
Incremental Specialized and Specialized-Generalized

Matrix Factorization Models based on Adaptive

Learning Rate Optimizers

Antônio David Viniskia,∗, Jean Paul Barddala, Alceu de Souza Britto Jr.a,
Humberto Vinicius Aparecido de Camposb

aGraduate Program in Informatics (PPGIa), Pontif́ıcia Universidade Católica do Paraná
(PUCPR), Rua Imaculada Conceição, 1155, 80215-901, Curitiba, Brazil

bHimarket, Avenida Visconde de Guarapuava, 2764, Curitiba, Brazil

Abstract

Recommender systems suggest items that are likely to be preferred by a
particular user based on historical behavior, actions, and feedback. In real-
world applications, data on users and items are continuously generated at a
fast pace, such as in e-commerce, social media, digital marketing, and content
consumption applications. Since interactions occur over time, these scenarios
can be formulated as a data stream where users’ interests are potentially
dynamic, i.e., they change over time. Given that changes are expected to
occur, one of the current research challenges in streaming recommender
systems is that models must adapt their parameters when changes occur
to maintain performance. As such changes do not occur for all users and
items in the stream at the same time, we consider adapting learning schemes
to account for user or item identifiers and model individual parameters.
Therefore, we used specialized parameters to adjust the step size for each
dataset user or item. More specifically, this study proposes four specialized
and specialized-generalized variants of four well-known adaptive learning
rate optimizers and shows how they are combined with incremental matrix
factorization methods. We tested our proposed optimization strategies on

∗Corresponding author
Email addresses: adviniski@ppgia.pucpr.br (Antônio David Viniski),

jean.barddal@ppgia.pucpr.br (Jean Paul Barddal), alceu@ppgia.pucpr.br (Alceu de
Souza Britto Jr.), humberto.campos@himarket.club (Humberto Vinicius Aparecido de
Campos)

Preprint submitted to Neurocomputing July 3, 2023

different datasets and showed that one of the proposed specialized variants,
that is, InAMSGradUser, improves the RECALL and NDCG rates by up
to 11.1 and 7.5 percentage points, respectively, compared to the traditional
stochastic gradient descent (SGD) optimizer.

Keywords:
Matrix factorization, Optimization algorithms, Collaborative filtering

1. Introduction

Given the increasing amount of data collected, recommendation systems
became indispensable in several scenarios in which user profiling is essential.
Modeling the user consumption patterns of products and services allows for
personalized and relevant recommendations [1]. Consequently, recommender
systems have been consistently explored by both researchers and practitioners
because these are relevant marketing tools in a multitude of scenarios [2]. For
instance, companies such as Amazon, Netflix, and Google News stand out for
using efficient recommendation methods, which improve user experience and
enhance user engagement towards products and services [3].

According to the available data and recommendation process character-
istics, studies have classified recommendation models into three categories:
content-based, collaborative, and hybrid filtering [2, 4]. In collaborative filter-
ing systems, data must be in the form of a list of interactions between users
and items, whereas in content-based filtering, characteristics that describe
items are also required. Consequently, collaborative filtering is less restrictive
and has been the subject of many studies over the years [4, 5, 6].

Most proposed recommendation techniques operate in a batch fashion.
In such scenarios, given a training set comprising user-item interactions, a
static model is generated and later used for recommendations [7]. However,
the world is dynamic, and it is realistic to assume that interactions between
users and items may become available over time [8]. Consequently, user
preferences may change over time (concept drift), new items can be made
available (cold start), or even the system rules can be modified (e.g., clearance
sales and actions in periods of the year, month, or week) [6]. Thus, developers
of such systems must also be aware of concept drift and cold start issues,
which require recommender systems to work incrementally, continuously, and
consistently to detect and adapt to changes in data so that performance is
not jeopardized [9].

2

As changes in the data stream do not occur in all dataset users and
items simultaneously, we consider adapting the recommender model learning
schemes in a specialized manner. However, specialization can be ensured in
addition to user or item parameter learning process. In practice, the definition
of how specialization takes place includes analyzing the definition of particular
step sizes for each user and item in the dataset and adjusting the parameters
according to the recommender performance.

In this study, we propose adaptive optimization strategies for well-known
incremental matrix factorization (MF) methods. Our approaches extend
RMSprop [10], Adam [11], AMSGrad [12], and Nadam [13] optimizers, which
are adaptive gradient descent-based algorithms often used in a batch fashion.
Our proposed method differs from the MLF [14] optimizer in terms of the
use of a single additional array, as we specify the target of personalization:
the user or item. Furthermore, we apply personalization in an incremental
scenario, in which models are adjusted according to changes in data and with
positive-only feedback data. More specifically, our contribution is two-fold:

• The proposal of optimizer variants that include both user and item
specialized and specialized-generalized incremental methods. These
optimizers are also coupled with existing MF algorithms.

• An empirical analysis that demonstrates that adaptive learning rate
optimizers induce better adjustment in the MF model’s parameters and,
consequently, more accurate recommendations.

The remainder of this paper is organized as follows. Section 2 describes
related work on existing incremental positive-only MF models and adaptive
learning rate optimizers. Section 3 details the proposed optimization methods
and how they are coupled with the existing incremental MF models. Section
4 describes the experimental protocol used to perform the proposed analysis
of recommender models. We discuss the obtained results in Section 5. Finally,
Section 6 concludes the paper and describes future work.

2. Related Works

This section introduces related works on incremental recommender systems
based on Matrix Factorization (MF) and presents existing adaptive learning
rate optimizers available in the literature.

3

At this point, it is worthy to highlight recent works on latent factor and
matrix factorization that tackle high-dimensional and sparse datasets (HiDS).
First, the work of [15] proposes an ensemble of Alternating Least Squares
(ALS) matrix factorization algorithm in estimating Quality-of-Service rates.
Under different settings, the proposal overcame bayesian matrix factorization
[16]. Another relevant work is latent factor analysis via particle swarm
optimization (PSO) [17], in which SGD and Adam optimizers had the learning
rates hyper-parameters adaptive tuned for HiDS applications. Next, authors
in [18] proposed a combination of L1 and L2 norms to overcome data sparsity
problems inherent to HiDS datasets. Experimentation showed that this
approach overcomes traditional matrix factorization algorithms in terms of
robustness and stability in different applications. More recently, authors
in [19] proposed a graph-convolutional network approach for latent feature
analysis in Quality-of-Service systems. The main singularity of this approach
is that the graph-convolutional network allows the identification of non-linear
relationship between users and item as well as amongst items. Finally, despite
the recentness and relationship with our work, such works are tailored for
HiDS batch scenarios and require adaptations to be used in streaming settings.

2.1. Matrix Factorization

Matrix Factorization (MF) is the most commonly used technique in recom-
mendation system design [20, 5], and the most successful latent factor models
are also based on MF [21]. MF models have been widely applied to differ-
ent recommendation scenarios and outperform clustering and neighborhood
methods in terms of predictive power, run time [22], and scalability [21].

The MF input is a relation matrix between users and items R ∈ Rm×n,
where m denotes the number of users and n denotes the number of items [23].
Because of R’s sparsity, MF models map users and items to a joint latent
factor space of dimensionality f , such that user-item interactions are modeled
as inner products in that space [21, 23]. The number of latent factors (f)
is much smaller than the number of users and items, and the co-occurrence
between users and items forms the basis for recommendations [20].

