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What 1s a Network?

e A 1s a (finite) collection of

entities together with a specified pattern of
relationships among these entities.

e Three main tools have been used for the
quantitative study of networks:

— graph theory;
— statistical and probability theory;
— algebraic models.
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1. INTRODUCTION

Social Networks

Friendship Net Citation Networks

Movie Actors

Sexual Contacts

Collaboration Networks




1. INTRODUCTION

Transportation Networks

Airport Networks
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1. INTRODUCTION

BiOlOgiCal Networks Protein interaction

Ecological Webs

Genetic Networks

Metabolic Networks




2. NETWORKS...

GOAL: A unified approach Example: Food Web

enabling analysis of the

connection topolog

underlying various

Complex Systems




2. NETWORKS...

Graphical Approach: Vertices and Edges

Example: Simple graph G with A;= 11ff (1,)) Is In the
Vertex Set v(G)={V1,...,v8} Edge Set E(G)
Symmetrical Adjacency Matrix
|> A for the Simple Graph G
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2. NETWORKS...

Graphical Approach...
A, = Liff (i) is in
Directed the edge set E(G)
Graph G
Simple Graph (DiGraph) Non-Symmetrical DiGraph
Adjacency Matrix
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2. NETWORKS...

Graphical Approach...
Simple Graph DiGraph ~ Weighted DiGraph
I~ §
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2. NETWORKS...

Structural Characterization

Vertex Degree: K(v)

Simple Graph I~
I 1\
A I/
|/ VN
Vv .\

e.g. Trade Network

k() =3
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Structural Characterization...

Simple Graph
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e.g. Trade Network

Clustering Coefficient: C(v)
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2. NETWORKS...

Structural Characterization...

Clustering Coefficient: C(v)

Simple Graph
/
I~ e T‘ i
/| \
i/
V e * Degree of vertex @ (number of directly
connected vertices): k(e®) =3

e.g. Trade Network




2. NETWORKS...

Structural Characterization...

Simple Graph
l \

“'\/

e.g. Trade Network

Clustering Coeficient: C(v)

V o{

I

 Degree of vertex @: k(o) =3

e Total number of possible connections
among these 3 neighbors:

Ve k() [k(v)-1] = ¥%[3-2] = 3



2. NETWORKS...
Structural Characterization...
Clustering Coefficient: C(V)

Simple Graph Vv .<
I~

l//l \\  Number of actual connections among
vV @ the three neighbors = 1
\ e Total number of possible connections:
e.g. Trade Network 7 k(v)[k(v)-1]=%[3-2]=3

» C(V)=1/3=0.33333

e Measures how well my neighbors are
connected to each other!



2. NETWORKS...

Structural Characterization...

Simple Connected Graph . . .
S . “Distance” Vi1 to Vj?
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e.g. Trade Network
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Structural Characterization ...

Simple Connected Graph
Length of this path Vi to V) =4
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e.g. Trade Network
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Structural Characterization...

Simple Connected Graph
Length of this path Vito V] =3
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e.g. Trade Network




2. NETWORKS...

Structural Characterization...

DISTANCE Vi to V] = Shortest

Simple Connected Graph path length Vi to Vj, here equal to 3

— I ~Vi
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e.g. Trade Network




2. NETWORKS...

Structural Characterization...

Simple Connected Graph Distance from vertex Vi
to each other vertex v?
|
/1 \ / \
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e.g. Trade Network




2. NETWORKS...

Structural Characterization...

Simple Connected Graph

Distance-1 Vertices from Vertex Vi
I~
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e.g. Trade Network
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Structural Characterization...

Simple Connected Graph
Distance-2 Vertices from Vertex Vi
I~
i \ / \
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e.g. Trade Network \4
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Characterization

Distance 3-Vertices from Vertex Vi

Simple Connected Graph

{:l\ ™~
/
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Distance : Length of the SHORTEST path(s) from Vi to V]




2. NETWORKS...

L(G) = Characteristic Path Length of Graph G

e All-to-all distance matrix:

Length of the shortest path(s)

| 1] 2] 3] 4]s|6]7]6]o
HDEHBEERREE

Val
vo | V3
Vi lvs

N/ 7"

V7\ \V8

V9

L(G) = Average of L; over all vertices Vi and Vj (i # j) in V(G) = 1.94




2. NETWORKS...

E-R Random Graph Model

Paul Erdds & Alfréd Rényi (Hungarian Academy of Sciences, 1960):

Start with a collection
of N unconnected vertices.

Then, for each distinct pair
of vertices, connect them
by an edge with probabillity p.

Denote the resulting graph as

\ G = G(N’p)




2. NETWORKS...

E-R Random Graph Model...Continued

e Degree distribution: Ps(k)

N=1020
p=0.2

Poissonian!

