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Abstract

The Functionally-Accurate,Cooperative (FA/C) paradigm provides a model for task
decomposition and agent interaction in a distributed problem-solving system. In this model,
agents need not haadl the necessarynformationlocally to solvetheir subproblemsand
agentsinteract through the asynchronousgco-routine exchangeof partial results. This
modelleadsto the possibility that agentsmay behavein an uncoordinatednanner.This
papertracesthe developmenbf a seriesof increasinglysophisticatedcooperativecontrol
mechanismdor coordinatingagents.They include integrating data- and goal-directed
control, using static meta-levelinformation specifiedby an organizationalstructure,and
using dynamic meta-level information developed in partial glplzaining. The framework
of distributedsearchmotivatesthesedevelopmentsMajor themesof this work are the
importance of sophisticatedlocal control, the interplay between local control and
cooperativecontrol, and the use of satisficing cooperativecontrol. Ongoing and new
directions for research in FA/C systems are presented.
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1. Introduction

The Functionally-Accurate/Cooperative (FA/@pdelfor distributedproblemsolving was
presentedn a paperthat appearedn the 1981 specialissueof the IEEE Transactionson
Systems, Man and Cybernetms Distributed Al [1]. The purposeof this retrospectivas
two-fold: first, to elaboratemorefully this modelbasedon insightsacquiredover the last
ten years, and second, to provaleoherentperspectiveon its developmentind extension
since its original description [2, 3, 4, 5, 6, 7]. A major focus will be on explainingtiehy
sophistication of amgentis crucial to the effectiveimplementatiorof the FA/C approach.
This sophisticationnvolvesthe agent’sability to understandhe intermediatestate of its
computation(what it hasdone,whatit hasleft to do, what type of information is most
crucial to its further progress, etc.) and how its problem-solving activéia®to thoseof
other agents.The framework of distributed searchwill be used as the basis of the
explanation.

The FA/C paradigmwas developedn responsdo what were perceivedas deficienciesin

the conventionaimodel (circa 1980) of how agents(processors)n a distributedsystem
shouldinteract.In the conventionaimodel,tasksare decomposedo that eachagenthas
sufficient data to solve its assigned subproblems completelg@nudatelywith little or no
interaction with other agents. Agents do not need to communicate the interrstjetf

their computationdor otheragentsto generatecorrectresults.We call this model of task
decompositioncompletely-accurate/nearly-autonomodsis model was motivatedby a
desire to limit the communication bandwidth required to support the distributed
computatior?

For many applications (distributed interpretation, distributed planning and resource
allocation, etc.) that seem to be suited naturally for a distributed implementiaisamodel
of task decomposition imiappropriatelt is not possibleto decomposéhe probleminto a
set of subproblemssuchthat thereis a perfectfit betweenthe location of information,
expertise, processing,and communicationcapabilities in the agent network and the
computational needs for effectively solving each subproblem (computationgbitaisiem-

3Eventhough both local andwide areanetworksare increasingin speedthereis animportant and often

overlooked computational cost to inter-ageatnmunication.This costinvolves, on the sendingside, the

selectionand packagingof informationto be transmitted,and, on the receiving side, the assimilation of

received information into local knowledge bases. If there is a large amomfdiwhationto be sentor the

agentsare heterogeneousthe hidden computationalcosts associatedwith transmitting and receiving
information can be significant. Thus, limiting communication bandwidth is still an impartastderation
in structuring a distributed problem-solving system.
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solving goal). Thusit requirestoo much communicationbandwidthand synchronization
time delays to guarantee that each agent has accurate, complete and up-to-date information.

Overview of FA/C Paradigm

An alternativemodelfor task decompositiorand agentinteractionis one in which agents
neednot haveall the necessarynformationto solveall their subproblemsompletelyand
accurately.The key questionis how to structurecooperativanteractionsamongagentsto
limit communicationcosts and still generatean acceptableanswerwithin a reasonable
amountof time. The FA/C paradigmprovidesan architecturefor answeringthis question
when an application can be structured in the following ways:

* agents are solving interdependélarge-grained subproblems;

» agentscan generatepartial and tentative high-level solutions in spite of
incomplete and uncertain information;

» agents can partially resolve inconsistenciesand uncertainties based on
constraints derived from partial solutions to interdependentsubproblems
received from other agents.

This resolutioncan take the form of producingmore completepartial results, resolving
solution uncertainty due to competing, alternative partial solutions, detecting
inconsistencied previously generatedesults (either locally generatedr receivedfrom
other agents),and speedingup local problem solving becausethe spaceof possible
solutionsthat needsto be examinedis constrainedIn this way, errors introducedas a
result of incomplete,inconsistentand out-of-datelocal information are resolvedas an
integral part of the asynchronous, co-routine exchange of tentative, high-level partial results
amongagents.“Asynchronous,co-routin€ meansthat agentsdo not delay their local
computationswaiting to receive information from other agents, and agents exchange
information based on intermediate stages of their local problem solvingofmiof agent
interaction is calledunctionally-accurate/cooperatite distinguishit from the completely-
accurate/nearly-autonomot@m of interactionbecauseagentsconvergeon an acceptable
answer through the exchange of intermediate results that may be incorrect.

4Interdependencamongsubproblemsrisesfrom two basic situations. The first situation is where the
subproblemsre the samebut different agentshaveeither alternativemethodsor datathat canbe usedto
generatea solution. Anotherform of interdependenceccurswhen two subproblemsare part of a larger
problemin which a solution to the larger problem requiresthat certain constraintsexist among the
solutions to its subproblems.



The intent of thd=A/C modelof distributedproblemsolvingis to tradeoff more complex
and extensive local and cooperative problem solving against:

* lower messagetraffic (since partial results rather than raw data are
communicated among agents);

* more systenreliability in face of processorcommunicatiorand sensoffailure
(due to error resolution being an integral part of cooperative problem solving);

* less agentidle time and more parallelism (becauseagentsare not delayed
waiting for results from other agents afiod validatingthe consistencyand up-
to-dateness of information through complex synchronization protocols).

More generally, the goal of FA/C distributed problem solving is to permit agentsto
cooperate effectively even thougiey havelimited andinconsisteninformationaboutthe
problem-solving activities of other agents, different criteria for what are the most
appropriateactivitiesto perform, contradictoryraw information and conflicting long-term
problem-solving knowledge, and even errors in their hardware and software. The emphasis
in the FA/C paradigm on handling the resolution of these inconsistexsaesntegral part

of cooperativegproblemsolving amongagentsties this work closelywith recentwork on
negotiationin distributedproblemsolving [8, 9, 10], distributedconsistencymaintenance

[11, 12, 13, 14] and open information systems [15, 16].

The remainderof the paperis brokeninto six sections.The next section(Section?2) first

presentsan exampleof FA/C problemsolving. This example provides the context for

discussionn the implicationsof this style of agentinteractionon local and cooperative
problem solving. Section 3 presert@ly experimentatesultsto motivatethe major focus
of our researctover the last ten years:the developmenbf cooperativecontrol strategies.
Section 4 discusses issues in cooperative control based on an infovdebf distributed
search.The emphasisin this discussionis on the characterof solution and control

uncertainties that arise sucha distributedsearchand how theseuncertaintiescanleadto

uncoordinatedehaviorif they are not amelioratedby effective cooperativecontrol. This

discussionon solution and control uncertainty is used to explain intuitively the

uncoordinated behavior observed in eatperimentatesultsdiscussedn Section3. The

next section (Section 5) also uses this discussionon uncertainty to examine the

developmenbf a seriesof increasinglysophisticatednechanismdor coordinatingagent
behavior. Section 6 lays out future research direcmusSection7 endsthe paperwith a
short summary.



2. Implications for Local and Cooperative Problem
Solving

To get an idea of the kinds of interactions that must doetweenFA/C agentsin orderto
convergeon correctsolutions,we will considerthe aircraft monitoring scenarioin Figure

1. Each type of aircraft produces a characteristic spectrum of acoustic frequencgsalThe
of the systemis to identify any aircraft that are moving throughthe regionsof interest,
determinetheir types,andtrack themthroughthe regions.Therearetwo agentsA and B
whose regions of interest overldgachagentreceivesdataonly aboutits region, from its
own acoustic sensor.

Solution uncertaintyarisesfrom severalsources,including improperly sensedsignals,
ghosting, and environmentalnoise. As a result of acoustic signal propagationand
limitations in the acousticsensorsnot all acousticsignalsemanatingfrom an aircraft are
properly sensedsomeor evenall of the frequenciesn the spectrummay be missingand
others may be shifted into the wrong frequency class. Ghost sighaBpmpegras a result
of environmentateflectionsof signals.Non-aircraftsourcesof acousticsignalsmay also
be detected—these are referred to as noise.
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Fig. 1. This is an exampleof a two-agentdistributedaircraft monitoring scenario.The left-hand

figure is the acoustic input to the two agents #redright-handfigure is the final interpretationof

the agents. The data point symbols represent the positions of groups of agigusiEdetectedoy

the sensorsThe numberassociatedvith the data points give the times that thesesignals were
generated and the subscripts indicate the agent receiving the data. Data points include thefposition
the signal sourceand the frequencyclassof the signal. The shadingof eachbox indicatesthe
loudness of the soundging sensedthe darkerthe shadingthe louder)andis an indication of the
likelihood of the sensorgatabeing correct.Box 4',, which only appearsn the final solution, is

not directly supported by acoustic data (ohigh-level predictions)andthus is not shaded[T, is a
vehicle track and@, is a ghost track caused by the environmental reflections of sound3 from



Agents A and B must communicate in order to converge on the correct solution and in order
to producereasonablédevelsof certaintyin their solutions. Without any communication,

agent A wouldincorrectlyinterpretits input data(for times 1 through7) asa ghosttrack.

