DB

A

B

DA

DB

temporal
constraints

selection
constraints
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TopTop--Down SearchDown Search

temporal
constraints

blocked

• Know as little as you can about others.
• Use abstract resolutions to obviate deeper ones.
• How can you know constraints between abstract levels

without having expanded/investigated lower levels?



The University of MichiganThe University of Michigan

pre: at(A,1,3)
in: at(A,1,3), ¬¬¬¬ at(B,1,3), ¬¬¬¬ at(B,0,3), 
¬¬¬¬at(B,1,4), at(A,0,3), at(A,1,4), 
¬¬¬¬at(B,0,4), ¬¬¬¬ at(A,1,3)
post: ¬¬¬¬ at(A,1,3), ¬¬¬¬at(B,1,3),
¬¬¬¬at(B,0,3), at(A,0,4), ¬¬¬¬at(A,0,3), ¬¬¬¬at(A,1,4), ¬¬¬¬ at(B,0,3),
¬¬¬¬at(B,1,4), ¬¬¬¬at(B,0,4)

Summary InformationSummary Information

• must, may
• always, sometimes
• first, last
• external preconditions
• external postconditions

1,3->0,3 0,3->0,4

1,3->0,4HI

pre: at(A,1,3)
in: at(A,1,3), ¬¬¬¬ at(B,1,3), ¬¬¬¬ at(B,0,3)
post: at(A,0,3), ¬¬¬¬at(A,1,3), ¬¬¬¬at(B,1,3), ¬¬¬¬at(B,0,3)

A

B

DA

DB

0

1

2

0 1 2 3 4

1,3->0,4HI

1,3->0,4

1,3->0,4LO

pre: at(A,1,3)
in: at(A,1,3), ¬¬¬¬ at(B,1,3), ¬¬¬¬ at(B,0,3), 
at(A,0,3), ¬¬¬¬ at(B,0,4), ¬¬¬¬ at(A,1,3)

post: ¬¬¬¬ at(A,1,3), ¬¬¬¬at(B,1,3),
¬¬¬¬at(B,0,3), at(A,0,4), ¬¬¬¬at(A,0,3),
¬¬¬¬at(B,0,3), ¬¬¬¬at(B,0,4)

pre: at(A,0,3)
in: at(A,0,3), ¬¬¬¬ at(B,0,3), ¬¬¬¬ at(B,0,4)
post: at(A,0,4), ¬¬¬¬at(A,0,3), ¬¬¬¬at(B,0,3), ¬¬¬¬at(B,0,4)
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Determining Temporal RelationsDetermining Temporal Relations
• CanAnyWay(relation, psum, qsum) - relation can hold for 

any way p and q can be executed
• MightSomeWay(relation, psum, qsum) - relation might hold 

for some way p and q can be executed

• CAW used to identify solutions
• ¬MSW used to identify failure
• CAW and ¬MSW improve search
• ¬CAW and MSW → must look deeper
• MSW identifies threats to resolve 

A

B

DA

DB

CanAnyWay(before, psum, qsum)
¬¬¬¬ CanAnyWay(overlaps, psum, qsum)

MightSomeWay(overlaps, psum, qsum)

B - before

O - overlaps
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Hierarchical Coordination SearchHierarchical Coordination Search
1. Initialize the current abstraction level to most 

abstract
2. Agents exchange descriptions of their plans 

and goals at the current level
3. Remove plans or plan steps with no potential 

conflicts. If nothing left, done.  If conflicts 
should be resolved at this level, skip next step.

4. Set the current level to the next deeper level, 
and refine all remaining plans (steps). Goto 2.

5. Resolve by: (i) put agents in a total order; (ii) 
current top agent sends its plans to others; (iii) 
lower agents change plans to avoid conflicts 
with received plans; (iv) next lower agent 
becomes top agent
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Coordinating at Abstract Levels Coordinating at Abstract Levels 
Can Improve PerformanceCan Improve Performance

BFS algorithm
Total 
Cost

mid-level 
best

top-level 
best

primitive-level 
best

level computation
time

execution
time

top 4 60
mid 159 40
primitive 2375 35

A

B

DA

DB

Computation Cost
Execution Cost
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TradeoffsTradeoffs
Choice of level at which coordination commitments are made 

matters!

coordination
levels

crisper
coordinationlower cost

more flexibility
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Example 4e: “Blocks World”Example 4e: “Blocks World”
Horizontally:

