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Abstract. Energy consumption reduction is an increasing trend in ma-
chine learning given its relevance in socio-ecological importance. Conse-
quently, it is important to quantify how real-time learning algorithms
tailored for data streams and edge computing behave in terms of accu-
racy, processing time, memory usage, and energy consumption. In this
work, we bring forward a tool for measuring energy consumption in the
Massive Online Analysis (MOA). First, we analyze the energy consump-
tion rates obtained by our tool against a gold-standard hardware solu-
tion, thus showing the robustness of our approach. Next, we experimen-
tally analyze classification algorithms under different validation proto-
cols and concept drift and highlight how such classifiers behave under
such conditions. Results show that our tools enable the identification of
different classifiers’ energy consumption. In particular, it allows a bet-
ter understanding of how energy consumption rates vary in drifting and
non-drifting scenarios. Finally, given the insights obtained during exper-
imentation on existing classifiers, we make our tool publicly available to
the scientific community so that energy consumption is also accounted
for in developing and comparing data stream mining algorithms.

Keywords: Data stream mining · Energy consumption · Green com-
puting.

1 Introduction

Data is consistently being generated, stored, and processed. Several applications
provide data generated in large amounts, frequency, and speed. In this paper,
we focus on such scenarios the so-called data streams. Data streams are, per
definition, potentially unbounded and non-stationary data sequences [10]. Con-
sequently, performing data mining to extract useful insights and patterns from
such data requires algorithms that are tailored to such scenarios.

In contrast to traditional machine learning, the data stream mining area
has shown concerns with the trade-off between accuracy and computational re-
sources, i.e., processing time and memory consumption [5]. Nonetheless, recent
research has shown that we still need more significant steps toward sustain-
ability. For instance, authors in [28] depict that the CO2 emissions of training
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neural networks are larger than that of a car in its lifetime. First, there is no
clear relationship between processing time, memory consumption, and energy
consumption. Even though these components are tied to one another, multi-
threading, compiler, and other low-level computational architecture have been
shown to impact the entire process, and, consequently, energy consumption can-
not be directly estimated from such components [16, 17].

Having both sustainability and the lack of generic tools for quantifying energy
consumption in streaming scenarios as motivation, we bring forward a tool for
researchers and practitioners to investigate how data stream mining algorithms
behave under different streaming settings, e.g., with and without concept drifts,
different validation schema, etc. In opposition to previous works [13, 14], our tool
is generic because it can be coupled with any classifier and data stream available
in the Massive Online Analysis (MOA) framework [6], which is the off-the-shelf
solution for implementing and testing streaming methods. We experimentally
evaluate our tool against a hardware solution and assess the energy consumption
of different classifiers under different streaming settings. Finally, the tool is made
publicly available to the scientific community as a byproduct of our research.

This paper is divided as follows. Section 2 describes data stream mining and
brings forward the main concepts in energy consumption. Section 3 discusses
related works that lie at the intersection of energy consumption and data stream
mining. Section 4 describes our tool for energy consumption measurements and
describes how it has been combined with the Massive Online Analysis (MOA)
[6] framework. Section 5 discusses the analysis conducted to validate our tool
and assess different classifiers under different experimental conditions. Finally,
Section 6 concludes this work and states envisioned future works.

2 Data Stream Mining and Energy Consumption

Data streams are potentially unbounded data sequences made available over
time, which may be non-stationary. Consequently, storing an entire data stream
is unfeasible since it is not entirely available at once, and it would not fit in mem-
ory [10]. As a result, researchers and practitioners have devoted efforts towards
developing efficient algorithms to process and mine data that arrive sequentially
over time. Therefore, data stream mining is understood as the investigation of
patterns, anomalies, and correlations in streaming data. In particular, in this
work, we focus on classification, the most popular task in data stream mining
that conveys the prediction of a discrete output given a set of input variables.
More formally, we denote a data stream S to provide instances it = (xt, yt) at
timestamps denoted as t. We also denote classification as the task of learning
a predictive model f : x → y, where y is a discrete label in Y . In practice, we
expect predictions ŷ to be accurate given the ground-truth y values.

