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Graph-Theoretical Methods for Detecting
and Describing Gestalt Clusters

CHARLES T. ZAHN

Abstract—A family of graph-theoretical algorithms based on the
minimal spanning tree are capable of detecting several kinds of cluster
structure in arbitrary point sets; description of the detected clusters
is possible in some cases by extensions of the method. Development
of these clustering algorithms was based on examples from two-
dimensional space because we wanted to copy the human perception
of gestalts or point groupings. On the other hand, all the methods
considered apply to higher dimensional spaces and even to general
metric spaces. Advantages of these methods include determinacy,
easy interpretation of the resulting clusters, conformity to gestalt
principles of perceptual organization, and invariance of results under
monotone transformations of interpoint distance. Brief discussion is
made of the application of cluster detection to taxonomy and the
selection of good feature spaces for pattern recognition. Detailed
analyses of several planar cluster detection problems are illustrated
by text and figures. The well-known Fisher iris data, in four-dimen-
sional space, have been analyzed by these methods also. PL/1 programs
to implement the minimal spanning tree methods have been fully
debugged.

Index Terms—Clustering, data structure analysis, feature space
evaluation, gestalt psychology, graph theory, minimal spanning trees,
nearest neighbor methods, numerical taxonomy, pattern recognition.

I. INTRODUCTION

E SHALL address ourselves to the problem of de-

tecting inherent separations between subsets (clus-

ters) of a given point set S in a metric space governed
by a distance function p(x, y).

The phrase “‘inherent separations” is used to emphasize
that any separation we detect will depend solely on inter-
point distances within the set S. We shall strive for cluster
methods which are ““‘determinate’ in the sense that detection

of a given cluster does not depend on random choices in

the detection algorithm and is not sensitive to the order in
which points of S are scrutinized. In short we want an
answer to the question, “What does the set .S look like in
terms of the structure of the space in which it is imbedded ?”’

To illustrate more concretely what is meant we refer to
the point sets of Fig. 1(a), (e), (f), and (j). In Fig. 1(a), (e),
and (f) we would like to be told that the set falls naturally
into two distinct point clusters. In Fig. 1(j) we would like
to be told that one cluster is present which can be separated
into two clusters at a small “‘neck.”

The cluster detection methods in this paper were moti-
vated by our own personal perception of two-dimensional
point sets as separate groupings or ‘“‘gestalts.”” The principle
of grouping will be **proximity” as described by Wertheimer
[26]. We have investigated the behavior of these clustering
algorithms on point sets in the plane where the set can be
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Fig. 1.

Sample cluster problems.

algorithm is doing. It is our hope that the same methods will
be useful in higher dimensional spaces and this is why we
have posed the cluster problem in a general metric space.

II. APPLICATIONS

The field of taxonomy in biology and the problem of
organizing library materials into groups in a meaningful
manner—these are two good examples where cluster detec-

“seen” and the reader can get an intuitive feel for what the -

tion is useful. In biology one makes measurements on a set ;
of organisms and then attempts to group them in a way '

which reflects similarity based on these measurements. An,

interesting example cited by Bonner [1] is encountered in

be rather loose and hence it is of interest to know if it con-
sists of several smaller groupings which can be observed
directly from the measurement space by cluster detection.
Then we will have found more natural disease categories to
replace or subdivide the original disease.

It must be emphasized that cluster detection will depend
in a very sensitive way on the particular imbedding of ob-
jects in a metric space and this choice will almost certainly
be made on information outside the scope of this paper.

_medicine; a set of 350 patients were measured with regard §
to 18 symptoms. All these patients had been diagnosed as f
having the same disease, whose lengthy Hellenic name shall §
remain unidentified. This disease classification is known to §
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Cluster detection and description find their way into pat-
tern recognition in two rather surprisingly different ways.
In the first the points of a two-dimensional pattern consti-
tute the point set to be clustered after which it is desired to
describe the shapes of whatever clusters emerge. An example
of this is shown in Fig. 1(h). Rosenfeld [2] calls this the
smoothing of quantum-limited pictures, the point being
that connected shapes appear only after somelocal smearing
has occurred. This problem is related to the work of Pizer
and Vetter [3] on visual enhancement of quantum-limited
pictures. Rosenfeld and Pfaltz [4] consider algorithms for
performing such smearing on sets which are subsets of a
uniform planar lattice (binary matrix patterns).

Another application which can be considered an example
of quantum-limited smearing is described by Clark and
Miller [5] and involves the correct linking together of spark
images from a physics spark-chamber photograph. It is
desired to observe the line-like structure of the point set in
Fig. 1(d) and detect the branch points as well as the order
of points along each track. ‘

The second way that cluster detection is applicable to
pattern recognition is by providing an answer to the ques-
tion whether a given set of features constitutes a good fea-
ture space in which to discriminate a given set of pattern
classes. It has been observed recently by more than one
researcher that the crucial problem in pattern recognition is
the selection of “good” features rather than sophisticated
attempts to separate classes in a feature space which may
be poorly chosen. We feel that a reasonable definition for
good feature space in this connection is a space and a metric
in which the clusters are identical (or nearly so) to the
classes to be discriminated. It should be clear that the metric
space clustering algorithms developed in this paper assure
good class discrimination via the nearest neighbor [6]
classifier whenever the ““classes” are “clusters” in the given
feature space with its metric.

Since clustering algorithms give us a yardstick by which
to measure the efficacy of a given feature space we could in
principle attack the problem of feature-space selection via
the learning approaches which previously have been used to
select the parameters of the classifier for a given feature
space. :

Another application for clustering is Hough’s scheme

[32] for recognizing the existence of approximately straight

dotted lines in a two-dimensional picture (bubble-chamber
particle tracks, for example). First he transforms each point
into a line in another plane in such a way that a set of collin-
¢ar points goes into a pencil of lines through a common
point. Such a transformation takes ‘‘nearly” collinear
points into a set of lines whose mutual intersection points
form a relatively dense cluster—hence the need for a cluster
detection algorithm. ‘

Finally, we mention the use of clustering in visual scene
analysis referred to by Rosenfeld ez a/. [38] and Minsky and
Papert [37]. When local gradient detectors are passed over
a digital picture and a threshold is used the picture points
thus extracted usually form dotted curves which trace
boundaries between faces of objects in the scene. Point clus-

tering algorithms are needed to reconstruct the curvilinear
boundaries formed by these points.

I1I. MOTIVATION

Our interest in the general problem of cluster detection
was aroused by a reading of the survey paper by Nagy [7]
and the little book on pattern recognition by Arkadev and-
Braverman [8]. It was further awakened by the survey
paper of Ball [17] on clustering methods. In particular we
were challenged by Nagy’s assertion that few clustering
methods could handle problems like that in Fig. 1(f) suc-
cessfully. It seemed to us that the problems in Fig. 1(a), (e),
and (f) are not substantially different in difficulty for the
following reason: in each case we have two disjoint point
sets P and Q whose distance apart (P, Q) is substantially
larger than the average distance from a point to the nearest
neighbor in its particular point set. This observation sug-
gested that if we connected each point to all other points
within a suitably chosen radius then the resulting graph
would consist of two connected components whose points
were P and Q, respectively. It also occurred to us that the
algorithm just outlined depends only on the point set be-
longing to some metric space and hence is general enough to
extend to E". .

We were also challenged by the statement in [8] that no
algorithm for the problem in Fig. 1(j) was known although
it posed no difficulty for human perception. Arkadev and
Braverman call this problem “learning without reward”
and ascribe considerable importance to its solution. Qur
perception of two clusters in this case can possibly be ex-
plained by the fact that the boundary of the point set con-
tains a narrow portion or “‘neck.” If we construct a graph as
we suggested for Fig. 1(a) there will almost certainly be a
single connected component but it will be possible to discon-
nect it in a nontrivial fashion by deleting an edge-set of small
size. In the simplest case the graph might contain a single
bridge or cut-vertex. Once again this line of attack was
generalizable to high dimensional spaces.

Throughout this trend of thinking we were influenced
either consciously or otherwise by Julesz’s experiments on
humanly perceivable texture differences [9] and a report by
Narasimhan [10]. Both these references stress the impor-
tance of the gestalt principles of “‘proximity,” and “‘similar-
ity” in perceptual groupings of points. Julesz’s paper is
especially important since the experiments lead to the con-
clusion that ““clusters or lines formed by proximate points
of uniform brightness play a decisive role”” in human dis-
crimination of visual texture. Pattern textures of a purely
statistical nature (except point density) tend to be impossible
to discriminate unless such clusters or lines are present. The -
ability to perceive areas of different point density is exempli-
fied by Fig. 1(h).