This would happen because agent A’s sensor has fail@etectany signalsfrom track T,

at times 4and>5 (i.e., at T, points4’, and5; in the final solutionof Figurel). Thus, the

most credible interpretation of the data from agent A’s local perspective inwalrdsning

the fragmentof actualvehicle dataat times 1 through 3 with the ghostdataat times 4
through?7 into a long ghosttrack. Were the missing dataavailableto agentA, it would
suggest the alternative (correct) explanation of agent A’s data for times 1 through 3 as being
dueto an actualaircraft (that producesr,). Without any communication,agentA would

also continue to be very uncertain about its ghost track explanation for the data; it would not
be able to find a source for the ghost track and could not be sure that the ghalst trentk
continue beyond itborderwith agentB (sincethis might suggesthat the datawas really

due to an actual aircraft). Likewise, agent B’s would be uncestanin its interpretations

of its data(the time 5 through10 portion of track T,) becauseof the limited numberof

points over which it is able to track the vehicle.

This example also shows that a complete answer map could not be ti@at#dak agents’
independent solutions. There would have to be major adjustments of soméndividesal
interpretations. This cooperative adjustment process requires back and forth communication
betweenthe agentsratherthansimply having one agent’s“better” solutionsoverride the

others. This processis basedon three types of interdependenceamong solutionsto
agent’'ssubproblemssolutionsinvolving overlappingregions of interestamong agents
mustbe consistent“track” hypotheseghat can extendinto other agents’areasmust be
consistent,and agents must be able to find appropriateexternal evidencewhen the
hypothesesequire evidencewhich could be in other agents’ areas—e.g.,ghost track

source (explanation) or tracking a wide-area formation of vehicles.

In this adjustmentprocessagentA usesagentB’s portion of track T, as predictive
information, allowing agent A to make assumptions abowEtsorhaving missedsignals
attimes4 and5 that could completetrack T,. Agent A must also be able to producean
acceptablenterpretationfor the remainderof its original ghosttrack (times 4 through7
data). Once again, communication with agent B helps to confiost of this data(times5
through 7 in the overlapping region) as ghost data and can prosaeee(T,) for the G,
ghost track (see [17] for more details).



Implications for Local Problem Solving

The computation and reasoning neeafethis exampleindicatessomeof the requirements
that the FA/C paradigm imposes on local problem solving:

» operatein what could be calledan asynchronousnodein which it cannotbe
assumedhat all the information (results and raw data) necessaryfor fully
completinga computationwill be available when needed.This implies that
algorithmsshould be structuredso that they do the best with the available
information and reevaluatedecisionswhen more information is available or
previously used information is found to be invalid.

» exploit constraints§rom partial solutionsto interactingsubproblemsThis may
involve a potentially complex inference processto extract the full set of
constraintamplied by the receivedpartial result, to translateconstraintsinto a
form usableby the agent,andto breakconstraintanto their constituentparts.
This last capability allows importanbnstraintso be acquiredeventhoughthe
partial result is not fully consistentwith local information. This inference
processmay involve using knowledgeaboutthe sendingagentand previous
communicationsaamongagents.Local problem solving may also needto be
reorganized so that high-level constraicas be usedto speedup andto focus
low-level processing of raw data.

* represent and reason about uncertainty in the current [Etiiddons. This may
involve holding multiple, competing alternative solutions, retaining the
information context used to generate partial results, and using heuristic
knowledge for generating reasonabledefaults in the event of missing
information and for judging the plausibility of uncertain partial results.

Thus, local problemsolving in an FA/C agent,in comparisorno a stand-aloneversionof

the agent, is in general more complex and computationally expensive.

Implications for Cooperative Problem Solving

How agents cooperatey sharingpartial resultsis crucial to effective systemperformance
because the partial solution tsabproblenmay haveimportantramificationsfor problem
solving throughoutthe system.The lack of effective cooperation(or what is commonly
calledglobal coherencecan lead to significant degradation in system performance due to:

* agentsnot generatingand communicating,in a timely manner,solutions to
specific subproblems that provide key constraints for further progressrall
problem solving;

* agentsgeneratingand communicatingredundantresultsor resultsthat are no
longer appropriate given current progress in system problem solving;



» agents having no useful work to perform becauseof the inappropriate
distribution of load among them.

Thus, the choices that an agent makes about which subproblems to work on, wbeh to
on them, whatmethodsto useto solvethem,what type of partial resultsto generateand
whereto sendtheseresultsshouldnot be mediatedsolely by the needsof local problem
solving. Effective control of cooperativeproblem solving requires that local control
decisions be influenced by tiséateof problemsolving in otheragents.This influencewe
will call cooperative control

At one extremecooperativecontrol mechanismgan be so tightly integratednto the local
control that the boundary between local and cooperative control is diffi@gstEssAt the
other extreme, cooperativecontrol operatesoutside of and asynchronouslywith local
control mechanisms. Its interface to local contrahi®ughthe establishmenof high level
policiesthat the local control implementy3, 7]. In this case,the local control is clearly
distinguishablefrom the cooperativecontrol, has a certain amount of latitude in its
decisionsbasedon local information and may have no direct knowledgeof the state of
other agents’ problem solving.

Cooperativecontrol also involves the dynamic allocation of subproblemsamong agents
basedon the ongoing requirementf problem solving and the availability of hardware
resources. In our discussions up to this pdirftasbeenassumedhat the partition of the

subproblemgtask decompositionorganizationalstructure,etc.) among agentsis fixed

dependingon the a priori distribution of expertise,information, sensors, effectors,
communication and processing resources. In fact, there arentdigychoicesavailablein

partitioning, especially choices involving subproblems that casobedwithout accesgo

large amountsof raw dataor specializedexpertisethat residesin a limited number of

agents. Different partitions can letwlsystemghat vary widely alongdimensionssuchas
reliability in face of processoror communicationfailure, effective processorutilization

(amount of idle time), etc.

Algorithms for cooperative control are complex because the \oéwdhat otheragentsare

doing may be incomplete, out-of-date and inaccuratedue to limited communication
bandwidth. This lack of an accurate view of agent activities also increases the complexity of
cooperative protocols that decide when sufficient work has theeato terminateproblem
solving, that guarantegoroblemsolving convergesandthat recognizean overconstrained
problem-solving situation.



Interplay Between Local and Cooperative Control

One lessonthat we havelearnedis the importanceof the interplay betweencontrol of
cooperative and local problesolving for achievingcoherentoehavioramongagents.The
local control component needs:

» to provide to the cooperative control component a suitably abstract and relatively
accuratedescriptionof its current and expectedproblem-solving activities,
including expected results;

» to interactwith the cooperativecontrol componentto modify local problem-
solving activities to be more in line with the needs of other agents;

» to be sufficiently sophisticated in its decision making suchdluattainlevel of
inappropriate cooperative control decisions baroleratedand recoveredrom
gracefully.

The last point irucial to the notion of satisficingcontrol of cooperativeproblemsolving

introduced below.

Satisficing Problem Solving

An importantaspectof the FA/C model that was alludedto but neverdevelopedin the
original paper is the concept sdtisficingproblem solving. This concept was developgd
March and Simon [18] to explain how complex organizationsfunction when there is
significant environmental uncertainty. For many applications, #dvemghthereexist strict
criteria for acceptable answers, answers meeting less stringent enigssfeen still useful.
This approachis especiallyappropriatein face of unacceptablecomputationalcosts to
produceanswersthat always meetthe more exacting criteria. Similarly, the searchfor
cooperative control algorithnmaptimal alongall dimensionsof resourceutilization may be
fruitless, especiallyin the face of the wide range of uncertaintiesthat can arise in
cooperativeproblem solving. The computationand communicationcosts to implement
optimal cooperativecontrol may leadto unacceptabl®verall costs. Thus, a more realistic
approachs to constructcooperationstrategieshat produceacceptablesolutionsusing a
reasonable amount of processing resources.

3. Early Experimental Results

The major experimental validations of the FA/C model ravimvolved applicationsin the
areaof distributed interpretation[2, 19]. These applications have used a blackboard



architecture for local problem solving because of the flexibility and modularity abritsol
regime and the incremental, opportunistitd asynchronousatureof its processingThis
application area has provided a rich source of intuitions about the FA/C paradigm.

In the initial experimentswith FA/C problem solving, the applicationwas a distributed
versionof the Hearsay-llspeechunderstandingystem[2, 20]. Therewerethree agents,
each of which was a complete Hearsay-1l systatendedso that high-level partial results
(e.g., phrasehypotheses)ould be communicated Each agent received a continuous
fragmentof acousticdata. Thesefragmentsoverlappedo guaranteehat the acousticdata
associated with each word in the utterance would lay complettdin at leastone agent’s
raw data.Becauseall the information neededto solve the subproblemof recognizinga

word was locally availablein at leastone agent, this permittedthe agentsto arrive at a

solution without sharing low-level data. In general, interpretation systems exploit

overlapping sensorsto ensure more reliability in processingsince sensorsare not

completely accurate, introducing errors such as missing data, distorted datmmardtent
data.

Experimentswith this first applicationshowedthat the agentscould cooperativelyinteract
with a simple communication protocol to arrivettad sameresultthat was producedn the
centralized version of the system. The distributed system transiitigd limited amount
of information and realized a slight speediiprocessingn comparisorto the centralized
system. Additional experiments involving an errorful communicatimemnelindicatedthat
problem solving was robust in spite of missing information.

Uncoordinated Agent Behavior

The experimentsalso highlighted important problems with the FA/C paradigm. The
behaviorof agentswas not coherent:agentstransmittedinformation that was often not

5Top—down grammatical constraintsbasedon phrasal hypotheseswere not sufficiently strong when
combined with acoustic constraints based on incomplete low-level information to permit the top«atdwn
verification knowledge source (VERIFY) to generaterated numberof plausibleword hypothesesvhich
included the correathoice.Thus, agentsin the distributedHearsay-llexperimentsavere given overlapping
acousticdataso asto guaranteehat for everyword of the utteranceat least one agenthad its complete
acoustic constraints. Words were not hypothesizélteifewere only partial acousticconstraintsfor usein
its verification. This avoided a high level of solution uncertainty in leeat hypothesizationThe use of
incomplete low-level information would have also required significant changes to the syREeWERIFY
KS would have had to be redesignedo perform only partial matching in the caseof missing data.
Additionally, its procedure for the estimation of word likelihood would have to have been moditteat 80
distinction was made between thecertaintydueto missing information andthat of mismatchingof data
constraints.
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relevantor not timely, derivedinformation that had already been generatedby another
agent,and were not focusedon generatingresultsthat would assistother agents.The
phenomenorof distraction was also observed:an agentwith weak constraintswould

quickly generate and transmit an incorrect partial result; this could cause a receiving agent to
work on incorporating and extenditigis resultinsteadof pursuingits own correctpatrtial

result.

