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Goals this lecture

m How to model small world phenomenon
E-R “Random Graph” model
W-S “Small World” model

m Regular Lattice — Random Lattice
m Properties

m Parsing paper Watts-Strogatz (1998)



Review: Why should the world

be anything other than ‘small’?

It is remarkable because

1.

2.

The network is numerically large in the sense that the world contains
n >> 100 people. In the real world, n is on the order of billions.

The network is sparse in the sense that each person is connected to an
average of only k other people, which is, at most, on the order of
thousands (Kochen 1989)—hundreds of thousands of times smaller than
the population of the planet.

The network is decentralized in that there is no dominant central
vertex to which most other vertices are directly connected. This implies
a stronger condition than sparseness: not only must the average degree k
be much less than n, but the maximal degree kmax over all vertices must
also be much less than n.

The network is highly clustered, in that most friendship circles are
strongly overlapping. That is, we expect that many of our friends are
friends also of each other
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Historical developments

Karinthy (1929):
Hungarian novelist: Short story “Chains”, claim of ‘5 degrees’
Solomonoff & Rapoport (1951)

Mathematical Biology: Introduces random graphs, weak connectivity, phase
transition to giant component

Erdos & Renyi (1960)

Mathematics: Fathers of modern random graph theory (8 papers (1950-1968)):
Network property Q (giant components, subgraphs)

Kochen and Pool (1978)
Math and Poli Sci: Social contacts, inspired Milgram
Milgram and Travers (1967)
Sociology and Psychology: Acquaintance networks
‘Six degrees’
Price (1965)
Information Science: Citation network between scientific papers
Power laws, ‘cumulative advantage’ mechanism

Watts-Strogatz (1998)

.... and more to come
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Review: Network Model Requirements

®m (Good) models and reality should have properties of real-
life networks in common!

m Features of real life networks that we have encountered
so far

Power law distributions on degree k;
m “Fat tail”, “Megavalues do occur”

Short average path length 1
m “Small world”, “Six degrees of separation”

High average clustering C
m “My friends are friends with each other”

... and a few other properties we’ll see in time

> Through what processes can the emergence of these
features be explained?
One is the classic “random graph” model: Erdos-Renyi
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Random Graphs

Erd6és and Renyi (1959)

m N nodes .. Any two nodes
has probability p of being
connected

m Each of n(n-1)/2 edges
appear independently
with probability p.

m Average degree <k> = pN

What interesting things can
be said for different values
of p or k ? (that are true as

N > &)

p=0.09: k=1

p=10:k=N
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Random Graphs

Erd6és and Renyi (1959)

\ o p=0.09; k=1

p=0.045;k=0.5

Let’s look at...

=1.0;k=N
Diameter (maximum path length between nodes@

of the largest cluster
Average path length between nodes (if a path exists)
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Random Graphs

p=0.0;k=0 p=0.045;k=0.5
Size of largest component

Diameter of largest component

0 4
Average path length between nodes
0.0 2.0

p=0.09: k=1

4.2

p=10:k=N

1.0



Effect of average degree <k>

phase transition (like in physics!)
0 diameter shrinks

[ path lengths shorten

Iftk<1: \
O small, isolated clusters ) h
. ©
0 small diameters % S
0 short path lengths g- o
o) 46 1.0 [ foe e
©c
Atk =1: @ =
O a giant component > 2
appears c—z S
0 diameter peaks 0 %
0 path lengths are high % 4; R
c O 0 g
= 2 1.0 k
For k > 1: o
26
O almost all nodes S C T
connected § %
s £
L s
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Property “Giant component”

m In many/most (not all!) real-life networks, we see

Small diameter

A high degree of clustering

A heavy-tailed degree distribution
...and

Few connected components:
m often only 1 or a small number independent of network size

> The formation of a giant component is an

example of a property Q (here the giant
component) emerging at a threshold

probability P,(Q)

We’ll encounter thls sort of phenomenon
(“Tipping points” (see Malcom Gladwell) and
discuss the significance in coming lectures
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Random Graphs

m Does E-R model explain the closeness of the
world?

m If connections between people can be modeled
as a random graph, then...

Because the average person easily knows more than
one person (k >> 1), we live in a “small world” where
within a few links, we are connected to anyone in the
world.

Erdés and Renyi showed that average
path length between connected nodesis In N

Ink

11
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Random Graphs

What does this mean?

Guantano
Chen

o nections between people can be
deled as a random graph, then...

[0 Because the average person easily
knows more than one person (k >>

1),

0 We live in a “small world” where
within a few links, we are connected
to anyone in the world.

0 Erdés and Renyi computed average
path length between connected nodes

to be:
In N
Ink

Daniel
Bilar

BIG “IF”!!!

What would
indicate whether
or not this could
be plausible?