More formally, matrices R ∈ Rm×n,
−→
A ∈ Rm×f and

−→
B ∈ Rf×n represent

users’ ratings to items, users’ latent vectors, and items’ latent vectors, respec-
tively. The ru,i entry in the u-th row and i-th column of R an it represents

the rating that user u gives to item i. The u-th row vector (
−→
Au) of A and

4

i-th column vector (
−→
Bi) of B are the user’s u and item’s i latent vectors,

respectively [5]. Given this formulation, it is possible to compute the predicted
rating between the u-th user and i-th item using the dot product depicted in
Equation 1 [22].

r̂ui =
−→
Au ·
−→
Bi

T (1)

MF is closely related to singular value decomposition (SVD), a well-
established technique for information retrieval to identify latent features [24].
Applying SVD to collaborative filtering requires factoring in the user-item
matrix. However, the conventional SVD is undefined when the rating matrix
is incomplete. Given the high percentage of missing values, some methods use
imputation techniques to fill in the missing values and make the rating matrix
dense before applying SVD [25, 26]. However, these approaches can be costly
and considerably distort the data owing to inaccurate imputation [21, 24].
Hence, more recent researches suggest direct modeling of the observed ratings
while avoiding overfitting through a regularized model [21, 24]. Thus, the
model was trained by minimizing L2-regularized squared error for known
values of R̂ and the corresponding predicted ratings are denoted in Equation
2 [22].

min−→
A,
−→
B

∑
(u,i)∈D

(
ru,i −

−→
Au ·
−→
Bi

T
)2

+ λ

(∥∥∥−→Au∥∥∥2 +
∥∥∥−→Bi

∥∥∥2) (2)

In the formalization above, D is the set of (u, i) pairs for each known ru,i

(training set), and λ is the regularization parameter for user
−→
Au and item

−→
Bi latent vectors that are used to avoid overfitting. MF learns a model by
fitting previously observed interactions. However, the goal is to generalize
previously known user-item interactions to predict future, unobserved user
preferences over items [21].

2.1.1. Incremental Stochastic Gradient Descent

The most common approach for minimizing Equation 2 in MF is the SGD
optimization, in which the algorithm loops over all ratings in the training set.
For each given training interaction, the system predicts rui and computes the
associated prediction error (errui) using Equation 3 [21].

errui = rui − r̂ui (3)

5

In this process, both the user (−→gu) and item (−→gi) gradients of the error
(Equation 4) are used, where λ is the regularization rate.

−→gu ← errui ×
−→
Bi − λ

−→
Au

−→gi ← errui ×
−→
Au − λ

−→
Bi

(4)

Next, SGD modifies the parameters by a magnitude proportional to η
in the inverse direction of the error’s gradient according to Equation 5 [21],
where η is the step size or learning rate, and λ is the regularization term for
both user and item latent factors [22].

−→
Au ←

−→
Au + η ×−→gu

−→
Bi ←

−→
Bi + η ×−→gi

(5)

In contrast, incremental SGD (ISGD) [22] was initially designed for
positive-only feedback recommendations; thus, the interactions between users
and items are represented as a Boolean matrix. Consequently, the prediction
error is simplified, and its computation is given by Equation 6.

errui = 1− R̂ui (6)

Similar to the traditional batch MF model, the ISGD updates the Au and
Bi vectors using Equation 5. A relevant difference between ISGD and its
batch counterpart (SVD MF with batch SGD optimizer) is the order in which
the method analyzes the data to generate the models [6]. The traditional
batch SVD shuffles and performs multiple passes over the training data during
preprocessing and model creation, whereas ISGD does not perform any data
preprocessing and processes data according to their natural arrival order [22].

2.1.2. Probabilistic MF

Similarly to the traditional MF model, the Probabilistic MF (PMF) model
decomposes a binary matrix into two lower-rank matrices to make predictions
[27]. The main difference is related to the use of positive (ones, 1) and
unknown (zeros, 0) observations during model training, that is, the matrix
represents a user’s likes and unknown/potential dislikes for items.

Equation 7 describes the PMF process, where σ represents a sigmoid
function (σ), that applied to compute probabilistic predictions (0 6 r̂ui 6 1).

In the update process of the PMF’s user (
−→
Au) and item (

−→
Bi) latent factor

vectors, ISGD update rules are used, except for error calculation, because

6

PMF uses both positive and negative (unknown) observations. In other words,
if the instance is positive, then errui = 1− r̂ui. Otherwise, if it was a negative
instance, the error was calculated using errui = 0− r̂ui.

r̂ui ← σ
(
Au ·BT

i

)
(7)

Furthermore, assuming T as the test set, when the user-item interaction is
a binary outcome (ru,i ∈ {0, 1}), it is natural to use cross entropy (Log-Loss,
Equation 8) as the loss function for the optimization problem [27].

Log-loss = − 1

|T |
∑
u,i∈T

(
Ru,i log

(
R̂ui

)
+ (1−Ru,i)× log(1− R̂ui)

)
(8)

2.1.3. Bayesian Personalized Ranking for MF

Bayesian personalized Ranking for MF (BPRMF) is a generic optimization
criterion for personalized ranking derived from a Bayesian problem analysis.
The BPRMF model provides a learning BPR method based on SGD with
bootstrap sampling [28]. In addition to the MF parameters, for each instance
(u; i) in the training set, BPRMF selects a negative item j (an item that the
u-th user does not interact with). BPR optimization decomposes triplets
in the (u; i; j) format using the difference in the u-th user predictions w.r.t.
items i and j, as shown in Equation 9.

r̂uij = r̂ui − r̂uj (9)

Next, the model applies a sigmoid function variant described in Equation
10 to the prediction r̂uij to add the Bayesian probabilistic characteristic to
the model [29].

σ(r̂uij) =

(
1

1 + e−r̂uij

)
(10)

As the BPRMF has an additional term j, the model differs from ISGD
when computing the gradients of the error for each term in the triplet (u; i; j)
(Equation 11).

7

−→gu ← σ(r̂uij)× (Bi −Bj)− λ
−→
Au

−→gi ← σ(r̂uij)× (Au)− λ
−→
Bi

−→gj ← σ(r̂uij)× (−Au)− λ
−→
Bj

(11)

Finally, for each triplet (u; i; j), the latent factor vectors for user u, item i,
and unobserved item j are updated using the traditional SGD optimization
strategy described in Equation 12.

Au ← Au + η ×−→gu
Bi ← Bi + η ×−→gi
Bj ← Bj + η ×−→gj

(12)

2.1.4. Momentum-incorporated Latent Factor Model (MLF)

The Momentum-incorporated latent factor (MLF) algorithm is an opti-
mization strategy introduced as part of the momentum-incorporated parallel
SGD (MPSGD) model [14]. The main purpose of the MPSGD model is to
paralyze the update of latent factors during the batch training step of the
MF model [14]. In contrast, MLF is an SGD-based learning method designed
to update the latent factors matrices of user A and item B, which can be
integrated into an incremental learning scenario.

The momentum method is an adaptive optimization strategy for improving
the convergence rate of an SGD-based model. The momentum algorithm
improves the model convergence by adding a fraction γ of the previous
interaction updates to the current interaction update. Thus, the learning
update in the current interaction considers the direction trend from the
previous updates, reducing oscillations during the learning process and making
the resultant model converge faster [30, 14]. Equation 13 presents the update
rules of the momentum optimizer, where −→vt stores the history of the previous
update, γ is the momentum term (also known as the decay rate), −→g represents

the gradients of the error, and
−→
θ represents the latent factor vector (Au, Bi).

−→vt ← γ ×−−→vt−1 + η ×−→g
−→
θ ←

−→
θ −−→vt

(13)

MLF incorporates momentum optimization by introducing V(A) and V(B)

auxiliary arrays. These arrays store the history of previous updates for each

8

user u and item i in the dataset. Consequently, to update the user latent

factor vector
−→
Au with the MLF model, the update rules depicted in Equation

14 must be used.

