Dlstrlbuted Problem Solving

Edmund H. Durfee
University of Michigan, USA

The University of Michigan

Goals for this Talk

and techniques

Mostly emphasis on improving your
awareness — you won't be experts (yet)

Dig down in a few places into some details
to give you a flavor of operationalization

Examine some research issues in a little
more depth to explore some strategies for

The University of Michig

How Does DPS Relate to MAS?

V1) =9 \/

that there are multiple agents, leading to
concern about intrinsic properties such
as: truth-revelation, manipulation,
coherence, Pareto efficiency, ...

Distributed Problem Solving: Emphasis is
on solving one or more problems, through
efforts of multiple agents, with concerns
about extrinsic properties such as

What is “Problem Solving” ?

Begin at an initial state (partial or empty
solution)

Apply operators to states to generate
successor states

Find a state (solution) that satisfies a goal
test

What Changes with “Distributed” ?

space are known to different agents
A “state” could be distributedly defined
Agents might have different operators to

apply to (partial) states to generate
successor states

Agents might have different goal tests
Solution state and/or path might require

The University of Michig

Example 1: Hidden Pictures

How would you work as part of a team to
solve it?

The University of Michigan

Example 1: Hidden Pictures

The University of Michigan

Example 1: Discussion

subproblems (search areas or objects)
Allocation of subproblems to team members
Pursuit of subproblem solutions

Overall solution synthesis:

Simple! When object is found by any member,
the team knows it (if the member tells them!)

Someone needs to keep track of which tasks are

The University of Michig

Homogeneous Agents

In their knowledge/expertise/capabilities

DPS with homogeneous agents therefore
simply amounts to:
« Decomposing larger tasks into smaller tasks of
the same kind
e Assigning smaller tasks
. Solvmg smaller tasks (possmly requmng

A Canonical Example

Initial Problem
N length of solution

The University of Michigan

Search Reduction

e Time (& Space) Complexity O(mf (m))

e For example: bN => mb™M and n3 => n2
Single-Level, Multiple Agents

e Solve subproblems in parallel

e Time Complexity O(f (1))

The University of Michig

Search Reduction (cont.)

| levels of abstraction

* Time (& Space) Complexity Q(n)

*| mustgrowwithn (I = 1logyn)
Multi-Level, Multiple Agents

e Time Complexity O(1 ogin)

The University of Michigan

Time (seconds)
P N W b~ 01 O N 00 ©

[ERY
o

No Abstraction
Abstraction
Distributed

[Distributed

Heterogeneous Agents

\ AN NJ LA\ L/ \

complementary knowledge/capabilities

Challenge lies in matching tasks with agents
that can carry them out

Strategies for doing so:

e Matchmaking

e Brokering: A broker for a particular kind of
task accepts it and selects which agent will

The University of Michig

Contract Net Protocol

subtasks to be contracted out
That manager announces the subtask

Contractor agents that are eligible to bid
can submit bids

After enough time has elapsed, manager
chooses from among submitted bids and
makes one or more awards

The University of Michig

Contract Net Protocol 1

subtasks to be contracted out
Not as simple as you might think!

Knowledge of how to decompose (and
recompose) must be available to the
manager

Often, there are alternative decompositions
Try them at the same time? Overcommitment?
Pick the most promising one? How? Tentative

The University of Michig

Contract Net Protocol 2

Announcement includes
 Eligibility specifications
Constraints on who is even allowed to bid
Bid specifications
What a bid should tell the manager
Timeout when award decision is to be made

Eligibility might be overconstraining

Balance can be difficult: too open means too many
hids (and wasted resources); too closed migh

The University of Michig

Contract Net Protocol 3

can submit bids

A “bid” does not necessarily involve
(monetary) compensation for services

Often assumes available contractors
iImplicitly accrue benefit from awards

A bid often specifies how well (timeliness,
completeness, confidence, precision) the
contractor can accomplish the task

