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1. Introduction

The Functionally-Accurate/Cooperative (FA/C) model for distributed problem solving was

presented in a paper that appeared in the 1981 special issue of the IEEE Transactions on

Systems, Man and Cybernetics on Distributed AI [1]. The purpose of this retrospective is

two-fold: first, to elaborate more fully this model based on insights acquired over the last

ten years, and second, to provide a coherent perspective on its development and extension

since its original description [2, 3, 4, 5, 6, 7]. A major focus will be on explaining why the

sophistication of an agent is crucial to the effective implementation of the FA/C approach.

This sophistication involves the agent’s ability to understand the intermediate state of its

computation (what it has done, what it has left to do, what type of information is most

crucial to its further progress, etc.) and how its problem-solving activities relate to those of

other agents. The framework of distributed search will be used as the basis of the

explanation.

The FA/C paradigm was developed in response to what were perceived as deficiencies in

the conventional model (circa 1980) of how agents (processors) in a distributed system

should interact. In the conventional model, tasks are decomposed so that each agent has

sufficient data to solve its assigned subproblems completely and accurately with little or no

interaction with other agents. Agents do not need to communicate the intermediate stages of

their computations for other agents to generate correct results. We call this model of task

decomposition, completely-accurate/nearly-autonomous. This model was motivated by a

desire to limit the communication bandwidth required to support the distributed

computation.3

For many applications (distributed interpretation, distributed planning and resource

allocation, etc.) that seem to be suited naturally for a distributed implementation, this model

of task decomposition is inappropriate. It is not possible to decompose the problem into a

set of subproblems such that there is a perfect fit between the location of information,

expertise, processing, and communication capabilities in the agent network and the

computational needs for effectively solving each subproblem (computational task, problem-

3Even though both local and wide area networks are increasing in speed, there is an important and often
overlooked computational cost to inter-agent communication. This cost involves, on the sending side, the
selection and packaging of information to be transmitted, and, on the receiving side, the assimilation of
received information into local knowledge bases. If there is a large amount of information to be sent or the
agents are heterogeneous, the hidden computational costs associated with transmitting and receiving
information can be significant. Thus, limiting communication bandwidth is still an important consideration
in structuring a distributed problem-solving system.
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solving goal). Thus it requires too much communication bandwidth and synchronization

time delays to guarantee that each agent has accurate, complete and up-to-date information.

Overview of FA/C Paradigm

An alternative model for task decomposition and agent interaction is one in which agents

need not have all the necessary information to solve all their subproblems completely and

accurately. The key question is how to structure cooperative interactions among agents to

limit communication costs and still generate an acceptable answer within a reasonable

amount of time. The FA/C paradigm provides an architecture for answering this question

when an application can be structured in the following ways:

• agents are solving interdependent,4 large-grained subproblems;
 
• agents can generate partial and tentative high-level solutions in spite of

incomplete and uncertain information;
 
• agents can partially resolve inconsistencies and uncertainties based on

constraints derived from partial solutions to interdependent subproblems
received from other agents.

This resolution can take the form of producing more complete partial results, resolving

solution uncertainty due to competing, alternative partial solutions, detecting

inconsistencies in previously generated results (either locally generated or received from

other agents), and speeding up local problem solving because the space of possible

solutions that needs to be examined is constrained. In this way, errors introduced as a

result of incomplete, inconsistent and out-of-date local information are resolved as an

integral part of the asynchronous, co-routine exchange of tentative, high-level partial results

among agents. “Asynchronous, co-routine” means that agents do not delay their local

computations waiting to receive information from other agents, and agents exchange

information based on intermediate stages of their local problem solving. This form of agent

interaction is called functionally-accurate/cooperative to distinguish it from the completely-

accurate/nearly-autonomous form of interaction because agents converge on an acceptable

answer through the exchange of intermediate results that may be incorrect.

4Interdependence among subproblems arises from two basic situations. The first situation is where the
subproblems are the same but different agents have either alternative methods or data that can be used to
generate a solution. Another form of interdependence occurs when two subproblems are part of a larger
problem in which a solution to the larger problem requires that certain constraints exist among the
solutions to its subproblems.
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The intent of the FA/C model of distributed problem solving is to trade off more complex

and extensive local and cooperative problem solving against:

• lower message traffic (since partial results rather than raw data are
communicated among agents);

 
• more system reliability in face of processor, communication and sensor failure

(due to error resolution being an integral part of cooperative problem solving);
 
• less agent idle time and more parallelism (because agents are not delayed

waiting for results from other agents and for validating the consistency and up-
to-dateness of information through complex synchronization protocols).

More generally, the goal of FA/C distributed problem solving is to permit agents to

cooperate effectively even though they have limited and inconsistent information about the

problem-solving activities of other agents, different criteria for what are the most

appropriate activities to perform, contradictory raw information and conflicting long-term

problem-solving knowledge, and even errors in their hardware and software. The emphasis

in the FA/C paradigm on handling the resolution of these inconsistencies as an integral part

of cooperative problem solving among agents ties this work closely with recent work on

negotiation in distributed problem solving [8, 9, 10], distributed consistency maintenance

[11, 12, 13, 14] and open information systems [15, 16].

The remainder of the paper is broken into six sections. The next section (Section 2) first

presents an example of FA/C problem solving. This example provides the context for

discussions on the implications of this style of agent interaction on local and cooperative

problem solving. Section 3 presents early experimental results to motivate the major focus

of our research over the last ten years: the development of cooperative control strategies.

Section 4 discusses issues in cooperative control based on an informal model of distributed

search. The emphasis in this discussion is on the character of solution and control

uncertainties that arise in such a distributed search and how these uncertainties can lead to

uncoordinated behavior if they are not ameliorated by effective cooperative control. This

discussion on solution and control uncertainty is used to explain intuitively the

uncoordinated behavior observed in early experimental results discussed in Section 3. The

next section (Section 5) also uses this discussion on uncertainty to examine the

development of a series of increasingly sophisticated mechanisms for coordinating agent

behavior. Section 6 lays out future research directions and Section 7 ends the paper with a

short summary. 
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2. Implications for Local and Cooperative Problem
Solving

To get an idea of the kinds of interactions that must occur between FA/C agents in order to

converge on correct solutions, we will consider the aircraft monitoring scenario in Figure

1. Each type of aircraft produces a characteristic spectrum of acoustic frequencies. The goal

of the system is to identify any aircraft that are moving through the regions of interest,

determine their types, and track them through the regions. There are two agents A and B

whose regions of interest overlap. Each agent receives data only about its region, from its

own acoustic sensor.

Solution uncertainty arises from several sources, including improperly sensed signals,

ghosting, and environmental noise. As a result of acoustic signal propagation and

limitations in the acoustic sensors, not all acoustic signals emanating from an aircraft are

properly sensed; some or even all of the frequencies in the spectrum may be missing and

others may be shifted into the wrong frequency class. Ghost signals may appear as a result

of environmental reflections of signals. Non-aircraft sources of acoustic signals may also

be detected—these are referred to as noise.
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Fig. 1.  This is an example of a two-agent distributed aircraft monitoring scenario. The left-hand
figure is the acoustic input to the two agents and the right-hand figure is the final interpretation of
the agents. The data point symbols represent the positions of groups of acoustic signals detected by
the sensors. The number associated with the data points give the times that these signals were
generated and the subscripts indicate the agent receiving the data. Data points include the position of
the signal source and the frequency class of the signal. The shading of each box indicates the
loudness of the sounds being sensed (the darker the shading the louder) and is an indication of the
likelihood of the sensory data being correct. Box 4′A, which only appears in the final solution, is
not directly supported by acoustic data (only high-level predictions) and thus is not shaded; T1 is a
vehicle track and G1 is a ghost track caused by the environmental reflections of sounds from T1.
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Agents A and B must communicate in order to converge on the correct solution and in order

to produce reasonable levels of certainty in their solutions. Without any communication,

agent A would incorrectly interpret its input data (for times 1 through 7) as a ghost track.

This would happen because agent A’s sensor has failed to detect any signals from track T1

at times 4 and 5 (i.e., at T1 points 4′A and 5B in the final solution of Figure 1). Thus, the

most credible interpretation of the data from agent A’s local perspective involves combining

the fragment of actual vehicle data at times 1 through 3 with the ghost data at times 4

through 7 into a long ghost track. Were the missing data available to agent A, it would

suggest the alternative (correct) explanation of agent A’s data for times 1 through 3 as being

due to an actual aircraft (that produces T1). Without any communication, agent A would

also continue to be very uncertain about its ghost track explanation for the data; it would not

be able to find a source for the ghost track and could not be sure that the ghost track did not

continue beyond its border with agent B (since this might suggest that the data was really

due to an actual aircraft). Likewise, agent B’s would be uncertain over in its interpretations

of its data (the time 5 through 10 portion of track T1) because of the limited number of

points over which it is able to track the vehicle.