−−→vu(t) ← γ ×−−−→vu(t−1) + η ×−→gu
−→
Au ←

−→
Au −−−→vu(t)

(14)

Similarly, for the item latent factor vector
−→
Bi updates, we used the rules

in Equation 15.

−−→vi(t) ← γ ×−−−→vi(t−1) + η ×−→gi
−→
Bi ←

−→
Bi −−−→vi(t)

(15)

2.2. Adaptive Learning Rate Optimizers

Most machine-learning methods can be formulated as optimization prob-
lems to determine the extremum of an objective function. Accordingly, the
three vital steps of a machine learning algorithm are (i) building a model
hypothesis, (ii) defining the objective function, and (iii) solving the maximum
or minimum of the objective function to determine the model parameters.
In this sense, the first two steps are modeling problems, and the third step
solves the problem using optimization algorithms [31].

Therefore, optimization is a mathematical discipline used to solve decision-
making problem. The basic idea of optimization is to determine the best
solution among the various available options in the given objective function
[32]. Traditionally, optimization research is divided into first-order, high-
order, and derivative-free methods [31, 32]. First-order optimization methods,
known as gradient-based optimization, are primarily based on first-order
derivatives or gradient descent algorithms. High-order methods, in turn, are
used to address the problem in which an objective function exhibits highly non
linear and ill-conditioned behavior. Finally, we use derivative-free methods in
real-world optimization problems, where the derivative of the objective and
constraint functions may not exist or is difficult to calculate.

In this study, we focus on traditional MF models, in which the most
frequently used optimization strategy to minimize the objective function
is gradient descent-based methods, such as RMSProp, Adam, AMSGrad,
Nadam, Momentum, Adadelta, and Adagrad optimizers. Therefore, the
following sections introduce the RMSProp, Adam, AMSGrad, Nadam, and
gradient descent optimization strategies selected to replace the traditional

9

SGD optimizer in the MF model. We selected RMSProp, Adam, AMSGrad,
and Nadam optimizers because they exhibited superior and more robust
performance in many works when compared to other optimization techniques
[33, 34, 35].

2.2.1. RMSprop optimizer

RMSprop [10] is an adaptive learning rate method that is similar to the
SGD algorithm with momentum. It was developed as a stochastic technique
for mini-batch learning, which is suitable for online and non-stationary settings.
RMSprop and gradient descent differ in gradient computation. RMSProp
uses the exponential decaying average −→vt (Equation 16) method to discard
the squared values of the gradients distant from the current time step. The
algorithm converges rapidly after obtaining convex structure. In RMSprop’s
update rules depicted in Equation 17, the gradients (−→g) are divided by the
running average of their recent magnitudes (−→vt) [10]. The γ parameter is
the momentum (also called the decay rate) and is usually set to 0.9 [10].
Considering that the value of −→vt may converge to 0, weights can “blow up”.
To prevent the gradients from blowing up, RMSprop includes a padding factor
ε in the denominator, often ε = 10−8, to avoid inconsistent computation [11].

−→vt ← γ ×−−→vt−1 +−→g 2(1− γ) (16)

−→
θ ←

−→
θ +−→g η√−→vt + ε

(17)

RMSprop deals with gradient vanishing and explosion issues using a moving
average of past squared gradients, normalizing the gradient accordingly. This
normalization adapts the learning rate, decreasing it for large gradients to
avoid exploding and increasing it for small gradients to avoid vanishing
[10, 36].

2.2.2. Adaptive Moment Estimation - Adam

Adaptive moment estimation (Adam) computes adaptive learning rates for
each model parameter [11]. Similar to RMSprop, Adam stores an exponentially
decaying average of the past squared gradients −→vt (Equation 18).

−→vt ← β2
−−→vt−1 + (1− β2)−→g 2 (18)

10

Adam also mantains an exponentially decaying average of past gradients
mt, similar to momentum (Equation 19).

−→mt ← β1
−−→mt−1 + (1− β1)−→g (19)

The −→mt and −→vt parameters are estimates of the first (the mean) and the
second moments (the uncentered variance) of the gradients, respectively;
hence the method is named accordingly. As −→mt and −→vt are initialized as
vectors of 0s (zeroes), they are biased towards zero, especially during the
initial time steps and especially when the decay rates are low (i.e., β1 and β2
are close to 1, propose default values of 0.9 and 0.999, respectively). Thus, to
counteract these biases, Adam computes the bias-corrected first and second
moment estimates using Equations 20 and 21, respectively, where t is the
current time step (epoch).

−→
m̂t ←

−→mt

(1− β1)t
(20)

−→
v̂t ←

−→vt
(1− β2)t

(21)

Finally, Adam’s optimization update rule in Equation 22 uses the first
(Equation 20) and second-moment (Equation 21) estimations as follows:

−→
θ ←

−→
θ + η

−→
m̂t√−→
v̂t + ε

(22)

2.2.3. AMSGrad Optimizer

The AMSGrad [12] algorithm overcomes the problem in which Adam
cannot converge to the optimal solution. The AMSGrad optimizer proposes
a new update method that uses the maximum of the past squared gradients
max(−→vt) (Equation 23) rather than the exponential average (−→vt) directly
to update the parameters (Equation 24). AMSGrad also calculates the
exponentially decaying average of past squared gradients (−→vt - Equation 18)
and the exponentially decaying average of past gradients (−→mt - Equation 19).

max(−→vt)← max (max(−→vt),−→vt) (23)

11

−→
θ ←

−→
θ + η

−→mt√
max(−→vt) + ε

(24)

2.2.4. Nesterov-accelerated Adaptive Moment Estimation (Nadam)

The Nesterov-accelerated adaptive moment estimation (Nadam) [13] al-
gorithm combines the Adam and Nesterov-accelerated gradient (NAG). To
incorporate NAG into Adam, the authors modified its momentum term −→mt,

thus defining the adjusted momentum (
−−→
m̂a(t)) and similarly replacing the

previous momentum vector with the current momentum vector. To simplify

the adjusted moment term (
−−→
m̂a(t)), Nadam used the corrected bias (

−→
m̂t -

Equation 20) of the current moment term.

−−→
m̂a(t) ← β1

−→
m̂t +

(1− β1)−→gt
1− βt1

(25)

This algorithm increases or decreases the decay factor β1 over time.
Nadam’s update rule is given in Equation 26.

−→
θ ←

−→
θ + η

−−→
m̂a(t)√−→
v̂t + ε

(26)

3. Proposed Methods

This section introduces the proposed Adam, AMSGrad, Nadam, and
RMSProp variants that leverage adaptive learning rate optimizers previously
introduced in Section 2.2. The main purpose of our proposed optimizer vari-
ants is to consider the user or item in the data-stream instance to update the
optimizer parameters. Such an analysis enables the learning of personalized
optimizer terms for each user or item in the data stream. In contrast to the
MLF optimizer described in Section 2, our proposed method uses a single
auxiliary array (per user or item) to personalize optimizer parameters.

The rationale for proposing optimizer variants is to consider the dynamic
characteristics of streaming recommendation scenarios. Such dynamism
occurs because the incidence of cold-start and concept drift problems, which
requires recommendation models to adapt their learning schemes to maintain

12

performance. As changes in the data behavior are not observed in the entire
dataset and are only for a few users or items, we propose updating the
optimizer learning steps individually. The idea here is not to implement an
explicit drift detector or treat the new users and new items differently because
of the cold-start incidence but, instead, to make the model adaptive according
to the observed performance.