The University of Michig

Contract Net Protocol 4

chooses from among submitted bids and
makes one or more awards

How the manager chooses is application
dependent

If no degrees of “how well” then choose
randomly (or lowest cost)

If degrees of “how well” then weigh the
various factors

The University of Michig

Contract Net Protocol 5

W \J W, \J \J \ W

and final reports of subtask
accomplishment

Interim reports can serve as “heartbeats” to
reassure manager that subtask is active

Interim reports can help manager initiate or
redirect activities of other contractors

Final report provides subtask result to be
synthesized into a complete task result

The University of Michig

Contract Net Protocol Issues

their subtasks, recursively

Requires a shared ontology to understand
each others’ tasks, bids, capabilities,...

“Greedy” approach: doesn’t look ahead to
how current match will affect future
match availabilities (decommitment)

Redundant activities: same subtask could

The University of Michig

Contract Net Protocol Variation

agent availability
Turn Contract Net around:
Available agent announces what it can do

Agents with tasks “bid” their tasks

Available agent accepts the task that it is
best suited to do (or that is most critical, or
whatever)

The University of Michig

Other Task Passing Approaches

Al @ @, @ W @ \ AU

capabilities to be matched with needs

Broker: Accepts all tasks of a particular
type, and then assigns agent to do each
from a “stable” of capable agents

Supply chain: Contractor bids are
“tentative” pending enlisting
subcontractors — so entire tree formed

The University of Michig

Task Passing
as Resource Allocation

Matching agents (which are resources for
task accomplishment) to tasks (which
consume resources) can be viewed as a
supply-and-demand problem

Market mechanisms can be employed to
make the most efficient allocations

— Assuming a static set of supply/demand

The University of Michig

Example 2: Cooperative Mazes

end back to start?

For cooperative search, you can work
bidirectionally in parallel

Try it!

The University of Michigan

Example 2: Cooperative Mazes

The University of Michigan

Example 2: Discussion

thought?
Issues In “connecting up” the partial paths?

Redirecting partner’s search to approach
your partial path?
No longer could really do your task without

having a sense of the partial result of
someone else

The University of Michig

Result Sharing

— Might be inherently given based on goals
agents are “born” with

— Might be trivially accomplished

However, how a task is done could be very
dependent on how other tasks are done!

The University of Michig

Performance Measures

accomplis

Timeliness:
completec

ned
How soon tasks will be

Precision: H

ow close to optimal (rather than

only satisfactory) the results will be

Confidence:
or will be

Certainty that task results are
satisfactor

The University of Michig

Distributed Constraint Satisfaction

An agent has the “task” of binding values to
one or more variables

Interdependence arises because of
constraints that must hold between the
values assigned to variables that are
managed by different agents

The University of Michig

Constraint Satisfaction

e Variables
e Domains
e Constraints

The University of Michigan

Solving a CSP

{1’ 2} xq/
@/f\ﬂ’ X, gets 2 3
Lo
X3
{

4

<>
<> Xg~ X298t2 1 1 2
1,3} x,0ets QOO0 1 OOD 1 OEC

The University of Michigan

{1, 2, 3}
(1)

Variable Orderlng

Most Constrained, Varianile =

The University of Michigan

Challenges With Agent Ordering
Agents with

’ ’ Variables
controls the concurrent search

— Information flow A é

— Conflict resolution 0

* The total order greatly affects

average search time B A

* QOrdering heuristics aggregate
Information about variables,

The University of Michig

Least-Constrained Agent Ordering

arder in general since

CDPS) each agent has Package Delivery Agents
many local variables

Degree of constraint on an
agent (its variables)
evolves over time as some
(combinations of) values
are ruled out

The University of Michig

Example DCSP Protocols

(YOoko00)

« Asynchronous Backtracking
— parallel local CSP solving

— concurrent, asynchronous, and optimistic passing of
bindings downward in agent ordering

— Nno-goods passed back up triggering re-search

o Weak Commitment Search
— agent who discovers a no-good Is moved to the top of

— assumed to reflect more constrained agent

The University of Michig

Analysis of Protocols

Advantages Disadvantages

o Parallelism e Fixed ordering strategies

e Some search fora — ABT: Static
good ordering — WC: Fixed trigger/response
« Potential rediscovery of no-
goods due to different
orderings

NG (A, B3)
The University of Michig

Overall Protocol

)

pon start upg
or when reprioritization conditions met

e Epochs continue until a solution is found or an
agent has an empty domain

— Each agent calculates a local priority measure.