This example also shows that a complete answer map could not be created from the agents’

independent solutions. There would have to be major adjustments of some of the individual

interpretations. This cooperative adjustment process requires back and forth communication

between the agents rather than simply having one agent’s “better” solutions override the

others. This process is based on three types of interdependences among solutions to

agent’s subproblems: solutions involving overlapping regions of interest among agents

must be consistent, “track” hypotheses that can extend into other agents’ areas must be

consistent, and agents must be able to find appropriate external evidence when the

hypotheses require evidence which could be in other agents’ areas—e.g., ghost track

source (explanation) or tracking a wide-area formation of vehicles.

In this adjustment process agent A uses agent B’s portion of track T1 as predictive

information, allowing agent A to make assumptions about its sensor having missed signals

at times 4 and 5 that could complete track T1. Agent A must also be able to produce an

acceptable interpretation for the remainder of its original ghost track (times 4 through 7

data). Once again, communication with agent B helps to confirm most of this data (times 5

through 7 in the overlapping region) as ghost data and can provide a source (T1) for the G1

ghost track (see [17] for more details).
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Implications for Local Problem Solving

The computation and reasoning needed in this example indicates some of the requirements

that the FA/C paradigm imposes on local problem solving:

• operate in what could be called an asynchronous mode in which it cannot be
assumed that all the information (results and raw data) necessary for fully
completing a computation will be available when needed. This implies that
algorithms should be structured so that they do the best with the available
information and reevaluate decisions when more information is available or
previously used information is found to be invalid.

 
• exploit constraints from partial solutions to interacting subproblems. This may

involve a potentially complex inference process to extract the full set of
constraints implied by the received partial result, to translate constraints into a
form usable by the agent, and to break constraints into their constituent parts.
This last capability allows important constraints to be acquired even though the
partial result is not fully consistent with local information. This inference
process may involve using knowledge about the sending agent and previous
communications among agents. Local problem solving may also need to be
reorganized so that high-level constraints can be used to speed up and to focus
low-level processing of raw data.

 
• represent and reason about uncertainty in the current partial solutions. This may

involve holding multiple, competing alternative solutions, retaining the
information context used to generate partial results, and using heuristic
knowledge for generating reasonable defaults in the event of missing
information and for judging the plausibility of uncertain partial results.

 
Thus, local problem solving in an FA/C agent, in comparison to a stand-alone version of

the agent, is in general more complex and computationally expensive.

Implications for Cooperative Problem Solving

How agents cooperate by sharing partial results is crucial to effective system performance

because the partial solution to a subproblem may have important ramifications for problem

solving throughout the system. The lack of effective cooperation (or what is commonly

called global coherence) can lead to significant degradation in system performance due to:

• agents not generating and communicating, in a timely manner, solutions to
specific subproblems that provide key constraints for further progress in overall
problem solving;

 
• agents generating and communicating redundant results or results that are no

longer appropriate given current progress in system problem solving;
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• agents having no useful work to perform because of the inappropriate
distribution of load among them.

Thus, the choices that an agent makes about which subproblems to work on, when to work

on them, what methods to use to solve them, what type of partial results to generate, and

where to send these results should not be mediated solely by the needs of local problem

solving. Effective control of cooperative problem solving requires that local control

decisions be influenced by the state of problem solving in other agents. This influence we

will call cooperative control.

At one extreme, cooperative control mechanisms can be so tightly integrated into the local

control that the boundary between local and cooperative control is difficult to assess. At the

other extreme, cooperative control operates outside of and asynchronously with local

control mechanisms. Its interface to local control is through the establishment of high level

policies that the local control implements [3, 7]. In this case, the local control is clearly

distinguishable from the cooperative control, has a certain amount of latitude in its

decisions based on local information and may have no direct knowledge of the state of

other agents’ problem solving.

Cooperative control also involves the dynamic allocation of subproblems among agents

based on the ongoing requirements of problem solving and the availability of hardware

resources. In our discussions up to this point, it has been assumed that the partition of the

subproblems (task decomposition, organizational structure, etc.) among agents is fixed

depending on the a priori  distribution of expertise, information, sensors, effectors,

communication and processing resources. In fact, there are often many choices available in

partitioning, especially choices involving subproblems that can be solved without access to

large amounts of raw data or specialized expertise that resides in a limited number of

agents. Different partitions can lead to systems that vary widely along dimensions such as

reliability in face of processor or communication failure, effective processor utilization

(amount of idle time), etc.

Algorithms for cooperative control are complex because the views of what other agents are

doing may be incomplete, out-of-date and inaccurate due to limited communication

bandwidth. This lack of an accurate view of agent activities also increases the complexity of

cooperative protocols that decide when sufficient work has been done to terminate problem

solving, that guarantee problem solving converges, and that recognize an overconstrained

problem-solving situation.
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Interplay Between Local and Cooperative Control

One lesson that we have learned is the importance of the interplay between control of

cooperative and local problem solving for achieving coherent behavior among agents. The

local control component needs:

• to provide to the cooperative control component a suitably abstract and relatively
accurate description of its current and expected problem-solving activities,
including expected results;

 
• to interact with the cooperative control component to modify local problem-

solving activities to be more in line with the needs of other agents;
 
• to be sufficiently sophisticated in its decision making such that a certain level of

inappropriate cooperative control decisions can be tolerated and recovered from
gracefully.

The last point is crucial to the notion of satisficing control of cooperative problem solving

introduced below.

Satisficing Problem Solving

An important aspect of the FA/C model that was alluded to but never developed in the

original paper is the concept of satisficing problem solving. This concept was developed by

March and Simon [18] to explain how complex organizations function when there is

significant environmental uncertainty. For many applications, even though there exist strict

criteria for acceptable answers, answers meeting less stringent criteria are often still useful.

This approach is especially appropriate in face of unacceptable computational costs to

produce answers that always meet the more exacting criteria. Similarly, the search for

cooperative control algorithms optimal along all dimensions of resource utilization may be

fruitless, especially in the face of the wide range of uncertainties that can arise in

cooperative problem solving. The computation and communication costs to implement

optimal cooperative control may lead to unacceptable overall costs. Thus, a more realistic

approach is to construct cooperation strategies that produce acceptable solutions using a

reasonable amount of processing resources.

3. Early Experimental Results
The major experimental validations of the FA/C model have all involved applications in the

area of distributed interpretation [2, 19]. These applications have used a blackboard
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architecture for local problem solving because of the flexibility and modularity of its control

regime and the incremental, opportunistic and asynchronous nature of its processing. This

application area has provided a rich source of intuitions about the FA/C paradigm.

In the initial experiments with FA/C problem solving, the application was a distributed

version of the Hearsay-II speech understanding system [2, 20]. There were three agents,

each of which was a complete Hearsay-II system extended so that high-level partial results

(e.g., phrase hypotheses) could be communicated. Each agent received a continuous

fragment of acoustic data. These fragments overlapped to guarantee that the acoustic data

associated with each word in the utterance would lay completely within at least one agent’s

raw data. Because all the information needed to solve the subproblem of recognizing a

word was locally available in at least one agent5, this permitted the agents to arrive at a

solution without sharing low-level data. In general, interpretation systems exploit

overlapping sensors to ensure more reliability in processing since sensors are not

completely accurate, introducing errors such as missing data, distorted data and nonexistent

data.

Experiments with this first application showed that the agents could cooperatively interact

with a simple communication protocol to arrive at the same result that was produced in the

centralized version of the system. The distributed system transmitted only a limited amount

of information and realized a slight speedup of processing in comparison to the centralized

system. Additional experiments involving an errorful communication channel indicated that

problem solving was robust in spite of missing information.

Uncoordinated Agent Behavior

The experiments also highlighted important problems with the FA/C paradigm. The

behavior of agents was not coherent: agents transmitted information that was often not

5Top-down grammatical constraints based on phrasal hypotheses were not sufficiently strong when
combined with acoustic constraints based on incomplete low-level information to permit the top-down word
verification knowledge source (VERIFY) to generate a limited number of plausible word hypotheses which
included the correct choice. Thus, agents in the distributed Hearsay-II experiments were given overlapping
acoustic data so as to guarantee that for every word of the utterance at least one agent had its complete
acoustic constraints. Words were not hypothesized if there were only partial acoustic constraints for use in
its verification. This avoided a high level of solution uncertainty in local word hypothesization. The use of
incomplete low-level information would have also required significant changes to the system. The VERIFY
KS would have had to be redesigned to perform only partial matching in the case of missing data.
Additionally, its procedure for the estimation of word likelihood would have to have been modified so that a
distinction was made between the uncertainty due to missing information and that of mismatching of data
constraints.
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relevant or not timely, derived information that had already been generated by another

agent, and were not focused on generating results that would assist other agents. The

phenomenon of distraction was also observed: an agent with weak constraints would

quickly generate and transmit an incorrect partial result; this could cause a receiving agent to

work on incorporating and extending this result instead of pursuing its own correct partial

result.

These problems can be attributed directly to the highly self-directed behavior of individual

agents in which there is no explicit form of cooperation. An implicit form of cooperation

occurred when the agents used received information in the same way as locally generated

information for making local control and communication decisions. This implicit

cooperation strategy contributed to the system’s robustness in spite of missing, incomplete

and incorrect partial results because no expectations were made about the activity of other

agents. However, this lack of expectations also led to inefficient utilization of processors

and communication channels.