The use of the “‘minimal spanning tree” of a graph as an
aid to detecting and describing the structure of point clusters
was suggested to us by the processing of spark-chamber
photographs reported by Clark and Miller [5]. We have dis-
covered this to be a most powerful and general tool for these
tasks and have discovered some theorems which indicate
that its success is no accident. It is also rather interesting to
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note that Arkadev and Braverman ([8], pp. 109-110)
sketch an algorithm for cluster detection which essentially
constructs a minimal spanning tree (MST) and Johnson’s
“minimum method” of hierarchical clustering ([28 ], p. 248)
is one of the algorithms for constructing an MST. Gower
and Ross {36] have independently observed the connection
between the MST and cluster analysis; their paper exhibits
ALGOL programs to construct the MST and use it to perform
the single linkage cluster analysis of Sneath [35].

1V. SaMpLE CLUSTER PROBLEMS

We shall briefly describe a set of problems typical of those
which will be treated in this paper. We think the range of
problems indicates the power of graph-theoretical methods

in the context of detecting and describing inherent cluster
structure in arbitrary point sets with a distance function.
Fig. 1(a) represents a pair of well-separated clusters each
having the same relatively homogeneous point density. Not
unexpectedly, most existing clustering methods do well on
this problem [7]. The next problem, Fig. 1(b), is almost
identical to Fig. 1(a) except that the two point densities are
not equal. In Fig. 1(c) the point density varies smoothly
within each cluster but the separation is still substantial. The
problem in Fig. 1(d) is to describe the cluster as composed
of linear pieces with a definite branching structure. Fig. 1(e)
is essentially like Fig. 1(a) but the shape of clusters is quite
different. )

The problem in Fig. 1(g) represents smoothly varying

nonhomogeneous cluster densities similar to Fig. 1(c) but
here we show that the separation is dependent only on the
point densities near where the clusters approach each other.
Solving this problem appears to require some adaptive
mechanism. The problem in Fig. 1(h) involves the ability to
detect sharp gradients in point density as well as to describe
the boundary of the cluster thus detected. Examples like
this show the close relation between the processing of grey-
scale digital pictures [2] and the processing of two-dimen-
sional point distributions [3]. As pointed out by Rosenfeld
[2] distributions like those in Fig. 1(h) can be considered as
quantum-limited versions of grey-scale pictures where local
point density becomes grey-scale. The converse is also true
since photographs and especially halftone images are really
only point distributions which our eyes average to compute
grey values. Rosenfeld and Pfaltz [4] discuss methods for
transforming a quantum-limited picture to a grey-scale
picture on a square lattice.

Fig. 1(i) is like Fig. 1(c) except that the clusters touch and
are not really well separated. We seem to perceive the sep-
aration by noticing that the point density is at a local mini-
mum near where the clusters touch. In Fig. 1(j) we actually
have a single cluster but we notice it contains a very thin
section (‘‘neck’’) whose removal separates it into two dis-
tinct clusters. :

V. GESTALT PRINCIPLES OF PERCEPTUAL ORGANIZATION

To create the proper setting for the methods to be de-
scribed in this paper we shall give a brief resume of those
principles of gestalt psychology which we have borrowed
and attempted to mechanize. In 1923 Wertheimer [26]
enunciated several principles which were claimed to govern
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Fig. 2. Gestalt principles exemplified. (a) Proximity. (b) Pattern ona
discrete lattice. (¢) Smeared lattice pattern. i

the way in which our perceptual processes organize the raw §
sensory data presented to our eyes. Fig. 2(a) illustrates
proximity which is the most basic of all gestalt principles f
The point is that human subjects perceive the set of dots as.
if they were organized into two curves as shown in the lower
right corner of Fig. 2(a). The only reasonable analysis of this
observation is that perceptual organization favors group-
ings which represent smaller interpoint distances. Thi g
principle was the starting point of all our methods fori
cluster detection and in some sense our methods attempt !
precise mathematical formulation of this principle.

A related principle suggests that organizations which ar
simple or minimal in some sense are preferred as are thos
organizations which take smaller amounts of informationto_
encode the picture. Our nervous system seeks the most
economical encoding of the data presented. This is dis§
cussed more fully by Koffka ([21], ch. IV) and Hochberg f
[20], [27]. ;

As we mentioned earlier we owe to Narasimhan [10]ou §
first acquaintance with these gestalt principles as well as the |
suggestion that they have a strong connection with possible
algorithms for pattern description. He incorporates thes:§
principles into a syntactical model of picture description and
suggests its use to investigate on a more rational basis thef§
separation between ‘‘innate” and “learned” perceptud §
organization. A very suggestive idea indeed was the wayjk
that the proximity principle was incorporated through a
smearing algorithm applied to points on a square latticc [
Fig. 2(b) shows an approximate version of Fig. 2(a) ona
discrete square lattice. Fig. 2(c) depicts the smeared version
in which each black point is replaced by an entire 3xIj
neighborhood of black points. After this the connected s¢
of points (whose boundaries can be efficiently computedf
by the “‘curvaturepoint” method of Zahn [29], [30]) reprek
sent the two distinct line patterns that correspond to human
perceptual organization.

VI. INTUITIVE METHODS FOR CLUSTER DETECTION

We shall begin our solution to cluster detection by attack
ing three problems representing the types exemplified it
Fig. 1(a), (g), and (j). Our methods will be highly intuitivg
and directed at each specific problem type. Later we develop
a single method to solve all these but the development of thi
general technique resulted from our realization of severdf
deficiencies in these intuitive and somewhat brute-fory
methods. In spite of their deficiencies these techniques ares
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Fig, 3 Intuitive methods. (a) Homogeneous clusters. (b) Nearest-
neighbor graph with r=u+30. (c) Nonhomogeneous clusters. (d)
Three-nearest-neighbor graph for (c). (¢) Touching homogeneous
clusters. (f) Four-nearest-neighbor graph for (¢) showing the cut point

A and the cut set (e, f).

; good introduction to the latter more powerful methods and

j they illustrate difficulties in cluster detection rather well.
We begin with the simplest case of all—two well-sepa-
rated clusters each with approximately the same homogene-
| ous point density. This is illustrated in Fig. 3(a). Computing
the distance from each point to its nearest neighbor we get a
mean value p of 20.5. The standard deviation ¢ of these
distances is 1.66 and the distance between the clusters is 58.
The range of values of nearest distance is (17.5, 24). The
relatively small value for ¢ is what we mean by the term
; “homogencous™ and the size of intercluster distance rela-
’ tive to u implies “‘well-separated.” It seems reasonable to
i form a graph from the points of Fig. 3(a) by connecting any
pair whose distance is smaller than a threshold value de-
pending on p and 6. Fig. 3(b) shows the graph that results
using (u+30). This graph has exactly two connected com-
ponents representing the clusters as we perceive them. There
might possibly be cases in which the values for i, and inter-
cluster distance are known accurately enough a priori and
the threshold could be precomputed (such a method was

i used by Abraham [31]).

Fig. 3(c) illustrates two clusters with smoothly varying
but nonhomogeneous densities. They are well-separated as

we perceive them because the regions of closest approach
between the two clusters are regions where the density is
high compared to the distance between clusters. The fact
that the left most point of the upper cluster is further from
its nearest neighbor than the distance between clusters does
not confuse us in the slightest; it does, however, mean that
we could never hope to detect these clusters with the method
used on the previous example. We obviously require some
sort of adaptive connecting algorithm and the simplest idea
is to connect each point to its K-nearest-neighbors regard-
less of the absolute distances involved. This idea is closely
related to the variable-aperture method for measuring
density at a point found by Pizer and Vetter [3] to be statis-
tically more suitable than fixed-aperture methods. Fig. 3(d)
shows how the graph constructed fromedges with 3-nearest-
neighbors detects the two clusters perfectly.

The ““touching clusters” example shown in Fig. 3(e) will
appear as a single cluster under the previous methods as in-
deed it should. By the criterion of connectivity it is a single
cluster; we see it as two because it is only connected at a
small “‘neck.” Our intuitive approach is to construct a K-
nearest-neighbor graph (we use K=4 but the choice is
probably not critical) as shown in Fig. 3(f) and look for cut
points (whose removal disconnects the graph) or bridges
(edges whose removal disconnects the graph). Harary [33]
has described an algorithm to detect cut points and Zahn
[34] has recently developed some alternative methods sug-
gested by Pohl’s method {15] for detecting bridges. In Fig.
3(f) there is a single cut point at A which reveals the “neck”
at once. In general the neck may not be so small and it may
be necessary to find a small set of edges (a cut set) whose
removal disconnects the graph like the two edges (e, f) in
Fig. 3(f). This is not a trivial problem but Pohl [15] describes
a reasonable heuristic for approaching it.