— The agents form a total order by exchanging priority
Information.

— The agents search for a solution using the modified

VEISION OT asyncnronous DE[C;’_"ETEI.C/_JHQJ

- -l - o =
o |)e YNatan yant 1nit da A Ar
. @ . '. @ @ '.

The University of Michig

Agent Behavior During Epoch

Repeat until instructed to halt ot

reprioritize

— Pick values for the local variables consistent
with the constraints and the (known) values of

higher priority agents
— If the values differ from the previous iteration
then alert the next agent in the linear order

— Else if no values possible then alert the
previous agent of a no-gooc

The University of Michig

Reprioritization Conditions

* \When “Significant” No-good Discovered
— Avold Frequent Restarts

— The significance approximated by the number
of agents involved in the no-good

 Reprioritize when the size of the no-good <
m, a constant

The University of Michig

Reordering Between
Problem-Solving Epochs

Bad Ordering Good Ordering Dynamically Better~

/AN AL AL\

ch = ch = s
A D/ \ £\

£\

The University of Michigan

Most Constrained Agent Heuristics

 How Many Local Solutions?

Agent A with Constraint Graph

Finding Most Constrained Agents:
Reduce agent to a variable

B: 6 Paths
(3 X)

Finding Most Constrained Agents:
Approximations

« Use total, average, or weighted average of
variable’s domain sizes

e Use number of no-goods discovered or a

decaying average of no-goods discovered
— with exponential decay -> weak commitment

e Search with a Genetic Algorithm

The University of Michig

SUOIN|OS [220N

——mm| SPOOC) ON

SUOIIN|OS |20

(7))
=
-
N
()
e
T
o
)
D
N
L
-
N

The University of Michigan

Evaluation of the Heuristics

Good orderings had a significant impact.
The number of local solutions heuristic is best.
The number of no-goods heuristic worked well.

The total number of no-goods is more important
than a decaying average of the number of no-goods.

The University of Michig

DCSP Summary

Olaer algorithnms were generalized to allow
flexible reordering between epochs of
(modified) ABT

o Agent-level heuristics for aggregating

variable information performed well
e Dynamically acquired information can help

The University of Michig

Negotiated Search

constraints aren’t well- deflned at outset,
and problem might be overconstrained?

— Use a shared repository (e.g., blackboard) so
that decisions made by one agent can be
noticed by affected agents

— Permit agents to relax some “constraints”
Now, dlstrlbuted search Involves |n|t|at|ng

- II (10 10 . ll () (U C(] U
A [) [) [

The University of Michig

Constrained Heuristic Search

o \/ \/ VYV QAL VO LA N

agent associated with it

Agent receives competing demands for the
variable’s value assignment

Agent aggregates demands, and can inform
agents that submitted demands of the
aggregate demand

Process iterates until demands converge

The University of Michig

DCHS for Resource Allocation

them (e.g., ordering)

Agent determines how much of which
resources It needs and when

Agent sends these to “resource” agents
Resource tells agents of aggregate demands

An agent uses aggregate demands to adjust
ordering decisions and resource assignment
requests

Process can repeat, or an agent might ask

The University of Michig

Auctions for Resource Allocation

The University of Michigan

Functionally Accurate,
Jopyel =

Consider extreme case: which partial results should
be pieced together and how is entirely
unpredictable!

In that case, each agent should share with all other
agents each of its partial results

Eventually, pieces will come together at right agents
to be combined into larger and larger results

Much effort could be wasted: functionally accurate
means overall outcome achieves outcome but

Improving FAC

“Each agent should share with all other
agents each of its partial results” can be
far too costly!