One of the main challenges in data stream mining is concept drift [31], which
regards changes in the data distribution that may render a classifier obsolete.
Formally, a concept C =

⋃
yi∈Y {(P [yi], P [x|yi])} is a set of class priors and

class-conditional probability density functions [10]. Therefore, a concept drift
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is said to occur between two timestamps ti and tj if Cti ̸= Ctj [12]. Conse-
quently, classifiers for data streams must be adaptive, which means that f may
be adjusted when newly labeled instances are made available.

2.1 Classifiers

Over the years, different approaches have been developed for the classification
task in data streams. In practice, these classifiers are variants of traditional
classifiers available for batch scenarios.

A popular approach for classification in streaming scenarios is the Incremen-
tal Naive Bayes [24]. As its batch counterpart, it assumes that input features
are independent. With the arrival of a training instance, all probabilities are
updated according. Since probabilities are based on counters, and there is no
need to store instances, Naive Bayes has a constant memory consumption and
processing time. Nonetheless, it does not present any traits to identify and adapt
to concept drifts.

The most common approach for learning from data streams is decision trees.
In particular, Hoeffding Trees [9] is the most popular approach as it branches over
time when statistically enough data (grace period, nmin) and evidence has been
gathered, according to the Hoeffding Bound [22]. The Very Fast Decision Tree
(VFDT) is a popular implementation of incremental Hoeffding Trees, meaning
that it continuously branches as new data becomes available and does not revisit
the quality of previously created split nodes. In contrast, the characteristic of
revisiting split nodes is observed in Hoeffding Adaptive Trees [4], in which each
split node is coupled with an ADWIN drift detector [3]. Whenever a drift is
flagged, the corresponding split node is replaced by a leaf node, which can branch
again if the Hoeffding inequality is met. Even though Hoeffding Adaptive Trees
significantly improve accuracy rates compared to incremental trees, even better
results are obtained when creating ensembles of Hoeffding Trees. A state-of-the-
art exemplar of ensembles of Hoeffding Trees is the Adaptive Random Forest
(ARF) [19], in which Randomized Hoeffding Trees are trained in parallel and
coupled with drift detectors to identify and adapt to concept drifts rapidly. ARF
adjusts the sampling process with Poisson(λ = 6) so that instances have higher
chances of being used during training, thus speeding up the drift adaptation
process. In the test step, classifiers’ votes are combined using weighted majority
voting, i.e., classifiers with higher accuracy have a higher impact on the final
prediction. Consequently, ARF is a strong learner that achieves state-of-the-art
results in terms of accuracy, yet, at the high expense of computational resources.

2.2 Requirements

Throughout the training and test steps of data stream classification, streaming
classifiers must meet certain requirements [5, 6]:

– Requirement #1: Process an example at a time, and inspect it only once
(at most);
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– Requirement #2: Use a limited amount of memory;
– Requirement #3: Work in a limited amount of time;
– Requirement #4: Be ready to predict at any point; and
– Requirement #5: Detect and adapt to concept drifts.

This list has been incremented in the works of Garćıa-Mart́ın [15, 17, 18], in
which energy consumption is highlighted as a relevant aspect in data stream
mining since several classifiers have been tailored focusing solely on accuracy
and overlooking sustainability. This is one of the main drivers of our work, i.e.,
to allow researchers and practitioners to quantify the energy consumption of
data stream classifiers and determine under which conditions they fail to meet
energy sustainability criteria.

3 Related Works

Over the years, different approaches to measuring energy consumption have been
proposed. This section highlights approaches for measuring energy consumption
in data stream mining and decreasing energy usage. A first significant study is
[14], in which authors used PowerAPI [30] to quantify the energy consumption
of Hoeffding Trees despite acknowledging that it overlooks RAM consumption.
The same authors have changed their approach in [13], in which Jalen (now
called JourlarX) [26] has been used to quantify energy consumption of Hoeffding
Trees on a function-basis. This allowed the authors to identify bottlenecks in the
existing Hoeffding Tree implementation available in MOA.

