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Goals this lecture

� How to model small world phenomenon

�E-R “Random Graph” model

�W-S “Small World” model

� Regular Lattice – Random Lattice

� Properties 

� Parsing paper Watts-Strogatz (1998)
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Review: Why should the world 
be anything other than ‘small’?
It is remarkable because

1. The network is numerically large in the sense that the world contains 
n >> 100 people. In the real world, n is on the order of billions.

2. The network is sparse in the sense that each person is connected to an 
average of only k other people, which is, at most, on the order of 
thousands (Kochen 1989)—hundreds of thousands of times smaller than 
the population of the planet.

3. The network is decentralized in that there is no dominant central 
vertex to which most other vertices are directly connected. This implies 
a stronger condition than sparseness: not only must the average degree k 
be much less than n, but the maximal degree kmax over all vertices must 
also be much less than n.

4. The network is highly clustered, in that most friendship circles are 
strongly overlapping. That is, we expect that many of our friends are 
friends also of each other
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Historical developments
� Karinthy (1929): 

� Hungarian novelist:  Short story “Chains”,  claim of ‘5 degrees’

� Solomonoff & Rapoport (1951)
� Mathematical Biology: Introduces random graphs,  weak connectivity, phase 

transition to giant component 

� Erdos & Renyi (1960)
� Mathematics: Fathers of modern random graph theory (8 papers (1950-1968)): 

Network property Q (giant components, subgraphs)

� Kochen and Pool (1978)
� Math and Poli Sci: Social contacts, inspired Milgram

� Milgram and Travers (1967)
� Sociology and Psychology: Acquaintance networks
� ‘Six degrees’

� Price (1965)
� Information Science: Citation network between scientific papers
� Power laws, ‘cumulative advantage’ mechanism

� Watts-Strogatz (1998)

…. and more to come
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Review: Network Model Requirements
� (Good) models and reality should have properties of real-
life networks in common!

� Features of real life networks that we have encountered 
so far
� Power law distributions on degree ki

� “Fat tail”, “Megavalues do occur”

� Short average path length l 
� “Small world”, “Six degrees of separation”

� High average clustering C
� “My friends are friends with each other”

� … and a few other properties we’ll see in time

� Through what processes can the emergence of these 
features be explained?
� One is the classic “random graph” model: Erdös-Renyi
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Random Graphs

� N nodes .. Any two nodes 
has probability p of being 
connected

� Each of n(n-1)/2 edges 
appear independently 
with probability p.

� Average degree <k> ≈ pN

What interesting things can 
be said for different values 
of p or k ? (that are true as 

N �∞)

Erdıs and Renyi (1959)

p = 0.0 ; k = 0

N = 12

p = 0.09 ; k = 1

p = 1.0 ; k ≈ N
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Random Graphs
Erdıs and Renyi (1959)

p = 0.0 ; k = 0

p = 0.09 ; k = 1

p = 1.0 ; k ≈ N

p = 0.045 ; k = 0.5

Let’s look at…

Size of the largest connected cluster

Diameter (maximum path length between nodes) 

of the largest cluster

Average path length between nodes (if a path exists)
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Random Graphs

p = 0.0 ; k = 0 p = 0.09 ; k = 1 p = 1.0 ; k ≈ Np = 0.045 ; k = 0.5

Size of largest component

Diameter of largest component

Average path length between nodes

1 5 11 12

0 4 7 1

0.0 2.0 4.2 1.0
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Effect of average degree <k>

If k < 1:
� small, isolated clusters

� small diameters

� short path lengths

At k = 1:
� a giant component 

appears

� diameter peaks

� path lengths are high

For k > 1:
� almost all nodes 

connected

� diameter shrinks

� path lengths shorten P
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Property “Giant component”
� In many/most (not all!) real-life networks, we see 

� Small diameter

� A high degree of clustering

� A heavy-tailed degree distribution

… and

� Few connected components:
� often only 1 or a small number independent of network size

� The formation of a giant component is an 
example of a property Q (here the giant 
component) emerging at  a threshold 
probability Pc(Q)

We’ll encounter this sort of phenomenon 
(“Tipping points” (see Malcom Gladwell) and 
discuss the significance in coming lectures 
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Random Graphs

� Does E-R model explain the closeness of the 
world?

� If connections between people can be modeled 
as a random graph, then…

� Because the average person easily knows more than 
one person (k  >> 1), we live in a “small world” where 
within a few links, we are connected to anyone in the 
world.

� Erdős and Renyi showed that average 
path length between connected nodes is

k

N

ln

ln
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Random Graphs

What does this mean?

� If connections between people can be 
modeled as a random graph, then…

� Because the average person easily 
knows more than one person (k  >> 
1),

� We live in a “small world” where 
within a few links, we are connected 
to anyone in the world.

� Erdős and Renyi computed average 
path length between connected nodes 
to be:

k

N

ln

ln

BIG “IF”!!!

What would 

indicate whether

or not this could

be plausible?