Avoid s
but w

Avoid s

naring every single partial result —
nat If a crucial one isn’'t shared?

naring partial results with all other

agents — but what if the right agent

The University of Michig

Communication Strategies

bandwidth and computational resources, and can
distract recipients into unproductive efforts, such
as duplicating search going on elsewhere

Chicken-and-egg problem: Hard to know if a partial
result is useful until it is sent!

Role of partial result:

— Contribute to solution: in that case, wait until the whole
partial result is done before sending

— Redirect other agents: in that case, send early piece to

The University of Michig

Organizational Structuring

or responsibilities of others, can avoid
sending them uninteresting messages

Knowledge of local organization can be

used by an agent to target messages

In simple form, have templates for other
agents: if a partial result matches its
template, then send it to the agent

The University of Michig

OS Example:
Distributed Vehicle Monitoring

A

The University of Michigan

Organization Design

Given that what is desired Is a combination of static
roles/guidance (called the organization)..

... and runtime coordination mechanisms to
revise/refine organizational structure...

... how do we analyze/predict the performance of
such combinations to codesign the organization and
the agents’ coordination mechanisms.

The University of Michig

Multilevel Hierarchical Organization

(ABO) - \ (GHN)
@ ®)

@
N /IN. /IN
OO OO VWBE

((A)) ((B)) ((C) (D) (E) «(F) «G) ((H) (1)
* N tasks (in example, 9: A-l)
e k subordinates (in example, 3)

Organization Reliability Through Redundancy

I N
N IN . ZIN
OO OO @O

(AB) (BC)((CA) (DE)((EF) (FD) (GH)(HN) ((1G)
(DE) (EFR) (FD) (GH)HDN) (1G)) (AB)(BC) (CA)

e 0 out of k subordinates can fail (example, 1)
e potential duplication of effort (e.g., D, E, F, I)

The University of Michig

Purposes of Runtime Coordination

 When agents don't fail, they should be
working on complementary tasks

— less coordination needed if no redundancy

 When agents do fail, the remaining agents
should occupy the most important roles

— less coordination needed if total redundancy

The University of Michig

Performance Measures:

Response Time
e Besides N, k, m, and o, parameters are

— Yy =task execution time / comm delay (assumed to
be 1 here)

— s = coordination strategy

— f = agent failure probability (assumed constant
and independent here)

 Response time also depends on:
— which agents falil

Response Distribution
for a Configuration

e For a @
particular %es%@% \@%‘523»

cH)B)

' | /IN_ /IN. /1IN
confl_guratlon 566 Gob 60 b
Of f&ll@d (AB) (BC)((CA) (DE)(EF) (FD) (GH)(HN) ((1G)

(ODE) (EF) (FD) (GH)MHDN) (G) (AB)(BC) (CA)
ag e ntS y Response Time Distribution
response
d epends on

K oraering

Response Distribution
for an Qrganization

For an
organization,
response time

ASERZAN
OXONDRBN®)
C)((CA) (BE)(EF) (FD) (GH)(HD) ((16)
FD) (GH)HD) (1G)) (AB)(BC) (CA)

IS combined
distribution
given f (for
probabilities of
configurations)

The University of Michig

Distribution Across Configurations

Performance Measures:
Reliability

 Response time data only for when
organization responds

— minimized when no redundancy!

* Need to factor in reliability
— penalize organization for brittleness

The University of Michigan

Performance Measures:
Combined RT and Reliabilit

* Give problem to organization

e Restart if no result by max response time
(assume random configuration)

e Repeat until succeeds

Probability of success on it iteration is
f-1x (1-)
fis probability of failure on an iteration

The University of Michig

Summary Performance Profile

Overall performance is
the expected response
time of this profile

The University of Michigan

Runtime Coordination Strategies:

(WBCDEFGHI)

(ABC) 4\ (GHD)

(DEF)b ((GHl)). @(ABC))
ZIN I /IN
ONON VNONOXTNONPEE)

(AB) (B C)(CA) (DE)(EFR(FD) (GHXHID ((1G)
(DE) (EF)(ED)) (GH)HD) (1G) (AB)(BC)) (CA)

...by (re)allocating roles
(same as tasks) at runtime

(WBCDEFGHI)

0,

(A B C) % \ (GHI)

o F)@ (GH |))® @ e

Increase the chances of a
WOrKing configuration...