As both optimizers have as parameters the squared decaying average
vt and/or the decaying average mt, we show the implementation of the
AMSGrad optimizer variants owing to its additional parameter max(vt). Thus,
the following algorithms are prototypes for other adaptive learning rate
optimizers. Therefore, to implement RMSProp, Adam, and Nadam variants,
their update rules and operations are changed accordingly. Algorithm 1 shows
the implementation of the original AMSGrad version, which receives as inputs

the latent factors vector
−→
θ , current gradient of the error −→g , learning rate η,

decay rates β1 and β2, padding factor to prevent divisions by zero ε, squared
decaying average −→v(t), decaying average −−→m(t), and maximum squared decaying
average max(−→v(t)) of the past gradients g. As output, the AMSGrad algorithm

returns the updated latent factors vector
−→
θ . Algorithm 1 is responsible for

inplace updating of the AMSGrad parameters based on the gradient of the
error −→g and according to their rules in lines 1, 2, and 3 (described in Section

2.2). Finally, line 4 updates the latent factor vector
−→
θ according to the

AMSGrad update rules, and line 5 returns the updated vector.
Section 3.1 shows the characteristics of the specialized optimization strat-

egy, in which we learn the personalized terms for each user or item in the
data stream. In Section 3.2, we present specialized-generalized (SG) variants,
which combine traditional and specialized optimizers to update the latent
factor vector.

3.1. Specialized Optimizer

In the specialized version, we propose learning personalized optimizer
parameters for each user u or item i to update MF models. In this sense,

we update latent factor vector of user
−→
Au and item

−→
Bi considering a specific

optimizer term learned for the current user (item-specialized version) or item
(item-specialized version) in the data stream.

Algorithm 2 presents a specialized version of the AMSGrad optimizer.
The specialized AMSGrad optimizer has as inputs the latent factors vector−→
θ , current gradient of the error −→g , and personalization target p (which

13

Algorithm 1: Original AMSGrad Optimizer.

Input:
−→
θ : latent factors vector, −→g : gradients of the error, η:

learning rate, β1 and β2: decay rates, ε: padding factor to
prevent inconsistent computations, −→v(t): squared decaying
average, −−→m(t): decaying average, max(−→v(t)): maximum squared
decaying average.

Output:
−→
θ : updated latent factors vector.

1
−→v(t) ← β2 ×−−−→v(t−1) + (1− β2)×−→g 2

2
−−→m(t) ← β1 ×−−−→m(t−1) + (1− β1)×−→g

3 max(−→v(t))← max(max(−→v(t)),−→v(t))

4
−→
θ ←

−→
θ + η

(
−−→m(t)√

max(−−→v(t))+ε

)
5 return

−→
θ

indicates the identifiers of user u or item i, depending on the specialized
variant selected). The specialized version also receives the learning rate η,
decay rate β1, decay rate β2, padding factor ε (to prevent divisions by zero),
and AMSGrad parameters, that is, specialized squared decaying average
−−→vp(t), specialized decaying average −−→mp(t), and specialized maximum squared
decaying average max(−−→vp(t)) of the past gradients g. Algorithm 2 then updates
the AMSGrad personalized optimizer parameters vp(t) (Line 1), mp(t)(Line 2),
and max(vp(t)) (Line 3) based on the gradients of the error −→g . Finally, the

latent factor vector
−→
θ (line 4) is updated using the AMSGrad update rules

(Equation 24) and the updated vector is returned (line 5).
If the user-specialized version is selected, both the latent factor vectors

of user
−→
Au and item

−→
Bi are updated using the personalized optimizer param-

eters learned for user u in the instance. Suppose we have a function called
update model that receives the specialized AMSGrad inputs, then user and
item latent factors vectors are updated using Equation 27, where −−→vu(t), −−−→mu(t),
and max(−−→vu(t)) represents the specialized AMSGrad parameters learned for
the user u.

−→
Au ← update model(Au, gu, u, η, β1, β2, ε,

−−→vu(t),−−−→mu(t),max(−−→vu(t)))
−→
Bi ← update model(Bi, gi, u, η, β1, β2, ε,

−−→vu(t),−−−→mu(t),max(−−→vu(t)))
(27)

14

Algorithm 2: Incremental Specialized AMSGrad Optimizer

Input:
−→
θ : latent factors vector, −→g : gradients of the error, p: user

or item identifier based on specialized variant, η: learning
rate, β1 and β2: decay rates, ε: padding factor to prevent
inconsistent computations, −−→vp(t): specialized squared decaying
average, −−→mp(t): specialized decaying average, max(−−→vp(t)):
specialized maximum squared decaying average.

Output:
−→
θ : updated latent factors vector.

1
−−→vp(t) ← β2 ×−−−→vp(t−1) + (1− β2)×−→g 2

2
−−→mp(t) ← β1 ×−−−−→mp(t−1) + (1− β1)×−→g

3 max(−−→vp(t))← max(max(−−→vp(t)),−−→vp(t))

4
−→
θ ←

−→
θ + η

(
−−−→mp(t)√

max(−−→vp(t))+ε

)
5 return

−→
θ

Otherwise, if an item-specialized version is selected,
−→
Au and

−→
Bi are updated

using the personalized optimizer parameters learned for the item in the
instance using Equation 28, where −−→vi(t), −−→mi(t), and max(−−→vi(t)) represents the
specialized AMSGrad parameters learned for the item i.

−→
Au ← update model(Au, gu, i, η, β1, β2, ε,

−−→vi(t),−−→mi(t),max(−−→vi(t)))
−→
Bi ← update model(Bi, gi, i, η, β1, β2, ε,

−−→vi(t),−−→mi(t),max(−−→vi(t)))
(28)

Considering that we are analyzing the RMSProp, Adam, AMSGrad, and
Nadam optimizers, we have two specializations for each version. As our focus is
on incremental scenario, we named the variants with the prefix “In” and used
the user or item suffix to represent the specialized version. In this sense, the
traditional variants are the InRMSProp, InAdam, InAMSGrad, and InNadam
optimizers. The user-specialized variants assume the “User” suffix with
InRMSPropUser, InAdamUser, InAMSGradUser, and InNadamUser. Finally,
the item-specialized variants, which have “Item” suffix, are InRMSPropItem,
InAdamItem, InAMSGradItem, and InNadamItem. Table 1 presents the
update rules of Adam, AMSGrad, Nadam, and RMSProp optimizer, where p
indicates the specialization target, which assumes the user or item identifiers
during the model updates.

15

3.2. Specialized-Generalized Optimizer

The proposed specialized-generalized variant combines the original opti-
mizer version with a specialized version. Accordingly, it is necessary to learn
both optimizer parameters instead of learning only the general or special-
ized versions. We combine the optimizer’s general and specialized variants
by joining their respective update rules. Therefore, we use the sum of the
particular parameters of both variants to generate the specialized-generalized
version. Equation 29 shows the specialized-generalized optimizer update rule

in which
−→
θ is the user

−→
Au or item

−→
Bi latent factor vector, η is step size,

and Po and Ps are parameters that represent the original and specialized
optimizers, respectively. The combination of these parameters enables the
gradient to store both the local and global latent factor changes.

