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Abstract. The analysis of societies demonstrates the recurrent nature of small
world topology in the interactions of elements in such worlds. The small world
topology proves to have beneficial properties for system’s performance in many
cases, however there are also scenarios where the small world topology’s properties
negatively affect the system’s outcome; thus in depth knowledge on the small world
weaknesses is needed in order to develop new generations of artificial societies and
new models of economic systems. In this paper, a multi-agent system based on re-
quest for proposal protocol and coalition formation organisational paradigm is used
to analyse properties of small world social networks of agents. Experiments cen-
ter on nodes in the network with high betweenness and in particular the distribu-
tion of agents in the population across these nodes. Results show that small world
topology scenarios lose their beneficial properties when non-competitive agents are
positioned as high betweeness nodes in the network.
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1. Introduction

Interactions are the cause and effect of any society. In human societies, the number of
those interactions is reduced because they are affected by geographic constraints and
many other different events that bias the way people interact in an homophilic manner. A
recurrent topology resultant on those constraints is the Small World [16], which beneficial
properties have been studied for many different environments ([17,18] amongst many
others), however, this topology is not exempt of weaknesses, as it has recently been
revealed in [8], where small world networks are compared with other topologies proving
faster convergence to near optimal outcomes but worse long term behavior. A similar
result was obtained in [10] where high clustering coefficient in small world networks
proved to be a handicap in some specific search problems. The present work extend those
results giving an explanation on the negative effects observed in small world topologies.

The specific problem for which network analysis is performed is Coalition Forma-
tion. Coalitional systems are organisational mechanisms where agents have to explore
a search space of agent group combinations in order to improve data flow, allocate re-
sources efficiently, solve a problem in a coordinated manner, or to improve their out-



comes by creating alliances. Those systems have been traditionally studied from a far-
sighted perspective, and focused on the problem of finding stability concepts ([15,14]
amongst many others) . Multi-Agent Systems research introduced the possibility of ex-
perimenting with coalitional systems with a limited number of possible interactions
[1,12], and more recently myopic agents have been studied with concrete knowledge net-
work topologies in team formation [5,6] as well as in firm formation models [2]. In this
line, the work presented here defines a model that considers different small world un-
derlying social networks on an specific type of electronic market allocation mechanism
called Iterated Request For Proposal (RFP from now on). This model was first studied
in [7], and further explored in [9], [11] and [10]. In this environment, an entity regularly
issues a call for tender to provide specific goods or services with certain characteristics.
Providers compete amongst themselves (either individually or in consortia — coalitions).
Structures created are based on complementarity of their members. The more comple-
mentary they are, the better outcome they obtain. However structures do not grow in an
uncontrolled manner, instead they optimise their size leaving out redundant members that
would decrease the share of the eventual income of the coalition. There are many existent
real systems that follow the RFP type procedures such as public building projects, com-
petitive tender for government contracts or even collaborative research project grants. A
main characteristic of the model is that instead of having agents that dynamically ad-
just their social connections [8,5] or that propagate/contaminate their neighbors through
a social network [3,13], agents are constrained by a unmovable social network where
no social capital is transmitted. However, agents can iteratively and incrementally form
coalitions as long as there is a direct neighbor in the coalition — leading to an evolutionary
process that converges to a Nash equilibrium. These dynamics gives shape to coalitions
by putting together agents that can be far away from each other in the social network.
Results obtained explain how the system performance is affected by the concrete capa-
bilities of agents placed in specific positions of the social network. Concretely the posi-
tions studied are those with high betweenness [4]. Betweenness is a well known central-
ity measure that examines the extent to which an actor (node) is between all other actors
within the network. This concept has been extensively used and adapted in network re-
search area becoming one of the most important centrality concepts. In the present work
evidence is provided to support the argument on the importance of betweenness central
nodes in the network in the context of an iterated coalitional system, and specifically,
experiments are addressed to provide data to explain the negative performance observed
in small world networks in [10].