The University of Michig

ZIN 1IN /IN

Effects of Role/Task (Re)Allocation

Expected response
time decreases

The University of Michig

Runtime Coordingtion Strategies:

(WABCDEFGHI)

O

(ABC) ///&;;:

@EH()

1IN/

(GH |))@

(ABQC))

N IN

\@((G H 1)

OO OLOO® VOB

(AB) (B C)(CA) (DE)EF((FD) (GHXHD ((1G)

(DE)) (EF)(FD) (GH)HD) (1G) (AB))(BC)) (C('(A:A)\)B

C
@EH()

WOrKing configuration...

The University of Michig

...by (re)ordering tasks at

runtime

(ABCDEFGHI)

O

/

(GH |))®

(ABQC))

N IN

Effects of Local Task Reordering

Expected response
time decreases

The University of Michig

Runtime Coordination Strategies:

Y 4
Y - A T

(WBCDEFGHI)

(ABC) 4\ (GHD)

(DEF)b ((GHl)). @(ABC))
ZIN 1IN /1IN
ONON VNONOXTNONPEE)

(AB) (B C)(CA) (DE)(EFR(FD) (GHXHID ((1G)
(DE) (EF)(FD)) (GH)HD) (1G) (AB)(BC)) (CA)

...by (re)allocating roles
and (re)ordering tasks

(ABCDEFGHI)

O

(A B C) 4 \ (GHI)

o F)@ (GH |))® @ B

numper of tries...

The University of Michig

1IN 1IN

Effects of Combined Strategies

Expected response

. time decreases
AAA ——

The University of Michig

Experimental Comparisons

* Organization 1: branching factor 3, 4 leaf

tasks -> 13 roles

/(ID\ I /qi)\
CEORONORORTREETHD!

* Organization 2: branching factor 2, 9 leaf
tasks -> 7 roles

The University of Michig

Organizational Structure

Small org more robust
Large org faster

Organization Comparison: r-o0-s

Redundancy crucial at
high failure rates
—— 7-0-ALL
—ion | Eor same redundancy,
13-0-ALLU

|, o (o =1) larger or_g
better at low failures,

0.1 0.2 0.3
agent failure prob f

Runtime Coordination Strategy

f /

Strategy Comparison for r=13, 0=2

= 13-2-NONE

=132 TR
13-2-RR

=3¢ 13-2-BOTH

0.2 0.3

agent failure prob f

The University of Michigan

Low failure:
Local Task
Reordering

dominates
High failure:

Role Realloc

dominates

Organizational Features
and Runtime Coordination

« When o =0 (no redundancy) neither strategy
helps
e AS O grows

— LTR matters more, due to more bad orders

— RR matters more, due to configurations that
tolerate even more failures

The University of Michigan

Factoring in Coordination Costs

Comparisons Including Coordination
Costs

= 7-1-NONE
—#— 13.1-NONE
13-2-NONE
7-1-BOTH-C
=¥ 13-1-BOTH-C
=—8— 13-2-BOTH-C

Coordination costs
rise as number of live
agents and number of
possible redundancies
rise

Choice of org and
coord strategies
based on expected

Task Structures

the distributed tasks permits identification
of agent relationships

Which (partial) results an agent shares, with

whom, and when, can enable (or disable)

another agent in accomplishing its tasks,

or can facilitate or hinder its performance,
along with affecting timeliness,

The University of Michig

Other “Sharing” Strategies

(capabilities)
— Instead of moving tasks to agents that know

how to do them, move “know how” to agents
that have tasks

— Essentially allows “replication” of agent
capabilities in the MAS

— Depending on the nature of the application,
moving capabilities might be more efficient