VII. MINIMAL SPANNING TREES

The previous section indicated the need for a “locally
adaptive interconnecting mechanism” for a point set—one
which favors nearest neighbors. We have found the minimal
spanning tree to be a powerful mechanism in this regard and
this section will serve to define, exemplify, and characterize
this graph-theoretical construct. Basic definitions of graph
theory may be found in Ore [40] but we shall attempt to
make the discussion as self-contained as possible. Detailed
proofs of theorems may be found in the Appendix.

An edge-weighted linear graph s composed of a set of
points called nodes and a set of node pairs called edges with a
number called a weight assigned to each edge. Graphs are
easier to think about in their geometric form so we shall use
an example to describe the concepts needed for the theorems
of this section. Fig. 4(a) depicts a weighted graph with six
nodes and nine edges. A path in a graph is a sequence of
edges joining two nodes as (ABCFE) or (BADF). A circuit
is a closed path as (ABCA) or (ACFEDA). A connected
graph has paths between any pair of nodes. A tree is a con-
nected graph with no circuits and a spanning tree of con-
nected graph G is a tree in G which contains all nodes of G.
Fig. 4(b) and (c) represents spanning trees of the graph in
Fig. 4(a). If we define the weight of a tree to be the sum of
the weights of its constituent edges then a minimal spanning
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Fig. 4. Graphs and minimal spanning trees. (a) Weighted linear graph.

(b) Spanning tree. (¢} Minimal spanning tree. (d) lustration of

Theorem 3 showing clusters C; and C, and the “inconsistent” cluster-
joining edge (A4, B).

tree of graph G is a spanning tree whose weight is minimum
amorg all spanning trees of G. Fig. 4(c) is the MST for Fig.
4(a). The computational problem of constructing an MST
has been treated by several authors [11}-{13] and is briefly
discussed in the Appendix. It is a surprisingly simple com-
putation.

A partition of the nodes of graph G is a division into two
disjoint nonempty subsets (P, Q). For the graph of Fig. 4(a),
P=(A, B, C) and Q=(D, E, F) constitute a partition. The
distance p(P, Q) across a partition is the smallest weight
among all edges which have one end node in P the other in
Q. The distance p((4, B, C), (D, E, F))=8 for the example
above since the other two edges which span across P and Q
are CD and CF with greater weight than edge AD. The set
of edges C(P, Q) which span a partition will be referred to as
the cut-set of (P, Q) and a link is any edge in C(P, Q) whose
weight is equal to the distance p(P, Q). The set of all links in
C(P, Q) is called the link-set A(P, Q). For the sample parti-
tion above C(P, Q)=(4D, CD, CF) and AP, Q)=(A4D).

Looking at the graph of Fig. 4(a) it seems plausible to
expect that the minimal spanning tree would choose edge
AD as the bridge spanning from set (4, B, C) to (D, E, F)
since that edge does the job at minimal expense. This is in
fact true as is shown in the following.

Theorem 1. Any MST contains at least one edge from
each A(P, O).

Furthermore, it is true that the following theorem holds.

Theorem 2: All MST edges are links of some partition
of G.

The following theorem is important because it reveals
the inherent relationship between the MST and cluster
structure.

Theorem 3: If S denotes the nodes of G and C is a non-
empty subset of S with the property that p(P, Q)< p(C, S —C)
for all partitions (P, Q) of C, then the restriction of any

1IEEE TRANSACTIONS ON COMPUTERS, JANUARY 197 r

MST to the nodes of C forms a connected subtree of the
MST. .

The significance of Theorem 3 for cluster detection is
illustrated in Fig. 4(d) which depicts the MST for a point
set consisting of two clusters C, and C,. No partition
(P,, Q,) of C, is such that p(P,, Q,)>22 and therefore the
hypothesis of Theorem 3 holds since p(C,, C;)=78>22
This assures us that the subgraph of the MST which spaus
only the nodes of C, will be a connected subtree as we see in
Fig. 4(d). The same is also true for C;.

It is quite helpful that the MST does not break up the real
clusters in S, but on the other hand neither does it force
breaks where real gaps exist in the geometry of the point set.
A spanning tree is forced by its very nature to span all the
points but at least the MST jumps across the smaller gaps
first. Theorem 2 says that any MST edge is the smallest jump
from some set to the rest of the nodes. We still have the
problem of deleting edges from an MST so that the result-
ing connected subtrees correspond to the observable
clusters. In the example of Fig. 4(d) we need an algorithm
which can detect the appropriateness of deleting the edge
AB and no others.

The following criterion is suggested for this type of two-
dimensional clustering observable by humans. A tree edg
XY, whose weight W(XY) is significantly larger than the
average of nearby edge weights on both sides of the edg
XY, should be deleted. We call such an edge inconsisten:,
There are two natural ways to measure the significance re
ferred to. One is to see how many sample standard devia-
tions separate W(XY) from the average edge weights on
each side. The other is to calculate the factor or ratio be
tween W(XY) and the respective averages. See Section
XVII for details.

Edge 4B in Fig. 4(d) has a length (weight) of 78. There
are four edges which are within two steps of 4 and their
average length is (21 +22+ 19+ 15)/4=19.25. The sampk
standard deviation for these four edge lengths is approxi
mately 2.7 so that the length of edge AB is more than 2
standard deviations in excess of the average lengths at 4
If we assumed a normal distribution for edge lengths, ther
one exceeding three or four standard deviations would oc
cur less than one percent of the time and hence may be re

garded as significant. A similar situation exists for the
neighborhood of node B. The definition of edge inconsis
tency depends on several factors—the size of neighbor
hood explored for each end node, the number of standard
deviations and the factor considered as significant, ang
whether or not inconsistency is required at both ends. A
later section discusses our computational experience with
these factors including some difficulties encountered near
the fringes of the MST where small sample sizes can give dis
torted results. Finally, we should mention that 4B is th
only edge in Fig. 4(d) which meets our criterion at a signifi
cance level of two standard deviations.

Occasionally we shall refer to a factor of inconsistency

which is the ratio between edge weight and the average o
other nearby edge weights. A factor of 2 usually means the

separation is quite apparent. The example above suggest
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10 us that any uniformly dense point pattern in the plane
which is separated from other points by an amount signifi-
cantly larger than the average nearest distance within the
rattern can probably be detected by humans as a distinct
cluster. It also appears that human perception may be sensi-
tive to the condition stated as hypothesis for Theorem 3.
We suggest this condition as a first approximation to a pre-

ase geometrical statement of what makes a pomt set dis-
tinctly observable to humans.

Before stating the next important theorem we need some
definitions. It is sometimes useful to assign a cost to each
path in a weighted graph by taking the maximum edge
weight of the path. The path (CADE) in Fig. 4(a) has edge
weights (5, 8, 3) and hence a cost of 8. We may think of this
as the cost of going from C to E along the path CADE. It is
natural to ask what path between a pair of nodes has the
least cost and such a path is called a minimax path because
it minimizes over all paths the cost, which is the maximum
weight in the path. In Fig. 4(a) there are four minimax
paths from C to F; they are (CADF), (CADEF), (CBADF),
and (CBADEF), all of cost 8. We see immediately that
minimax paths are far from unique in general. We might
wonder if there exist minimax paths each of whose subpaths
are also minimax. Among the four minimax paths from C
to Fonly the path (CBADF) has this stronger property
which we shall refer to as strongly minimax. The fact that
the strongly minimax path (CBADF) lies within the MST
see Fig. 4(c)) is more than mere coincidence as shown by
the following theorem of Kalaba [14].

Theorem 4: 1f T is an MST for graph G and X, Y are two
nodes of G, then the unique path in 7 from X to Yis a mini-
max path from X to Y.

This result has some of the flavor of Theorem 3 because
the preference for minimax paths in the MST forces it to
connect two nodes X and Y belonging to a tight cluster with-
out straying outside the cluster. Under the condition of
Theorem 3 the change in cost incurred by routing a path
out of a cluster is an increase and hence, by Theorem 4, is
avoided by the MST. It can also be seen that each link of G is
asingle-edge minimax path joining its end nodes.

We have taken the trouble to introduce these theorems
because they help to characterize the behavior of the MST
and they indicate why the MST can be a good starting point
for cluster analysis. The proofs of Theorems 1 through 3 are
in the Appendix along with discussion of algorithms for
constructing the MST. The reader is referred to [14] for the
proof of Theorem 4 and a more detailed discussion of
minimax paths.

We remark in passing that in one-dimensional space the
algorithm for calculating the MST becomes a sort algorithm
and relative compactness measures the tendency toward
longer “runs” of the same class. The actual computation
could be performed more efficiently in this special case by
using more traditional sort algorithms.