The experiences with this initial application of FA/C problem solving motivated much of

our research agenda, based on the following question: Can computationally tractable

cooperative control strategies be developed that maintain both globally coherent activity and

system robustness? The remainder of this paper describes our experiences in answering

this question, concentrating on the evolution of a series of increasingly more sophisticated

mechanisms for achieving globally coherent cooperative activity. In attempting to place this

evolution in perspective, we will first present an idealized model of distributed search.

4. Issues in Distributed Search
Describing the solution and control uncertainties that can arise in a simple distributed search

will help to explain why maintaining globally coherent activity is difficult in an FA/C

distributed problem-solving system. Consider a classical and/or goal structure search

(depicted in Figure 2) that has been augmented to include the representation of constraints

among solutions to goals and the data or resources needed to solve a primitive goal (see

[21, 22, 23] for a more detailed view of the type of relationships that can occur among

goals). Constraints can exist between the solutions of high-level sibling goals such as Gk-1

and Gk, or constraints can be more distant in the goal structure such as between G1,1 and

Gk,2. In this case, G1 and Gk become interacting goals if, for instance, G1,1 is used to solve

G1 and Gk,2 is used to solve Gk. Further, G1 and Gk-1 are interdependent through a chain of
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interdependencies (through Gk). Constraints at one level in the structure, such as those

from the solution to Gk-1, can have implications for solving low-level goals such as Gk,1,4.

As part of this model of search, primitive goals may have multiple solutions where these

solutions could be rank-ordered based on such measures as resource consumption,

credibility, etc.  A solution (result) for a goal is partial when its and subgoals have not all

been solved completely.

DATA/
RESOURCES dj+1 . . . . . . . . . . . . . . . dzd1 . . . . . . . . . . . . dj

G0

G1 G2 . . . Gk-1 Gk . . . . . Gn

G1,1 G1,2 G1,3 Gk,1 Gk,2

Gk,1,1 . . . Gk,1,4 Gk,2,2
Gk,2,1( )

AND

OR OR

AND AND

Fig. 2.  A goal tree:  The G’s represent goals and the d’s represent data or resources. The double-
headed arrows between goals indicate that the goals are interdependent. The arrows between data and
goals indicate that the data is required for that goal’s solution.

In an application such as vehicle monitoring, the overall high-level goal G0 might be to find

the most consistent explanation of the sensory data, the intermediate-level goals (G1...Gn)

might be to find vehicle tracks in a narrowly defined region of time and space, and the

lower-level goals (Gk,1,1 ...) might be to identify the types of vehicles present based on
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sensor reports (d1....). We assume that vehicles do not instantaneously stop or reverse

course. Thus, if two intermediate-level vehicle tracking goals (Gk-1, Gk) specify regions that

are contiguous in time and space, then these goals are potentially mutually constraining. An

intermediate-level vehicle tracking goal Gk-1 can also constrain a lower-level vehicle

identification goal Gk,1,4 if the sensory report being analyzed is in an area contiguous to that

of the intermediate goal. Thus solutions to one of these goals implies constraints on the

possible solutions to the other goal.

Multiple vehicles can share the same general area, so multiple correct solutions for a goal

are possible. However, no vehicles can be in the same place at the same time so different

solutions that use common data are competing alternatives. A partial solution to a vehicle

identification goal can occur when the vehicle can be classified as an airplane rather than a

helicopter but cannot further be distinguish as to whether it is a jet or a propeller-driven

craft. More complex interactions among goals, as discussed in section 2, can occur if

ghosting phenomena are modelled, movements of groups of vehicles in prespecified

patterns can occur, or there can be multiple sensors, possibly of different types (e.g., radar

and acoustic), that can generate reports about overlapping regions of the monitored space.

The entire goal structure need not be fully elaborated in order for problem solving to begin;

rather, the structure may be constructed as problem solving progresses. This construction

can involve a top-down elaboration process based on the higher level goals, a bottom-up

process driven by the data, or a process combining both the top-down and bottom-up

creation of goals (see [24] for a model of how goal structures are dynamically created in a

distributed problem-solving system). Additionally, the criteria for problem-solving success

may not be just the generation of a solution but one that is optimal along some dimension

(such as cost or credibility).

In using a goal structure to represent the overall problem-solving task, we make no

statement about whether this overall goal structure is statically defined or dynamically

evolves from a composite view of the current, local goal structures of individual agents.

Further, we make no assumption that this overall goal structure is consistent—typically it is

not consistent [16]. Nor does this goal structure representation restrict the notion of a goal

to a simple description of a first-order predicate. More encompassing views of goals [22,

25, 26] that define abstract and complex criteria for guiding problem solving are compatible

with the discussions in this section. Goal structures provide an intuitive framework for
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understanding the strengths and weaknesses of different cooperative control strategies

because:

Effective cooperative control is based on exploiting relationships among
agents’  goal structures.

Solution and Control Uncertainty

Solution uncertainty in a goal-based search refers to uncertainty over whether the solution

to a goal will be incorporated into the final solution of the system’s top-level goal. This

uncertainty is due to the possibility that:

• the final solution may not incorporate the solution to a specific goal because
there are multiple derivation paths in the goal structure;

 
• the full set of constraints that is used to judge acceptability of a goal’s solution

may not be available at the time the solution is created;
 
• the local criteria for rating solutions may not reflect global considerations;
 
• the validity of the data used to construct the solution is in question.

Control uncertainty refers to the uncertainty over which goal(s) to pursue next in problem

solving, what context, in terms of solutions to other goals, should be used in solving a

goal, and how much effort to expend in generating a solution. This uncertainty is due not

only to the fact that there are multiple, competing ways of deriving the top-level solution

(and solutions to subgoals are themselves uncertain) but also that it is difficult to estimate

accurately the amount of effort that will be required to produce a solution for a goal. This

estimation has to take into consideration the character of the information used in problem

solving (e.g., its certainty, its volume, its signal-to-noise ratio, etc.) and the impact of

available constraints.

The amount of processing used can be greatly affected by the order in which goals are

solved. For example, the solution to Gk,1,4 (because it is shared by the or goals Gk,1 and

Gk,2) may provide information that indicates which of its parent or goals is more likely. In a

similar way, the solution to Gk may provide strong constraints on the possible solutions for

Gk-1 and thus significantly speed up the search for its solution.

Solution and control uncertainty are increased when only part of the goal structure is

available for decision making. This is exactly what happens in a distributed search. One of
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the consequences of distributing the search is that more of the search space from a

composite perspective needs to be examined than in a centralized version of the search

because there is more uncertainty in agents’ control decisions which makes these decisions

less accurate. Uncertainty is also increased when agent behavior is uncoordinated.

Consider the following example involving the control of a centralized search based on the

goal structure in Figure 2. Let us assume that the search has reached a point where there are

four possible goals that can be achieved; these goals and their associated ratings (indicating

the perceived importance of their solution) are Gk-1(90), G1,2(60), G1,3(50) and Gk,2,2(40).

The highest rated goal, Gk-1, is first achieved and, based on its solution, the ratings

associated with the remaining goals are reevaluated. Additionally, new goals, that are now

possible given the solution to Gk-1, are added to the list of goals to be considered for the

next cycle; the list is now G1,3(40), G1,2(50), Gk,2,2(60) and G1,1(60).  If we suppose that

Gk-1,Gk,2,2 and G1,1 were part of the final solution, notice how the solution to Gk-1 provides

information that results in a more informed control decision.

Let us now examine this same example in the context of a two-agent distributed search (see

Figure 3). We start two steps earlier in the search, with G2(95) and Gn(95) not yet

processed. In this case, agent1 has a choice among G1
2(95), G1

k-1(90) and G1
1,2(60). Agent2

has a choice among G2
n(95), G2

1,3(50) and G2
k,2,2(40). The agents first choose G1

2 and G2
n,

respectively, because they are the highest rated actions for each of them. After processing

G2
n, agent2 has two choices, G2

1,3(50) and G2
k,2,2(40), neither of which is highly rated nor

well differentiated. Unfortunately, the agent chose to achieve the wrong one first, G2
1,3,

because it is rated slightly higher. From a centralized perspective, the agent chose

prematurely since it did not choose based on the solution to G1
k-1, as in the centralized

version of this search. 

This example indicates the importance of coordinating the searches among agents. One

strategy for achieving more coordination is for agents which have both an abundance of

highly rated goals that can be achieved immediately and low control uncertainty with

respect to their rating (e.g., agent1) to reorder the sequence of achieving their goals (e.g.,

G1
k-1(90) before G1

2(95) ). This reordering should balance the efficiency of the agents’

local search with the needs of other agents. This can be accomplished by first achieving

those goals (e.g., G1
k-1(90) ) whose solutions can provide information to reduce the higher

control and solution uncertainty present in other agents. The lack of this type of

coordination in the distributed Hearsay-II experiments was partially responsible for the
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early generation of high-level, incorrect partial results that, when transmitted, distracted the

problem solving of other agents. Also, the timely transmission of partial results not only

can decrease control uncertainty but can also significantly speed up the solution of goals,

by constraining the set of solutions that need to be examined.