The University of Michig

Planning

solving?
— Russell and Norvig: Planning combines PS

and logic — assumes a logical representation
of states, goals, and operators

— State is really of knowledge, and thus can be
partial, representing multiple “real” states

— Operators manipulate logical expressions, and
thus can also remain agnostic about specific

The University of Michig

Distributed Planning

— Makes stronger assumptions about the
representations of problem states and
operators

— Assumes that the purpose of problem solving
IS to construct and/or execute a plan

Typically goes on concurrently with DPS

— DPS requires agents to work together in a
coordinated manner

The University of Michig

Kinds of Distributed Planning

or expertise to do so is distributed: DPS
with heterogeneous agents where the
problem is to construct a plan

Goal is to have a distributed plan, where
each agent has its piece of the plan that,
In concert with others, achieves goal

— Could be formed in a centralized manner

The University of Michig

Cooperative Plan Construction

JIUYV L A U C \J J U \J

of plan construction task to “experts”,
discover and reconcile constraint
conflicts, share and extend partial plans

Recall cooperative maze solving

Requires a plan representation and ontology
that is understood across multiple agents

Requires implications of some design

The University of Michig

Cooperative Plan Construction
Examples

Manufacturing: general fabrication planner
calls on specialists in geometry, fixturing

Logistics planning: overall mission requires
contributions from specialists in path
planning, vehicle loading and dispatching

End to end communications: experts N

Example 3: Pursuit Task

The University of Michigan

Example 3: Discussion

Finding non-conflicting plans for agents to
achieve their goals

Timing the pursuit of those plans to
converge at a solution at the right time

Assuming global awareness and control, a
centralized planner can be very effective!

The University of Michig

Centralized Planning for
Distributed Plans

For known agents, search for a sequence of
simultaneous operator executions
(including no-op) that lead to a goal state:

— Model state as the global state

— Branching factor is the number of
combinations of applicable local operators

The University of Michig

Centralized Planning for
Distributed Plans

For exploiting available (homogeneous)
agents:

Generate a partial order plan with minimal
ordering constraints

Assign strongly ordered threads to different
agents

Insert synchronization actions to maintain
ordering between agents

The University of Michig

Example 4a: “Blocks World”

Arrange the letters to have “B” and “S” next
to each other

The University of Michigan

Example 4a: “Blocks World”

Arrange the letters to have “O” and “K” next
to each other

The University of Michigan

Example 4a: Discussion

achieved via independent plans, having
each agent plan separately and not
worry at all about the other(s) suffices

How would the agents have known?
Compare plans?
Compare goals?
Execute and deal with conflicts if and when they

The University of Michig

Example 4b: “Blocks World”

Arrange the letters to have the sequence
“LOCK"” appear

The University of Michigan

Example 4b: “Blocks World”

Arrange the letters to have the sequence
“SOB” appear

The University of Michigan

Example 4b: Discussion

Independent, but shared a (sharable)
resource
How could you have quickly determined how
to coordinate?
— Compared plans?
— Compared specific goal state options?

The University of Michig

Plan Merging

consider all possible combinations of
plans, executed in all possible orderings
(interleavings or even simultaneous)

Generate all possible reachable sequences
of states

For any illegal (inconsistent or otherwise
failure) states, insert constraints on
which actions are taken or when to

The University of Michig

Plan Merging Algorithm-1

and during-conditions (optional)
Compare an agent’s actions against each action
of the other agents (O(n2a) comparisons) to

detect contradictions between pre, post, and
during conditions

If none, pair of actions commute and can be
carried out in any order.

If some, determine if either can precede the
other (post-conditions of one compatible with

Plan Merging Algorithm-2

A LT VV

Complete safety analysis by propagation

1.