The rest of the paper is structured as follows: section 2 presents a formalisation of
the RFP mechanism. Section 3.1 describes an specific metric that records the amount of
dynamism that a certain topology generates as well as other metrics used to perform the
analysis and the experimental setup. Results on the importance of positioning of agents
with specific individual properties (versatility and competitiveness) in certain parts of the
social network are provided and analysed in section 3.3. Finally, section 4 summarises
the main conclusions.

2. Iterative RFP Coalition Formation Model

A population I = {1,2,...,n} consists of a finite number of » individuals or agents.
Agents compete for creating the best solution proposal to a given task task T'. A parti-



tion o = {01,029, ...,0,} of the population I is a specification of p coalitions of agents
0; = {0i1,0i2, - .., 0im }, Where 0;; represents an agent from population I forming part
of coalition o;. By forming coalitions, agents are able to increase their competitiveness
towards the specified task, they are encouraged to do so as coalitions would be priced
according to their ranking. Moreover they are encouraged to reduce coalition size hence
increasing individual benefits by splitting the potential payoff amongst less members.
Agents have heterogeneous capabilities, thus having different performance levels in dif-
ferent skills. A finite number of & skills, indexed from 1 to k is set for which each agent
0;; has a fixed value: 0;; = <0',L~1j, ofj, ey 05}. This way, it is possible to define a contin-
uum of possibilities between agents that are specialised in the performance of a certain
skill being unskilled for the rest of them, and agents that are versatile, being averagely
apt for the performance of all the skills defined. A Task 7' is specified by a set of £ skill
requirements: 7' = (T'*, T2, ..., T*). Each one of the k skills have a degree of require-
ment. These requirements are modeled in the form of a number. In a coalition, skills of
agents are aggregated in such a way that each agent gives the best of itself in a join ef-
fort to create a group as competitive as possible under the requirements of the Task. The
coalition has a value in each skill representing the aggregated effort of its members. The
aggregation for every skill [ : 1 <[ < k in the coalition is modeled as:
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Each skill is considered as a necessary subtask for performing task 7'. By using the ag-
gregation function shown in equation 1, the agent in a coalition which is the best fit for
performing a certain subtask will be the one that performs it. This specific type of aggre-
gation is chosen because it is characteristic of many different socio-economic processes.
The aggregated effort of agents in equation 1 is used to measure an score scr (o, T') that
indicates how well the agents in coalition o, perform together for accomplishing a task
specification 7T'. The score of a coalition is computed as the scalar product between o;
and 7. Amongst many possible choices, this metric is chosen because it captures in a
simple way the different importance of subtasks 7", and the additive valuation of all the
required skills:

k
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2.0.1. Agent Choices and Strategies

Each player’s strategic variables are its coalition choice to join ¢; and a set of agents
in this coalition ¢j : {(¢jx C 0;) V (¢;x = 0)} to eliminate. The possibility for
optimisation responds to the change of value that certain agents can experiment when in
their coalition they are out-skilled by a new member and so they become redundant. Only
those actions accepted by a majority (more than the half) of members in the affected
coalition, are performed. An agent that is requested to take an action can submit a finite
number of requests in an specific order, in such a way that if an action is not accepted,
the next action is checked and so on. If none of its action proposals is accepted, the agent
stays in the same coalition where it was.

All the agents in the population follow the Competitive Strategy [9], that consists on
proposing a set of actions that contain every proposal that either improves the score of



the coalition the agent is in, or keeps the same score while reducing the size of the coali-
tion. When they receive a proposal from an outsider, they accept if they are not in ¢;;’s
proposal, and if the proposal improves the score or keeps it while reduce the coalition
size.! Every agent j has a fixed social network c; that is a non-empty set of agents. When
considering to join a different coalition, agents are limited to just evaluating coalitions
of agents in a;.

2.0.2. RFP Iterated Model

At time 0, every agent is a coalition of just one element (o; = {o;}). A task T is
issued and a run of negotiation starts in which every agent, sequentially and following
a random order, is asked about an action to take (see previous subsection). Agents have
no knowledge on the order in which they are requested for an action, and when they
are asked they can consider any action involving the coalitions in which there is some
member of their social network. The run ends when all agents have been requested for
an action. The process last as many runs as necessary until it converges to an stable state.
Stability is reached when in a complete run, no agent is willing to leave the coalition
is in or none of its actions are accepted by the hosting coalition.? When the system has
reached equilibrium, coalitions’ scores are captured for further analysis.