Distributing the search also increases solution uncertainty because all the information

necessary for validating a solution may not be available locally. For example, the solution

to G2
k,2,2 is uncertain because datum d1

j, normally used in its construction, is not available

locally (see Figure 3). Another example of increased solution uncertainty occurs with

respect to G1
1,2 which cannot completely validate its solution since only a partial solution to

the constraining goal G1
k,1 is available. Only partial solutions or solutions with low

credibility for G1
k,1 can be generated because agent1 lacks information or expertise to solve

all the and subgoals of G1
k,1.

DATA/
RESOURCES d2

j+1 . . . . . . . . . . . . . . . d2
zd1

1 . . . . . . . . . . . . d1
j

Agent1 Agent2

G1
0 G2

0

G1
1 G1

2 . . . .G1
k-1 G1

k

AND

G2
1 G2

k . . . . . . . G2
n

AND

G1
1,1 G1

1,2 G1
k,1 G2

1,3 G2
k,1 G2

k,2

OROR

G1
k,1,1 G1

k,1,2

AND

G2
k,1,3 G2

k,1,4
G2

k,2,1

AND

G2
k,2,2

AND

( )

Fig. 3   A distributed goal tree:  The goal tree pictured in Fig. 2 is distributed with partial replication
between two agents. The dotted arrows indicate interdependencies among goals and data in different
agents. The superscripts associated with goals and data indicate the agent that contains that goal or
data.
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Cooperative Control Uncertainty

Distributing a search among agents where their local search spaces are interdependent

introduces an additional class of control uncertainties that are not present in single-agent

problem solving. This new class of control uncertainties are called cooperative control

uncertainties. These uncertainties relate to an agent’s view of the state of problem solving in

other agents, for example: which agents are working on interacting subproblems (goals);

how difficult are these subproblems; when are they expected to be solved; what progress

has been made in solving them; if they have been solved what is the character of the

solutions; etc. These uncertainties about the state of other agents’ problem solving leads to

uncertainties in decisions concerning the communication of information among agents and

the choice of which goals to pursue locally.

Uncertainties in communication occur in decisions such as to whom should an agent

transmit its results and goals, what type of results or goals should it transmit, when and

under what conditions should it communicate, what protocols should it use, what credence

should it give to information received from specific agents, etc. Additional cooperative

control uncertainties occur in decisions such as what type of solution to a goal would be

most beneficial to the problem solving of other agents and when should it be generated,

what is the appropriate balance between pursuing locally generated activities versus

responding to externally received requests, should different priorities be attached to the type

of request and the agent doing the requesting, etc. They also occur in task allocation

decisions for load-balancing which are based on what type of work agents will do in the

near-term and the character of the expected results.

Redundant Computation

Another important issue that arises when a search is distributed is the possibility of deriving

solutions redundantly. The system often contains multiple derivation paths for solutions

distributed among the agents. This redundancy adds to system robustness in the event of

processor, communication, or sensor failure, permits more flexible responses to

unbalanced workloads, and introduces additional constraints into problem solving to

recover from errorful or incomplete information.

Redundant computation can take many forms in a distributed search. The simplest form is

when agents possess exactly the same information and expertise. Another form occurs
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when the sibling or goals are placed in different agents. Thus, if an acceptable solution is

generated in one of the agents, it is unnecessary to try to re-achieve the satisfied goal in the

other agent until the existing solution is found to be inadequate. To avoid redundant work

you must have agents that can assess the implications of received results on their local goal

structure. If the entire goal structure is available, a simple process of tracing down the goal-

subgoal links of the satisfied goal can be used to recognize all subgoals whose achievement

can lead to redundant results. However, for many realistic situations the goal structure is

not fully instantiated (especially when problem solving is data-directed) and thus new

mechanisms are needed.

Avoiding redundant work also requires some anticipatory component—it is not sufficient to

avoid redundant work after a result has been produced because agents may be

simultaneously working on the same problem. By the time one agent has solved the goal,

another agent may have already spent considerable processing resources on work that is

redundant. In order to avoid redundant work, some form of meta-level information about

the goal structure of other agents is needed. The more dynamic this information is about the

short-term processing plans of agents, the more effective an agent can be in avoiding

redundant work while at the same time still maintaining its own processing priorities.

However, there is a cost to create, transmit and exploit meta-level information which may

mitigate its effectiveness in improving overall problem-solving performance. These points

will be more fully elaborated in the next section.

Guaranteeing that there is never redundant activity in the system may not always be the

appropriate strategy. Allowing for the possibility of a certain amount of redundant work

may be advisable if there are idle processing resources, if the costs of coordination control

to prevent the generation of redundant results are high and redundant results are rarely

generated, or if there is high solution uncertainty. For example, if there is significant

solution uncertainty (or the anticipation of such) it may be appropriate to generate an

alternative solution since there is a reasonable likelihood that the alternative solution will

need to be eventually examined. This is especially true if it is an important goal whose

solution significantly constrains future work.

5. Evolution of Control in the DVMT

The distributed Hearsay-II experiments provided many insights into FA/C problem

solving, but further experimentation was difficult. Any new experiments would have
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required major changes to the system. Instead, we developed a new testbed based on a

vehicle monitoring application similar to the application described in section 2. This

interpretation application was based loosely on the distributed sensor network task that

Smith used in his work on contract-nets [27]. The objective of this application was to

identify, locate, and track patterns of vehicles moving through a two-dimensional space

using signals detected by distributed acoustic sensors. A system, called the Distributed

Vehicle Monitoring Testbed (DVMT) [19], was developed. It simulated a network of

problem-solving agents performing this distributed interpretation application. Each agent

was a blackboard problem-solving system with knowledge sources and levels of

abstraction appropriate for this application.

The configuration of knowledge sources was designed to be modular so that it was

possible to build problem-solving agents that had only a limited set of knowledge sources

and levels. This modularity permitted the exploration of a wide range of different

organizational structures for configuring agents in the system. Processing modularity was

accomplished by structuring knowledge sources so that they would produce the best

possible result based on available data and they would be reactivated in the event that new

information was placed on the blackboard that could affect previously made decisions. In

order to get this asynchronous form of processing to work properly, where assumptions

could not be made about the order of arrival of information, a complex design for

knowledge sources was required. The testbed was also highly parametrized so that

accuracy, placement and range of sensors and the grammar for grouping acoustic signals

together to form patterns of vehicles could be adjusted. The DVMT became the major

environment for further experimentation with new approaches to control of cooperative

problem solving for FA/C systems.

The three major phases in the evolution of mechanisms for the cooperative control will be

discussed: integrating data- and goal-directed control, static meta-level control through

organizational structuring, and dynamic meta-level control through partial global planning.

Each phase builds on mechanisms developed in earlier phases. We will explain the

development of this series of increasingly sophisticated cooperative control strategies in

terms of how they reduce solution and control uncertainty and minimize redundant

computation

Integrating Data- and Goal-Directed Control

The first step in making agents work in a more globally coherent fashion was to extend the

data-directed and implicit control regime, used in the distributed Hearsay-II system, so that
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goals were represented explicitly. This first extension was designed to improve cooperative

control by:

• more effectively exploiting constraints implicit in received information which
has the effect of making agents’ goal structures more consistent in terms of the
importance attached to achieving interdependent subgoals; this capability also
eliminates the generation of intermediate results that could lead to redundant
results;

 
• permitting agents to request information explicitly from other agents which has

the effect of increasing the relevance and timeliness [4] of transmitted
information among agents;

 
• evaluating the importance of externally directed activities separately from that of

locally directed activities which has the effect of allowing an agent to be guided
by the information generated by the agent that is most likely to produce accurate
information; this capability also could be used to ameliorate the effects of
distracting communication.

This extension involved modifying the data-directed control cycle of the Hearsay-II system

[13]. Instead of directly mapping changes to the blackboard into knowledge source

instances (KSIs), an intermediate step was introduced. Each time the blackboard was

modified, a set of data-directed goals was created representing the potential results that

could be directly produced using this new information. For example, in Figure 2, the

arrival of dj would trigger the creation of Gk,1,1 and Gk,2,2. These goals were placed on a new

structure called the goal blackboard that used the same levels of abstraction as the data

blackboard. Goals were necessarily approximate specifications of the potential results

because only a part of the information needed to actually construct the results was used in

the mapping of data-to-goals. The mapping was approximate since it was not intended to

duplicate the potentially time-consuming computations involved in knowledge source

execution. The creation of a goal would trigger a primitive planner (goal scheduler)

responsible for creating KSIs that could achieve this goal.

The goals on the goal blackboard can be thought of as a partial goal structure representing

the immediately achievable goals (short-term problem-solving horizon) in each agent.

Based on the use of this explicit representation of the partial goal structure, mechanisms

were developed that achieved improved cooperative control in the ways outlined

previously. One was a subgoaling mechanism that connected a higher-level goal with the

lower-level goals that were necessary for its achievement. The desirability of achieving a

lower-level goal was adjusted based on the importance associated with its supergoal(s).