Beginning actions a and b is unsafe if
either consequent situation (adding

post-conds of ato b, or b to a) leads to
an unsafe ordering

Beginning a and ending b is unsafe if
ending a and ending b is unsafe

The University of Michig

Plan Merging Algorithm-3

Interactions are exception

Therefore, dropping commuting actions
leaves very few remaining actions

Examining possible orderings and inserting
synchronization actions (messages or
clock-times) therefore becomes tractable

The University of Michig

Example 4c: “Blocks World”

Arrange the letters to have the sequence
“SLOB” appear

The University of Michigan

Example 4c: “Blocks World”

Arrange the letters to have the sequence
“LOCK"” appear

The University of Michigan

Example 4c¢: Discussion

In fact, goals are conflicting given
constraints and resources!

How would you have discovered this
efficiently?
— Compared goal states?
— Compared plans?

The University of Michig

Example 4d: “Blocks World”

Arrange the letters to have “B” and “C”
separated by 1 or more letters, and “C”
and “K” separated by 1 or more letters

The University of Michigan

Example 4d: “Blocks World”

Arrange the letters to have the sequence
“*COSK” In the final arrangement

The University of Michigan

Example 4d: Discussion

Interacting
Order in which plans are carried out can

make a difference:

— Put “COSK” down, and have other work
around iIs easier than other order

— Relationship to “most constrained first”?
More abstract representation can come in

The University of Michig

Iterative Plan Formation

coordinating them fails because of
choices in initial plans formed

Instead, iterate between formation and
coordination to keep alternatives alive

The University of Michig

Plan Combination Search

Agents form successor states by proposing

changes to current propositions caused by one
action (or no-op)

Successor states are ranked using A* heuristic

by all agents, and best choice is found and
further expanded

Agents are simultaneously committing to a plan
(corresponding to actions in solution path) and

B (] [(] A (] ay A [(] a ay e

The University of Michig

Hierarchical Example

Solve-sussman-anomaly
>

Grasp -block

Lift-block

v Put-on-table Put-on-block
Move-left

\4

Lower-block

Another Hierarchical Example

The University of Michigan

mm— D,
o, Hierarchical

\ 1.

% =

s
A4 4 4 4

The University of Michigan

®@ 1] ®L 1
® T[] o @riT

—
— ~
—
- —_— s
—

_ <[
selectlop ~ -
constraints /" \ 7\ empora

The Univeiaity of Michiaan

Top-Down Search

* How can you know constraints between abstract levels
without having expanded/investigated lower levels?

temporal
constraints

Summary Information

— at(A,0,3), mat(B,0,4), ~at(A,1,
post: =at(A,1,3), -at(B,1,3),
1,3->0,3| |0,3->0,4 -at(B,0,3), at(A,0,4), —at(A,0B),

must, may

always, sometimes Sat(B.0.3), 2at(B.0.4)
pre: at(A,1,3) "
first. last in: at(A.1.3), =at(B.1.3), =at(B.0.3)
y N post: at(A,0,3), —at(A,1,3), —at(B,1,3), —at(B,0,3)
external preconditions pre: at(A.0,3) %

o in: at(A,0,3), mat(B.,0,3), ~at(B,0,4)
external postconditions post: at(A0.4), ~at(A,0,.3), -at(8,0,3), -at(B,0})

pre: at(A,1,3) 1.3->04

0

in: at(A 1,3), =at(B,1,3), =at(B,0,3).
~at(B.1.4). at(A.0.3). at(A 1.4) % 7\

!\.* EE ’é’*
1Y

3l i X

The University of Michigan

Determining Temporal Relations

MlghtSomeWay(reIatlon Peurm: dsurm) - Felation might hold
for some way p and g can be executed

7
///% it CanAnyWay(before, py,m, dgum)

-~ CanAnyWay(overlaps, pPy,m: dsum

// ar MightSomeWay(overlaps, py,m, dq,

CAW used to 1dentify solutlons By
- MSW used to identify failure —
CAW and - MSW improve search

L g 2

The University of Michig

Hierarchical Coordination Search

abstract

Agents exchange descriptions of their plans
and goals at the current level

Remove plans or plan steps with no potential
conflicts. If nothing left, done. If conflicts
should be resolved at this level, skip next step.