3. Experiments
3.1. Metrics used in the experiments:

In order to measure how competitive an agent is in a simple way, every agent in the
population is endowed with the same total number of skill capabilities, but distributed
differently across skills. A highly competitive agent has higher concentration of capabil-
ities in a reduced set of skills while a versatile agent is averagely apt in every skill. This
way we can define a simple metric of Competitiveness: com(o;;), by just measuring the
standard deviation in its skill values weighted by the task values. Analogously, Versatility
is defined as the inverse of Competitiveness: (ver(o;;) = 1/com(o;;)).

In order to test the dynamics that a certain underlying social network permits, a
metric called Historical Average Degree (HAD from now on) is defined. This metric
measures the distance that exists in the social network between agents in a coalition.
What makes this metric different from the classical distance definition (minimal path
length between two nodes), is that the distance is measured just using the links between
the coalition members. The HAD value between two members does not change through
the addition or abandon of partners. When an agent A joins a coalition there is at least 1
member (B) with path-length equal to 1, (otherwise this agent would not directly know
any of the members of the coalition, hence it could not consider that coalition). The
distance to the other members corresponds to 1 (distance from A to B) plus the minimal
path length from B to the member of the coalition through a complete HAD valued
network between members of the coalition. The coalition HAD value is the mean of each

'In [11] a payoff optimisation based strategy (conservative) is compared with the competitive approach used
in here, resulting in worse general results for conservative populations

2In [11] it was shown how the system always converge to an stable state when the population follows an
score maximizing strategy.
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Figure 1. Example of iterated coalition formation process. Edge’s values reflect the HAD between nodes.
Shaded areas denote coalitions.

HAD value between each member of the coalition. This mean is computed for every
coalition when the system has reached equilibrium. Figurel exemplifies how the metric
is computed during the process of coalition formation.

The global performance of the system is computed by measuring the quality (score)
of the coalitions formed. It is assumed that for the entity who issues the RFP, it is impor-
tant to obtain the higher score in the top coalitions rather than obtaining many coalitions
with averagely high score. The concrete function used to measure this, is defined as fol-
lows: Sc(a) = S o (ser(onk, T') * 1/27%). This way, a certain experiment ends up
with better or worse results depending on how efficient the best agents are in getting to
know each other.

3.2. experimental set-up

In order to investigate the effects of the identity of agents in high betweenness positions,
a significant number of experiments have been performed. A total of 1000 networks with
500 nodes have been tested, all of them are Small World networks (using the Watts-
Strogatz model [16] with p = 0.07). For each one of the networks, 3 different mappings
have been created in the following way: on the one hand, for every network, nodes are
ordered decreasingly by betweenness centrality. On the other hand, 2 different orders
of agents are created by computing com, and ver metrics in every agent (see section
3.1) and ordering agents decreasingly by each metric’s values. Every experiment maps
every agent in one of the 2 specific orders (ver-ord or com-ord), to a node according
to its betweenness order in the network. An additional random mapping rdm-ord has
been used to create the third tested order. That creates a total setup of 3000 experiments:
for each one of the 1000 different small world networks, 3 different sets of experiments
are performed, each one with a concrete mapping between node betweenness and agent
characteristics. Experiments are run until the system has converged to an equilibrium
(see section 2.0.2).

For space restriction reasons, not all the experiments performed are shown. Some
of the variables have been fixed. These variables are: the population composition (500
agents with 10 skills and, for every agent a total value of 100, heterogeneously distributed



amongst the skills. The stdev. in the skill distribution is homogeneously distributed from
5 to 20. The task used in all the experiments is: T = (1,2,3,4,5,6,7,8,9,10) *. The
connectivity degree k is also fixed to an average of 10.3 with very few deviation, hence
connectivity is homogeneously distributed and results are not affected by the degree
factor showed in [10].