VIII. A CoMPOSITE CLUSTER PROBLEM

- We shall now apply methods using the MST to several
interesting cluster problems. To begin we attack a point set
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Fig. 5. Composite cluster problem. (a) Planar point set. (b) Perceptual

gestalt. (c) Minimal spanning tree for (a). (d) Inconsistent and diam-
eter edges. (e) Closer look at inconsistent edges. (f) Consistent edges.
(g) Near-diameter trees. (h) Histograms of tree depth along diameters.

encompassing the peculiar difficulties associated with the
problems in Fig. 1(a) through (g). After careful study of this
single example the reader should be able to convince himself
that each of these seven problems will succumb to the same
MST technique we shall employ for the composite problem.

The point set is shown in Fig. 5(a) and a possible con-

ceptualization of Fig. 5(a) is depicted in Fig. 5(b). Fig. 5(¢)
shows the MST for the point set calculated by visual in-
spection but still quite accurate. Using a factor of 2 as the
measure of significant edge inconsistency we can delete
the two edges shown in Fig. 5(d) and then determine the
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~ diameter (path with most number of edges) of each con-
nected tree remaining. The near-diameter edges are on a
path whose number of edges is fairly close to that for a true
diameter. Fig. 5(e) gives a closer look at the two inconsistent
edges and Fig. 5(f) shows three edges which are consistent.
Fig. 5(g) depicts how well the remaining trees of diameter
and near-diameter edges reflect the cluster separation and
geometrical shapes of the three clusters. The percentages
shown are a crude indicator of the noncompactness or line-
likeness of the cluster. By calculating the maximum depth
of branching from each node of a single diameter path we
can produce histograms which reflect geometrical structure
more specifically. Long runs of zero suggest well-defined
line clusters. Line branching can be detected by histogram-
ming any deep branch in the midst of an otherwise linear
portion of the main diameter as is shown in Fig. 5(h).
Even the doubly connectedness of the larger cluster could
- be detected by looking for ends of the diameter tree which
are very close in the plane relative to their distance apart in
the MST. If we visualize the histogram for this cluster as
being wrapped around to form a cycle, then we obtain an
extremely accurate description of the cluster’s geometrical
and topological properties. The reader is reminded that
everything we have done here can be done in higher dimen-
- sional spaces or, in fact, general metric spaces.

IX. PARTICLE TRACK DESCRIPTION

The next example we shall try is an artificial bubble-
chamber photo with gaps in the tracks and noise points.
Fig. 6(a) depicts a point set like one that might emerge from
the digitization of a simple bubble-chamber photograph.
The “gaps” and “noise” are readily visible. The physical
interpretation of “perception” of this point set as particle
tracks and interaction vertices is depicted in Fig. 6(b); thisis
the correct structure of the image and we would hope to find
an algorithm which would reveal this connectivity structure
without any serious prompting. Notice that this is not so
much a question of cluster detection as it is one of descrip-
tion. A very similar problem for spark-chamber imagery
was solved by Clark and Miller [5] employing a subtle com-
bination of graph theoretical and geometrical concepts.
They initially construct a graph from the points (sparks)
by including edges between pairs of points satisfying a
criterion which is based primarily on distance but also
emphasizes the degree to which the edge in question is
parallel to the expected direction of tracks. The minimal
spanning tree is then computed and “hairs” are removed;
these are nodes of degree 1 connected directly to nodes of
degree 3 or greater. Finally, certain isolated nodes are in-
corporated into the tree on an angular criterion.

We shall show the effect of a somewhat stripped-down
version of this algorithm on our admittedly simpler example
and argue why the MST can be expected to do the right

" thing except for localized anomolies. Fig. 6(c) contains the
MST of the complete graph constructed from the point set.
The “noise” points L, M, N, and O appear as “hair” on the
MST and “gaps” like (4, B) and (D, E) are-bridged as one
would have hoped. It is striking how paths in the MST be-
tween pairs of points follow the basic connectivity per-
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Fig. 6. Particle tracks problem. (a) Artificial bubble-chamber photo-

graph with gaps and noise points. (b) Particle tracks and interaction

vertices. (¢} Minimal spanning tree for (a) showing “hairs.”” (d) MST
without hairs.

ceived in the point set in spite of these “gaps’ and noise.
points. The path from 4 to C goes through the vertex ¥, in
spite of the gap (4, B); the path from I to 7" (which hasa
physical meaning in time) traverses the interaction vertices

V', and V¥, in the correct order in spite of the potential dis-
tractions represented by noise points L, M, N and gaps
(A4, B), (D, E), and (F, G). These facts are simple resulits of
Theorem 4 of the previous section which states that the
minimal spanning tree contains minimax paths between
pairs of points.

The MST can be pruned by eliminating “hairs” as was’*

done by Clark and Miller or alternatively by the diameter
and near-diameter path techniques used on the composite
cluster problem of Fig. 5(a). The resulting tree (shown in
Fig. 6(d)) contains precisely the right connectivity to be
interpretable along the lines of Fig. 6(b). When sequences
of degree-2 nodes are interpreted as a single edge we are
left with a tree whose nodes of degree >3 are interaction
vertices and whose nodes of degree=1 are track starts or}
track ends.

Deletion of inconsistent edges does not play a part here
since the “‘gap” edges would almost invariably be so deleted.
The method will not work effectively if there are close paral-
lel tracks or crossing tracks, both of which phenomena ar
of frequent occurrence in bubble-chamber photographs.
The latter problem can probably bz handled by specia
techniques applied to the MST using edge directions.
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X. ToucHING CLUSTERS

In our next example we shall use MST methods on the
touching clusters problem referred to by Arkadev and
Braverman [8] as “learning without reward.” Fig. 7(a) is a
copy of the cluster set on p. 109 of [8]. The authors have the
following to say about this set.

If asked to draw a line separating two isolated groups of points
(Fig. 7(a)) one would do it without difficulty. But it would be quite
difficult, even impossible, to tell how one did it, i.e., to describe the
algorithm for constructing the separating line. If such an algorithm
for the separating of compact groups of points could be formulated
in a sufficiently clear and detailed form, the problem of learning to
recognize images without rewards would probably be solved.

We feel our treatment of this example constitutes a rather
general answer to their challenge particularly since our
method does not depend on performing the desired sep-
aration with a line (hyperplane in higher dimensional
spaces).

The human perception of Fig. 7(a) as two clusters joined
by a small neck may be related to our ability to imagine a
boundary for the point set as depicted in Fig. 7(b). The
existence of the neck is clearly visible as a relatively small
area with opposing concavities in the boundary on two
sides. Unfortunately, this description.of the neck depends
on concepts such as boundary concavity and opposite di-
rections—concepts involving spaces in which angular
measure makes sense. If we are to have any success applying
graph theoretic and metric space techniques to this problem
we shall need more general concepts of neck and so we pro-
pose the following.

A neck in a graph is any small connected subgraph whose
deletion disconnects the graph into components at least two
of which are substantially larger than the neck itself. The
measure of size for the subgraphs (neck and components)
will be the length of a diameter. The diameter can be defined
using edge lengths if they exist or size of path otherwise. The
idea of neck is a generalization of the concept of cut point in
a graph.

Fora point set imbedded in a metric space we shall define
neck to be a small localized subset of the points whose dele-
tion leaves a set consisting of at least two large clusters sep-
arate in the sense of the hypothesis to Theorem 3 and such
that our normal MST method will detect a significantly in-
consistent edge in the MST for the reduced point set. The
idea of neck in a graph is an appropriate one when we have
constructed a nearest-neighbor graph from a metric point
set but the idea of neck in a point set applies if MST tech-
niques are being used. Hence, in this section we use the
latter.

The MST for the point set is depicted in Fig. 7(c) and one
of the diameters is drawn in Fig. 7(d) with the depth of
branching off the diameter indicated. Fig. 7(¢) shows a near-
diameter subtree of the MST. The associated number of a
node in a graph is the number of edges in the longest path
emanating from that node. Any one of these longest paths
will be called a relative diameter for the node and the node
at the other end of a relative diameter will be called an
antipode of the node. A diameter of a graph is of course a
relative diameter whose associated number is maximum.

The tree of Fig. 7(e) consists of all relative diameters whose
length is within 4 of the diameter length. The associated
numbers of the end nodes are indicated. The path (unique
in a tree) from D to B is a diameter and contains the path
(E, F); an antipode for 4 is the node B at distance 21 from 4
and an antipode for Cis node D at distance 22. The interest-
ing thing is that the path (E, F) is the only subpath common
to the relative diameters (4, B) and C, D). It turns out to be
the intersection of all relative diameters in this near-diam-
eter tree. It seems quite plausible that if there exists a con-
striction in the original point set then it will occur some-
where around the segment (E, F). The idea of intersecting
near-diameter paths was suggested by a similar method
used by Pohl [15] to detect bridges and small cut-sets in a
graph.