Set the current level to the next deeper level,
and refine all remaining plans (steps). Goto 2.

Resolve by: (i) put agents in a total order; (ii)
nlans to others; (iil

Coordinating at Abstract Levels

Can Improve Performance

BFS algorithm

Total |
Cost

level

computation
time

execution
time

to

4

The University of Michig

-

-
— ~mid-level

.: -
./

L+~ .
Jprimitive-level

best

best

top-level
best

Tradeoffs

crisper

coordination
lower cost

coordination

levels

The University of Michigan

Example 4e: “Blocks World”

Arrange the letters to have the letter “S”
surrounded by other letters

The University of Michigan

Example 4e: “Blocks World”

Arrange the letters to separate “C” and “O”
by exactly 1 letter

The University of Michigan

Example 4e: Discussion

properly, can help another satisfy its
goals
Coordinating plans not just to avoid conflicts

Synergistic interactions such that the total
effort for coordinated plans less than the
sum of the efforts of stand-alone plans

Issue is how much extra effort goes into
finding the synergies, and is it less than what

The University of Michig

Distributed Planning and
Execution

Issues in when agents plan and coordinate,
relative to each other, and relative to
execution

Are often sequentialized
No sequential order works well in all cases

The University of Michigan

Post-Planning Coordination

Dealing with execution problems can
Involve:

— Contingency preplanning: detecting multiagent
contingency, and invoking already coordinated

response

— Monitoring/replanning: detecting deviation and
restarting the planning/coordination process

Obviously, localizing impacts minimizes

The University of Michig

Pre-Planning Coordination

planning is done; plans work within these

Example: Set the boundaries; define the
roles

Social laws: Define what could be done and
when, then leave it up to agents to plan
within the legal limits

Cooperative state changing rules: Force

The University of Michig

Continual Distributed Planning and
Executi
Planning, coordination, and execution are all
asynchronously interleaved

At any given time, plans might only be
partially coordinated, and execution

results could cause chain reactions of
further planning and coordination

In a sense, the coordinated plans are only
evident after the fact, as they are

The University of Michig

Example Application:
Distributed Vehicle Monitoring

A

The University of Michigan

Partial Global Planning

Task allocation: inherent

Local plan formulation: sequence of
Interpretation problem solving activities

Local plan abstraction: major plan steps
(such as for time-region processing)

Communication: Use meta-level
organization to know who is responsible

The University of Michig

Partial Global Planning (cont)

Partial global plan construction: Pieces
of related plans (e.g., potentially tracking
the same vehicle) are aggregated

Partial global plan modification:
redundant or inefficient schedules are
adjusted to improve collaborative
performance

/. Communication planning: identification

The University of Michig

Partial Global Planning (cont)

Mapping back to local plans: Partial
global plan commitments are
Internalized

Local plan execution

Cycle repeats as local plans change or new
plans from other agents arrive. Always
acting on local information means that

The University of Michig

Controlling Contlnual Distributed

Danger of constant cham reactions of minor
changes: more effort expended in making
minor adjustments than saved in having
better coordinated plans!

Agent needs to have a threshold for
tolerating obsolete plans/coordination

Better load balancing also by reallocation of
tasks (individually) or roles (in

The University of Michig

Continual Distributed Planning:
Other ldeas

Markov Decision Process Models (Boutilier)

Teamwork models (Tambe; Grosz)

The University of Michigan

Runtime Coordination without
Communication

Observation-based coordination

Focal points

The University of Michigan

Open Problems

Ontologies

Knowing when local information (partial results, or

local plan changes) will make a sufficiently useful
difference to send them

Knowing when to continue with partial
coordination, and when to wait for convergence

Finding synergies, and knowing when to

Measures of “better” coordinated plans, including
aspects of robustness

The University of Michig