12
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Random Graph: Clust. Coetf. <C>

m Compare real-life network’s <C> to <C> in

E-R model

2In arandom graph: C

rand

~1/N (if the

average degree <k> is held constant)

MNetwork N £ C Cland
mavie actors 220228 | 3.80 | 0.79 [ 0.00027
neurzl network 282 2.685 | 0.28 (.05
power grid 4541 | 18.7 | 0.08 | 0.0005

2 E-R model is not a model that generates real life
small-world graphs!

13
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More comparative data on l and C

TABLE [. The general characteristics of several real networks. For each network we indicated the number of nodes, the average
degree (k). the average path length ¢ and the clustering coefficient €. For a comparison we have included the average path
length #pand and clustering coefhicient Crgng of a random graph with the same size and average degree. The last column

identifies the symbols in Figs., 8 and 9.

Networl Size (k) { {rand (' (rand Reference Nr.
WWW, site level. undir.| 153,127 35.21 3.1 3.35 0.107s 0.00023 Adamic 1999 1
[nternet. domain level |3015 - G209]3.52 - 4.11]3.7 - 3.76|6.36 - G.18|0.18 - 0.3 0.001 Yook et al. 2001a.
Pastor-satorras ef af. 2001 2
Movie actors 225,226 6] 3.65 2.99 0.79 000027 Watts, Strogatz 1995 3
LANL coauthorship 52,909 0.7 5.9 1.79 0.43 1.8 x 107 Newman 2001a.b
MEDLINE coauthorship| 1. 520, 251 [S.1 4.6 1.91 0.066 1.1 = 10 7 Newman 2001a.b
SPIRES coanthorship 56. 627 173 4.0 2.12 0.726 0.003 Newman 2001a,b,c 6
NCSTRL coauthorship 11, 994 3.59 9.7 7.5 0.496 3% 1077 Newman 2001a,b 7
Math coanthorship 70,975 3.9 9.5 B.2 0.549 h.d = 1072 Barabési et al. 2001 8
Neurosci. -!'-::-il1ll|]lll'h|]i]:- 209, 293 [1.5 5 5.01 .76 5.5 x 1077 Barabasi ef al. 2001 )
E. coli, substrate graph 252 7.35 2.9 3.04 0.32 0.026 Wagner, Fell 2000 L)
I. coli, reaction graph 315 258.3 2.62 [.O% 0.59 0.09 Wagner, Fell 2000 |1
Ythan estuary food web 134 8.7 2.43 2.26 0.22 .06 Montova, Solé 2000 12
Silwood park food web 154 L.7hH 3.40 3.23 0.15 0.03 Montova, Solé 2000 13
Waords., coocenrence 160,902 T0.13 2.67 3.03 0.437 0.0001 Clancho. Solé 2001 14
Words. svnonvms 22.311 13,45 I 3.584 0.7 0.0006 Yook ef al, 2001 15
Power grid 1. 941 2.67 8.7 12.4 0.05 0.005 Watts, Strogatz 19953 L6
(. Eleqgans 282 1 2.65 2.25 0.28 0.05 Watts, Strogatz 19958 L7

Albert-Barabasi (2002): “Statistical mechanics of complex networks”, p.8
14




Watts-Strogatz ‘Small World’ (1998)

m WS constructed a model in which networks can have both short path lengths [ like
ER ... and high clustering C

m  Result of W-S model in English:
“a few random links in an otherwise clustered graph give an average shortest path close to

that of a random graph”
Regular Small-worlkd Random ! ? TR0 ool o B I i
L u]
osl ° C(p)/ C(0) © ]
L ®
I O
0.6 -
: [ ]
i u]
0.4 - . i
L(p)/ L(O °
sl (p) / L(0) . ]
p=0 > p=1 i ® o
Increasing randomness I * * o o
0 i paal paal 1 PR i
0.0001 0.001 0.01 0.1 1
p

D. J. Watts and S. H. Strogatz, Collective dynamics of “small-
world” networks, Nature, 393 (1998), pp. 440—442.

15
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W-S model investigation
m Effects of rewiring probability p

Does small shortest path mean small clustering? And
large shortest path mean large clustering?

m Watts figured it out through numerical
simulation

As he increased pfromoto1....
» Fast decrease of mean distance I(p)
» Slow decrease in clustering C(p)

2 Exist range of p which generated graphs with
short path lengths I(p) and high clustering C(p)

16
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Original W-S model

m Each node has K>=4 nearest neighbors (local)

m Probability p of rewiring to randomly chosen nodes
p small gives “Regular lattice” (also called “Ordered”)
p large gives “Random graph”
Tunable with parameter p

Regular Small-worlkd
Whatis a
>“Regular
Lattice” ?