KSIs that achieved the lower-level goals were given more credence and were thus likely to

be scheduled sooner. For example in Figure 3, if agent1 produced a solution to G1
k-1 and
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transmitted it to agent2, then agent2 could generate a constrained version of G2
k based on the

fact that there are interdependences between G1
k-1 and G2

k. Suppose the constraints imposed

by the solution to G1
k-1 could be satisfied only by a solution to G2

k,2, and G2
k,1,3  and G2

k,2,2

were instantiated based on data in agent2. Then subgoaling the constrained version of G2
k

raises the rating of G2
k,2,2 and increases the likelihood that this subgoal will be solved

sooner than G2
k,1,3.  In this way, both local and cooperative control uncertainty is decreased

since the importance attached to achieving interdependent goals in different agents is more

consistent.

The ability to transmit goals as well as results among agents also facilitates more coherent

cooperative behavior. In situations where agents have significant solution uncertainty, more

informed, externally-directed communication can be implemented by agents transmitting

results only in response to goals received from other agents. These received goals indicate

the type of information that would be most beneficial to the requesting agent’s problem

solving. The subgoaling of these goals would bias the receiving agent to more quickly

generate intermediate results that would lead to the satisfaction of the received goal. In this

way, cooperative control uncertainty regarding communication decisions was decreased

since it was more likely that the information being generated and communicated was both

relevant and timely for the requesting agent.

The ratings on the goals indicate the importance to local problem solving of achieving a

solution to this goal. This is in contrast to the rating associated with a partial result which

indicates the likelihood of this solution being incorporated into the final answer that the

system produces. The problem of distraction in the distributed Hearsay-II experiments was

in part caused by there being no distinction between the belief in a received partial result

and the importance of incorporating this result into a more encompassing solution. The

separation of focusing information specified in the goal rating from the belief specified in

the rating of a partial result allows a more explicit form of cooperative control to be

implemented. The rating an agent calculates for externally received goals (or goals

generated based on received information) determines the balance between responding to the

needs of other agents and the perceived directions implied by its own data. The more the

balance is biased towards the importance of other agents’ information, the more externally-

directed the agent becomes and the more likelihood there is for distraction.

On the other hand, the more importance an agent attaches to its own information, the more

self-directed the agent is and the less prone to distraction. However, the potential negative
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consequence of the more self-directed control regime is that local problem solving may

have more control and solution uncertainty because the information received from other

agents will be only partially exploited. The choice of the right balance depends upon how

accurate, from their own local perspective, agents are in judging the belief of their partial

results and the importance of their goals from a cooperative perspective. A mechanism for

implement this balancing decision will be discussed in the next section. By choosing the

appropriate balance, the phenomenon of distraction can be ameliorated while still permitting

local problem solving to exploit the received information.

The initial implementation of goal processing also provided a simple form of look-ahead to

avoid some redundant processing. When a result is received that is highly rated, the goals

on the goal blackboard that are now satisfied based on this result are marked. All KSI’s that

are pending on the agenda that can achieve these satisfied goals (or their subgoals) are

either lowered in rating or eliminated from further consideration. This method prevents

redundant work only on the solution paths directly suggested by data currently in the agent.

It does not eliminate redundant activity on any of the alternative paths that might at some

later time become active due to the generation, or reception of new information. This

method for avoiding redundant processing fails in these situations because it is not

reinvoked each time the partial representation of the local goal structure is updated to reflect

new information on the possible paths available in the local search space.

In order to eliminate the derivation of any intermediate result that could eventually produce

an existing high-level result, a separate mechanism, called inhibiting goals, was later

developed [29]. This new mechanism had to be integrated with KS execution, KSs that

satisfied multiple goals, including an inhibiting goal, could still be executed but were not

allowed to generate results that were subsumed by the inhibiting goal specification. Since

results received from other agents are only tentative, agents have the responsibility of

notifying other agents when they modify their belief in a previously transmitted result due

to new information. Otherwise, exploration of alternative solution paths to the goal will

remain inhibited. The asynchronous mode of problem solving may require a complex

decision process for deciding when a goal should no longer considered as being satisfied.

It may not be directly discernible whether a partial result used to satisfy a goal was not used

in further processing because:

• the appropriate information to extend the partial result has not yet been created
since it is too early for the underlying information to have been received;
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• the information has just not been processed;
 
• the desired information will never be generated.

In the last case, the belief in the correctness of the partial result rating should be lowered.6

The ease with which these decisions are made is directly related to the explicitness of the

evidential representation scheme in the agent [17]. In this way, the amount of redundant

computation among agents could be decreased.

In summary, this first stage in the evolution of strategies for cooperative control showed

that more coherence in agent activities could be achieved if agents dynamically constructed

a partial representation of their problem-solving goal structure. This representation was

based on the agent’s current set of partial results. The use of this partial goal structure

reduces both local control and solution uncertainty and cooperative control uncertainty by

providing a framework where information (partial results and goals) from local problem

solving and from other agents could be effectively exploited.

Static Meta-level Information for Control of Cooperative
Problem Solving

For optimal cooperative problem solving, uncertainties in cooperative control decisions

should be eliminated. This implies that these decisions should be constantly reevaluated in

the light of new information generated as problem solving progresses throughout the

system. Especially for larger systems, the costs to eliminate these uncertainties seem

unrealistically high both from a processing and communication perspective.

An alternative approach based on a satisficing approach to cooperative control, which does

not require constant reevaluation of all cooperative control decisions and is thus less

computationally expensive, is to realize cooperative control decisions through a two-level

decision process [3, 30]. One level, called the organizational design level, refers to strategic

decisions that do not need to be constantly reevaluated in order to get reasonable overall

performance. The other level, called the agent level, refers to tactical decisions that are

constantly reevaluated. The organizational design level defines long-term policies that can

be used at the agent level to narrow the set of choices or information that is needed to be

evaluated to make decisions that implement cooperative control at each agent. These

6 The inhibiting goal mechanism was implemented in a single-agent DVMT system but its implications
for distributed problem solving were not experimentally evaluated.  This is due to never implementing the
code necessary to lower the belief in a hypothesis when it could never be extended.
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policies define the organizational structure of the distributed problem-solving system. In

some sense, the organizational structure represents pre-computed decisions about the likely

structure of each agent’s goal structure, including the type and range of solution and control

uncertainties that will occur.

A policy, for example, could dictate for a specific agent the appropriate balance between

pursuing local activities versus those activities dictated by external requests. The agent uses

this policy together with dynamic information about the importance that the requesting

agent attaches to satisfying a particular transmitted goal and the importance of achieving the

locally generated goal to choose which goal to pursue. In this way, the local decision

process has both a static (strategic) and dynamic (tactical) component and is thus less

computationally expensive since not all information has to be computed dynamically. It is

not necessary to acquire non-local information in order to estimate the importance of

received and locally-generated goals. The policy provides the appropriate information for

directly computing this estimate from the goal ratings.

Another example of this two-level decision process is a policy which defines a preference

for an agent to work on one class of goals over another. In this case, the policy may be

overridden by the local agent when the data available to solve the preferred goal is highly

uncertain and incomplete while that of the less preferred goal is highly certain and

complete. A third example, which is reminiscent of the focused addressing mode in the

contract net protocol [27], is where the organization design level policy indicates that there

are three possible agents that can satisfy a goal of a particular type. The local agent

negotiates with just these three agents instead of all agents to see which one is currently

most appropriate for generating the requested result. A more directed policy, which reduces

both the flexibility of the organization and the cost of control, is where there is only one

agent that is specified as being able to solve the particular type of goal. Like the two

previous examples, the parameters of this policy can be specified so that either agents have

considerable latitude in their cooperative control decisions based on local (tactical)

considerations or have no real choice.

Individual policies for different aspects of cooperative control like these, taken together

specify a long-term, global strategy for achieving coherent problem solving among agents.

The policies guide and constrain the control decisions of agents so that their activities

adhere to the global strategy. An example of an organizational structure that implements

such a global strategy is the following hierarchical structure. There is a two-level hierarchy,
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the lower-level involves agents that only solve intermediate-level goals that are at most three

levels removed from their raw data. They perform this processing opportunistically based

on their belief in the raw data and the derived solutions. If a highly believed solution is

generated for an intermediate-level goal, the lower-level agent sends this solution to a single

higher-level agent who has the responsibility of combining the solutions from intermediate-

level goals into a solution for the overall goal. As a result of this integration process, the

higher-level agent recognizes the need for additional information which it requests of

specific lower-level agents by sending them intermediate-level goals. The lower-level

agents perceive the goals they receive from the higher-level agent as important. The lower-

level agents use these goals to direct their processing.

This hierarchical organization is based on the following assumptions:

• solution and control uncertainty at the lower-levels of the goal structure is high;
 
• solution and control uncertainty can be significantly reduced by exploiting

constraints among intermediate-level goals;
 
• problem solving requires the interaction among solutions to multiple,

intermediate-level goals to generate strong constraints.