Erdıs

Michael

Stewart George

Cybenko

Daniel

Bilar

Guantano

Chen
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Random Graph: Clust. Coeff. <C>

� Compare real-life network’s <C> to <C> in 
E-R model

�In a random graph:  Crand ~ 1/N   (if the 
average degree <k> is held constant)

� E-R model is not a model that generates real life 
small-world graphs!
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Albert-Barabasi (2002): “Statistical mechanics of complex networks”, p.8

More comparative data on l and C
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Watts-Strogatz ‘Small World’ (1998)

� WS constructed a model in which networks can have both short path lengths l like 
ER … and high clustering C

� Result of W-S model in English:
� “a few random links in an otherwise clustered graph give an average shortest path close to 

that of a random graph”

D. J. Watts and S. H. Strogatz, Collective dynamics of “small-
world” networks, Nature, 393 (1998), pp. 440–442.
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W-S model investigation

� Effects of rewiring probability p
� Does small shortest path mean small clustering? And
large shortest path mean large clustering?

� Watts figured it out through numerical
simulation
As he increased p from 0 to 1 ….

� Fast decrease of mean distance l(p)

� Slow decrease in clustering C(p)

�Exist range of p which generated graphs with
short path lengths l(p) and high clustering C(p)
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Original W-S model
� Each node has K>=4 nearest neighbors (local)

� Probability p of rewiring to randomly chosen nodes

� p small gives “Regular lattice” (also called “Ordered”)

� p large gives “Random graph”

� Tunable with parameter p

What is a

�“Regular 
Lattice” ?
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Constructing W-S

� No loops or multiple edges allowed

Select a fraction p of edges

Reposition on of their 
endpoints

Add a fraction p of 
additional edges leaving 
underlying lattice intact
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C(p) for Ordered lattice (p =0)

� k neighbors, who can have 
k*(k-1)/2 pairwise connections 
between them

� Some of the connections 
between them are present in 
the lattice

� Here, for K=4: 

Ci = 3/ ((4*3)/2) = ½

<Ci > roughly ½ as well

Recall Clustering 
Coefficient C
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C(p) for Ordered, K-connected lattice

� K/2 hops away from i 
� can connect to (K/2 – 1) of i’s neighbors

� K/2-1 hops away from i
� can connect to (1 + K/2 – 1) neighbors

� K/2 – 2 hops away from i
� (2 + K/2 – 1) neighbors

….
� 1 hop away from i

� 2*(K/2 – 1)

� Sum this up

Note: We have to multiply by factor of 2 because i
has neighbors on both sides but also have to 
divide by a factor of 2 because edges are 
undirected -> no net effect on summation
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Which nodes do i and i’s neighbours have in 
common? 

i

The number of 
connections 

between neighbors 
is given by
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C(p) for ordered, K-connected lattice (cont)

� The number of connections between 
neighbors is given by
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� The maximum number of connections is 
k*(k-1)/2
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�Clustering coefficient is
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l(p) for Ordered lattice
� Recall: Geodesic distance li,j between vertices i and j is 
the shortest path connecting i and j

� We are also interested in <l>, the average geodesic 
distance between vertex pairs in G
� Also called sometimes average path

� Average node is N/4 hops away (a quarter of the way 
around the ring), and you can hop over K/2 nodes at a 
time

1
2

>>≈
K

N
l
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C(p), l(p) for Random Lattice (p >> 0)

� There are an average of K 
links per node.

� The probability that any two 
nodes are connected is p = 
K/N

� The probability that two 
nodes which share in a 
neighbor in common are 
connected themselves is the 
same as any two random 
nodes: K/N
� (actually (K-1)/N because they 
have already expended one 
edge on their common 
neighbor.

small             
N

K
C

small          
ln

ln

≈

≈
K

N
l

� As p=1, W-S is (almost) like 
Erdos-Renyi random 
graphs
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Summary: Regular vs Random Graph

� Ordered Graphs (p approx 0)
� have a high clustering coefficient but high path lengths

� Random Graphs  (p >> 0)
� have low path length but a low clustering coefficient

� Each match the properties expected from real networks! 
Want BOTH!

Random Graph (k=4)

Short path length 

� L~logkN

Almost no clustering

� C~k/n

Ordered Graph (k=4)

Long paths 

� L ~ n/(2k) 

Highly clustered 

� C~3/4
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Tune p

l(p)/l(0)

C(p)/C(0)

10% of links rewired
1% of links rewired

No exact analytical solution

Exact analytical solution

� Change in 
clustering 
coefficient 
and average 
path length 
as a function 
of the 
proportion of 
rewired 
edges
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Small-World is “Sweet Spot”

� Does this model 
real life 
networks?

� Is there still a fly 
(or two) in the 
ointment?



27

Fly #1: Degree distribution
� Watts-Strogatz

� <k> approx. K
� P(k) ~ Poisson(K)

� Real-Life
� P(k) ~ k-α
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Fly #2: Mechanism

� W-S assume

�Fixed N

� But Networks grow and shrink

�Equal (rewiring/addition of link) probability p

� Does not sound right either .. what about the “rich 
getting richer” ?
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For next week

� Monday

�Reread Watts (1998)

� Thursday

�60-90 min: Alberich (2002) “Marvel Universe 
looks almost like a real social network”

� Write down terms, concepts that are new/unclear

� Draw concept map to hand in to me