These problems can ladtributeddirectly to the highly self-directedbehaviorof individual
agentsin which thereis no explicit form of cooperationAn implicit form of cooperation
occurredwhenthe agentsusedreceivedinformationin the sameway aslocally generated
information for making local control and communication decisions. This implicit
cooperation strategy contributed to the system’s robusimesgste of missing,incomplete
and incorrecpartial resultsbecausano expectationsvere madeaboutthe activity of other
agentsHowever, this lack of expectationslsoled to inefficient utilization of processors
and communication channels.

The experiencesvith this initial applicationof FA/C problem solving motivated much of
our researchagenda,basedon the following question: Can computationally tractable
cooperative control strategies be developed that maintain both globally cobhetity and
systemrobustnessThe remainderof this paperdescribesour experiencesn answering
this question, concentrating on teeolutionof a seriesof increasinglymore sophisticated
mechanisms for achieving globally coherent cooperative activity. In attenptpigcethis
evolution in perspective, we will first present an idealized model of distributed search.

4. Issues in Distributed Search

Describing the solution and control uncertainties that can arise in a simple distsiaitell
will help to explain why maintainingglobally coherentactivity is difficult in an FA/C
distributed problem-solvingsystem. Considera classical and/or goal structure search
(depicted in Figure 2that hasbeenaugmentedo includethe representatiof constraints
amongsolutionsto goalsandthe dataor resourcesieededo solve a primitive goal (see
[21, 22, 23] for a more detailedview of the type of relationshipsthat can occur among
goals). Constraints can exist betweengbkitionsof high-levelsibling goalssuchasG, ,
andG,, or constraintscanbe moredistantin the goal structuresuchas betweenG, , and
G, » In this cases, andG, become interacting goals if, forstance G, , is usedto solve
G, andG,, is used to solv&,. Further,G, andG, , areinterdependenthrougha chainof
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interdependencieghrough G,). Constraintsat one level in the structure,such as those
from the solution td5, ,, canhaveimplicationsfor solving low-level goalssuchasG, , ,
As partof this modelof search primitive goalsmay havemultiple solutionswhere these
solutions could be rank-orderedbasedon such measuresas resource consumption,
credibility, etc. A solution(result)for a goalis partial whenits and subgoalshavenot all
been solved completely.

GO
G, G,...Ge*—»G_.. ... G,
OR OR
Gl,l Gl,2 Gl,3 Gk,l k,2
? AND AND
Gk 1,1 Gk,l 4 Gk 2,2
Gk,2 1

L P d A, a,

Fig. 2. A goaltree: The G's represengoalsandthe d's representiataor resourcesThe double-
headed arrows between goals indidht the goals are interdependentT he arrowsbetweendataand
goals indicate that the data is required for that'gasdlution.

In an application such as vehicle monitoring, the overall high-levelgaalght beto find
the most consister@xplanationof the sensorydata,the intermediate-levegoals(G,...G,)
might be to find vehicletracksin a narrowly defined region of time and space,and the
lower-levelgoals(G, , , ...) might be to identify the types of vehiclespresentbasedon
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sensorreports(d,....). We assumethat vehiclesdo not instantaneouslytop or reverse
course. Thus, if two intermediate-level vehicle tracking gdals, G,) specify regionghat
are contiguous in time and space, then these goals are potentially medaalsaining An

intermediate-levelvehicle tracking goal G, ; can also constrain a lower-level vehicle
identification goalG, , ,if the sensory report being analyzed is irea@acontiguousto that
of the intermediategoal. Thus solutionsto one of thesegoalsimplies constraintson the
possible solutions to the other goal.

Multiple vehiclescansharethe samegeneralarea,so multiple correctsolutionsfor a goal

are possible. Howeveno vehiclescanbe in the sameplaceat the sametime so different
solutionsthat usecommondataare competingalternatives A partial solutionto a vehicle
identification goal can occur when thiehicle canbe classifiedas an airplaneratherthana
helicopterbut cannotfurther be distinguishasto whetherit is a jet or a propeller-driven

craft. More complexinteractionsamonggoals, as discussedn section 2, can occur if
ghosting phenomenaare modelled, movementsof groups of vehicles in prespecified
patterns can occur, or there can be multiple sensors, possibly of diffgrese.g., radar

and acoustic), that can generate reports about overlapping regions of the monitored space.

The entire goal structure need not be fully elaborated in orderdbtemsolving to begin;

rather, thestructuremay be constructedas problemsolving progressesThis construction
caninvolve atop-downelaborationprocessbasedon the higherlevel goals, a bottom-up
processdriven by the data, or a processcombining both the top-down and bottom-up
creation of goals (see [24] fomaodel of how goal structuresare dynamicallycreatedn a

distributed problem-solving system). Additionally, the critéaaproblem-solvingsuccess
may not be justhe generatiorof a solutionbut onethatis optimal alongsomedimension
(such as cost or credibility).

In using a goal structureto representthe overall problem-solvingtask, we make no
statemeni@boutwhetherthis overall goal structureis statically defined or dynamically
evolvesfrom a compositeview of the current,local goal structuresof individual agents.
Further, we make no assumption that this overall goal structure is consistent—typisally it
not consistent [16]. Nor does this ge#lucturerepresentatiomestrictthe notion of a goal

to a simple descriptionof a first-order predicate More encompassingiews of goals[22,

25, 26] that define abstract and complex criteria for guiding problem solvirugeugatible
with the discussiondn this section.Goal structuresprovide an intuitive framewaork for
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understandinghe strengthsand weaknesse®f different cooperativecontrol strategies
because:

Effective cooperativecontrol is based on exploiting relationships among
agents goal structures.

Solution and Control Uncertainty

Solution uncertaintyn a goal-basedearchrefersto uncertaintyover whetherthe solution
to a goal will beincorporatednto the final solution of the system’stop-level goal. This
uncertainty is due to the possibility that:

» thefinal solution may not incorporatethe solution to a specific goal because
there are multiple derivation paths in the goal structure;

» the full set of constraintthatis usedto judge acceptabilityof a goal’s solution
may not be available at the time the solution is created;

» the local criteria for rating solutions may not reflect global considerations;
» the validity of the data used to construct the solution is in question.

Control uncertaintyrefersto the uncertaintyover which goal(s)to pursuenextin problem
solving, what context,in termsof solutionsto other goals, should be usedin solving a

goal, and how muckffort to expendin generatinga solution. This uncertaintyis due not

only to the fact that thereare multiple, competingways of deriving the top-level solution
(and solutiongo subgoalsarethemselvesincertain)but alsothatit is difficult to estimate
accurately the amount effort thatwill be requiredto producea solutionfor a goal. This

estimationhasto takeinto consideratiorthe characteiof the informationusedin problem
solving (e.g., its certainty, its volume, its signal-to-noiseratio, etc.) and the impact of

available constraints.

The amountof processingusedcan be greatly affectedby the orderin which goals are
solved.For example the solutionto G, , , (becauset is sharedby the or goals G, , and
G, ) may provide information that indicates which of its pacergoals is more likelyln a
similar way, the solution t&, may provide strong constraints on the posssoletionsfor
G, , and thus significantly speed up the search for its solution.

Solution and control uncertaintyare increasedwhen only part of the goal structureis
available for decision making. This is exactly what happersdistributedsearch.One of
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the consequencesf distributing the searchis that more of the searchspacefrom a
compositeperspectiveneedsto be examinedthanin a centralizedversion of the search
because there is more uncertainty in agents’ codécisionswhich makesthesedecisions
less accurate. Uncertainty is also increased when agent behavior is uncoordinated.

Consider the followingexampleinvolving the control of a centralizedsearchbasedon the

goal structure in Figure 2. Let us assume that the search has reached a point whane there
four possible goals that can be achieved; these goakhaindssociatedatings(indicating

the perceivedmportanceof their solution)are G, ,(90), G, ,(60), G, (50) and G, , {40).

The highestrated goal, G, ,, is first achievedand, basedon its solution, the ratings
associated with the remaining goals eeevaluatedAdditionally, new goals,that are now
possiblegiven the solutionto G, ,, areaddedto the list of goalsto be consideredor the
nextcycle; thelist is now G, 4(40), G, ,(50), G, , {60) andG, ,(60). If we supposehat
G,...G,,,andG, ;were part ofthe final solution, notice how the solutionto G, , provides
information that results in a more informed control decision.

Let us now examine this same example in the context of a two-gdigetiiutedsearch(see
Figure 3). We start two stepsearlier in the search,with G,(95) and G,(95) not yet
processed. In this casggenthas a choice amorg',(95), G ,(90) andG", (60). Agent
has a choice amor®’,(95), G?, (50) andG’, , (40). The agents first choos&',and G,
respectively, because thayethe highestratedactionsfor eachof them. After processing
G?, agenthas two choices, (50) andG? , (40), neitherof which is highly ratednor
well differentiated.Unfortunately,the agentchoseto achievethe wrong one first, G2,
becauseit is rated slightly higher. From a centralized perspective,the agent chose
prematurelysinceit did not choosebasedon the solutionto G*,_,, asin the centralized
version of this search.

This exampleindicatesthe importanceof coordinatingthe searchesamong agents.One
strategyfor achievingmore coordinationis for agentswhich have both an abundanceof
highly rated goals that can be achievedimmediately and low control uncertaintywith
respect to theirating (e.g., agent) to reorderthe sequencef achievingtheir goals(e.g.,
G', ,(90) before G',(95) ). This reorderingshould balancethe efficiency of the agents’
local searchwith the needsof otheragents.This can be accomplishedby first achieving
those goals (e.gG', ,(90) ) whose solutions can provi@gormationto reducethe higher
control and solution uncertainty presentin other agents. The lack of this type of
coordinationin the distributed Hearsay-llexperimentswvas partially responsiblefor the
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early generation of high-level, incorrect partial results that, wiremsmitted distractedthe
problemsolving of otheragents.Also, the timely transmissiorof partial resultsnot only
candecreaseontrol uncertaintybut can also significantly speedup the solutionof goals,
by constraining the set of solutions that need to be examined.