This last assumption is based on the following reasoning: a highly believed solution to an

intermediate-level goal still has a reasonable amount of solution uncertainty; a solution for

an intermediate-level goal does not significantly constrain other such goals; and sufficiently

strong constraints are generated only when a number of solutions to these goals are

integrated into (partial) solutions to the overall goal.

Mechanisms to implement such organizational structures were developed for the DVMT.

They were built upon the integrated data- and goal-directed control discussed in the

previous section. Though we have discussed the development of techniques for integrating

data- and goal-directed control and the use of organizational structures as though they

occurred in sequence, they were in fact both developed at the same time and are tightly

intertwined. A crude form of compiled organizational knowledge was implemented through

interest area specifications associated with each agent. These data structures specified the

following:

• how to modify the belief in received information from specific agents;
 
• whether to generate processing goals to further extend and refine this received

result;
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• how to modify the importance attached to received goals from specific agents;
 
• whether to generate subgoals for these goals;
 
• how to evaluate the importance of local goals;
 
• what information and goals to transmit and to whom.

By appropriately setting these specifications, a wide range of static organizational structures

could be configured.

We ran a number of experiments using different organizational structures to see whether

these structures led to more coherent behavior. One set of experiments compared a

hierarchical problem-solving organization with a lateral organization. The experimental

results did not indicate clearly which organization was preferable [3, 4, 30]. Before

experimentation it was thought that the hierarchical problem-solving organization would

perform better. One explanation for the lack of clear-cut experimental results was that the

agents’ problem solving was not sufficiently sophisticated to take advantage of the more

comprehensive information produced by a hierarchical organization. Implicit in the

argument for a hierarchical organization is that the single, high-level agent has sufficient

inferencing capabilities to exploit the available constraints. This inferencing requires that the

agent generate constraints for solutions to intermediate-level goals from partial solutions to

the overall goal, reason about inconsistencies in goal solutions, and direct lower-level

agents to resolve these inconsistencies. The DVMT agents lacked two elements: 1)

knowledge sources to generate partial results when faced with certain types of missing

data, and 2) an evidential framework for reasoning about competing, alternative solutions

to goals.

An example indicating the kind of knowledge sources (inferencing capabilities) that were

lacking is the following (see Figure 4):  suppose there are 1) G1, G2 and G3 at level1 that

are and subgoals of a level0 goal G0;  2) G2 has two and subgoals G2,1 and G2,2,7; and 3)

solutions for G1 constrain solutions for G2,1; likewise, G3 constrains G2,2, and G2,1 and G2,2

are mutually constraining. Given solutions to G1 and G3, the system should be able to

7This example is abstracted from a real situation in the DVMT. The solution to level1 and level0 goals is a
track hypothesis, and to level2 goals is a vehicle location hypothesis. The DVMT did not contain
knowledge sources that could combine two track hypotheses that were not overlapping in at least one time
period into a larger track. For example, if one track hypothesis covered times 3 to 5 and the other track
hypothesis covered times 6 to 10, these two hypotheses could not be combined into one covering the times
3 to 10, even though constraints such as velocity, acceleration, spatial location and vehicle type were
compatible among the two hypotheses.
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generate both a partial result at level0 and a constrained version of G2 that can focus

processing at level2 to generate a solution for G2 that will be compatible with the solutions

for G1 and G3. This type of processing is important if there is significant solution

uncertainty for level1 goals. Recognizing that solutions to G1 and G3 are compatible

increases the likelihood that both solutions are correct and that subgoaling of G2 will

produce a correct solution. In addition, generating a partial solution of high confidence for

the level0 goal can focus higher level processing on a likely solution path. Continuing with

this example, if there were two alternative solutions for G1 and both were compatible with

the solution for G3, the system should be able to focus processing on generating a solution

to G2 that would differentiate among the two solutions to G1.
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Fig. 4.  Constraints in Hierarchical Problem Solving:  An example of the need for more sophisticated
inferencing.
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It was also hoped that organizational policies would decrease the amount of redundant

computation by statically prioritizing for each agent the desirability of agents solving

specific types of goals. If two agents could both derive a solution to the same goal, the

organizational policy could dictate a static preference for one of the agents to work on the

goal. This was accomplished by lowering the priority for the other agent to try to achieve

this goal. The simple priority scheme worked but it also could delay the generation of

important results. The static choice process did not take into account such dynamic factors

as an agent’s current work load or the quality of its data. A similar phenomenon occurred in

defining a static balance between an agent being locally and externally directed. When there

was a long-term reason why data and goals from an agent were more or less informed than

other agents, this policy avoided distraction. This can occur when one agent’s sensors are

prone to errors or when one agent has better data due to a more comprehensive view.

However, it is common that the relative quality of an agent’s information cannot be

anticipated. A more dynamic mechanism must be employed to compute the appropriate

balance [4].

In summary, using static meta-level information to guide and constrain agent level control

decisions only partially achieved coherent behavior among agents in the DVMT. In some

situations, the agents lacked the appropriate sophistication necessary to fully exploit a more

informed view. In other situations, the agents’ goal structures were too dynamic. There are

a number of approaches to resolving these problems. One approach is organizational self-

design in which the static organizational structure is dynamically adapted or even radically

altered as problem solving progresses [25, 26, 31]. Another approach is to augment agent-

level control decisions by incorporating dynamic information about a limited number of

other agents’ goal structures. A third approach is to modify local problem solving so that

local problem-solving activities are less dynamic in character. This approach makes it easier

to predict likely problem-solving directions. A final approach is to make agents more

sophisticated so that they can better exploit available information. The next step in the

evolution of cooperative control incorporates aspects of all these approaches.

Dynamic Meta-Level Information for Control of Cooperative
Problem Solving

It is clear that for agents to effectively cooperate they require a reasonably accurate view of

the evolving goal structure of other agents. They need to be able to recognize and anticipate

where there are interacting or redundant subproblems, when agents plan to work on these

problems, how difficult these problems will be to solve, the quality of the expected result,
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what is the current and anticipated work load in the agent, and the flexibility that an agent

has in rescheduling its activities. A set of interrelated questions naturally follow, such as:

what dynamic aspects of the goal structure are important, how accurate and precise does the

view of the goal structure need to be, how much does the future evolution of the goal

structure need to be captured.

Approaches for providing and operating on this information are guided by two principles.

The first principle is based on a satisficing view of cooperative control. Agents do not have

to be totally coherent in their behavior in every situation for an approach to be worthwhile.

This principle is important in situations where less than accurate control permits significant

reductions in the amount of communication and processing required to implement the

cooperative control algorithms. The second principle is that effective cooperative control

follows from sophisticated local control. That is, agents must be able to represent and

reason not only about their own local problem-solving activities but also how to

accommodate problem-solving requirements of other agents.

The approach developed, called Partial Global Planning (PGP) [5, 6, 7], is based on each

agent constructing and maintaining an intermediate-level view of the likely near-term goal

structure. This view also contains the expected order in which the agent pursue these goals,

and estimates for each goal’s importance, solution time, and solution quality. One can

consider this as a high-level plan for local problem solving. It is assumed that an agent does

not often need to switch opportunistically among these intermediate-level goals but, rather,

can completely solve each goal before tackling the next one. There is an obvious tension

between the degree of opportunism in local problem solving (which can significantly affect

local performance) and the degree of predictability in the high-level plan (which can

significantly affect the cost of cooperative control). The less predictability, the more

communication and processing is required by cooperative control to achieve coherent

behavior [32].

The agents exchange this partial and augmented view of the expected local goal structure.

By combining interacting fragments of different agents’ goal structures, an agent constructs

partial global goals and plans. An agent uses this information to understand how its

activities relate to those of other agents. This information guides an agent in reordering the

schedule for achieving its local goals so as:

• to exploit partial results available from other agents;
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• to provide partial results in a timely manner that can constrain the solution to
other agents’ goals;

 
• to avoid redundant goal solution except where desirable;
 
• to reassess the importance of achieving a goal.

In the last case, we assume that goals that do not interact with goals in other agents are less

likely to be correct. This information is also used to implement a sophisticated form of

contract-net type task allocation in which agents that are overloaded can transfer tasks to

underutilized agents [33], to make communication decisions about when partial results

should be transmitted, and to decide where to aggregate partial results into solutions of

more encompassing goals.

We also incorporate static organizational knowledge. In part this knowledge is used to

define domain-level cooperative problem strategies such as configuring agents to work in a

hierarchical organization. Static organizational knowledge also has a new role of defining

the organization for performing cooperative control problem solving (meta-level

organization). For example, it specifies what agents will communicate meta-level

information to whom, which agents will compute the partial global plans, and the criteria

for updating partial global plans when problem solving does not progress as expected.

Satisficing cooperative control occurs in many different guises in the PGP algorithms. For

instance, we use a hill climbing search to create the multi-agent ordering of goal activities in

a partial global plan. This non-exhaustive search can lead to non-optimal cooperative plans.