−→
θ ←

−→
θ + η (Po + Ps) (29)

Algorithm 3 presents the AMSGrad specialized-generalized optimizer

variant. The input arguments (
−→
θ ,−→g , p, η, β1, β2, ε) and the output (

−→
θ) are

the same as those of the original and specialized versions. However, the
specialized-generalized variant stores both general and specialized squared
decaying averages (−→v(t) and −−→vp(t)), decaying averages (−−→m(t) and −−→mp(t)), and
maximum squared decaying averages (max(−→v(t)) and max(−−→vp(t))). However, we
must update both the general (Algorithm 3 - lines 1, 2, and 3) and specialized
(Algorithm 3 - lines 4, 5, and 6) parameters according to AMSGrad update

rule. Finally, to update the latent factor vector
−→
θ , the specialized-generalized

variant combines general and specialized AMSGrad update rules (line 7),
in which the main difference is between the specialized and specialized-
generalized versions.

To distinguish the optimizers’ variants, we named the specialized-generalized
versions with the “SGI” prefix and the “User” or “Item” suffix to represent the
specialized part of the optimizer. The user-specialized-generalized variants are
SGIRMSPropUser, SGIAdamUser, SGIAMSGradUser, and SGINadamUser
while the item-specialized variants are SGIRMSPropItem, SGIAdamItem,
SGIAMSGradItem, and SGINadamItem. Algorithms 1, 2, and 3 present the
execution flow of the variants of the AMSGrad optimizer. Accordingly, if we
want to select other optimizers, we have to use their update rule presented in

Table 1, which shows the latent factor vector
−→
θ update for the specialized

and specialized-generalized variants of the Adam, AMSGrad, Nadam, and

16

Algorithm 3: Incremental Specialized-Generalized AMSGrad Opti-
mizer.

Input:
−→
θ : latent factors vector, −→g : gradients of the error, p: user

or item identifier based on specialized variant, η: learning
rate, β1 and β2: decay rates, ε: padding factor to prevent
inconsistent computations, −→v(t): squared decaying average,
−−→m(t): decaying average, max(−→v(t)): maximum squared
decaying average −−→vp(t): specialized squared decaying average,
−−→mp(t): specialized decaying average, max(−−→vp(t)): specialized
maximum squared decaying average.

Output:
−→
θ : updated latent factors vector

1
−→v(t) ← β2 ×−−−→v(t−1) + (1− β2)×−→g 2

2
−−→m(t) ← β1 ×−−−→m(t−1) + (1− β1)×−→g

3 max(−→v(t))← max(max(−→v(t)),−→v(t))
4
−−→vp(t) ← β2 ×−−−→vp(t−1) + (1− β2)×−→g 2

5
−−→mp(t) ← β1 ×−−−−→mp(t−1) + (1− β1)×−→g

6 max(−−→vp(t))← max(max(−−→vp(t)),−−→vp(t))

7
−→
θ ←

−→
θ + η

(
−−→m(t)√

max(−−→v(t))+ε
+

−−−→mp(t)√
max(−−→vp(t))+ε

)
8 return

−→
θ

RMSProp optimizers. Additional operations may be necessary based on each
optimizer step, which are presented in Section 2.2.

17

Table 1: Optimizers update rules based on specialized and specialized-generalized versions.

Specialized Specialized-Generalized

Adam

−→
θ ←

−→
θ + η

−−−→
m̂p(t)√−−→
v̂p(t)+ε

−→
θ ←

−→
θ + η

(
−−→
m̂(t)√−−→
v̂(t)+ε

+
−−−→
m̂p(t)√−−→
v̂p(t)+ε

)
AMSGrad

−→
θ ←

−→
θ + η ×

−−−→mp(t)√
max(−−→vp(t))+ε

−→
θ ←

−→
θ + η ×

(
−−→m(t)√

max(−−→v(t))+ε
+

−−−→mp(t)√
max(−−→vp(t))+ε

)
Nadam

−→
θ ←

−→
θ + η ×

−−−−→
m̂pa(t)√−−→
v̂p(t)+ε

−→
θ ←

−→
θ + η ×

(
−−−→
m̂a(t)√−−→
v̂(t)+ε

+
−−−−→
m̂pa(t)√−−→
v̂p(t)+ε

)
RMSProp

−→
θ ←

−→
θ +−→g η√

vp(t)+ε

−→
θ ←

−→
θ + η ×−→g ×

(
1√−−→v(t)+ε + 1√−−→vp(t)+ε

)

18

4. Experimental Setup

This section reports the experimental protocol adopted for assessing the
proposed methods.

4.1. Datasets

We selected four real-world datasets for experimentation: Amazon Books
[37], Movie Lens 1M [38], Movie Tweetings [39], and SMDI-200UE [6]. The
Amazon Books, Movie Lens 1M, and Movie Tweetings datasets provide
explicit user feedback. To analyze the effectiveness of our proposed models
in the one-class collaborative filtering scenario, we transformed the explicit
feedback into positive-only feedback. We considered positive feedback only
for ratings higher than 3.5. Table 2 depicts the main characteristics of these
datasets, including the number of interactions, users, items, and sparsity
(Equation 30), where |D| is the number of unique interactions, m the number
of users, and n the number of items.

Sparsity (%) = 100× 1− |D|
m× n

(30)

Table 2: Overview of the datasets used on this study.

Datasets Interactions Users Items Sparsity

Amazon Books 769991 21675 22223 99.84%
Movie Lens 1M 575280 6038 3533 97.30%
Movie Tweetings 658700 65513 28149 99.96%
SMDI-200UE 447391 9472 6924 99.59%

4.2. Algorithms and Parametrization

Since we are dealing with a streaming scenario in which the order of the
events is significant, we split our datasets according to the temporally-aware
protocol suggested in [40]. Figure 1 presents the training and update pro-
cesses of the recommender model used in this study to evaluate the proposed
optimizers. We used the first 20% of each dataset for batch training (Recom-
mender Model Training - Figure 1), 30% for batch testing and incremental
training (Performance Validation - Figure 1), and the remaining 50% as the

19

test set (Incremental Update Phase - Figure 1). The test set is used in a
test-then-train fashion, meaning that each user-item interaction is used for
model evaluation (Evaluate Model and Compute Statistics - Figure 1) and
updating sequentially (Update Model - Figure 1).

Figure 1: Streaming protocol used in our experimentation.

We compare our proposed MF optimization strategies with and against
the SGD [22] and InMLF [14] algorithms, as previously introduced in Section
2. We also used PMF [27] and BPRMF [16] recommender models as baselines.
Additionally, we tested the non-machine learning methods Top Popular (Top-
Pop) [41] and random [42] for comparison. TopPop consists of recommending
items with the best degree of success among all users, instead of modeling
the user item relationship using a machine learning method. In contrast, the
random approach randomly selects items from a set of unobserved items in the
recommendation phase. The incremental MF recommendation model uses
the SGD optimizer in its original version, which is the most frequently used
method for minimizing the L2-regularized squared error (Equation 2). There-
fore, we compared the proposed adaptive optimizer variants as replacements
for the traditional SGD optimizer.

We tested the following hyper-parameter values in the MF incremental
recommender model: optimizer ∈ {SGD, InMLF, InAdam, InAdamUser,

InAdamItem, SGIAdamUser, SGIAdamItem, InAMSGrad, InAMSGradUser,

InAMSGradItem, SGIAMSGradUser, SGIAMSGradItem, InNadam,

InNadamUser, InNadamItem, SGINadamUser, SGINadamItem, InRMSprop,

InRMSpropUser, InRMSpropItem, SGIRMSpropUser, and SGIRMSpropItem},

20

learning rate ∈ {0.01, 0.001, 0.0001}, regularization rate equal to 0.01, latent
factors ∈ {10, 20, 40, 60, 80}, batch training epochs equal to 10. We also used
these hyper-parameters, except for the optimizer, in the PMF and BPRMF
recommendation models.