Distributing the searchalso increasessolution uncertainty becauseall the information
necessary for validatingsolution may not be availablelocally. For example the solution
to G%, ,,is uncertain becausiatumd’, normally usedin its constructionjs not available

locally (seeFigure 3). Another exampleof increasedsolution uncertainty occurs with
respect td5", , which cannot completely validate its solution since onpasial solutionto
the constraininggoal G*, , is available.Only partial solutions or solutions with low
credibility for G', , can be generated becawgent lacksinformationor expertiseto solve
all theandsubgoals o', ..

Agent, Agent,

DATA/
RESOURCES U1 s oo

Fig. 3 A distributed goal tree: The goal tree pictured in Fig. 2 is distributed with papigation
betweentwo agents.The dottedarrowsindicateinterdependencieamonggoalsanddatain different

agents. The superscripassociatedvith goalsand dataindicatethe agentthat containsthat goal or
data.
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Cooperative Control Uncertainty

Distributing a searchamong agentswhere their local searchspacesare interdependent
introducesan additionalclassof control uncertaintieghat are not presentin single-agent
problemsolving. This new classof control uncertaintiesare called cooperativecontrol
uncertainties These uncertainties relate to an agent’s view of the state of problem solving in
otheragents for example:which agentsareworking on interactingsubproblemggoals);

how difficult arethesesubproblemswhenarethey expectedo be solved;what progress

has beenmadein solving them; if they have beensolved what is the characterof the
solutions; etc. These uncertainties about the sfat¢her agents’problemsolving leadsto
uncertainties in decisiorsncerningthe communicatiorof informationamongagentsand

the choice of which goals to pursue locally.

Uncertaintiesin communicationoccur in decisionssuch as to whom should an agent
transmitits resultsand goals, what type of resultsor goalsshouldit transmit,when and
under what conditions should it communicate, what protocols slitousd, what credence
shouldit give to information receivedfrom specific agents,etc. Additional cooperative
control uncertaintiesoccurin decisionssuchaswhat type of solutionto a goal would be
mostbeneficialto the problemsolving of otheragentsand when shouldit be generated,
what is the appropriatebalance between pursuing locally generatedactivities versus
responding to externally received requests, should different priorities be attached to the type
of requestand the agentdoing the requesting,etc. They also occur in task allocation
decisionsfor load-balancingvhich are basedon what type of work agentswill do in the
near-term and the character of the expected results.

Redundant Computation

Another important issue that arises when a search is distributed is the possibility of deriving
solutionsredundantly . The systemoften containsmultiple derivation pathsfor solutions
distributedamongthe agents.This redundancyaddsto systemrobustnessn the eventof
processor, communication, or sensor failure, permits more flexible responsesto
unbalancedworkloads, and introduces additional constraintsinto problem solving to
recover from errorful or incomplete information.

Redundant computation can take méoyms in a distributedsearch.The simplestform is
when agentspossessxactly the sameinformation and expertise.Another form occurs
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when the siblingor goalsare placedin differentagents.Thus, if anacceptablesolutionis
generated in one of the agents, it is unnecessary to try to re-attfeeatisfiedgoal in the
other agent until the existingplutionis found to be inadequateTo avoid redundaniwork
you must have agents that can assess the implications of resuitdon their local goal
structure. If the entire goal structure is available, a simple process of tracing dayaalthe
subgoal links of the satisfied goal can be used to recognize all subdmalsachievement
canleadto redundantesults.However,for manyrealistic situationsthe goal structureis
not fully instantiated(especiallywhen problem solving is data-directed)and thus new
mechanisms are needed.

Avoiding redundant work also requires some anticipatory component—it is not sufficient to
avoid redundantwork after a result has been produced because agents may be
simultaneously working on threameproblem.By the time one agenthassolvedthe goal,
anotheragentmay havealreadyspentconsiderablgorocessingresourceson work that is
redundantln orderto avoid redundantvork, someform of meta-levelinformationabout

the goal structure of other agents is needed. The more dynamic this information ithebout
short-termprocessingplans of agents,the more effective an agentcan be in avoiding
redundantwork while at the sametime still maintainingits own processingpriorities.
However, there is costto create transmitand exploit meta-levelinformation which may
mitigate itseffectivenessn improving overall problem-solvingperformanceThesepoints

will be more fully elaborated in the next section.

Guaranteeinghat thereis neverredundantactivity in the systemmay not always be the
appropriatestrategy.Allowing for the possibility of a certainamountof redundantwork
may be advisable if there are idle processegpurcesif the costsof coordinationcontrol
to preventthe generationof redundantresultsare high and redundantresultsare rarely
generatedpr if thereis high solution uncertainty.For example,if thereis significant
solution uncertainty(or the anticipation of such) it may be appropriateto generatean
alternativesolution sincethereis a reasonabldikelihood that the alternativesolution will
needto be eventuallyexamined.This is especiallytrue if it is an importantgoal whose
solution significantly constrains future work.

5. Evolution of Control in the DVMT

The distributed Hearsay-1l experimentsprovided many insights into FA/C problem
solving, but further experimentationwas difficult. Any new experimentswould have
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requiredmajor changedo the system.Instead,we developeda new testbedbasedon a
vehicle monitoring application similar to the application describedin section 2. This
interpretationapplicationwas basedloosely on the distributed sensornetwork task that
Smith usedin his work on contract-net427]. The objective of this application was to
identify, locate,and track patternsof vehiclesmoving through a two-dimensionalspace
using signalsdetectedby distributedacousticsensors.A system,called the Distributed
Vehicle Monitoring Testbed(DVMT) [19], was developed.lt simulateda network of
problem-solvingagentsperforming this distributedinterpretationapplication.Each agent
was a blackboard problem-solving system with knowledge sourcesand levels of
abstraction appropriate for this application.

The configuration of knowledge sourceswas designedto be modular so that it was
possible to build problem-solvinggentsthat had only a limited setof knowledgesources
and levels. This modularity permitted the exploration of a wide range of different
organizational structurdsr configuringagentsin the system.Processingnodularitywas
accomplishedby structuring knowledge sourcesso that they would produce the best
possible result based on available datdthey would be reactivatedn the eventthat new
informationwas placedon the blackboardthat could affect previouslymadedecisions.In
orderto getthis asynchronougorm of processingo work properly, where assumptions
could not be made about the order of arrival of information, a complex design for
knowledge sourceswas required. The testbedwas also highly parametrizedso that
accuracy placementandrangeof sensorsandthe grammarfor grouping acousticsignals
togetherto form patternsof vehiclescould be adjusted.The DVMT becamethe major
environmentfor further experimentatiorwith new approacheso control of cooperative
problem solving for FA/C systems.

The three major phas@s the evolutionof mechanismgor the cooperativecontrol will be

discussedintegrating data- and goal-directedcontrol, static meta-levelcontrol through
organizational structuring, and dynammeta-levelcontrol throughpartial global planning.
Each phasebuilds on mechanismsdevelopedin earlier phases.We will explain the

developmenbf this seriesof increasinglysophisticateccooperativecontrol strategiesn

terms of how they reduce solution and control uncertainty and minimize redundant
computation

Integrating Data- and Goal-Directed Control

The first step in making agents work in a more globally cohdashionwasto extendthe
data-directed and implicit control regime, used in the distribdteglsay-llsystem,so that
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goals were represented explicitly. This first extension was desigmegbtove cooperative
control by:

» more effectively exploiting constraintsimplicit in receivedinformation which
has the effect of making agenggal structuresmore consistenin termsof the
importanceattachedto achievinginterdependensubgoals;this capability also
eliminatesthe generationof intermediateresultsthat could lead to redundant
results;

* permitting agents to requasformationexplicitly from otheragentswhich has
the effect of increasingthe relevanceand timeliness [4] of transmitted
information among agents;

» evaluating the importance of externally directed activities sepafabetythat of
locally directed activities which has the effectatibwing an agentto be guided
by the information generated by the agent that is most ltkgbyoduceaccurate
information; this capability also could be usedto amelioratethe effects of
distracting communication.

This extension involved modifying the data-directed control cgtlie Hearsay-lIsystem
[13]. Insteadof directly mapping changesto the blackboardinto knowledge source
instances(KSIs), an intermediatestep was introduced. Each time the blackboardwas
modified, a set of data-directedyoalswas createdrepresentinghe potential results that
could be directly producedusing this new information. For example,in Figure 2, the
arrival ofd would trigger the creation @&, , , andG, ,, These goals were placed on a new
structurecalled the goal blackboardthat usedthe samelevels of abstractionas the data
blackboard.Goals were necessarilyapproximatespecificationsof the potential results
because only a part tfie information neededo actually constructthe resultswas usedin
the mappingof data-to-goalsThe mappingwas approximatesinceit was not intendedto
duplicate the potentially time-consumingcomputationsinvolved in knowledge source
execution. The creationof a goal would trigger a primitive planner (goal scheduler)
responsible for creating KSls that could achieve this goal.

The goals on the goal blackboarain be thoughtof asa partial goal structurerepresenting
the immediatelyachievablegoals (short-term problem-solvinghorizon) in each agent.
Basedon the useof this explicit representatiorof the partial goal structure,mechanisms
were developedthat achieved improved cooperative control in the ways outlined
previously.Onewas a subgoalingmechanisnthat connectech higher-levelgoal with the
lower-levelgoalsthat were necessaryor its achievementThe desirability of achievinga
lower-levelgoal was adjustedbasedon the importanceassociatedvith its supergoal(s).
KSlIs that achieved the lower-level goals were given mmrdenceandwerethuslikely to
be scheduledsooner.For examplein Figure 3, if agent produceda solutionto G, , and
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transmitted it tagens, thenagens could generate a constrained versiogibased on the
fact that there are interdependences betw@gnandG?,. Suppose the constraints imposed
by the solution t&",; could be satisfied only by a solution®3, ,, andG? , ; andG?,,,
were instantiatethasedon datain agens. Thensubgoalingthe constrainedrersionof G?,
raisesthe rating of G?, , , and increaseshe likelihood that this subgoalwill be solved
sooner thar&’, , ; In this way, both local and cooperative control uncertaiitjecreased
since the importance attach&dachievinginterdependengoalsin differentagentsis more
consistent.