Arrange the letters to have the letter “S” 
surrounded by other letters



The University of MichiganThe University of Michigan

Example 4e: “Blocks World”Example 4e: “Blocks World”
Horizontally:

Arrange the letters to separate “C” and “O” 
by exactly 1 letter
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Example 4e: DiscussionExample 4e: Discussion
Sometimes, one agent’s actions, if chosen 

properly, can help another satisfy its 
goals

– Coordinating plans not just to avoid conflicts
– Synergistic interactions such that the total 

effort for coordinated plans less than the 
sum of the efforts of stand-alone plans

– Issue is how much extra effort goes into 
finding the synergies, and is it less than what 
is ultimately saved?
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Distributed Planning and Distributed Planning and 
ExecutionExecution

Issues in when agents plan and coordinate, 
relative to each other, and relative to 
execution

Are often sequentialized
No sequential order works well in all cases
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PostPost--Planning CoordinationPlanning Coordination
Essentially, plan merging techniques
Dealing with execution problems can 

involve:
– Contingency preplanning: detecting multiagent 

contingency, and invoking already coordinated 
response

– Monitoring/replanning: detecting deviation and 
restarting the planning/coordination process

Obviously, localizing impacts minimizes 
fresh coordination; building a plan that 
permits localized adjustments can be 
important, but might be less efficient
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PrePre--Planning CoordinationPlanning Coordination
Impose coordination constraints before 

planning is done; plans work within these
Example: Set the boundaries; define the 

roles
Social laws: Define what could be done and 

when, then leave it up to agents to plan 
within the legal limits

Cooperative state changing rules: Force 
agents planning decisions into 
cooperative behaviors



The University of MichiganThe University of Michigan

Continual Distributed Planning and Continual Distributed Planning and 
ExecutionExecution

Planning, coordination, and execution are all 
asynchronously interleaved

At any given time, plans might only be 
partially coordinated, and execution 
results could cause chain reactions of 
further planning and coordination

In a sense, the coordinated plans are only 
evident after the fact, as they are 
continually being adjusted during 
execution
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Example Application:Example Application:
Distributed Vehicle MonitoringDistributed Vehicle Monitoring
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Partial Global PlanningPartial Global Planning

1. Task allocation: inherent
2. Local plan formulation: sequence of 

interpretation problem solving activities
3. Local plan abstraction: major plan steps 

(such as for time-region processing)
4. Communication: Use meta-level 

organization to know who is responsible 
for what aspects of plan coordination
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Partial Global Planning (cont)Partial Global Planning (cont)

5. Partial global plan construction: Pieces 
of related plans (e.g., potentially tracking 
the same vehicle) are aggregated

6. Partial global plan modification: 
redundant or inefficient schedules are 
adjusted to improve collaborative 
performance

7. Communication planning: identification 
of partial results that should be gainfully 
exchanged, and when
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Partial Global Planning (cont)Partial Global Planning (cont)

8. Mapping back to local plans: Partial 
global plan commitments are 
internalized

9. Local plan execution

Cycle repeats as local plans change or new 
plans from other agents arrive.  Always 
acting on local information means that 
there could be inconsistencies in global 
view, but these are tolerated
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Controlling Continual Distributed Controlling Continual Distributed 
PlanningPlanning

Danger of constant chain reactions of minor 
changes: more effort expended in making 
minor adjustments than saved in having 
better coordinated plans!

Agent needs to have a threshold for 
tolerating obsolete plans/coordination

Better load balancing also by reallocation of 
tasks (individually) or roles (in 
organization) or coordination 
responsibilities (in MLO)
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Continual Distributed Planning:Continual Distributed Planning:
Other IdeasOther Ideas

Markov Decision Process Models (Boutilier)

Teamwork models (Tambe; Grosz)



The University of MichiganThe University of Michigan

Runtime Coordination without Runtime Coordination without 
CommunicationCommunication

Observation-based coordination

Focal points
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Open ProblemsOpen Problems
Chicken-and-egg: decomposition/allocation
Ontologies
Knowing when local information (partial results, or 

local plan changes) will make a sufficiently useful 
difference to send them

Knowing when to continue with partial 
coordination, and when to wait for convergence

Finding synergies, and knowing when to
Measures of “better” coordinated plans, including 

aspects of robustness
Instilling social knowledge and context to 

internalize coordination inherently