p=0 » p=1
Increasing randomness

17



Constructing W-S

a) Select a fraction p of edges

Reposition on of their
endpoints

Add a fraction p of
additional edges leaving
underlying lattice intact

addition of links

m No loops or multiple edgés allowed

18
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C(p) for Ordered lattice (p =0)

Cliques (completely connected subgraphs) Recall Clustering

_~  Coefficient C

k=N-1, n=Y(N-1)

m k neighbors, who can have
* ° ° .
How close the neigh ood of a node is to a k (k'l)/2 PalI'Wlse connections

clique? Edges among first between them
. neighbors of node i

m Some of the connections

n;

C=rionsa kEu o between them are present in
the lattice
< m Here, for K=4:
e _ _ * _
—Q—0—0— C,=3/((4%3)/2) = Y2

-----
-
LEETE DL L L AT LR

<C, > roughly /2 as well

19
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C(p) for Ordered, K-connected lattice
/ N\ Which nodes do 1 and i’s neighbours have in

common?

*
*
““““
------
--------

s K/2 hops away from i The number of

can connect to (K/2 — 1) of i’s neighbors connect}ons
between neighbors
m K/2-1 hops away from i is given y

can connect to (1 + K/2 — 1) neighbors

m K/2 — 2 hops away from i v
K

(2 + K/2 — 1) neighbors

2 K 3
= 1h from i —+i—-1)=—K(K -2
ek 2 =KD

=>» Sum this up

Note: We have to multiply by factor of 2 because 1
has neighbors on both sides but also have to
divide by a factor of 2 because edges are
undirected -> no net effect on summation 20
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C(p) for ordered, K-connected lattice (cont)

m The number of connections between
neighbors is given by

2

z(§+i—1)=§K(K—2)

@ The maximum number of connections 1s

k*(k-1)/2

> Clustering coefficient is

3(K-2)

C =
4(K —1)

21
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1(p) for Ordered lattice

m Recall: Geodesic distance [; ; between vertices i and j is
the shortest path connectlng 1andj

m We are also interested in <I>, the average geodesic
distance between vertex pairs in G

Also called sometimes average path

m Average node is N/4 hops away (a quarter of the way
around the ring), and you can hop over K/2 nodes at a
time

lzi>>l

2K

22
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C(p), I(p) for Random Lattice (p >> 0)

m There are an average of K J ~ In N 11
links per node. ~ In K Sma

m The probability that any two n
nodes are connected is p = K
K/N Cx N small

m The probability that two
nodes which share in a > As p=1, W-S is (almost) like
neighbor in common are Er(fos—Renyi random
connected themselves is the graphs
same as any two random
nodes: K/N
(actually (K-1)/N because they
have already expended one

edge on their common
neighbor. 23
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Summary: Regular vs Random Graph

m Ordered Graphs (p approx 0)
have a high clustering coefficient but high path lengths
m Random Graphs (p >> 0)

have low path length but a low clustering coefficient
m Each match the properties expected from real networks!

Want BOTH!
Regular
Ordered Graph (k=4) Random Graph (k=4)
Long paths Short path length
L ~n/(2k) L~log N
Highly clustered Almost no clustering

C~3/4 C~k/n

24
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Tune p

m Change in o)
clustering 1 lation
coefficient =
and average =
path lengt 0.
as a function ©
of the =
proportion of £
rewired
edges

1% of links rewired

10% of links rewired

25



Small-World is “Sweet Spot”

Regular Smali-world
p=0  p=1
Increasing randomness

0.8 |- ® C(p) / C(0) =
O
0.6 | i i -
0.4 |- i " : - .
oz LPYLO : g
® :' - ® EI p
0 aal 1o af g B 1 P 1
0.0001 ;0.001 0.01 i 0.1
P :
— —ie

Hfne==k==lnn==1then

#»forp=o:
] ~nfekandC~3/4
{Ordered lattice

»forp=1:
l~lnn/InkandC ~k/n
Random Network

#» for o001 =p = o.01:
l~lnn/InkandC~3/4
This iz a small world network

> Does this model
real life
networks?

> Is there still a fly
(or two) in the
olntment?

26



Fly #1: Degree distribution
m Watts-Strogatz m Real-Life
<k> approx. K

P(k) ~ k@
P(k) ~ Poisson(K)

P(k)

log Pik)

27
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Fly #2: Mechanism

m W-S assume
Fixed N
» But Networks grow and shrink

Equal (rewiring/addition of link) probability p

» Does not sound right either .. what about the “rich
getting richer” ?

28
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For next week

m Monday
Reread Watts (1998)
m Thursday

60-90 min: Alberich (2002) “Marvel Universe
looks almost like a real social network”

m Write down terms, concepts that are new/unclear
m Draw concept map to hand in to me

29