In Fig. 7(f) we have deplcted the histogram of branching
depths along the diameter shown in Fig. 7(d); also shown is
the common section (E, F) of relative diameters and within
this the best local minimum. Not only do we expect a con-
striction to be in (E, F) but more specifically we expect it
where branch depths are small and at a local minimum. Ac-
cording to this reasoning we should test the hypothesis that
the points G, H, and / along with their branches (none in this
example) represent a ‘“‘neck” between two otherwise well-
defined clusters. To perform this test we delete the points
G, H, and I at the local minimum and try to detect clusters in
the remaining point set shown in Fig. 7(g). It is visually clear
that the hypothesis is correct in this case and, therefore,
when we construct the MST for the new point set (Fig. 7(h))
and then check for inconsistent edges, the edge (Q. R)
shows up. A more detailed look at this new inconsistent
edge is provided by Fig. 7(j) in which edge lengths are noted.
The edge (Q, R) has a factor of inconsistency somewhat
larger than 2. The geometrical nearness of the inconsis-
tent edge to the deleted points provides further confirma-
tion that a neck exists.

XI. ToucHING GAUSSIAN CLUSTERS

Now we attempt to solve a clustering problem which we
call “touching Gaussian clusters’ because each cluster has a
point density which varies from high values at the center to
low values at the boundary as if density had a Gaussian dis-
tribution. Such clusters can be separated even if they are
touching over a larger segment of boundary than the previ-
ous example. Fig. 8(a) depicts such a cluster pair and Fig.
8(b) shows the centers and boundaries of the two clusters.
A cluster center is a point of high density and can be detected
by its having a low average edge length for edges incident
to it in the MST or a nearest-neighbor graph. The point
should also be a relative maximum of density. Fig. 8(c)
shows the MST for the cluster set and Fig. 8(d) depicts the
path in the MST joining the two cluster centers selected by
this criterion. The division between the two clusters is ef-
fected by breaking this path between centers near the point
of sparsest density which will once again be a relative mini-
mum also. The ‘‘hysteresis smoothing” technique should
probably be employed in looking for this local minimum.
When two Gaussian clusters overlap slightly rather than
just touching, then the point density along the path of
centers will have two local minima on either side of a relative
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maximum because the overlap means density increases.
Fig. 8(e) shows a plot of the edge lengths along the path
between centers and the dip at edge (4, B) is a slight overlap
effect. The point densities plotted in Fig. 8(e) are gotten by
taking the reciprocal of the average length of the two edges
of the path incident to the point whose density is being
cileulated. Edge (4, B) represents the flattest portion of the
relative minimum of point densities and edge e=(4, B) is

aho the relative minimum of edge length between two local

maxima; when this edge is deleted from the MST the result-

ing two connected subtrees correspond almost exactly to
7 the division in Fig. 8(b)—the only error is the misclassifica-
ton of point C at the periphery.

For those who still doubt the authenticity of this cluster
analysis, Fig. 8(f) shows a diameter of the MST with the
point densities plotted along side to indicate how well they
reveal the cluster structure. The branching structure of the

MST reveals the Gaussian-like point density distribution in
the following way. Each cluster has a tree structure exhibit-
ing a radial growth away from the cluster center. This radial
outward growth is essentially a corollary of Theorem 3
along with the monotonic decrease in point densities along
radial lines from the center.

As a concrete use for this variety of cluster detection we
paraphrase Sokal and Sneath ([35], p. 174) who point out
that two species (the points are vectors of measured features
of biological specimens) can be recognized as clusters even
though all intermediate forms are present because the hy-
brids being less frequent represent a saddle point between
two mountains (see Fig. 8(f)). This is clearly a description
of the touching Gaussian cluster problem. These methods
would probably have great difficulty recognizing substan-
tially overlapping Gaussian clusters. See Section XVII for
details.
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clusters.

XII. DENSITY GRADIENT DETECTION

In our next example we face the problem of detecting a
sharp gradient in point density between two fairly homo-
geneous areas of different density as in Fig. 9(a). The bound-
ary that one readily perceives in this point set is drawn in
Fib. 9(b). The minimal spanning tree shown in Fig. 9(c) is
an excellent example of the effect of Theorem 3 because the
upper denser cluster as defined by the boundary in Fig. 9(b)
satisfies the hypothesis of Theorem 3 and, indeed, the re-
striction of the MST to points of the upper cluster is a *“‘con-
nected” subtree. This MST shows how a sparse cluster near
a dense one can be severely fragmented by the MST; the
restriction of the MST to the lower cluster consists of four
connected subtrees, two of which are isolated nodes. One
answer to this problem is to detect and delete the densest
clusters and then repeat with the remaining point set. De-
tecting the limits of the denser cluster involves designing an
algorithm which can single out the four dotted MST edges
in Fig. 9(d). These are the intercluster edges connecting
points in different clusters as defined by Fig. 9(b). By histo-
gramming the values of edge length for the MST (see Fig.
9(e)) we immediately recognize that there is a definitc and
narrow peak around 12.5 and another less definite at about
25.

Especially significant is the well-defined valley or local
minimum in the range 16 to 20. We have designated the

four intercluster edges by a different symbol in the histo
gram. In general we would expect them to occupy the rang
of values between cluster peaks. The idea that intercluste
edge lengths would likely be found at significant loc
minima of the edge length histogram is derived from Prewit
and Mendelsohn [16] who use an analogous idea to deter
mine the best quantization levels for grey-scale digitizing
of cytological imagery.

In any case the four intercluster edges can be distin-
guished from the two sets of intracluster edges in the follow-
ing way. Select nodes of the MST which have incident edg
lengths from both the dense and sparse set determined by
Fig. 9(e). Such a criterion singles out the nodes (P, Q, R, §)
of Fig. 9(d). Now select all edges incident to these node
whose edge lengths are not in the dense set. We get precisely
the dotted edges of Fig. 9(d). In this example it appears thal
the edge inconsistency criterion applied to one end of a
edge would achieve the same purpose but this is only be
cause the density change is extremely abrupt here.

When the dense cluster has been determined by the dele
tion of the edges joining it to the sparse cluster, then the
nodes of the dense cluster should be erased and the MST e
calculat.d for the remaining points. Fig. 9(f) depicts the
subtree of the original MST which serves to define the dens:
cluster and the new MST for remaining points which de-

fines the sparse cluster. The dashed edges are the three edges
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required to construct the new MST from the four fragment
subtrees left over when the upper cluster is removed.

XIII. RATIONALE FOR MST AS CLUSTER DESCRIPTION

We would like to discuss the capability of the MST of a
point set in E™ (or general metric space) to describe the
shape (or topology of near connectedness) of the set. Brief
glimpses of this descriptive ability have been afforded us by
Theorem 3 and several earlier examples, particularly the
particle track problem. Here we shall try to develop a deeper
understanding of what sort of cluster structure is embodied
in the minimal spanning tree and learn how to detect this
information in an efficient way.

Fig. 10(a) shows a planar figure with a central blob and
four arm-like protuberances. A sample point set from this
region is depicted in Fig. 10(b), and the MST in Fig. 10(c).
In Fig. 10(d) we show the effect of several iterations of *‘hair
removal’’ as explained for the particle track problem. As can
be observed this has the effect of deleting most shallow
branching subtrees off the main global paths in the MST.
In this case we continued the iteration until the number of
hairs was the same for two successive iterations. The edges
remaining are shown as very wide in Fig. 10(d). An obvious
defect of the subtree remaining is the fact that the branching
at the end of arm-like structures has been deleted. Happily,
however, these portions can be reintroduced by adding back
sequences of hairs starting from the end nodes of the remain-
ing subtree. We call the resulting tree an MST skeleton
which seems an appropriate name. It is shown in Fig. 10(e)
enclosed by the original figure boundary to show how it re-
veals some of the geometrical structure of the point set.

It should be clear from this example that arms in the point
set will become arms in the MST skeleton but that some
arms which show up in the skeleton are not true revelation
of arm structure. Measuring branch depths and weights
(number of nodes) along the MST skeleton as we did earlier
for near-diameter trees will probably reduce this ambiguity
somewhat but no general guarantee can be made. A some-
what more promising idea is to calculate an MST for a
slightly perturbed version of the original point set and then
any arm structures which show up twice in the same area
are not likely to be spurious. Fig. 10(f) shows such a per-

turbed version of the set in Fig. 10(b) with its MST skeleton.
The skeleton arms show up in Fig. 10(f) and (e) and are the
more outstanding features of the original region.