P:(k) = Probability that a
randomly selected vertex
In G will have degree k

Po(k) ~[e(-z) z* J/k!
where z = mean K (depends on N,p)




2. NETWORKS...

Graph G for a Regular Ring Lattice

Regular = Every vertex has
) the same degree

4

\

\ : IV(G)| = No. of Vertices = 16
\3 e Degree k=4
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Clustering: C(G) = 1/2

! i
\\ /
A 2 L(G) = 36/15 = 12/5

Characteristic Path Length:
1 T 1
Vi
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Small-World Network (SWN) Models
Duncan Watts & Steven Strogatz (Nature, 1998):
Construction of SWN G(p), 0< p<1

v e*x V*

Choose a vertex v and edge e*
that connects v to its nearest
neighbor v* in clockwise direction.

With probabillity p, reconnect edge
to a vertex v** chosen uniformly at
random over the ring but with
duplicate edges forbidden.

Continue process clockwise
around ring until 1 lap is complete.
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SWN Models...Continued

Watts-Strogatz 1998: Construction of Small-World Network G(p)

Next consider edges e at distance
2 from from each v in clockwise
direction, and randomly rewire
with probability p.

Moving clockwise, complete a full
lap of distance-2 rewiring.

In general, for a ring of any degree
K, successively rewire ALL edges
with probabllity p by completing k/z
laps around ring.

Rewired edges are called “SHORT-CUTS*
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SWN Models...Continued

Watts-Strogatz 1998: Construction of Small-World Network G(p)

e Forarange of p’s with 0 <p <1,

the SWN G(p) is characterized by
\ — High clustering C(p)/C(0)
— Short path length L(p)/L(0)

Clpy/C(0)  °

L
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Watts, Strogatz. Nature 393/4, 1998
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SWN Models...Continued

Albert-Lazl6 Barabasi (A-B) Scale-Free Network (Science, 1999):

Vv e At each step add new vertex v to
graph and connect 1t to 2 randomly
selected existing vertices v, using
“preferential attachment” prob’s

e Results:
— “Richer-Get-Richer”
— P G(k) ~k -3 (Power Law =Scale Free)
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Properties of the Network Models

Regular W-S Small-World A-B Scale Free E-R Random

Path length

Clustering

=

Long Short Short Short

Large Large Large Small

SWNs fall "between” regular networks and E-R random networks!
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Properties of the Network Models. ..

Regular Lattice A-B Scale-Free SWN  E-R Random Graph

“thick tailed”
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P.(k) = d(k - kTrue) : Pe(k) ~k =3 P.(k) ~ [ e(-z)z¥ J/k!

Delta Function equals 1 at
true degree k and 0 elsewhere

power law z = mean K
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Small-World Nets: Robustness to Shocks
\_~ \
— V

—Highly robust against RANDOM
failures of vertices v

e Network Resiliance:
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Small-World Nets: Significant Impacts
Y
ZAN
» Network Resiliance:

—Highly robust against RANDOM
failures of vertices v
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Small-World Nets: Significant Impacts
/\V//\
/ \L-

— Highly robust against RANDOM {failures
of vertices

e Network Resiliance:

— highly vulnerable to deliberate attack on
HUBS (v’s having a relatively high degree k)



2. NETWORKS...

Small-World Nets: Significant Impacts
[

—Highly robust against RANDOM failures
of vertices

e Network Resiliance:

— highly vulnerable to deliberate attack
on HUBS
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So how well do YOU know Kevin Bacon?

e Small-World Effect =

Hypothesis that every
two people in the world = )
are connected by a '/

surprisingly short chain

N S
of social acquaintances. )
o Example: The trivia g -
wt

game
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S1x Degrees of Kevin Bacon...

 Name taken from 1990 stage play by American playright
John Guare: Six Degrees of Separation

e Play loosely based on 1967 small-world experiment by
Stanley Milgrom suggesting random pairs of U.S. citizens
were connected on average by a chain of six social
acquaintances (people on a first-name basis).

e Pick any , then try to link this actor to Bacon
via a chain of films.

e Actor set for first film 1n chain must include A, each
successive film must include an actor from previous film,
and final film must include Bacon among its actors.
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S1x Degrees of Kevin Bacon.. ..

Example: (from Wikipedia, accessed 4/8/07)
http://en.wikipedia.org/wiki/Six_Degrees of Kevin_Bacon

o was in Change of Habit (1969) with
Edward Asner

® Edward Asner was in JFK (1991) with Kevin
Bacon

® Therefore Elvis Presley has a Bacon Number = 2.
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What’s the average distance between Kevin Bacon and all other actors?
(from Albert-Lazl6 Barabasi, www.nd.edu/~networks)

No. of movies : 46 No. of actors : 1811
Average separation: 2.79

Kevin Bacon

Is Kevin Bacon
the most
connected actor?

876 Kevin Bacon 2.786981 46 1811