Finally, authors in [17] and [18] have used Intel’s RAPL [7] to quantify the
energy consumed by the DRAM and the processor based on accesses to the pro-
cessor performance counters. Even though Intel’s RAPL code is not available,
authors disclose that its accuracy has been checked in [21] and that it does not
introduce processing overheads. It is also relevant to highlight that the work of
[18] introduces a Hoeffding Tree variant in which the grace period (nmin) is ad-
justed so that branching is only attempted according to a user-given threshold.
The results showed that the proposed Hoeffding Tree variant has accuracy con-
vergence while approximately 65% less energy consumption rates. On the other
hand, the work of [17] introduces a framework to quantify the energy consump-
tion of Hoeffding Tree ensembles while accounting for decision tree learning, drift
detectors, and tree replacement.

Regarding all of the works mentioned above, a significant drawback is that
energy consumption has been tackled solely for Hoeffding Trees, and no general
open-source tool makes energy consumption is easily available for researchers
and practitioners. Our proposal is brought forward in the next section, and it
circumvents such problems.

4 Proposal

In this section, we detail our tool to quantify the energy consumption of data
stream mining algorithms. Our tool is embedded within the Massive Online
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Fig. 1. Overview of the proposed energy measuring framework. The tool measures
energy consumption during data acquisition and model training and testing.

Analysis (MOA) framework [6], yet, its rationale can be used in other tools like
River [25].

Our tool uses Intel’s RAPL [7] and can be seen as a plugin to the Massive
Online Analysis (MOA) framework. The general idea of our tool is given in Figure
1, in which we see that RAPL is used to quantify energy consumption in data
acquisition and models’ training and testing phases. Once an experiment starts,
energy measurements are initialized. During data stream processing, arriving
instances are used to determine processing and energy readings before and after
processing, i.e., testing and training steps. These readings are used to compute
energy consumption rates during the experiment. For each of the stages, there
are different forms of measuring energy consumption. The framework controls
the flow of the data stream model to start the energy measurement right before
it begins processing the samples. At each cycle, the measurement is taken and
presented in real-time to the user. At the end of the process, a graph showing
the instantaneous measurement for each cycle is presented to the user.

Since our tool is based on Intel RAPL, we provide in Figure 2 details on
how our plugin interacts with MOA, RAPL, and the Linux Kernel. As new
data becomes available for processing, the plugin requests measurements from
the Linux Kernel, receiving the response of how much energy has been spent
during the testing and training phases. These values are summed and made
available whenever the evaluation interface (the so-called evaluation frequency
parameter) requests an energy consumption rate. Figure 3 exemplifies the energy
consumption rates measured by the proposed tool and how it is reported in MOA
alongside other evaluation metrics.

The source code of our proposal and experimentation can be found at https:
//github.com/ericonuki/moa-bringing-awareness-green-ict.
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Fig. 2. Measuring energy consumption using RAPL.

Fig. 3. Screenshot of the Massive Online Analysis (MOA) framework with results pro-
vided by the proposed tool.
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5 Experiments

This section presents the experiments conducted to assess our proposed tool
to measure energy consumption in data streams. In particular, this section is
divided into two experiments. First, we analyze our tool against a hardware
solution, which serves as a gold standard for the energy consumed. Next, we an-
alyze the energy consumed by different classifiers in Prequential test-then-train
validation in stationary and non-stationary scenarios. All tests were performed
on a desktop computer running Ubuntu Desktop 18.04 LTS; Intel Core i7-2600
Sandy Bridge CPU; 4GB RAM, and 250 GB HDD Hard Drive.

5.1 Experiment 1 - Validation against a hardware solution

The first experiment conducted aimed to assess whether the energy consumption
measurement via hardware and software solutions were equivalent or, at least,
correlated. In this experiment, both software and hardware TP-LINK HS 110
wall plug solutions were connected to the computer, and a CPU stressor called
stress-ng [23] was used to quantify energy consumption rates.