There are situations where the structure of the MST
reveals the geometry of the point set in a more reliable way
and that is when the point density is greater near the internal
portions of the region as was the case for the Gaussian clus-
ters. Indeed, when point density is inversely proportional
to distance from the boundary the MST skeleton is anal-
ogous to the ““medial-axis’ skeleton of Blum [18].

To see the relation between MST and cluster shape under
the above condition we describe a type of region which we
calla “Gaussian worm” in E™ and discuss what an MST for
a sample point set would look like. Let I" be a smooth rec-
tifiable curve in E" and W,(I') the union of all spherical
neighborhoods of radius r centered at points of I'. Now
consider a probability density imposed on W,(I') in such a
manner that the probability of a point is greater the nearer

S

(b)

(d (® ®

Fig. 10. Cluster description by MST. (a) Planar region. (b) Sample point
set from region of (a). (c) Minimal spanning tree for (b). (d) MST after
iterated hair removal. () MST skeleton. (f) MST skeleton for slightly
perturbed version of (b).

to I' the point is located. We call this a Gaussian worm with
axis I". A sample point set S from such a distribution has
an MST whose structure serves to delineate the axis rather
well. Take any point p on I' and pass a plane (hyperplane)
through p perpendicular to the direction of I" at p. This cut
divides the sample set S into two pieces P and (, a partition
of S. Theorem 1 tells us that the MST for S contains at least
one edge from the link set A(P, Q); now that edge is most
likely to occur near the point p on the axis I" because point
density is higher on the axis making nearest distances
shorter there than at the periphery of the worm. If we took a
transverse wafer slice of the worm and projected the sample
points in the wafer onto the plane of the slice it should look
something like one of the two clusters in Fig. 8(a). This
would suggest a tendency toward radial MST edges pointing
toward the axis, as in Fig. 8(c). Combining these two ob-
servations we should expect an MST whose diameter path
closely approximates the axis I' with radially branching
subtrees off this axial path. ~

The radial edge phenomenon is quite a bonus; it occurs
because edges in the MST tend to follow steepest gradients
in point density. Connecting a point to its nearest neighbor
is indeed tantamount to selecting a point where the density
is most likely higher.

Any strong tendency for a point set to satisfy the Gaussian
worm conditions will reflect in the MST and can be detected
there.

XIV. ADVANTAGES OF MST FOR CLUSTER DETECTION

We feel the principal advantage of the MST is its close
conformity to the ““proximity’ principle of perceptual or-
ganization enunicated by Wertheimer [24], [26]. Theorems
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3 and 4 have a very “gestalt”” flavor because the hypothesis
of Theorem 3 and the idea of minimax path both represent
a specific formalization of the proximity principle. Another
widely held principle of perceptual organization states
([20] p. 87) that, ““Our nervous systems organize the per-
ceived world in whatever way will keep changes and differ-
ences to a minimum.”

The MST is a configuration which satisfies a “‘minimum
principle” and so there is an analogy between the organiza-
tion effected by the MST and that effected by our perceptual
mechanisms whatever they may be. The MST methods de-
scribed here represent a possible model to certain perceptual
mechanisms which should be tested in psychological experi-
ments. The minimum principle is made more attractive by
the demonstrated usefulness in the physical sciences of
“principles of least effort” associated with stable configura-
tions.

Another advantage of MST methodsis determinacy. This
means that the results of applying the method do not depend
on random choices in the algorithm or the order in which
points are scrutinized but are affected solely by the point set
given as input.

The MST of a point set in the plane is invariant under
similarity transformations (translations, rotations, and
changes in size). More generally, it is unchanged under any
transformation which preserves the ordering of the edge
lengths. All this implies that a point set can retain the same
MST under some fairly nonlinear distortions.

Finally, the MST isrelatively insensitive to small amounts
of noise widely and randomly spread over the field. We have
seen this in the particle track problem but the principle
applies much more generally. The noise points will very
often be end nodes of the MST and inconsistent at that.

In a recent paper on cluster techniques Johnson [28]
argues that good clustering algorithms should satisfy the
following three properties.

1) Input data should consist solely of a point set and a
matrix of similarities.

2) The method should be such that a clear, explicit, and
intuitive description of what the clustering accom-
plishes is possible.

3) The method should be invariant under monotone
transformations of similarity measure.

MST methods for the most part satisfy these principles.
We accommodate 1 by treating cluster problems in the
context of a gencral metric space. The reader may in fact
have noticed that the triangle inequality is never needed so
even a metric space is unnecessarily restrictive. Our con-
centration on two-dimensional examples answers 2 and
“monotone invariance” applies because as we have men-
tioned the MST depends only on the ordering of the lengths
of edges. This can be seen from Kruskal’s algorithm [11]
immediately.

XV. HIERARCHICAL CLUSTERS IN TAXONOMY
In the application of cluster detection methods to the
objective classification of biological specimens it is usually
appropriate to be able to detect what amounts to a hierarchy
of clusters. For example, specimens tend to be grouped into
species and these groups are themselves grouped into
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genera, etc. The point distribution in Fig. 11(a) is repro-

duced from the book by Sokal and Sneath on numerical
taxonomy ([35] p. 172) and shows graphically what they g

mean by hierarchical clusters. The two levels of clustering

apparent to most observers of Fig. 11(a) is illustrated in ]

Fig. 11(b).
Once again the MST reveals the hierarchical structure
of the clustering in Fig. 11(a). In Fig. 11(c) we show the

minimal spanning tree for Fig. 11(a). The dashed and dotted §
edges in this figure are all inconsistent so we immediately §
obtain the correct inner level of clustering depicted in Fig.
11(b). If we now coalesce the points in each cluster we
obtain a shrunken version of the MST (a homomorphic |
image in the language of graph theory) consisting of only [

dashed and dotted edges and whose nodes correspond to
the inner clusters of Fig. 11(b). In this new MST the incon-

sistent edges are the dotted ones and the clusters obtained §
are the outer clusters of Fig. 11(b) as desired. This technique §
is similar to but somewhat more sensitive than the dendro- |§

grams of [35], [36].
The degree to which this hierarchy is explicit in the orig-

inal MST is shown by histogramming the edge lengths (se¢
Fig. 11(d)) and observing the one-dimensional clustering [§

that occurs.

As an example of what real data may look like we have §

graphed the 50 specimens each of Iris Setosa and Iris

Versicolor from data tabulated by Fisher [39]. We have for
this example used only two of the four variables found *

there. The MST for this point distribution is shown in
Fig. 11(e) and the speciation is reflected in this structure.
A later section treats the four-dimensional case in full.

XVI. CLUSTERING, LINEAR SEPARABILITY, AND
RELATIVE COMPACTNESS ,

In dealing with problems related to the separability of an
n-dimensional point set into distinct classes we have found
that there are three different criteria for separability which |
itis useful to carefully distinguish. The first two are “cluster |

detection” and “‘hyperplane separation;” Fig. 12(a) illus-
trates the distinction. In the hyperplane case we are given ¢
the classes (solid and open points) a priori and the question

is whether or not a hyperplane (line) exists which separates §

the points into two subsets identical (or approximately so)
to the given classes. In the cluster case the question is to
detect the existence of cluster structure (dashed line) based
only on the interpoint distances. This single example shows

clearly that the two questions are quite different. The third f
criterion is ‘‘relative compactness” as introduced by

Arkadev and Braverman ([8] pp. 20-26) and is important
for pattern recognition in feature spaces. In this case we are
given a set of points divided into classes and the question is
to determine to what extent the classes are intermixed in
space. The upper half of Fig. 12(b) shows two classes which
are relatively compact, whereas in the lower half the two
classes are badly mixed up. It is not an easy matter to
formulate a rigorous definition of this notion but it seems
to be related to how smooth a curve (hypersurface) can be
drawn separating the classes or the ratio between boundary
and interior points of the two classes. An interior point of
a class of points is one which is not very near points of the

other class. A relative-boundary point is one which is near i
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Fisher [39].
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points,

; The MST can be used to approximate the degree of “rela-

Mpactness” of the two classes in a point set. Just con-

some point of the other class. Once ““near’ has been solidly
defined the above definition partitions each class into inte-
rior and boundary points and the degree of relative com-
pactness is reflected in the ratio between the number of
boundary and interior points. This can be seen very quickly
inFig. 12(b) where the mixed set contains no clearly interior

(b)
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Fig. 11. Hierarchical clusters and biological speciatioh. (a) Hierarchical clusters from [35] p. 172, Fig. 7(1). (b) Two levels of clustering present
- in (). (c) MST for (a) showing two separate levels of inconsistent edges. (d) Histogram of MST edge lengths. () MST for Iris species from

()

Fig. 12. Separation criteria compared. (a) Illustration of the distinction between “linearly separable” and ““cluster separation.”
(b) Relative compactness exemplified. (c) MST for relatively noncompact set. (d) MST for relatively compact set.

struct the MST (which takes no account of classes) and then
count the proportion of MST edges joining points in differ-
ent classes. This approximates the ratio of boundary to

interior points.