The ability to transmigjoalsaswell as resultsamongagentsalso facilitatesmore coherent
cooperative behavior. In situations where agents have significant solution uncertainty, more
informed, externally-directeccommunicationcan be implementedby agentstransmitting

results only in response to goagxeivedfrom otheragents.Thesereceivedgoalsindicate

the type of information that would be most beneficialto the requestingagent’sproblem
solving. The subgoalingof thesegoalswould bias the receivingagentto more quickly
generate intermediate results that would lead tealtisfactionof the receivedgoal. In this

way, cooperativecontrol uncertaintyregardingcommunicationdecisionswas decreased

since itwas morelikely that the information beinggeneratedand communicatedvas both
relevant and timely for the requesting agent.

The ratingson the goalsindicatethe importanceto local problemsolving of achievinga
solution to this goalThis is in contrastto the rating associatedvith a partial resultwhich
indicatesthe likelihood of this solution being incorporatedinto the final answerthat the
system produces. The problem of distraction in the distriddeatsay-llexperimentavas
in part causedoy therebeingno distinction betweenthe belief in a receivedpartial result
andthe importanceof incorporatingthis resultinto a more encompassingolution. The
separatiorof focusinginformationspecifiedin the goal rating from the belief specifiedin
the rating of a partial result allows a more explicit form of cooperativecontrol to be
implemented. The rating an agent calculatesfor externally received goals (or goals
generated based on received information) determines the balance between respaineling
needsof otheragentsandthe perceiveddirectionsimplied by its own data.The more the
balance is biased towards the importance of other agefdamation, the more externally-
directed the agent becomes and the more likelihood there is for distraction.

On the other hand, the more importance an aggenthego its own information, the more
self-directed the agent is atitk lessproneto distraction.However, the potentialnegative
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consequencef the more self-directedcontrol regimeis that local problem solving may
havemore control and solution uncertaintybecausehe information receivedfrom other
agents will beonly partially exploited. The choiceof the right balancedependsipon how
accuratefrom their own local perspectiveagentsarein judging the belief of their partial
results and the importance tbieir goalsfrom a cooperativeperspective A mechanisnfor
implementthis balancingdecisionwill be discussedn the next section.By choosingthe
appropriate balance, the phenomenon of distraction can be ameliorated winitrsiiiing
local problem solving to exploit the received information.

The initial implementation of goal processing also providsuirgle form of look-aheado
avoid some redundant processing. Wheasultis receivedthatis highly rated,the goals
on the goal blackboard that are now satisfied based on this result are marked. All KSI's that
are pendingon the agendathat can achievethesesatisfiedgoals (or their subgoals)are
either loweredin rating or eliminatedfrom further consideration.This method prevents
redundant work only on the solution paths directly suggested by data currenthagetite
It doesnot eliminateredundantactivity on any of the alternativepathsthat might at some
later time becomeactive due to the generation,or receptionof new information. This
method for avoiding redundantprocessingfails in these situations becauseit is not
reinvoked each time the partial representation of the local goal structyrgatedto reflect
new information on the possible paths available in the local search space.

In order to eliminate the derivation afhy intermediateresultthat could eventuallyproduce
an existing high-level result, a separatemechanism,called inhibiting goals was later
developed29]. This new mechanismhadto be integratedwith KS execution,KSs that
satisfiedmultiple goals,including an inhibiting goal, could still be executedout were not
allowedto generataesultsthat were subsumedy the inhibiting goal specification.Since
resultsreceivedfrom other agentsare only tentative, agentshave the responsibility of
notifying other agents whethey modify their belief in a previouslytransmittedresultdue
to new information. Otherwise,explorationof alternativesolution pathsto the goal will
remaininhibited. The asynchronousnode of problem solving may require a complex
decision process for deciding wharmoal shouldno longer consideredas being satisfied.
It may not be directly discernible whether a partial result used to satisfy a goal wasdot
in further processing because:

» the appropriaténformationto extendthe partial resulthasnot yet beencreated
since it is too early for the underlying information to have been received;
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» the information has just not been processed,;
» the desired information will never be generated.

In the last case, the belief in therrectnes®f the partial resultrating shouldbe lowered®
The easewith which thesedecisionsare madeis directly relatedto the explicitnessof the
evidentialrepresentatioschemen the agent[17]. In this way, the amountof redundant
computation among agents could be decreased.

In summary this first stagein the evolutionof strategiesor cooperativecontrol showed
that more coherence in agent activiibesild be achievedf agentsdynamicallyconstructed
a partial representatiorof their problem-solvinggoal structure.This representatiorwas

basedon the agent’scurrentset of partial results. The use of this partial goal structure
reducesboth local control and solution uncertaintyand cooperativecontrol uncertaintyby

providing a frameworkwhereinformation (partial resultsand goals) from local problem
solving and from other agents could be effectively exploited.

Static Meta-level Information for Control of Cooperative
Problem Solving

For optimal cooperativeproblem solving, uncertaintiesin cooperativecontrol decisions
should be eliminated. This implid¢isat thesedecisionsshouldbe constantlyreevaluatedn

the light of new information generatedas problem solving progresseshroughoutthe
system. Especially for larger systems,the coststo eliminate these uncertaintiesseem
unrealistically high both from a processing and communication perspective.

An alternative approach based on a satisficing apprmacboperativecontrol, which does
not require constantreevaluationof all cooperativecontrol decisionsand is thus less
computationallyexpensivejs to realizecooperativecontrol decisionsthrough a two-level
decision process [3, 30]. One level, calleddiganizational design levelefers to strategic
decisionsthat do not needto be constantlyreevaluatedn orderto get reasonableoverall
performanceThe other level, called the agentlevel refersto tactical decisionsthat are
constantlyreevaluatedThe organizationabesignlevel defineslong-termpoliciesthat can
be usedat the agentlevel to narrowthe setof choicesor informationthatis neededo be
evaluatedto make decisionsthat implement cooperativecontrol at each agent. These

6 The inhibiting goal mechanismwasimplementedn a single-agenDVMT systembut its implications
for distributed problem solving were not experimentally evaluafEais is dueto neverimplementingthe
code necessary to lower the belief in a hypothesis when it could never be extended.
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policies define the organizational structure of the distributed problem-solvingsystem.In

some sense, the organizational structure represents pre-computed dabigidgtie likely
structure of each agent’s goal structure, including the type and range of solution and control
uncertainties that will occur.

A policy, for example,could dictatefor a specific agentthe appropriatebalancebetween
pursuing local activities versus those activities dictated by external requestgeriieses
this policy togetherwith dynamicinformation about the importancethat the requesting
agent attaches to satisfying a particular transmitted goal and the impartauteevingthe

locally generatedjoal to choosewhich goal to pursue.In this way, the local decision
processhas both a static (strategic)and dynamic (tactical) componentand is thus less
computationally expensivencenot all information hasto be computeddynamically.lt is

not necessaryto acquire non-local information in order to estimatethe importanceof

receivedand locally-generatedjoals. The policy providesthe appropriateinformation for

directly computing this estimate from the goal ratings.

Another example ofhis two-level decisionprocesss a policy which definesa preference
for anagentto work on one classof goalsover another.In this case,the policy may be

overridden bythe local agentwhenthe dataavailableto solve the preferredgoalis highly

uncertainand incompletewhile that of the less preferred goal is highly certain and

complete A third example which is reminiscentof the focusedaddressingnodein the

contract net protocol [27], is where theganizationdesignlevel policy indicatesthat there
are three possible agentsthat can satisfy a goal of a particular type. The local agent
negotiateswith just thesethreeagentsinsteadof all agentsto seewhich one is currently
most appropriate for generating the requested result. A more directed policyyedicks
both the flexibility of the organizationandthe costof control, is wherethereis only one

agentthat is specifiedas being able to solve the particular type of goal. Like the two

previous examples, the parameters of this policy can be spesifibdt eitheragentshave
considerablelatitude in their cooperative control decisions based on local (tactical)

considerations or have no real choice.

Individual policies for different aspectsof cooperativecontrol like these,takentogether
specify a long-term, global strategy for achievauerentoroblemsolving amongagents.
The policies guide and constrainthe control decisionsof agentsso that their activities
adhereto the global strategy.An exampleof an organizationalstructurethat implements
such a global strategy is the following hierarchical structure. There is a twdiekaichy,
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the lower-level involves agents that only solve intermediate-level goals that are at most three
levels removedrom their raw data. They performthis processingopportunisticallybased

on their belief in the raw dataandthe derived solutions.If a highly believedsolutionis
generated for an intermediate-level goal, the lower-level agent sends this solution to a single
higher-level agent who has the responsibility of combining the solutiomsintermediate-

level goalsinto a solutionfor the overall goal. As a resultof this integrationprocess,the
higher-level agent recognizesthe need for additional information which it requestsof

specific lower-level agentsby sendingthem intermediate-levelgoals. The lower-level

agents perceive the goals they receive fronhtgker-levelagentasimportant. The lower-

level agents use these goals to direct their processing.

This hierarchical organization is based on the following assumptions:

» solution and control uncertainty at the lower-levels of the goal structure is high;

» solution and control uncertainty can be significantly reducedby exploiting
constraints among intermediate-level goals;

» problem solving requires the interaction among solutions to multiple,
intermediate-level goals to generate strong constraints.
This last assumption isasedon the following reasoninga highly believedsolutionto an
intermediate-level goal stihasa reasonablemountof solutionuncertainty;a solutionfor
an intermediate-level goal does not significantly constrain othergaallk; and sufficiently
strong constraintsare generatedonly when a number of solutionsto thesegoals are
integrated into (partial) solutions to the overall goal.