We chose the best hyper-parameters based on a grid search, which ex-
haustively generates candidates from the specified grid of parameter values.
The entire dataset was used for each combination. In this sense, parameter
tuning is not a part of the processing time of the methods. We replicated
each best experimental setting 10 times in this study, thus, the results depict
the average and standard deviation of the recall values. We selected a single
random seed for each replication and used it with all optimizers to enable
further paired comparisons and application of the statistical significance test.

Finally, we incorporated hypothesis testing to determine whether one
optimization significantly outperforms others method. As we have many
optimization strategies for comparison, we execute each experiment several
times if we envision finding any statistically significant difference. Therefore,
we selected each optimizer’s best variant and applied non-parametric tests.
We followed the protocol reported in [43] by combining the Friedman [44] and
Nemenyi post-hoc [45] statistical tests.

4.3. Evaluation Metrics

We express the goodness-of-fit of the models using RECALL@K and normal-
ized discounted cumulative gain (NDCG@K) metrics with K = 10, which are the
most commonly used recall thresholds. For each instance (u, i) in the test
set (T), we selected a candidate list of 1000 unknown items for user u, and
the known (relevant) item i was appended to this candidate list. We ordered
candidate items by descending proximity to a value of 1 (as we are dealing

with a positive-only scenario) using the function fui = |1− R̂ui|, according to

the non-Boolean predicted scores R̂ui obtained by the recommender models.
The RECALL@K metric, described in Equation 31, measures the average

(across all users) of the proportion of recommended items that appear among
the top K positions of the ranked list [46], where |T | is the test set size.

RECALL@K =
1

|T |
∑

(u,i)∈T

hit@K(u, i) (31)

For each instance 〈u, i〉, hit@K(u, i) = 1 is said to happen when i is ranked
among the top K items, and hit@K(u, i) = 0 otherwise.

21

The NDCG@K metric, described in Equation 32, indicates whether the
ground-truth items are ranked higher than others by accounting for the
position of hit [47].

NDCG@K =

{
0, if rank(i) ≤ K
1

log2(rank+1)
, otherwise

(32)

The scores reported in the following section for RECALL@K and NDCG@K

were obtained in the test portion of the experiments. As we select the best
set of parameters, which include the number of latent features, we do not
consider the processing time of the recommender models in this study. The
greater the number of latent factors f , the longer is the processing time of the
recommender models. Furthermore, the proposed specialized and specialized-
generalized optimizer variants are more time and memory consuming than
the traditional SGD optimizer because of the storage of the parameters for
all users or items of the system.

5. Results and Analysis

In this section, we present results of experiments using four real-world
datasets. The results obtained by incremental MF models are presented in
Tables 3 and 4. These tables depict the RECALL@K and NDCG@K (with
K = 10) obtained by each optimizer along with the analyzed datasets. We
compared our proposed optimizers against the MF-SGD, MF-InMLF, BPRMF,
PMF, TopPop, and Random baselines and marked the best results per dataset
in bold. We report the statistical test results obtained by combining the
Friedman and Nemenyi tests, assuming a 95% confidence level throughout
our discussion. The p-values for each tested dataset are shown in Figure 3.
We also observed significant differences in computing the critical distance

between the analyzed optimizers and baselines (Figure 3).
Regarding the baseline methods (Tables 3 and 4), the MF with InMLF

[14] optimizer provide the best RECALL@10 and NDCG@10 values in the
Amazon Books dataset. Considering the Movie Lens 1M dataset, the MF-
SGD and BPRMF models provided the best baseline results. By contrast,
for the Movie Tweetings dataset, the MF-SGD model obtained the highest
RECALL values. Finally, in the supermarket dataset (SMDI-200UE), the
PMF model showed the best performance.

Tables 3 and 4 summarize the performances of the different optimizers
analyzed in terms of the RECALL@10 and NDCG@10 values. The In-

22

Table 3: RECALL@10 and NDCG@10 values obtained by the incremental MF recommender
model for the Amazon Books and Movie Lens 1M datasets.

Models
Amazon Books Movie Lens 1M

RECALL@10 NDCG@10 RECALL@10 NDCG@10

Baselines
TopPop 0.0040 ± 0.0000 0.0020 ± 0.0000 0.0390 ± 0.0000 0.0190 ± 0.0000
Random 0.0010 ± 0.0000 0.0000 ± 0.0000 0.0030 ± 0.0002 0.0010 ± 0.0001
MF-SGD 0.0130 ± 0.0001 0.0060 ± 0.0001 0.1200 ± 0.0003 0.0600 ± 0.0001

MF-InMLF 0.0180 ± 0.0002 0.0090 ± 0.0001 0.1070 ± 0.0003 0.0520 ± 0.0002
BPRMF 0.0150 ± 0.0003 0.0080 ± 0.0002 0.1140 ± 0.0008 0.056 ± 0.0004
PMF 0.0050 ± 0.0001 0.0020 ± 0.0001 0.1210 ± 0.0050 0.0600 ± 0.0028

MF with Adam Optimizers variants
InAdam 0.0080 ± 0.0001 0.0040 ± 0.0001 0.1300 ± 0.0002 0.065 ± 0.0001

InAdamUser 0.0210 ± 0.0025 0.0100 ± 0.0012 0.1310 ± 0.0002 0.066 ± 0.0001
InAdamItem 0.0210 ± 0.0005 0.0100 ± 0.0002 0.0870 ± 0.0012 0.045 ± 0.0006
SGIAdamUser 0.0160 ± 0.0015 0.0080 ± 0.0007 0.1250 ± 0.0003 0.063 ± 0.0002
SGIAdamItem 0.0190 ± 0.0004 0.0090 ± 0.0002 0.1060 ± 0.0017 0.053 ± 0.0009

MF with AMSGrad Optimizers variants
InAMSGrad 0.0050 ± 0.0002 0.0020 ± 0.0001 0.1310 ± 0.0003 0.0660 ± 0.0002

InAMSGradUser 0.0360 ± 0.0040 0.0170 ± 0.0020 0.1320 ± 0.0003 0.0660 ± 0.0002
InAMSGradItem 0.0110 ± 0.0005 0.0050 ± 0.0002 0.0850 ± 0.0013 0.0430 ± 0.0007
SGIAMSGradUser 0.0270 ± 0.0045 0.0130 ± 0.0023 0.1320 ± 0.0003 0.0660 ± 0.0001
SGIAMSGradItem 0.0110 ± 0.0005 0.0050 ± 0.0002 0.1020 ± 0.0012 0.0510 ± 0.0006

MF with Nadam Optimizers variants
InNadam 0.0080 ± 0.0001 0.0040 ± 0.0001 0.1310 ± 0.0002 0.0660 ± 0.0001

InNadamUser 0.0190 ± 0.0020 0.0090 ± 0.0009 0.1310 ± 0.0003 0.0660 ± 0.0002
InNadamItem 0.0210 ± 0.0006 0.0100 ± 0.0003 0.0910 ± 0.0013 0.0460 ± 0.0006
SGINadamUser 0.0140 ± 0.0009 0.0060 ± 0.0005 0.1300 ± 0.0004 0.0650 ± 0.0003
SGINadamItem 0.0180 ± 0.0004 0.0090 ± 0.0002 0.1140 ± 0.0024 0.0570 ± 0.0012

MF with RMSProp Optimizers variants
InRMSProp 0.0170 ± 0.0004 0.0080 ± 0.0002 0.1260 ± 0.0004 0.0630 ± 0.0002

InRMSPropUser 0.0170 ± 0.0008 0.0080 ± 0.0004 0.1280 ± 0.0003 0.0640 ± 0.0002
InRMSPropItem 0.0160 ± 0.0016 0.0080 ± 0.0007 0.1260 ± 0.0002 0.0630 ± 0.0001
SGIRMSPropUser 0.0090 ± 0.0006 0.0040 ± 0.0003 0.1300 ± 0.0003 0.0650 ± 0.0001
SGIRMSPropItem 0.0080 ± 0.0003 0.0040 ± 0.0001 0.1290 ± 0.0005 0.0640 ± 0.0002

AMSGradUser optimizer obtained the best results across all tested datasets.
Considering the RECALL@10 values of InAMSGradUser, the adaptive op-
timizer increases by up to 2.3 percentage points in the Amazon Books, 1.2
percentage points for the Movie Lens 1M (Table 3), 8.2 percentage points
for the Movie Tweetings, and 11.1 percentage points for the SMDI-200UE
dataset (Table 4), compared with the traditional SGD baseline.