3.3. Experiments Results

Results obtained by each different mapping at the end of each experiment (each experi-
ment has a different underlying network) are compared in terms of Sc(c*) (see section
3.1). This way, each mapping gets a rank between 1 and 4 (as there are 4 different con-
figurations under test). Figure 2(a) shows the sum of each ranking for each of the con-
figurations tested through 1000 experiments. The main conclusion to drawn from those
results is that btw-com is the mapping that gets better performance (preceeded, of course
by farsighted setup, that permit the agents to have perfect sight of the population). This is
indicating that when competitive agents (see metric description in section 3.1) are those
with higher betweenness in the social network, performance of the system increases. In-
versely, if versatile agents occupy the most betweenness-central positions, the system
performance is clearly worse. As expected, random mapping is placed in between those
two results, occupying the third ranking. The observed advantage of competitive agents
has the following explanation:

If the network would be a totally structured graph generated by Watts-Strogatz
model (with parameter p=0), the coalition created by a competent agent could only im-
prove its score by attracting agents longitudinally through tightly interconnected clus-
ters. Watt-Strogatz small world model slightly break this structure and rewire some con-
nections shortening the distance between different parts of the graph. Rewired nodes are
those who have higher betweenness, as they are involved in many short paths between
nodes in the graph. If agents with high attractive potential (competent agents) are situated
in rewired nodes or nodes close to rewired nodes, competent coalitions will have more
possibilities to grow up in more than one dimension —as it was the case of an structured
network, hence increasing the opportunities of getting into touch with other competent
and compatible agents.

A different perspective for analysing the advantage of positioning competitive agents
in highly central positions is by monitoring the dynamism in the coalitions. Figure 2(b)
shows the historical average degree (HAD) for each mapping. The three configurations
have a similar shape: Starting in the first ranked coalition with a similar value, increasing
until a critical point and decreasing. For explaining the reason and implications of their
differences it is necessary to understand how the coalitional process is registered by the
HAD metric: the best ranked coalition is usually the first one to converge. The process
is top-down as during the formation process of the leading coalition, many agents are
accepted and then made redundant of the coalition when they are outperformed by an-
other joining agent. If an agent is made redundant from the leading coalition it creates
dynamism in lower ranking coalitions, hence until top coalitions do not stabilise, lower
ranking coalitions suffer changes. In com-ord configuration, as top ranking coalitions
stabilise, those agents, that because of their capabilities are meant to form lower ranking

3the difference between values favors the diversity of Competitiveness and Versatility degrees (see section
3.1). None of the values is 0, so that all the skills are required (see section 2)
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Figure 2. Performance results measured in global score terms and dynamism. Competent agents placed in
high betweenness positions prove the best results compared to Versatile or Random mappings.

coalitions, have more limited possible paths to get their way to each other. This is be-
cause possible paths through nodes in top ranking coalitions are blocked. As the stability
process is top-down, second order coalitions reflect a higher HAD value because agents
have to jump through alternative paths as long as their members have enough attraction
power. After a critical point is reached, the HAD value start decreasing reflecting that
agents are not able to find their way to get in contact. The only difference from the three
lines in figure 2(b) is that com-ord (that is competitive agents occupying high between-
ness positions) reaches the maximal point in a smaller ranking coalition. This fact indi-
cates that the most competitive agents are concentrated in the top coalitions. Remaining
agents have less attractive potential, hence they register lower dynamism in the coali-
tions created. The average convergence time registered for com-ord configuration is 20%
lower than for ver-ord, this data supports the previous argument on the low dynamism in
com-ord configurations.

4. Conclusions

Large scale multi-agent systems need to have a reduced agent’s interaction space in order
to avoid combinatorial explosion of interaction possibilities. Research on efficient social
network topologies can be of great help in this area, however every interaction model
requires specific research. In this paper it is shown that the two main properties of small
world topologies (high clustering coefficient and low average path length) fail to create
good global outcome in a general interaction model based on coalition formation organ-
isational paradigm. On the one hand, as it was shown in [10], high clustering coefficient
involves redundant connections and less possibilities of explorations than in other non-
structured models. On the other hand, in this paper it has been shown that short average
path length property is seriously compromised when low competitive agents are placed
in highly betweenness-central nodes of the social network.