Initially, it was deemed necessary to assess whether the measurement of en-
ergy consumption by hardware or software is equivalent and when using only
one software tool (the plugin) would not compromise the results of this study.
The stressor was configured to generate a 10% stress level for 10 minutes and
progressively perform increments by 10% until 100% stress was reached. Once
100% stress was reached, the test was incremented to use an extra processor
core. This process was repeated until all four cores were allocated. The entire
testbed encompassed five runs, and the average results are given in Figure 4.
Both lines indicate the various stress levels on the computer, with the blue line
relating to the software power consumption measurement and the green line the
hardware results.

These results depict that the software solution does not meet the hardware
solution readings. These results are expected since the hardware readings account
for the entire computer, i.e., the operational system and other software that is
being run; thus, it is reasonable to assume that the stressor occupies a part of the
overall energy being consumed. Even though it is clear that the results do not
match, they possess a 99.97% correlation, which depicts a strong correlation.
Therefore, we verify that although the software solution does not accurately
describe a computer’s total energy consumption, its results correlate with the
actual consumption measured from a hardware tool, as also observed in [8, 27].

5.2 Experiment 2 - Analyzing Different Classifiers in Stationary
and Non-Stationary Environments

In this experiment, we used our proposed tool to quantify the energy consump-
tion of different classifiers in stationary and non-stationary environments. In
particular, synthetic data streams were created using the Massive Online Anal-
ysis (MOA) framework using the Agrawal (AGR) [1], Assets Negotiation (AN)
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Fig. 4. Comparison of the energy consumption quantified by hardware and software.

[2], and SEA [29] generators. Each stream possessed 1 million instances, and
two variants were created, one with concept drifts located at the middle of the
experiment (drift position equal to 500,000) and another without concept drift.
Experiment variants marked with a -D suffix stand for drifting experiments. The
data streams mentioned above were used to assess Naive Bayes (NB), Hoeffd-
ing Tree (HT), Hoeffding Adaptive Tree (HAT), and Adaptive Random Forest
(ARF) classifiers. All classifiers used the default parameters available in MOA,
except for ARF, which used 100 ensemble members (each with an individual
thread) and a grace period nmin = 50. All experiments were conducted using
the Prequential validation scheme proposed in [11], i.e., each instance was re-
trieved and used for testing and training. The source code to reproduce this
experimentation is also available in the code repository.

Discussion The results obtained are given in Tables 1, 2, 3, and 4. These ta-
bles provides accuracy, processing time (in seconds), memory consumption (in
GB-Hours), and energy consumption rates (in Watts), respectively. First, we
highlight that Naive Bayes (NB) has the lowest accuracy rates in all scenarios.
This result corroborates that decision trees and their ensembles are more inter-
esting when this particular evaluation metric is pursuit. We highlight, for in-
stance, the results obtained by ARF in drifting experiments, which are expected
since it has multiple learners coupled with drift detectors to detect and adapt to
such changes. Nonetheless, decision trees bring forward computational overheads
that are quantified by the remainder of the metrics. First, we see that Hoeffding
Tree (HT), Hoeffding Adaptive Tree (HAT), and the Adaptive Random Forest
(ARF) are slower than Naive Bayes (NB). The processing times for HT, HAT,
and ARF are 7, 11, and 44,751 times slower than NB, respectively. Similar re-
sults are observed for RAM consumption, in which HT, HAT, and ARF consume
more RAM than NB. Again, we highlight the RAM consumption observed by
ARF, which is approximately 108 times higher than its counterparts. Finally,
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Table 1. Accuracy results obtained during experimentation.