Additionally, computations for different partial global plans in the same agent are not

coordinated. A schedule is first produced for the highest rated partial global goal, and then

less highly rated goals are scheduled in the context of scheduling decisions made for more

highly rated goals. Scheduling two highly rated goals as a unit is much more

computationally expensive, but sometimes leads to a better schedule. The partial global

plans need not be updated when the estimated time for completion of goals changes

slightly. This strategy trades off non-optimal coordination caused by out-of-date

information or built-in overestimations of goal completion times against reductions in both

frequency of communicating goal structures and recomputing partial global plans [32].

Creating partial global plans is also not synchronized among agents. For limited times,

agents can work on partial global plans that are inconsistent since some agents views of

other agents is out-of-date. A satisficing approach is also implicit in the amount of effort

used to construct an agent’s likely intermediate-level goal structure. All these trade-offs
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introduce the possibility of inappropriate control decisions. However, these inaccurate

decisions are generally corrected in short-order and local problem solving can be quickly

refocused based on more accurate information. Thus, the use of satisficing control has an

overall positive effect on system-wide performance.

Implementing partial global planning in the DVMT required extensive changes to the agent

architecture [34]. At the heart of these changes is a new data structure that represents the

goals the agent is likely to pursue based on the available data. The agent computes the new

data structure by using a simplified form of the knowledge used in normal knowledge-

source processing. The output of this processing is an abstracted version of the high-level

results likely to be produced. Whereas mapping the date to goals in early versions of the

system involves a single step with a single piece of data, this new mapping process

involves multiple steps and multiple pieces of data. These results are not solutions because

they are ambiguous and imprecise. To speed up processing, the mapping process uses

simplified knowledge that does not contain all the constraints needed to completely validate

a solution and aggregates solutions at lower levels that only differ slightly. These results

became the intermediate-level goals of the agent.

The agent selects an order for achieving its intermediate-level goals, and estimates both

how long it will take to achieve each goal and the quality of the expected results. Progress

in achieving a goal is monitored so that its estimated completion time can be revised based

on actual costs and its desirability can be revised based on partial results produced. This

revised agent architecture makes more informed control decisions than the simpler agent

architecture used in early work. This is an example in which an agent architecture leads to

not only more effective local problem solving but also more effective cooperative control

because the agent can reason effectively about its local activities.

This high-level view of the agent’s goal structure is near-term since it is only based on the

solutions that data in the agent could generate. An agent can construct a more long-term

view by predicting which goals are likely to arise based on these near-term goals. Being

able to extend in time the near-term view of an agent’s goal structure leads to more

informed load-balancing decisions. An agent’s current near-term view can indicate it is

underutilized and therefore a candidate for tasks to be transferred to it. However, the agent

making the transfer decision may be able to predict that the apparently underutilized agent

will soon have a significant processing load [33].



32

In summary, using partial global planning in the DVMT leads to much more coherent

activity among agents. It provides an elegant and integrated solution to many of the

problems that arise when a search is distributed among agents. The key assumptions about

local problem solving that make this approach feasible are:

• agents can predict the intermediate-level goal structure that is the focus of their
near-term work with some level of accuracy and without significant
computation;

 
• agents can estimate how long it takes to achieve goals;
 
• agents generally follow the prescribed order for achieving goals;
 
• agents can recognize the major subproblem/goal interactions among agents

using intermediate-level goals;
 
• agents can transmit intermediate-level goal structure without significant

communication costs.

Another assumption which so far has gone unsaid is that agents can tolerate a certain level

of uncoordinated behavior. In the distributed interpretation domain, the only effect of

uncoordinated behavior is that it takes longer to produce a valid interpretation of the data.

This, however, can be a serious problem, especially if agents are easily distracted and take

too long to realize that they are pursuing an unfruitful problem-solving path. One of the

advantages of agents having sophisticated local control is that they can more rapidly recover

from temporarily uncoordinated behavior. This permits satisficing cooperative control as

implemented in partial global planning to be cost effective.

The partial global planning framework answered affirmatively the question that was posed

at the end of section 3: A computationally tractable approach to cooperative control can be

developed, for a reasonably sophisticated application of distributed problem solving as

represented by the DVMT, that maintains both globally coherent behavior among agents

and system robustness. There are, however, many questions still left unanswered with

respect to the general applicability of this approach to cooperative control that will be

discussed later in “Beyond Partial Global Planning.”

6. New Directions in FA/C Research

Most of the research on FA/C problem solving is based on distributed interpretation

applications that use a blackboard problem-solving architecture to implement local agent

problem solving. A key question is: are the techniques and intuitions for structuring FA/C
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systems generally applicable? This question extends not only to different application areas

with different underlying problem-solving architectures but also to more complex and

sophisticated interpretation applications.

We will approach this question from several different perspectives. First, we will examine

intuitions about the general applicability of the FA/C paradigm based on its use in other

application areas. Second, we will discuss application characteristics that require significant

extensions to the partial global planning framework. Third, we will describe in some detail

the research in progress to extend this framework as well as initial ideas for new

coordination strategies. The section ends with some comments about the applicability of

this paradigm to real world problems.

Using FA/C in Other Application Domains

The FA/C paradigm has been studied in two other application areas. These studies did not

emphasize cooperative control (i.e., reducing control uncertainty) but how agents can

structure their local problem solving while constrained by limited communication so that

non-local constraints can be acquired and exploited (i.e., reducing solution uncertainty).

Both areas are concerned with distributed resource allocation.

The first, the Multi-Fireboss Phoenix application, requires cooperative planning among

agents to arrive at an acceptable plan to fight the outstanding fires [35]. Agent interaction

focuses on loaning bulldozers by one agent to another agent that has insufficient local

resources to effectively fight the fires in its region.

The second, and more developed application, involves restoring transmission paths for

dedicated circuits in a long-haul communications network [36]. The communications

network is controlled by a group of agents, each of which are responsible for allocating

circuits to specific regions of the network. Multiple circuit restoral goals, located in

different agents in the network, may be currently active. Often there are alternative paths

through the network for restoring a circuit. The distributed problem-solving task is to find a

network path for each goal. This application shows the complexities of distributed search

when there is an indirect chaining of constraints among partial solutions in different agents.

It also shows how difficult it is to detect an overconstrained problem while at the same time

trying to solve the problem.
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The focus of these studies is on techniques for performing distributed search where key

constraints are not locally available. For example, the choice of which local strategy to use

to fight a fire may depend on how many bulldozers can be loaned by the other agent, when

they are available, and for how long. In turn, these questions can be answered in different

ways depending upon how much flexibility both agents have to modify their own fire-

fighting plans. Likewise, one agent’s solution of a subgoal to restore a path through its

region may have implications for how another agent goes about solving its part of a

different goal. Both applications also present situations in which the necessary resources to

satisfy all the constraints specified in the goal structure are lacking. This requires the agents

to both recognize an overconstrained situation and to find a satisficing solution.

This FA/C style of cooperation is effective in both cases. The basic means for cooperation

among agents in both applications is an iterative exchange of tentative solutions. The

exchange results in each agent acquiring a more global view of the constraints that affect the

suitability of its local solutions. Both implementations indicate the importance of agents

being able to understand the state of their local search and how partial solutions received

from other agents alter further local search. In summary, these two new applications

reinforce the observation that an agent’s ability to understand both its own search process

and the impact of the results produced by other agents is one of the keys to effective FA/C

style problem solving.

Beyond Partial Global Planning

The partial global planning framework represents an important milestone in our

understanding of how to achieve coherent cooperative behavior in an FA/C system.

However, we did not address many issues in this work. Some issues were not dealt with

because of limitations in the evidential reasoning capabilities in the underlying problem-

solving architecture, the simplification of the application as embodied in the DVMT, and the

lack of adequate processing power to simulate large and complex environments. Other

issues did not arise because the nature of the application made it unnecessary to solve them

in order to get effective cooperation.

Issues of Scale and Cost

One set of issues concerns large systems. Even with thirteen-agent systems [7], it is not

computationally feasible to exchange partial global plans among every agent. Instead, such

systems use a hierarchical meta-level organization in which top-level agents compute partial
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global plans for lower level agents. Can this idea be extended to networks of hundreds of

agents? Alternatively, can agents dynamically form cooperative groups that coordinate

closely through partial global planning and more loosely with other groups? Can the ideas

of partial global planning be extended to more abstract views of search space and implicitly

more abstract views and long-term views of the coordination relationships among agents?

The problem of organizational self-design that permits both domain- and meta-level

organizations to be defined dynamically is closely related to these questions. These

questions are beginning to be addressed [25, 26]. Another related issue concerns whether

the computational and communication costs of sophisticated cooperative control are always

justified. Situations can arise that, based on the characteristics of the data, indicate this cost

is not always warranted [4]. One such situation occurs when the goal structures of local

agents are not strongly connected—there is neither a significant amount of goal redundancy

nor strong constraint interactions among goals in different agents. Can these situations be

recognized dynamically so that lower overhead cooperative control regimes can be used?