Mechanismdo implementsuchorganizationaktructureswere developedfor the DVMT.

They were built upon the integrateddata- and goal-directedcontrol discussedin the
previous section. Though we have discussed the develomitthniquedor integrating
data- and goal-directedcontrol and the use of organizationalstructuresas though they
occurredin sequencethey werein fact both developedat the sametime and are tightly

intertwined. A crude form of compiled organizational knowledge was impleméntaagh
interestarea specificationsassociatedvith eachagent.Thesedata structuresspecifiedthe
following:

* how to modify the belief in received information from specific agents;

» whetherto generatgrocessinggoalsto further extendandrefine this received
result;
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* how to modify the importance attached to received goals from specific agents;
» whether to generate subgoals for these goals;

* how to evaluate the importance of local goals;

» what information and goals to transmit and to whom.

By appropriately setting these specifications, a wide range of static organizational structures
could be configured.

We ran a numberof experimentausing different organizationalstructuresto seewhether
thesestructuresled to more coherentbehavior. One set of experimentscompareda
hierarchical problem-solvingorganizationwith a lateral organization. The experimental
results did not indicate clearly which organizationwas preferable[3, 4, 30]. Before
experimentatiorit was thoughtthat the hierarchicalproblem-solvingorganizationwould
performbetter.One explanationfor the lack of clear-cutexperimentalesultswas that the
agents’problemsolving was not sufficiently sophisticatedo take advantageof the more
comprehensiveinformation produced by a hierarchical organization. Implicit in the
argumentfor a hierarchicalorganizationis that the single, high-level agenthas sufficient
inferencing capabilities to exploit the available constraints. This inferencing requires that the
agent generate constraints for solutionmtermediate-levegoalsfrom partial solutionsto
the overall goal, reasonabout inconsistenciesn goal solutions, and direct lower-level
agentsto resolve these inconsistenciesThe DVMT agentslacked two elements:1)
knowledgesourcesto generatepartial resultswhen faced with certaintypes of missing
data,and 2) an evidentialframeworkfor reasoningaboutcompeting,alternativesolutions
to goals.

An exampleindicatingthe kind of knowledgesourceginferencingcapabilities)that were
lacking is thefollowing (seeFigure4): supposeherearel) G,, G, andG, atlevel that
areandsubgoals ofi leve|, goal G,; 2) G, hastwo andsubgoalsG,, andG, ,,7; and3)
solutions forG, constrain solutions fdg, ,; likewise, G, constrainss, ,, andG, , andG,,
aremutually constraining.Given solutionsto G, and G,, the systemshould be able to

"This example is abstracted from a real situation in the DVMT. The solutiemeb andlevel, goalsis a
track hypothesis,and to level, goals is a vehicle location hypothesis. The DVMT did not contain
knowledge sources that could combine two track hypotheses thahatevgerlappingin at leastonetime
periodinto a largertrack. For example,if onetrack hypothesiscoveredtimes 3 to 5 and the other track
hypothesis covered times 6 to 10, these two hypotheses could not be combined auteeoingthe times
3 to 10, eventhough constraintssuch as velocity, accelerationspatial location and vehicle type were
compatible among the two hypotheses.
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generateboth a partial result at leve|, and a constrainedversion of G, that can focus
processing devel,to generate golutionfor G, thatwill be compatiblewith the solutions
for G, and G,. This type of processingis important if there is significant solution
uncertaintyfor level goals. Recognizingthat solutionsto G, and G, are compatible
increaseghe likelihood that both solutions are correct and that subgoalingof G, will

produce a correct solution. In addition, generaéinmartial solution of high confidencefor
theleve|,goal can focus higher level processomya likely solutionpath. Continuingwith

this example, if there were two alternats@utionsfor G, andboth were compatiblewith

the solution foiG,, the system should be able to foguecessingon generatinga solution
to G, that would differentiate among the two solution§&to
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Fig. 4. Constraintsin HierarchicalProblemSolving: An exampleof the needfor more sophisticated
inferencing.
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It was also hopedthat organizationalpolicies would decreaseghe amountof redundant
computationby statically prioritizing for each agentthe desirability of agentssolving
specifictypesof goals.If two agentscould both derive a solution to the samegoal, the
organizational policy couldictatea static preferencdor one of the agentsto work on the
goal. This wasaccomplishedy lowering the priority for the otheragentto try to achieve
this goal. The simple priority schemeworked but it also could delay the generationof
important results. The static choice proceisknot takeinto accountsuchdynamicfactors
as an agent’s current work load or the quality of its data. A similar phenomenon occurred in
defining a static balance between an agent being locally and extetinadited.Whenthere
was a long-term reason why data and goals from an agent wer@ntessinformed than
other agents, this policy avoideédstraction.This canoccurwhenone agent’'ssensorsare
proneto errorsor when one agenthas better datadue to a more comprehensiveriew.
However, it is common that the relative quality of an agent’sinformation cannot be
anticipated.A more dynamic mechanismmust be employedto computethe appropriate
balance [4].

In summary, usingtatic meta-levelinformationto guide and constrainagentlevel control
decisionsonly partially achievedcoherentoehavioramongagentsin the DVMT. In some
situations, the agents lacked the appropriate sophistication necessary eéagldiiya more
informed view. In other situations, the agents’ goal structures weiyta@mic. Thereare
a number ofapproacheso resolvingtheseproblems.One approachis organizationakelf-
design in which thestatic organizationaktructureis dynamicallyadaptedor evenradically
altered as problem solving progresses [25, 26, 31]. Another appsotachugmentagent-
level control decisionsby incorporatingdynamicinformation abouta limited number of
otheragents’goal structures A third approachis to modify local problemsolving so that
local problem-solving activities are less dynamic in character. This approach medssrit
to predict likely problem-solvingdirections. A final approachis to make agentsmore
sophisticatedso that they can better exploit availableinformation. The next step in the
evolution of cooperative control incorporates aspects of all these approaches.

Dynamic Meta-Level Information for Control of Cooperative
Problem Solving

It is clear that for agents to effectively cooperate tiegpirea reasonablyaccurateview of

the evolving goal structure of other agents. They need to be akleognizeand anticipate
where there are interactirgg redundansubproblemswhenagentsplanto work on these
problems, how difficult these problems will beesolve, the quality of the expectedesult,
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what is the currerdind anticipatedwork load in the agent,andthe flexibility thatan agent

hasin reschedulingts activities. A setof interrelatedquestionsnaturallyfollow, suchas:

what dynamic aspects of the goal structure are important, how accurate and precise does the
view of the goal structureneedto be, how much doesthe future evolution of the goal

structure need to be captured.

Approaches for providing angperatingon this information are guidedby two principles.
The first principle is based on a satisficing view of cooperative control. Adentst have
to be totally coherent in their behavior in every situatanan approacho be worthwhile.
This principle is important in situations where I&san accuratecontrol permitssignificant
reductionsin the amountof communicationand processingrequiredto implementthe
cooperativecontrol algorithms.The secondprinciple is that effective cooperativecontrol
follows from sophisticatedocal control. That is, agentsmust be able to representand
reasonnot only about their own local problem-solving activities but also how to
accommodate problem-solving requirements of other agents.

The approach developed, calledrtial Global Planning (PGP)[5, 6, 7], is basedon each
agentconstructingand maintainingan intermediate-leveView of the likely near-termgoal
structure. This view also contains the expected order in which the agent pursupotisse
and estimatesfor eachgoal’s importance,solution time, and solution quality. One can
consider this as a high-level plan for local problem solving. It is assumed that an agent does
not often need to switch opportunistically amdhgseintermediate-levegjoalsbut, rather,
cancompletelysolve eachgoal beforetackling the next one. Thereis an obvioustension
between the degree of opportunism in local problem solwitgch cansignificantly affect
local performance)and the degreeof predictability in the high-level plan (which can
significantly affect the cost of cooperativecontrol). The less predictability, the more
communicationand processingis required by cooperativecontrol to achieve coherent
behavior [32].

The agentexchangehis partial and augmentedriew of the expectedocal goal structure.
By combining interacting fragments of different agents’ goal structures, ancagesttucts
partial global goals and plans An agentusesthis information to understandhow its

activities relate to those of other agents. Thisrmation guidesan agentin reorderingthe

schedule for achieving its local goals so as:

» to exploit partial results available from other agents;
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» to provide partial resultsin a timely mannerthat can constrainthe solution to
other agents’ goals;

» to avoid redundant goal solution except where desirable;
* to reassess the importance of achieving a goal.

In the last case, we assume that goals that do not interact with gotileriagentsare less
likely to be correct. This information is also usedto implementa sophisticatedorm of
contract-netype taskallocationin which agentsthat are overloadedcan transfertasksto
underutilizedagents[33], to make communicationdecisionsabout when partial results
shouldbe transmitted,and to decidewhere to aggregatepartial resultsinto solutionsof
more encompassing goals.

We also incorporatestatic organizationaknowledge.In part this knowledgeis usedto
define domain-level cooperative problem strategies such as configuring @geotk in a
hierarchicalorganization.Static organizationaknowledgealso hasa new role of defining
the organization for performing cooperative control problem solving (meta-level
organization). For example, it specifies what agents will communicate meta-level
informationto whom, which agentswill computethe partial global plans,andthe criteria
for updating partial global plans when problem solving does not progress as expected.