Experiment
Accuracy (%)

NB HT HAT ARF

AGR 94.39 94.97 94.51 94.52

AGR-D 75.67 85.72 87.63 90.66

AN 92.36 94.87 94.83 94.86

AN-D 83.95 94.53 94.71 94.73

SEA 86.95 89.39 89.40 89.67

SEA-D 87.02 88.83 89.14 89.55

Table 2. Memory consumption results obtained during experimentation.

Experiment
Memory consumption (GB-Hours)

NB HT HAT ARF

AGR 1.60×10−9 6.64×10−6 7.87×10−6 7.72×101

AGR-D 1.78×10−9 1.25×10−5 7.85×10−6 12.40×101

AN 1.21×10−8 4.72×10−6 2.02×10−5 4.38×101

AN-D 9.51×10−9 6.81×10−6 8.13×10−6 3.78×101

SEA 3.59×10−10 6.11×10−7 6.45×10−6 5.99×101

SEA-D 4.31×10−10 6.33×10−7 2.27×10−6 9.12×101

the energy consumption values depict that NB is the less-consuming algorithm,
which the exception of HAT in the AGR-D experiment. These results are ex-
pected since NB is much faster and less memory-consuming; thus, less energy is
required to finalize an experiment. Regarding the AGR-D experiment, it is rele-
vant to emphasize that HAT’s energy consumption has decreased since it has a
drift detector that restarted the entire tree learning process, i.e., it replaced the
entire tree with a single decision stump, and thus, its computational cost after
the drift has greatly decreased. This is a relevant scenario in which energy con-
sumption is not directly related to processing time and memory consumption,
and it allows a better analysis by researchers and practitioners on which clas-
sifier should be used in a specific scenario. Focusing on ARF, we also highlight
that the energy consumption rates are not directly related to either processing
time and memory consumption rates since, despite taking much more time and
memory to run, its energy consumption was roughly twice when compared to its
counterparts. This result can be explained due to ARF’s implementation, which
is multi-threaded, and even by combining 100 learners the energy consumption
is not 100 times greater than its counterparts.

6 Conclusion

In this work, we brought forward a tool for quantifying energy consumption in
data stream mining. Our tool was embedded within the Massive Online Analysis
(MOA) framework, thus allowing researchers to rapidly quantify the energy con-
sumption of different classification methods under different streaming settings
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Table 3. Processing time results obtained during experimentation.

Experiment
Processing time (s)

NB HT HAT ARF

AGR 1.35 16.57 19.24 74639.15

AGR-D 1.50 21.42 18.99 49600.75

AN 16.28 24.21 35.69 22538.36

AN-D 12.80 24.14 25.19 20149.68

SEA 0.75 5.72 16.94 96930.68

SEA-D 0.90 5.92 11.81 43513.95

Table 4. Energy consumption results obtained during experimentation.

Experiment
Energy (W)

NB HT HAT ARF

AGR 34334.04 37452.53 35283.41 66811.31

AGR-D 37747.63 37435.13 36280.75 71646.43

AN 32520.12 33972.08 34425.10 84459.67

AN-D 33414.73 34277.01 34851.68 67507.25

SEA 25749.19 38479.07 35183.48 69747.71

SEA-D 33910.95 38363.17 35245.82 55118.25

and validation processes. To validate our proposal, we first conducted a testbed
using a processor stressor to compare the proposed software readings against a
hardware wall plug. Next, we tested different classifiers in stationary and drift-
ing scenarios in a Prequential validation scheme. Results showed that our tool
allows the identification of energy consumption rates of different classifiers un-
der different scenarios, i.e., drifting and non-drifting data streams. The energy
consumption rates allow a more fine-grained analysis of the classifiers as energy
consumption is not directly tied with processing time and memory consumption,
especially under concept drifting scenarios and multi-threading implementations.

In future works, we plan to extend our tool to encompass different classifica-
tion, regression, and clustering validation schemes, including more datasets and
scenarios. We also plan to port our tool to Python-based frameworks, such as
River [25]. Finally, we also plan to make our tool available in AMD and Apple’s
ARM platforms and add support to GPU consumption since neural networks
are increasingly used in streaming settings [20].
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