Complex Agent Interaction

Another set of issues relates to the type of interactions among agents that are needed for

effective problem solving. In the DVMT, it was sufficient for agents to communicate only

high-level partial results. In other domains, it may be necessary to selectively communicate

information and goals at detailed levels. Agents may also want to engage in multi-step

communication protocols and, depending upon the results, temporarily abandon the

solution of certain goals. We have seen these more complex protocols arise when agents

have more sophisticated evidential reasoning capabilities [17]. How does this increase in

opportunism in local problem solving affect the suitability of partial global planning?

Further, there may be more complex relationships among goals such as the favor relation

[23]. This type of goal relationship and others of similar character require agents to not

only reorder the sequence of goal achievement but to engage in joint planning to reorganize

their goal structures (such as splitting and merging of goals) to take advantage of

opportunities presented by these more complex goal relationships. The partial global

planning task negotiation algorithm [19] uses a simplified form of this replanning activity.

Another example of more complex relationships occurs when there are real-time constraints

among goals. Agents may have alternative methods for solving a goal that trade off the

precision, completeness, or certainty of a solution against the time to generate a solution

[37, 38]. Also, in this situation, agents may need to interact in ways not currently possible
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in the partial global planning framework in order to appropriately reorganize their goal

structure and dynamically change the criterion for acceptable answers.

Terminating Cooperative Problem Solving

Related to the issue of more complex and dynamic relationships among agents’ goal

structures is the issue of terminating cooperative problem solving. How can the partial

global planning framework handle complex criteria for deciding when problem solving is

complete? Can such termination algorithms be built on top of the current framework or will

they need to be integrated into the basic coordination strategy? Termination of system

problem solving requires similar reasoning capabilities needed for effective coordination.

This includes understanding what parts of the goal structure have been explored, where

solution uncertainty is present in these goals and what its character is, and whether all the

system-wide constraints have been developed that could significantly affect confidence in a

solution [17]. The agents in the network use this information to control further cooperative

problem solving in order to reach an acceptable solution. How can this information be

abstracted so that it can be transferred among agents? Continuous problem-solving systems

also present issues. We currently do not know what the implications of having this type of

system are for coordination strategies. New issues also arise in more heterogeneous

systems where agents may have differing criteria as to which goals are most important [22,

39, 40].

Ongoing and Future Research

We are approaching these issues in multiple ways. One approach is to develop a generic

version of partial global planning [22]. Partial global planning, as implemented in the

DVMT, used highly specific domain relationships among goals. The emphasis in this new

work is to define the existing goal relationships generically and to add new relationships so

that more complex interactions among the local search spaces can be captured. Four

categories of goal relationships that are being used: domain relations, graph relations,

temporal relations and non-computational resource constraint relations. The most

interesting of these is domain relations, which include the following goal relationships:

inhibits, cancels, constrains, predicts, causes, enables and subgoal. This approach also

permits goals at different levels of abstraction to be transmitted dynamically based on the

needs of cooperative control (see [25, 26] for another approach to communicating control

information at multiple levels of abstraction). Other extensions include provisions for real-
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time cooperative problem solving and heterogeneous agents that have differing criteria for

local problem solving. This work also addresses the use of negotiation to coordinate

heterogeneous agents.

We are also developing a new architecture, called RESUN [42], for local problem solving

in a DVMT-like task. This architecture views interpretation as a process of gathering

evidence to resolve particular sources of uncertainty in the interpretation hypotheses. We

developed an evidential representation that includes explicit, symbolic statements about the

sources of uncertainty in the evidence for the hypotheses. A script-based, incremental

control planner focuses system activity based on information in the evidential

representation. The planner’ goals are constructed from the (partial) solution uncertainties

that need to be resolved in the current context in order to reach an acceptable overall level of

uncertainty for the final solution. The RESUN architecture can support the sophisticated,

evidential reasoning that is crucial to the implementation of high-level communication

protocols that implement distributed differential diagnosis, multi-sensor fusion, selective

communication of information among agents at different levels of detail, complex system-

wide criteria for termination of problem solving, etc. This architecture also provides the

necessary inferencing capabilities that were lacking in the DVMT to exploit the more

comprehensive view provided in a hierarchical organization.

The DRESUN architecture [17] is an extension of RESUN for distributed problem solving.

The key to achieving the necessary complex and dynamic interactions among RESUN

agents is to make the solution convergence process explicit. In our approach, this has been

done by giving each agent an explicit representation of the goals that must be satisfied in

order to meet the criteria for termination of (global) problem solving. Termination criteria

that are not satisfied or have not been verified as satisfied, are viewed as sources of

uncertainty about the global correctness of local solutions. Goals representing the need to

resolve these uncertainties are posted and drive the overall problem solving process.

Communication between agents results from the agents taking actions to meet these goals.

Because the goals are explicit and detailed, communication between agents can be very

directed. That is, instead of simply exchanging information about partial solutions, agents

communicate specific evidence that can be used to satisfy goals of resolving particular

uncertainties. Another way of viewing our approach is that we have made explicit the need

to enforce constraints between possibly interdependent subproblems of the agents. We

recognize (possibly) interdependent subproblems and post goals to resolve uncertainty

about whether the relevant partial solutions are consistent. Thus, the DRESUN architecture
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permits an explicit and knowledge-based approach to resolving inconsistency that occurs

among solutions to interacting goals among different agents.

A next step in our research is to symbolically represent and reason about control

uncertainty. This leads to a model of FA/C problem solving in which control and solution

uncertainty is explicitly represented. Based on the character of these uncertainties, agents

develop plans for resolving them, change the criterion for an acceptable solution, or

dynamically reorganize.

For FA/C style problem solving to be applied to real world problems, it is crucial that the

designer be able to provide bounds on the quality and resources required to produce

solutions. This is especially difficult for non-deterministic search algorithms that are at the

heart of many knowledge-based problem-solving approaches. For this reason, real-time

control with its associated techniques such as approximate processing and anytime

algorithms is crucial for the practical use of the FA/C paradigm.

Quantitative Models

There is also the need for a quantitative approach to the design of the FA/C system so that

performance characteristics can be anticipated. For example the following are some

qualitative intuitions on the application specific requirements for the use of the FA/C

paradigm:

• partial solutions to subproblems constructed through local problem solving are
more often valid than not or there are sufficient number of subproblems that can
be solved correctly through just local problem solving, thus seeding system-
wide problem solving with enough correct constraints;

 
• there exist sufficiently strong constraints among the solutions to subproblems

such that commonly resulting errors in local problem solving due to the use of
errorful or incomplete information can be detected fairly quickly before the
invalid partial solution is spread widely;

 
• local problem-solving performance is not overly sensitive to the order of arrival

of information and a high percentage of invalid local search paths can be fairly
quickly pruned or recognized as having low credibility.

The last point relates to the need for a sufficient level of internal constraints associated with

each subproblem such that the use of invalid information in local problem solving does not

lead to a large set of partial solutions that seem plausible. Each of the above points relates to

restricting the frequency and scope of dissemination of errorful partial solutions so that
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convergence to a valid overall solution can occur using an acceptable level of processor and

communication resources. Can we develop some theory that can be used to quantify these

intuitions?

We see this ability to bound and to predict the performance characteristics of FA/C systems

as one of the major objectives of future research.

7. Summary
It has been ten years since the original paper on the FA/C paradigm was published. Great

strides have been made in our understanding of the issues that arise when this paradigm is

used. The focus of this article is on the solution and control uncertainties that occur when a

search is partitioned among agents. We examined this issue from the conceptual perspective

of a goal-based search and from the more realistic perspective of a distributed interpretation

task. The presence of significant amounts of solution and control uncertainties in agents’

local searches gives rise to uncoordinated behavior among the agents. We described a

series of increasingly sophisticated mechanisms for decreasing these uncertainties with the

consequent increase in the coherence of agent activities. They include integrating data- and

goal-directed control, using static meta-level information specified by an organizational

structure, and using dynamic meta-level information as developed in the partial global

planning framework. Each of these mechanisms provides information that reduces solution

and control uncertainty.

The developments of these cooperative control mechanisms is based on three guiding

principles. The first is to make local control in each agent more sophisticated so that

available information about the local search is better utilized. The second is for agents to

exchange meta-information about their local search space so that local control decisions can

be made in the context of a more comprehensive view of the composite search space. In our

experience, these first two principles are complementary since the better the local control

strategy is in understanding its own search space the easier it is to construct meta-

information that abstractly represents the key aspects of its search space that are important

to another agent. In a similar vein, local control must have a certain level of sophistication

in order to exploit the meta-information about other agents’ search spaces. The third

principle is satisficing control in which significantly reduced computational costs to

implement cooperative control is traded-off for less than optimal but still acceptable levels

of coordination among agents.
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There are many outstanding issues that need to be solved before this paradigm can be

practically applied to a wide class of problems. In particular, the complicated and

asynchronous nature of agent interactions in an FA/C distributed search makes it hard to

understand and predict the system’s performance characteristics. We hope that insights

from this article will inspire researchers to develop a more comprehensive theoretical

perspective for viewing distributed search, which in turn will aid us in more rigorously

analyzing the FA/C paradigm.
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