Fig. 12(c) and (d) show MSTs for two point sets each
consisting of two classes of points. We calculate the relative
compactness by counting the number of MST edges which
join similar points and dividing by one less than the total
number of MST edges. We take one less because the MST
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must have at least one edge between dissimilar points and
we want relative compactness to be | for separated clusters.
In Fig. 12(c) the relative compactness is 59 percent while in
Fig. 12(d) it 1s 77 percent.

The next section has several more examples of this rela-
tive-compactness analysis via the MST. The results ob-
tained there suggest that the simple count of crossover
edges may be somewhat too crude as a measure of relative
compactness. Occasionally a single node which falls into
the area of another class will generate two or three crossover
edges and hence is weighted too heavily.

XVII. COMPUTATIONAL EXPERIENCE WITH
MST CLUSTERING

Programs have been written in PL/1 to calculate the dis-
tance matrix for a set in » space, construct the minimal
spanning tree in a plex-structured format, compute the
relative compactness assuming each point has been given
a class designation, calculate approximate point density at
each point, determine a set of inconsistent edges, and parti-
tion the point set into clusters based on deletion of inconsis-
tent edges from the MST. In its present form the determina-
tion of edge inconsistency requires that the length of the

candidate edge exceed the average local edge length on each

end by o units of the respective sample standard deviation
and furthermore that the ratio of edge length to each aver-
age exceed fr; the statistics are taken from a subtree of
depth d. To get slightly better statistics we use a first pass
with or=3 and fr=2 and eliminate these oversize edges
from the statistics at the second pass. This particular de-
termination of inconsistency obviously does not detect one-
way gradients however steep. :
Several point sets have been analyzed with the help of
the above programs and we shall discuss our conclusions
briefly. Fig. 13(a) depicts a point set gotten by adding small
amounts of “random jitter” to a subset of lattice points.
Using fairly low thresholds ar=2, fr=1.3, we found two
inconsistent edges. One bridges the quite visible vertical
gap and would have been judged inconsistent with 6,=2.9,

fr=L1.71. The other joins the two points in the lower left -

corner to the larger adjacent cluster and would have been
inconsistent with o7=2.1, fy=1.47. The local neighborhood
depth used was d=3.

The most extensive analysis was done on the Iris data
from Fisher [39] mentioned earlier. This involved all 149
(there is a repetition which we deleted) points in four-dimen-
sional space representing three species of iris. To help
visualize this point set Fig. 13(d) shows the original four-
dimensional set mapped into a two-dimensional space in
such a way as to distort the original interpoint distances in
a minimal way [42].

Using the current inconsistency algorithm with d=3,
or=2, and fr=2, we obtain eight inconsistent edges, five
of which are end edges separating single points from the
larger clusters; a sixth edge separates a two-point cluster.
The final two edges separate the Iris Setosa species and a
small four-point cluster at one end of the Iris Versicolor
species. Most of this can be seen in Fig. 13(e) where part of
the MST has been drawn in the plane with its edge lengths
to scale. In spite of the fact that Versicolor and Virginica do
not separate on the basis of our inconsistency measure, the
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Fig. 13. Results of computer experiments. (a) Randomly jittered point

clusters. (b) Smoothed edge lengths along MST path from (e). (¢c) Ex- ;

ample showing failure of edge-inconsistency criterion. (d) Diagram of
Iris species from Sammon [42] illustrating ‘“‘separated clusters,”
“touching clusters,” and “relatively compact sets.” (Fig. 13 continued
on facing page.)

two species are relatively compact at a ratio of 94 percent
since there are only six MST edges between the two species

out of a total 98. Furthermore, it is not hard to see from the
MST that edge (147-78) is the main bridge between the two
species and may warrant more detailed investigation. Fig.
13(b) is a smoothed plot of edge lengths along the MST
path fron node 106 to node 82. Each point represents the

average of three adjacent edge lengths. According to this §

data the edge (147-78) is a local minimum of point density
along the path as is the edge (98-72). The edge (147-78)
would be judged inconsistent for d=2, o,=1.4, and

- Jr=1.4. We conclude that there is some evidence in the

MST indicating a possible division at (147-78) without any
use of the iris class information. At the very least this infor-
mation reinforces the assumed speciation. It also suggests

that Iris Versicolor may be subdivided into three subspecies §

(one fairly small) as determined by the inconsistent edge
(82-94) and the relative minimum edge (98-72). Evidence
of this sort from the MST may be quite helpful in suggesting
where further investigations might be made.

Since the MST for all three Iris species together put five
Versicolors on the part of the tree belonging to Virginica
and vice versa for one Virginica, we wondered if some mis-
take could have been made in the original tabulating of the
data. To test these doubts we performed MST cluster anal-
ysis on the two species separately. The only clearly signifi-
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cant result was that node 107 is well separated (factor=2.7)
from the species it is supposed to belong to.

Two problems were encountered in analyzing the Iris
data. The first is the crudeness of measurements from [39].
In many cases the distance from a point to its nearest neigh-
bor is no more than two or three times the least significant
digit in feature measurement. Fig. 11(e) shows this phe-
nomenon quite graphically. The second problem is a
deficiency in the current determination of inconsistency.
There are cases where an edge which should probably be
judged inconsistent misses detection because of the phe-
nomenon depicted in Fig. 13(c). If edge 4Cis not considered
then edge 4B will be inconsistent with a factor=2. When
AC is part of the local neighborhood of edge AB at node 4
then the factor drops to 1.33—a result we find unsatisfying.

Comparing Fig. 13(d) from Sammon [42] with the results
of MST cluster analysis above we can see several points of
fairly detailed agreement. Setosa is clearly a separate cluster
whereas Versicolor and Virginica are touching. Node 107
which was separated from both species seems to have an
analog in Fig. 13(d) and several Versicolors seem to be
imbedded in the Virginica. There is a set of four points at
the lower left extremity of the middle cluster in Fig. 13(d)
that probably corresponds to the four-point cluster we
found but the gap is not clear. This may be explained by the
fact that Sammon’s measure of distortion of a point set is
based on the average distortion of individual points and
this allows fairly large distortions in one or two points of
the set. Point-set distortions based on the maximum of
individual distortions are usually avoided because they are
very noise sensitive and mathematically intractable.

We have also tested our methods on Gaussian clusters.
Fig. 13(f) shows 144 points (X, Y) with each X and Y chosen
independently from a normal distribution with 0 mean and
unit standard deviation. Fig. 13(g) is the MST for this
point set showing inconsistent edges for d=2, o,;=2, and
fr=1.5. In spite of the generously low factor threshold the
main cluster contains 113 points and the next largest only
five points. Disregarding the single-point clusters and
raising fr to 2.0 we would get only two small clusters
(83, 5, 95, 99) and (2, 86, 6, 40, 53). With the exception of
end edges no inconsistent edge would be found for fr=2.6.
Fig. 13(h) shows a smoothed plot of point density along the
path joining node 70 to node 74. There are two relative
maxima of point density and this bimodal phenomenon can
be observed in the point set which is unexpectedly sparse
at the center. This bimodality and cluster fragmentation at
the periphery would probably occur less frequently for
substantially larger sample sizes. As can be seen from Fig.
13(g) the smaller fragments (including isolated nodes) tend
to be near the periphery of the cluster and the directions of
MST edges tend to be toward the center of the cluster in a
fashion discussed earlier in conjunction with more homo-
geneous Gaussian clusters.

Finally, we tried several cases of overlapping Gaussian
“classes” to see what could be detected from the MST anal-
ysis. In each case there were 72 points in each of two classes
labeled 4 and B. Each class was a translated version of a
sample from the distribution used above. In each case rela-
tive compactness was calculated and seemed to be well cor-
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related with the degree of overlap of the clusters. The follow-
ing table gives relative compactness as a function of the dis-
tance between the centers of the two classes. .

Distance of Centers 0 1.5 2.0 25 30 335 !
Relative Compactness 57  (70,70) (80,83) 89.0° 93.0 9700
An investigation of the point density along major paths !
of the cases with distance=2 revealed no information that
could warrant separating the two classes. A similar investi-
gation of the case with distance =3.35 revealed enough to

divide the MST at a definite relative minimum of point
density which division fit the class designations quite well,

Fig. 13(j) depicts most of the point set and Fig. 13(i) shows
in condensed form several of the major branches in the r

MST. The longest MST path joins node 39 to node 51 and -

» Fig. 13(k) plots point density along this path. The apparent

relative minimum around edge (11, 45) would break the
MST only two steps away from edge (8, 74) which repre-
sents the class separation.