Satisficing cooperative control occurs in many differguisesin the PGP algorithms.For
instance, we use a hill climbing search to create the multi-agent ordering of goal agtivities
a partial global plan. This non-exhaustive search can lead to non-optioperativeplans.
Additionally, computationsfor different partial global plans in the sameagentare not
coordinated. A schedule is first produced for tinghestratedpartial global goal, andthen
less highly rated goals are schedulethmcontextof schedulingdecisionsmadefor more
highly rated goals. Schedulingtwo highly rated goals as a unit is much more
computationallyexpensive but sometimedeadsto a better schedule.The partial global
plans need not be updatedwhen the estimatedtime for completion of goals changes
slightly. This strategy trades off non-optimal coordination caused by out-of-date
information or built-in overestimations gbal completiontimes againstreductionsin both
frequencyof communicatinggoal structuresand recomputingpartial global plans [32].
Creatingpartial global plansis also not synchronizedamongagents.For limited times,
agentscanwork on partial global plansthat are inconsistentsince someagentsviews of
otheragentsis out-of-date A satisficingapproachs alsoimplicit in the amountof effort
usedto constructan agent’slikely intermediate-levepoal structure.All thesetrade-offs
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introducethe possibility of inappropriatecontrol decisions.However, theseinaccurate
decisionsare generallycorrectedn short-orderandlocal problemsolving can be quickly

refocused based anore accuratenformation. Thus, the useof satisficingcontrol hasan

overall positive effect on system-wide performance.

Implementing partial global planning in ti/MT requiredextensivechangego the agent
architecturg34]. At the heartof thesechangess a new datastructurethat representghe

goals the agent is likely to pursue based on the availibée The agentcomputeshe new

datastructureby using a simplified form of the knowledgeusedin normal knowledge-
source processing. The outputtbis processings an abstractedrersionof the high-level

resultslikely to be produced Whereasmappingthe dateto goalsin early versionsof the

systeminvolves a single step with a single piece of data, this new mapping process
involves multiple steps and multiple pieces of da@tseseresultsare not solutionsbecause
they are ambiguousand imprecise.To speedup processingthe mappingprocessuses
simplified knowledge that does not contain all the constraetsledo completelyvalidate

a solutionand aggregatesolutionsat lower levelsthat only differ slightly. Theseresults
became the intermediate-level goals of the agent.

The agentselectsan order for achievingits intermediate-levefoals, and estimatesboth
how long it will take to achieve eagoal andthe quality of the expectedesults.Progress
in achieving a goal is monitored fmatits estimatedcompletiontime canbe revisedbased
on actualcostsandits desirability canbe revisedbasedon partial resultsproduced.This
revisedagentarchitecturenakesmore informed control decisionsthan the simpler agent
architecture used in early work. Thssan examplein which an agentarchitecturdeadsto
not only more effective local problemsolving but also more effective cooperativecontrol
because the agent can reason effectively about its local activities.

This high-level view of the agent’s goal structisenear-termsinceit is only basedon the
solutionsthat datain the agentcould generate An agentcan constructa more long-term
view by predictingwhich goalsarelikely to arisebasedon thesenear-termgoals. Being
ableto extendin time the near-termview of an agent’s goal structureleadsto more
informed load-balancingdecisions.An agent’scurrent near-termview can indicate it is
underutilized and therefore a candidate for tasks toamsferredo it. However,the agent
making thetransferdecisionmay be ableto predictthat the apparentlyunderutilizedagent
will soon have a significant processing load [33].
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In summary,using partial global planningin the DVMT leadsto much more coherent
activity among agents.It provides an elegantand integratedsolution to many of the
problems that arise when a search is distributed aragagts.The key assumptionsabout
local problem solving that make this approach feasible are:

» agents can predithe intermediate-leveyoal structurethatis the focus of their
near-term work with some level of accuracy and without significant
computation;

* agents can estimate how long it takes to achieve goals;
» agents generally follow the prescribed order for achieving goals;

* agentscan recognizethe major subproblem/goalinteractions among agents
using intermediate-level goals;

+ agents can transmit intermediate-levelgoal structure without significant
communication costs.

Another assumption which so far has gomsaidis that agentscantoleratea certainlevel
of uncoordinatedbehavior. In the distributed interpretationdomain, the only effect of
uncoordinated behavias thatit takeslongerto producea valid interpretationof the data.
This, however, can be a serious problem, especialigehtsare easily distractedand take
too long to realizethat they are pursuingan unfruitful problem-solvingpath. One of the
advantages of agents having sophisticated local control is that they can more rapidly recover
from temporarilyuncoordinatedehavior. This permits satisficing cooperativecontrol as
implemented in partial global planning to be cost effective.

The partial global planning framewodnsweredaffirmatively the questionthat was posed
at the end obection3: A computationallytractable approachto cooperativecontrol can be
developedfor a reasonablysophisticatedapplication of distributed problem solving as
representedy the DVMT, that maintainsboth globally coherentbehavioramongagents
and systemrobustnessThere are, however, many questionsstill left unansweredwith

respectto the generalapplicability of this approachto cooperativecontrol that will be
discussed later in “Beyond Partial Global Planning.”

6. New Directions in FA/C Research

Most of the researchon FA/C problem solving is basedon distributed interpretation
applicationsthat use a blackboardproblem-solvingarchitectureto implementlocal agent
problem solving. A key questias: arethe techniquesandintuitions for structuringFA/C
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systems generally applicablé&®is questionextendsnot only to different applicationareas
with different underlying problem-solvingarchitecturesbut also to more complex and
sophisticated interpretation applications.

We will approach this question froeeveraldifferent perspectiveskirst, we will examine
intuitions aboutthe generalapplicability of the FA/C paradigmbasedon its usein other
application areas. Second, we will discuss application characteristics that segpifreant
extensions to the partial global planning framewaork. Thirdywlledescribein somedetail
the researchin progressto extend this framework as well as initial ideas for new
coordinationstrategiesThe sectionendswith some commentsaboutthe applicability of
this paradigm to real world problems.

Using FA/C in Other Application Domains

The FA/C paradigm has been studiedwo otherapplicationareas.Thesestudiesdid not
emphasizecooperativecontrol (i.e., reducing control uncertainty) but how agentscan
structuretheir local problemsolving while constrainedby limited communicationso that
non-localconstraintscanbe acquiredand exploited (i.e., reducingsolution uncertainty).
Both areas are concerned with distributed resource allocation.

The first, the Multi-FirebossPhoenixapplication,requires cooperativeplanning among
agentsto arrive at an acceptablglan to fight the outstandindires [35]. Agent interaction
focuseson loaning bulldozersby one agentto anotheragentthat has insufficient local
resources to effectively fight the fires in its region.

The second,and more developedapplication,involves restoringtransmissionpaths for
dedicatedcircuits in a long-haul communicationsnetwork [36]. The communications
networkis controlledby a group of agents,eachof which are responsiblefor allocating
circuits to specific regions of the network. Multiple circuit restoral goals, located in
different agentsin the network, may be currently active. Often there are alternativepaths
through the network for restoring a circuit. The distributed problem-solving task is to find a
network pathfor eachgoal. This applicationshowsthe complexitiesof distributedsearch

when there is an indirect chaining of constraints among partial solutioliféeirent agents.

It also shows how difficult it is to detect an overconstrained problem while sathetime

trying to solve the problem.
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The focus of thesestudiesis on techniquesfor performing distributed searchwhere key

constraints are not locally available. For examplectimceof which local strategyto use
to fight a fire may depend on how many bulldozers can be loantt byher agent,when
they are available, and for how long.tlrn, thesequestionscanbe answeredn different
ways dependingupon how much flexibility both agentshaveto modify their own fire-

fighting plans.Likewise, one agent’'ssolutionof a subgoalto restorea path throughits

region may have implications for how anotheragent goes about solving its part of a
different goal. Both applications also present situations in whichébessaryesourcego

satisfy all the constraints specified in the goal structure are lacking. This rahaieggnts
to both recognize an overconstrained situation and to find a satisficing solution.

This FA/C style of cooperation is effective both cases.The basicmeansfor cooperation
amongagentsin both applicationsis an iterative exchangeof tentative solutions. The
exchange results in each agent acquiring a more global view of the constraints that affect the
suitability of its local solutions. Both implementationsndicate the importanceof agents

being ableto understandhe stateof their local searchandhow partial solutionsreceived

from other agentsalter further local search.In summary,thesetwo new applications
reinforce the observatiaiat an agent’sability to understandoth its own searchprocess

and the impact of the results produced by other ageoie of the keysto effective FA/C

style problem solving.

Beyond Partial Global Planning

The partial global planning framework representsan important milestone in our
understandingof how to achieve coherentcooperativebehavior in an FA/C system.
However, we did noaddressnanyissuesin this work. Someissueswere not dealtwith
becausef limitations in the evidential reasoningcapabilitiesin the underlying problem-
solving architecture, the simplification of the application as embodied in the DVMT, and the
lack of adequategprocessingpower to simulatelarge and complex environments.Other
issues did not arise because the nature of the applicationiimaadecessaryo solve them

in order to get effective cooperation.

Issues of Scale and Cost

Onesetof issuesconcerndarge systems Evenwith thirteen-agensystems[7], it is not
computationally feasible to exchange partial global psanengevery agent.Instead,such
systems use a hierarchical meta-level organization in which top-level agemstepartial
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global plans for lower levedgents.Canthis ideabe extendedo networksof hundredsof
agents?Alternatively, can agentsdynamically form cooperativegroups that coordinate
closely through partial global plannirggnd more looselywith othergroups?Canthe ideas
of partial global planning be extended to more abstract viewsasthspaceandimplicitly
more abstractiews andlong-termviews of the coordinationrelationshipsamongagents?
The problem of organizationalself-designthat permits both domain- and meta-level
organizationsto be defined dynamically is closely related to these questions. These
guestions are beginnirtg be addressed5, 26]. Anotherrelatedissueconcernswvhether
the computational and communication costs of sophisticateperativecontrol are always
justified. Situations can arise that, based on the characteristicsd#tthendicatethis cost
is not alwayswarranted4]. Onesuchsituationoccurswhen the goal structuresof local
agents are not strongly connected—there is neither a significant am@aa cfdundancy
nor strongconstraintinteractionsamonggoalsin different agents.Canthesesituationsbe
recognized dynamically so that lower overhead cooperative control regimes can be used?