Furthermore, compared with adaptive InMLF optimization, the InAMS-
GradUser optimizer provided an increase by up to 1.8, 2.5, 13.1, and 14.7
percentage points for the Amazon Books, Movie Lens 1M, Movie Tweetings,
and SMDI-200UE datasets, respectively. Concerning the NDCG@10 metric,
the results showed a lower increase, which is natural because the NDCG

23

Table 4: RECALL@10 and NDCG@10 values obtained by the incremental MF recommender
model for the Movie Tweetings and SMDI-200UE datasets.

Models
Movie Tweetings SMDI-200UE

RECALL@10 NDCG@10 RECALL@10 NDCG@10

Baselines
TopPop 0.0070 ± 0.0000 0.0030 ± 0.0000 0.1500 ± 0.0000 0.0870 ± 0.0000
Random 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0020 ± 0.0001 0.0010 ± 0.0000
SGD 0.1510 ± 0.0032 0.0630 ± 0.0014 0.2290 ± 0.0004 0.1330 ± 0.0002

InMLF 0.1010 ± 0.0020 0.0430 ± 0.0008 0.1930 ± 0.0023 0.1080 ± 0.0012
BPRMF 0.0580 ± 0.0004 0.0280 ± 0.0003 0.2380 ± 0.0013 0.1380 ± 0.0008
PMF 0.0090 ± 0.0015 0.0050 ± 0.0009 0.3390 ± 0.0058 0.2250 ± 0.0030

MF with Adam Optimizers variants
InAdam 0.1660 ± 0.0013 0.074 ± 0.0006 0.3210 ± 0.0004 0.2030 ± 0.0003

InAdamUser 0.2250 ± 0.0045 0.1110 ± 0.0027 0.3370 ± 0.0004 0.2010 ± 0.0017
InAdamItem 0.2070 ± 0.0016 0.0990 ± 0.0012 0.1950 ± 0.0026 0.1210 ± 0.0021
SGIAdamUser 0.2060 ± 0.0064 0.1010 ± 0.0034 0.3290 ± 0.0011 0.1840 ± 0.0014
SGIAdamItem 0.2120 ± 0.0010 0.1000 ± 0.0007 0.2100 ± 0.0042 0.1290 ± 0.0023

MF with AMSGrad Optimizers variants
InAMSGrad 0.1510 ± 0.0029 0.0720 ± 0.0014 0.3140 ± 0.0011 0.1820 ± 0.0011

InAMSGradUser 0.2320 ± 0.0028 0.1150 ± 0.0017 0.3400 ± 0.0005 0.2080 ± 0.0007
InAMSGradItem 0.2090 ± 0.0023 0.1 ± 0.0013 0.2350 ± 0.0039 0.1560 ± 0.0028
SGIAMSGradUser 0.2090 ± 0.0025 0.102 ± 0.0013 0.3380 ± 0.0003 0.2010 ± 0.0003
SGIAMSGradItem 0.2090 ± 0.0011 0.101 ± 0.0007 0.2550 ± 0.0030 0.1660 ± 0.0025

MF with Nadam Optimizers variants
InNadam 0.1570 ± 0.0004 0.0700 ± 0.0002 0.3260 ± 0.0006 0.1970 ± 0.0004

InNadamUser 0.2280 ± 0.0033 0.1120 ± 0.0018 0.3400 ± 0.0006 0.2010 ± 0.0018
InNadamItem 0.2190 ± 0.0012 0.1050 ± 0.0009 0.2050 ± 0.0051 0.1280 ± 0.0029
SGINadamUser 0.2040 ± 0.0048 0.0990 ± 0.0026 0.3280 ± 0.0015 0.1820 ± 0.0014
SGINadamItem 0.2220 ± 0.0012 0.1060 ± 0.0009 0.2240 ± 0.0073 0.1360 ± 0.0043

MF with RMSProp Optimizers variants
InRMSProp 0.1780 ± 0.0024 0.0910 ± 0.0015 0.1960 ± 0.0004 0.1170 ± 0.0004

InRMSPropUser 0.1770 ± 0.0021 0.0930 ± 0.0015 0.1940 ± 0.0010 0.1190 ± 0.0005
InRMSPropItem 0.1710 ± 0.0043 0.0880 ± 0.0023 0.2030 ± 0.0032 0.1220 ± 0.0016
SGIRMSPropUser 0.1880 ± 0.0026 0.0960 ± 0.0014 0.3130 ± 0.0013 0.1610 ± 0.0016
SGIRMSPropItem 0.1650 ± 0.0012 0.0850 ± 0.0007 0.3120 ± 0.0014 0.1640 ± 0.0015

evaluates the item ranking in the TOP@10 ranked list. Regarding the InAMS-
GradUser and SGD NDCG@10 values, we observed increases of up to 1.1, 0.6,
5.2, and 7.5 percentage points for the Amazon Books, Movie Lens 1M, Movie
Tweetings, and SMDI-200UE datasets, respectively. However, although the
increase in NDCG values was smaller than that in RECALL, there were also
significant differences between the results.

The results showed that the PMF model provided competitive results
for the Movie Lens and SMDI-200UE datasets. Moreover, considering the
Amazon Books and Movie Tweeting datasets, which are the largest amog the
tested datasets, the results are not significantly different from the TopPop
baseline. As observed in the incremental MF model results (Tables 3 and 4),

24

considering the optimizer variants, the user-specialized version provided supe-
rior performance in most cases. In all the analyzed datasets, the InAdamUser,
InAMSGradUser, and InNadamUser variants showed the best results com-
pared to the other variants of each optimizer. For the RMSProp optimizer, the
user specialized-generalized version presented the best results. In contrast, in
most experiments item-specialized and item-specialized-generalized variants
did not significantly differ from the SGD baseline. We explain this behavior
by searching for datasets of distinct users and items, where the number of
users is higher than the number of items. Additionally, as we are working in
a collaborative filtering scenario, where the primary purpose is to model and
learn the relationship between users, it makes sense to learn individualized
optimizer parameters for each user, because the optimizer also uses these
parameters to update the latent factor vector of the items.

Considering the statistical significance test, although the InAMSGradUser
rates were greater, some optimizers did not show significant differences con-
sidering the Nemenyi test with a 95% confidence level. In the Movie Lens
1M dataset, the InAMSGradUser optimizer did not show a significant dif-
ference from the SGIAMSGradUser, InNadamUser, InAdamUser, InAMS-
Grad, InNadam, and InAdam optimizers. Considering the Movie Tweetings
dataset, the optimizers without significant differences from InAMSGradUser
are InNadamUser, InAdamUser, SGINadamItem, InNadamItem, and SGI-
NadamItem. Finally, in the SMDI-200UE dataset, the InAMSGradUser opti-
mizer does not differ from InNadamUser, SGIAMSGradUser, InAdamUser,
SGIAdamUser, SGINadamUser, and InNadam.