We conclude that fairly inhomogeneous overlapping
Gaussian clusters cannot be detected as separate unless the
overlap is minor.

XVIII. DESCRIPTIONS FOR FURTHER RESEARCH

We see three major directions in which this paper suggests -
further investigation. One is in psychology, one in the ares |
of cluster description, and one relates to feature space deter-
mination for pattern discrimination.

For the psychologist interested in visual perception we
feel the MST along with the idea of “‘edge inconsistency”
and other techniques described earlier afford a quantitative
tool for characterizing patterns of points in the plane. It
seems natural to want to investigate in detail the possible
correlation between the clusters of human perception and
those determined by our quantitative tools. A program of
research similar to the work of Attneave and Arnoult [41]
is what we have in mind. We feel our work strongly suggests
that the inconsistent edges of the MST of a point set are
correlated with cluster separations seen by human visual
perception. A more precise statement of this correlation

awaits appropriate perceptual experiments ; for example, we |

conjecture that the percentage of subjects who see a separa-
tion between two clusters is monotonically related to the
ratio measuring the degree of inconsistency of the edge
bridging the two clusters. We also suspect that the ease of

separation of two clusters (visually) is somewhat dependent |

on the sizes of the clusters and the homogeneity of cluster
density. There are any number of questions that one can
pose in this context and the answers may provide new hints
to psychophysicists.

The second matter of unfinished business is a more exten-
sive study of what quantitative structure of a point set can
be extracted from its MST. We have made several simple
probes in this paper (for example, path histograms and

iterated hair removal) but these can only be considered as
a beginning. Other techniques will probably be motivated
by the need to describe cluster structure that has not oc-
curred to us. We have concentrated on point sets embedded
in metric spaces because there was a great deal we could say
at this level of generality ; nevertheless, point sets in more
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structured spaces (e.g., E® where direction is defined) can
probably be better described by using the additional struc-
ture. For example, the radial structure of density in the
Gaussian clusters of Fig. 8(a) is only hinted at by the
topology of its MST but can be confirmed by observing the
consistency of edge direction in the radial paths and the
uniform distribution of radial directions around the unit
circle (see Fig. 8(c)).

The third direction for research suggested by this paper
is to determine if a particular n-dimensional feature space
is good for the discrimination of two classes of points. The
optimum situation is when the two classes are actually two
clusters as well separated as those in Fig. 1(a). Touching
clusters as in Fig. 1(i) or (j) would still be a useful result.
If the situation were like that in the upper half of Fig. 12(¢e)
then discrimination can probably be accomplished even
though the classes are not clusters. Relative compactness of
two classes is enough to warrant that a “nearest-neighbor™
discrimination algorithm [6] will be moderately successful.
If the two classes are mixed up like the bottom half of Fig.
12(b) then we claim there is no hope for this feature space
and another set of measurements should be tried. The
methods for determining what situation actually applies
are contained here and this gives us a handle on the very
important problem of judging the efficacy of a given feature
space for separating a pair of classes.

APPENDIX

Theorem 1: Any MST for G contains at least one edge
from each A(P, Q).

Proof: We show that a spanning tree 7* containing no
edge from A(P, Q) can be improved by switching one of its
edges for one in A(P, Q). In fact, select any edge
(X, Y)eA(P, Q) and add it to T* to produce a new graph
with precisely one circuit. The portion of this circuit which
lies in 7* must have at least one edge (U, V) in the cut set
C(P, Q) because X and Y are in P and Q, respectively. The
edge (U, V) is not in A(P, Q) by definition of T*. The span-
ning tree T={T* — (U, ¥V)}u(X, Y) has smaller weight than
T*because by definition of A(P, Q), w(X, Y) <w(U, V). Thus

any minimal spanning tree must have at least one edge

from A(P, Q).

Lemma 1: Each edge (X, Y) of a spanning tree T deter-
mines a unique partition (P, Q) of the nodes of G in a
natural way so that C(P, Q) contains exactly one edge in 7.

Proof: Let T'=T—(X, Y) be the graph obtained by
deleting edge (X, Y) from the spanning tree T. Since every
edgeof a tree is a bridge it follows that 7" has two connected
components 73 and T3 and the nodes X and Y are in differ-
ent components (say Xe T3, Ye T3). Now let P denote the
nodes of 7, and Q the nodes of T5. (P, Q) certainly are
disjoint and they contain all nodes of G since no nodes were
deleted from 7 which spans G. Also the only edge in T
joining P to Q is the deleted edge (X, Y) and so the lemma
is proved.

Theorem 2: All MST edges are links of some partition
of G.

Proof: Let T be any MST for G and (X, Y) any edge in
T.Let (P, Q) be the unique partition assured by Lemma 1.
From Theorem 1 we see that T must contain at least one

edge from A(P, Q), but since T contains only one edge from
C(P, Q) it certainly contains only one edge of A(P, Q). The
edge (X, Y) must therefore be the edge which belongs to
A(P, Q)and so (X, Y)is alink of G.

Corollary 1 (Kruskal [11]): If all edge weights of G are
different then the MST is unique.

Proof: In this case each A(P, Q) is a single edge which
must belong to each MST. Thus the set of all links of G,
L(G)<= T for any MST. According to Theorem 2, T < L(G)
for any MST. This means T<L(G)< T for any MST and
hence any MST must be identical to L{G) and so unique.
We have in fact proved the stronger.

Corollary 2: If all edge weights of G are different then the

MST is unique and identical toL(G).

The following theorem is the most important we shall
derive because it relates the MST to the problem of cluster
detection.

Theorem 3. If S denotes the nodes of G and C is a non-
empty subset of S with the property that p(P, Q) < p(C,S —C)
for all partitions (P, Q) of C then the restriction of any
MST to the nodes of C forms a connected subtree of the
MST.

Proof: Select an arbitrary partition (P, Q) of C and
let R=S—C. We must show that any MST contains at
least one edge in the cut set C(P, Q). To do this we need to
show that p(P, Q)< p(P, R) for then A(P, S—P)= C(P, Q).

First notice that

and hence :
pP,R) = p(C,S — O).

By the hypothesis of the theorem

and therefore

p(P, Q) < p(C,S — C) < (P, R).

Asindicated earlier this implies the link set (P, S— P)isa
subset of the cut set C(P, Q). Invoking Theorem 1 we con-
clude that any MST has at least one edge from A(P, S—P)
and hence from C(P, Q) whenever (P, Q) partitions C. This
means the restriction of an MST to C cannot fall into two or
more components.

Algorithm 1 (Kruskal [11]): Arrange the edges of G in
order from smallest to largest weight and then select edges
in order making sure to select only edges which do not form
a circuit with those already chosen. Stop when (n— 1) edges
have been selected where # is the number of nodes in G. The
set of edges is then an MST for G. ‘

Example: The following table shows how Algorithm 1
would work on the graph in Fig. 4(a).

Edge Weight Circuit MST Edges
BC 2 *
DF 2 *
DE 3 *
EF 4 (DEFD)
AB 4 *
AC 5 (ABCA)
AD 8 * (Sthedge)
D 9
CE 10
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Algorithm 2 (Prim [12]): Begin with an arbitrary node of
G and add the edge with smallest weight connected to this
node. This edge with its two end nodes constitutes fragment
tree T,. The kth fragment tree is gotten by adding the short-
est edge from T, _, to the nodes of G not in T, _ ;. This con-
tinues until T, ; is the desired MST.

In this algorithm the MST is grown from a single node
by adding the closest node to the current tree at each stage
along with the edge corresponding to that closest distance
(smallest weight).

Example: For the graph of Fig. 4(a) starting with node A
we get the following.

Fragment Nodes New Edge Weight
A AB 4
A, B BC 2
A,B,C AD 8
A,B,C,D DF 2
A,B,C,D, F DE 3

A, B C, D F E

From the point of view of computational efficiency
Algorithm 2 is the best when done by computer program.
Algorithm 1 requires presorting of all edges and must test
for existence of circuits at each step, both of which are
nontrivial tasks computationally. Algorithm 2, on the other
hand, looks at each edge exactly once and can be pro-
grammed in such a way that only n edges need be in the
computer memory at one time where »n is, as before, the
number of nodes in G. Since the total number of edges in
our graphs will be approximately n?/2 this is important.

Gower and Ross [36] give ALGOL programs to construct
an MST using Algorithm 2 and to print out the MST. They
discuss storage and time requirements for their programs
in some detail. We have implemented Algorithm 2 in PL/1
but the MST is represented by a plex-structure so that
neighborhood explorations in the MST can be programmed
in a more straightforward and efficient manner.
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