Complex Agent Interaction

Anothersetof issuesrelatesto the type of interactionsamongagentsthat are neededfor
effective problem solving. In thBVMT, it was sufficient for agentsto communicateonly
high-level partial results. In other domains, it maynkeeessaryo selectivelycommunicate
information and goals at detailedlevels. Agents may also want to engagein multi-step
communicationprotocols and, dependingupon the results, temporarily abandon the
solutionof certaingoals. We haveseenthesemore complexprotocolsarise when agents
havemore sophisticatecvidentialreasoningcapabilities[17]. How doesthis increasein
opportunismin local problem solving affect the suitability of partial global planning?
Further,theremay be more complexrelationshipsamonggoalssuchasthe favor relation
[23]. This type of goal relationshipand othersof similar characterrequire agentsto not
only reorder the sequence of goal achievement but to enggmget iplanningto reorganize
their goal structures(such as splitting and merging of goals) to take advantageof
opportunitiespresentedby these more complex goal relationships.The partial global
planning task negotiation algorithm [19] uses a simplified form of this replanning activity.

Another example of more complex relationships occurs when thereahtéme constraints
amonggoals. Agentsmay have alternativemethodsfor solving a goal that trade off the
precision,completenesr certaintyof a solutionagainstthe time to generatea solution
[37, 38]. Also, in this situation, agents may needhteractin ways not currently possible
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in the partial global planning frameworkin order to appropriatelyreorganizetheir goal
structure and dynamically change the criterion for acceptable answers.

Terminating Cooperative Problem Solving

Relatedto the issue of more complex and dynamic relationshipsamong agents’ goal
structuresis the issueof terminatingcooperativeproblem solving. How can the partial
global planningframeworkhandlecomplexcriteria for decidingwhen problemsolving is
complete? Can such termination algorithms be built on top of the ctnaergworkor will
they needto be integratedinto the basic coordination strategy?Termination of system
problemsolving requiressimilar reasoningcapabilitiesneededfor effective coordination.
This includesunderstandingvhat parts of the goal structurehave beenexplored,where
solution uncertainty is preseimt thesegoalsandwhat its characteiis, andwhetherall the
system-wide constraints have been developed that could signifieffietyconfidencein a
solution [17]. The agents in the network use thisrmationto control further cooperative
problemsolving in order to reachan acceptablesolution. How can this information be
abstracted so that it can be transferred among agents? Confimablesn-solvingsystems
also present issues. We currently do not know whaihtpécationsof havingthis type of
systemare for coordinationstrategies.New issuesalso arise in more heterogeneous
systems where agents may have differing criteria as to which goatwatenportant[22,
39, 40].

Ongoing and Future Research

We are approachingheseissuesin multiple ways. One approachs to developa generic
version of partial global planning[22]. Partial global planning, as implementedin the
DVMT, used highly specific domain relationshigsonggoals. The emphasisn this new
work is to define the existing goal relationships generically and tmeaddelationshipsso
that more complex interactionsamong the local searchspacescan be captured. Four
categoriesof goal relationshipsthat are being used: domain relations graph relations

temporal relations and non-computationalresource constraint relations The most
interestingof theseis domainrelations,which include the following goal relationships:
inhibits, cancels constrains predicts causes enablesand subgoal This approachalso
permitsgoalsat different levels of abstractiorto be transmitteddynamicallybasedon the
needs ofcooperativecontrol (see[25, 26] for anotherapproachto communicatingcontrol
information at multiple levels adbstraction) Other extensionsnclude provisionsfor real-
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time cooperativgproblemsolving and heterogeneouagentsthat havediffering criteria for
local problem solving. This work also addresseghe use of negotiationto coordinate
heterogeneous agents.

We are also developing a nerchitecturecalled RESUN [42], for local problemsolving
in a DVMT-like task. This architectureviews interpretationas a processof gathering
evidenceto resolveparticularsourcesof uncertaintyin the interpretationhypothesesWe
developed an evidential representation theludesexplicit, symbolic statementaboutthe
sourcesof uncertaintyin the evidencefor the hypothesesA script-based,jncremental
control planner focuses system activity based on information in the evidential
representationThe planner’ goalsare constructedrom the (partial) solution uncertainties
that need to be resolved in the current context in order to reach an acceptable oveddll level
uncertaintyfor the final solution. The RESUN architecturecan supportthe sophisticated,
evidential reasoningthat is crucial to the implementationof high-level communication
protocolsthat implementdistributed differential diagnosis,multi-sensorfusion, selective
communication of informatioamongagentsat different levels of detail, complexsystem-
wide criteria for terminationof problem solving, etc. This architecturealso providesthe
necessaryinferencing capabilitiesthat were lacking in the DVMT to exploit the more
comprehensive view provided in a hierarchical organization.

The DRESUN architecture [17] is an extension of RESUN for distributed problem solving.
The key to achievingthe necessarycomplex and dynamic interactionsamong RESUN
agents is to make the solution convergence process explioiir Bppproachthis hasbeen
doneby giving eachagentan explicit representatiomf the goalsthat mustbe satisfiedin
orderto meetthe criteria for terminationof (global) problemsolving. Terminationcriteria
that are not satisfiedor have not been verified as satisfied, are viewed as sourcesof
uncertaintyaboutthe global correctnes®f local solutions.Goalsrepresentinghe needto
resolve these uncertaintiesare postedand drive the overall problem solving process.
Communication between agents results ftbmagentstaking actionsto meetthesegoals.
Becausethe goals are explicit and detailed,communicationbetweenagentscan be very
directed. That isinsteadof simply exchangingnformationaboutpartial solutions,agents
communicatespecific evidencethat can be usedto satisfy goals of resolving particular
uncertainties. Another way of viewing our approach is Wehave madeexplicit the need
to enforce constraintsbetweenpossibly interdependensubproblemsof the agents.We
recognize(possibly) interdependensubproblemsand post goals to resolve uncertainty
about whether the relevant partial solutions are consistent. fT@BRESUN architecture
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permitsan explicit and knowledge-basedpproacho resolvinginconsistencythat occurs
among solutions to interacting goals among different agents.

A next step in our researchis to symbolically representand reason about control
uncertainty. This leads toraodel of FA/C problemsolving in which control and solution
uncertaintyis explicitly representedBasedon the characteiof theseuncertaintiesagents
develop plans for resolving them, changethe criterion for an acceptablesolution, or
dynamically reorganize.

For FA/C style problensolving to be appliedto realworld problemsiit is crucial thatthe
designerbe able to provide boundson the quality and resourcesrequiredto produce
solutions. This is especially difficufor non-deterministicsearchalgorithmsthat are at the
heartof many knowledge-basegroblem-solvingapproachesFor this reason,real-time
control with its associatedtechniquessuch as approximate processingand anytime
algorithms is crucial for the practical use of the FA/C paradigm.

Quantitative Models

There is also the need for a quantitatygproacho the designof the FA/C systemso that
performancecharacteristicscan be anticipated. For example the following are some
gualitative intuitions on the application specific requirementsfor the use of the FA/C
paradigm:

» partial solutiongo subproblemsonstructedhroughlocal problemsolving are
more often valid than not or there are sufficient number of subprolieisan
be solvedcorrectly throughjust local problem solving, thus seedingsystem-
wide problem solving with enough correct constraints;

» thereexist sufficiently strongconstraintsamongthe solutionsto subproblems
such that commonly resultirgrrorsin local problemsolving dueto the useof
errorful or incompleteinformation can be detectedfairly quickly before the
invalid partial solution is spread widely;

* local problem-solving performance is not overly sensitiviaéoorder of arrival
of information and digh percentagef invalid local searchpathscan be fairly
quickly pruned or recognized as having low credibility.
The last point relates to the need for a sufficient leveitefnal constraintsassociatedvith
each subproblem such that the use of invalid informatidoced problemsolving doesnot
lead to a large set of partial solutions that seem plausible. Each of the above points relates to
restrictingthe frequencyand scopeof disseminationof errorful partial solutionsso that
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convergence to a valid overall solution can occur using an acceptable |pvetessoland
communication resources. Can we devedometheorythat canbe usedto quantify these
intuitions?

We see this ability to bound and to predict the performance charactexstiégC systems
as one of the major objectives of future research.

/. Summary

It has been tegearssincethe original paperon the FA/C paradigmwas published.Great
strides have been made in our understandirigeabsuesthat arisewhenthis paradigmis
used. The focus of this article is on the solution and control uncertahdiexccurwhena
search is partitioned among agents. We examined this issue from the conceptual perspective
of a goal-based search and from the more realistic perspectavdistfibutedinterpretation
task. The presencef significantamountsof solutionand control uncertaintiesn agents’
local searchegjives rise to uncoordinatedoehavioramong the agents.We describeda
series of increasingly sophisticatewchanismg$or decreasingheseuncertaintiesvith the
consequent increase in the coherencageitactivities. They includeintegratingdata-and
goal-directedcontrol, using static meta-levelinformation specified by an organizational
structure,and using dynamic meta-levelinformation as developedin the partial global
planning framework. Each of these mechanisms provides inforntaatreducessolution
and control uncertainty.

The development®f thesecooperativecontrol mechanismdgs basedon three guiding
principles. The first is to make local control in each agent more sophisticatedso that
availableinformation aboutthe local searchis betterutilized. The secondis for agentsto
exchange meta-information about their local search space so thatdotral decisionscan
be made in the context of a more comprehensive view of the composite search space. In our
experiencethesefirst two principlesare complementangincethe betterthe local control
strategyis in understandingts own searchspacethe easierit is to construct meta-
information that abstractly represethg key aspectf its searchspacethat are important
to another agent. In a similaein, local control musthavea certainlevel of sophistication
in order to exploit the meta-informationabout other agents’ searchspaces.The third
principle is satisficing control in which significantly reduced computationalcosts to
implement cooperativeontrolis traded-offfor lessthanoptimal but still acceptabldevels
of coordination among agents.
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There are many outstandingissuesthat needto be solved before this paradigmcan be
practically applied to a wide class of problems. In particular, the complicated and
asynchronousatureof agentinteractionsin an FA/C distributedsearchmakesit hard to
understandand predict the system’sperformancecharacteristicsWe hope that insights
from this article will inspire researcherdo developa more comprehensivetheoretical
perspectiveor viewing distributedsearch,which in turn will aid us in more rigorously
analyzing the FA/C paradigm.
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