Betweenness positioning effects have been measured with two different methods:
a quantitative metric on the aggregation of the coalitions scores and an analysis based
on the HAD metric. While the former depends upon an explicit definition of a valuation



of the results obtained, the HAD metric defined in the paper, permits a more abstract
analysis just based on the social distances that separate each agent of the coalition. The
HAD metric is an innovative analytical tool with interesting applications in the area of
dynamic coalition formation. In this area, the research line followed in this paper takes
an step further by studying in depth the combination of the use of social networks to map
limited awareness of agents .

References

(1]

[2]
[3]

[4]
[5]

[6]
(7]

(8]

[9]

[10]

[11]
[12]

[13]

[14]
[15]
[16]
[17]

[18]

R. Axtell. The emergence of firms in a population of agents: Local increasing returns, unstable nash
equilibria, and power law size distributions. Working Paper 3, Center on Social and Economic Dynam-
ics, Brookings Institution, 1999.

R. Axtell. Effects of interaction topology and activation regime in several multi-agent systems. In
Proceedings of the MABSO0 Intl. Workshop, pages 33—48, London, UK, 2000. Springer-Verlag.

J. Delgado, J. M. Pujol, and R. Sanguesa. Emergence of coordination in scale-free networks. Web
Intelligence and Agent Systems, 1(2):131-138, 2003.

L. C. Freeman. Centrality in social networks conceptual clarification. Social Networks, 1(3):215-239.
M. E. Gaston and M. desJardins. Agent-organized networks for dynamic team formation. In Proceedings
of AAMAS 05, pages 230-237, New York, NY, USA, 2005. ACM Press.

M. E. Gaston, J. Simmons, and M. desJardins. Adapting network structures for efficient team formation.
In Proceedings of AAMAS-04, Workshop on Learning and Evolution in Agent-based Systems, 2004.

S. Kraus, O. Shehory, and G.Tasse. Coalition formation with uncertain heterogeneous information. In
Proceedings of AAMAS 03, pages 1-8, 2003. Melbourne, Australia.

D. Lazer and A. Friedman. The hare and the tortoise: the network structure of exploration and exploita-
tion. In dg.02005: Proceedings of the 2005 national conference on Digital government research, pages
253-254. Digital Government Research Center, 2005.

C. Merida-Campos and S. Willmott. Agent compatibility and coalition formation: Investigating two
interacting negotiation strategies. In Trading Agent Design and Analysis & Agent Mediated Electronic
Commerce VIII (TADA/AMEC), AAMAS’06, 2006. LNAI 4452, pages 75-90.

C. Merida-Campos and S. Willmott. Exploring social networks in request for proposal dynamic coalition
formation problems. In Proceedings of the 5th. International Central and Eastern European Conference
on Multi-Agent Systems CEEMAS’07, Leipzig, Germany.

C. Merida-Campos and S. Willmott. The effect of heterogeneity on coalition formation in iterated
request for proposal scenarios. In Proceedings of the EUMAS Workshop, 2006. Lisbon.

I. Milchtaich and E. Winter. Stability and Segregation in Group Formation. Games and Economic
Behaviour, 38:318-346, 2001.

J. M. Pujol, A. Flache, J. Delgado, and R. Sangiiesa. How can social networks ever become complex?
modelling the emergence of complex networks from local social exchanges. Journal of Artificial Soci-
eties and Social Simulation, 8(4):12, 2005.

O. Shehory and S. Kraus. A kernel-oriented model for coalition-formation in general environments:
Implementation and results. In AAAI/IAAL Vol. 1, pages 134—140, 1996.

J. von Neumann and O. Morgenstern. Theory of Games and Economic Behaviour. Princeton University
Press, 1944.

D. J. Watts and S. H. Strogatz. Collective dynamics of small-world’ networks. Nature, (393):440-442,
1998.

A. Wilhite. Bilateral trade and ’small-world’ networks. Computational Economics, 18(1):49-64, August
2001. available at http://ideas.repec.org/a/kap/compec/v18y2001i1p49-64.html.

H. Zhang, A. Goel, and R. Govindan. Using the small-world model to improve freenet performance.
Comput. Networks, 46(4):555-574, 2004.