Figure 2 shows the critical distance (CD) of the best variants of each
optimizer, considering the obtained results for all datasets. The general
results concerning the RECALL@10 values demonstrate the best performance
of user-specialized variants. In addition, by comparing the RECALL@10
values across all the analyzed datasets, we confirm that the AMSGradUser
and InNadamUser optimizers presented the best performance in the experi-
ments, showing significant differences from the other optimizers, except for
the PMF model in the SMDI-200UE dataset, which presented competitive
results. Furthermore, considering the NDCG@10 values, the PMF model
outperformed the other optimizers. On the other hand, in contrast to what
was observed in the RECALL@10 analysis, regarding the NDCG@10 values,
the InAdam and SGIRMSPropItem optimizers outperform the InAdamUser
and SGIRMSPropIUser variants.

Figure 3 presents the results of Friedman and Nemenyi’s statistical signif-

25

(a) RECALL@10. (b) NDCG@10.

Figure 2: Nemenyi test results on RECALL@10 and NDCG@10 values in the analysed
datasets.

icance test, considering the experiments of all techniques in each analyzed
dataset. The legends present the Friedman p-values and show significant
differences, assuming a 95% (p-value < 0.05) confidence level for the re-
sults for all datasets. Therefore, the graph of the critical distance obtained
by the Nemenyi test shows the rankings and significant differences of each
method. We observe in the statistical significance tests in Figure 3 that the
behavior of the results is similar to that presented in Tables 3 and 4. The
user-specialized variants provided the best results in most cases and outper-
formed the specialized-generalized versions of the AMSGrad, Nadam, and
Adam optimizers. InAMSGradUser and InAdamUser proposed specialized op-
timizer variants provide the best results for all analyzed datasets considering
RECALL@10. Regarding the NDCG@10 values, only for the SMDI-200UE
dataset, InAdamUser does not appear as the best variant of the Adam Opti-
mizer. However, considering the RMSProp optimizer, we obtained the best
results in the user-specialized-generalized version (SGIRMSPropUser). We
also observe different behaviors in the Amazon Books dataset results, in which
the item-specialized Nadam optimizer variant (InNadamItem) presented the
best performance compared to the other versions.

In contrast to the results obtained in the combined statistical analysis
of all datasets (Figure 2), considering the results in every single dataset (3),
the PMF model presented the best results only for the SMDI-200UE dataset.
However, in the general analysis, the PMF obtained the best performance
because the RECALL@10 and NDCG@10 values in the SMDI-200UE dataset
were higher than those of the other datasets.

Comparing the obtained results across the analyzed datasets, we observed

26

(a) Amazon Books RECALL@10 (p-value = 2.64×
10−15).

(b) Amazon Books NDCG@10 (p-value = 3.07 ×
10−15).

(c) Movie Lens RECALL@10 (p-value = 2.64 ×
10−15).

(d) Movie Lens NDCG@10 (p-value = 2.41 ×
10−15).

(e) Movie Tweetings RECALL@10 (p-value =
3.60× 10−15).

(f) Movie Tweetings NDCG@10 (p-value = 3.29×
10−15).

(g) SMDI-200UE RECALL@10 (p-value = 7.9 ×
10−15).

(h) SMDI-200UE NDCG@10 (p-value = 1.78 ×
10−15).

Figure 3: Critical distances of the Nemenyi test for Recall and NDCG results in different
datasets. All p-values refer to the Friedman test.

27

that the proposed user-specialized and user-specialized-generalized variants
provided superior performance to the tested baselines in most cases. Addition-
ally, combining the adaptive learning rate optimizers in the MF model, Adam,
Nadam, AMSGrad, and RMSProp significantly increased the RECALL and
NDGC rates compared with the traditional SGD baseline.

5.1. Streaming Analysis of the Results

As we are working in a streaming scenario, it is essential to evaluate the
tested methods by considering the evolution of the results according to the
emergence of new instances (<u, i>) in the stream. Figure 4 presents the
windowed evaluation of RECALL@10 values by analyzing the best optimizer
and their variants in each dataset. We considered a window with a size 5%
of the number of test interactions. Considering the Amazon Books dataset
results (Figure 4a), we observe that the AMSGradUser and SGIAMSGradUser
optimizers outperform other AMSGrad variants during the entire streaming
test set. However, the specialized version AMSGradUser maintains the best
windowed RECALL@10 values during the data stream fashion. The item-
specialized (InAMSGradItem) and item-specialized-generalized (SGIAMSGra-
dItem) variants showed similar results and presented superior results to the
traditional InAMSGrad optimization strategy.

Concerning the results obtained in the Movie Lens dataset experiments
(Figure 4b), we confirm the reduced differences in the RECALL@10 values
compared to the windowed evaluation results with the obtained average
RECALL@10 rates (Table 3). The both traditional (InAMSgrad), user-
specialized (InAMSgradUser), and user-specialized-generalized (SGIAMS-
gradUser) variants of the AMSGrad optimizer show similar behavior in the
plotted results. Different from what we observe in the Amazon Books dataset,
in the Movie Lens dataset, the item-specialized (InAMSGradItem) and item-
specialized-generalized (SGIAMSGradItem) variants of AMSGrad optimizer
presented inferior results than the traditional InAMSGrad version.

Figure 4c shows the windowed RECALL@10 values obtained using the
AMSGrad optimizer variants in the movie tweeting dataset. This analysis
shows that the proposed AMSGrad variants outperform the traditional opti-
mizer. We observed that the user-specialized optimizer (InAMSGradUser)
provided superior performance in some regions of the graph, as proven by the
average RECALL@10 rates (Table 4), in which we obtained a RECALL@10
value of 23.20% using the InAMSGradUser optimizer. For InAMSGradItem,

28

(a) AMSGrad variants in the Amazon Books
dataset.

(b) AMSGrad variants in the Movie Lens dataset.

(c) AMSGrad variants in the Movie Tweetings
dataset.

(d) Nadam variants in the SMDI-200UE dataset.

Figure 4: Windowed evaluation of RECALL@10 values obtained by the best optimizer
and their variants in each dataset (We consider a window size of 5% of the number of
interactions for each dataset test portion).

SGIAMSGradUser, and SGIAMSGradUser optimizers, the obtained RE-
CALL@10 value was 20.90%.

Finally, considering the SMDI-200UE dataset results, Figure 4d shows
the results for the Nadam optimizer variants. We observe a similar behavior
from the obtained results in the Movie Lens dataset, in which the traditional
(InNadam), user-specialized (InNadamUser), and user-specialized-generalized
(SGINadamUser) variants presented similar results. Furthermore, the item
specialized (InNadamItem) and item-specialized-generalized (SGINadamItem)
versions also provided worse results than the traditional version. Nonetheless,
we observe that although the windowed evaluation presented similar results,

29

InNadamUser and SGINadamUser outperformed the InNadam optimizer in
some regions of the test data stream.

We justify the obtained results in the analyzed datasets by comparing
the size (number of instances) and number of distinct users and items. The
Movie Lens and SMDI-200UE datasets had fewer users and items than the
Amazon books and movie tweeting datasets. In this sense, our proposed
optimizer variants provided the best performance in datasets with a higher
number of users and items, which is reasonable because we trained individual
optimizer parameters for each available user or item in the stream. The
Amazon books and movie tweeting datasets also have more instances than
the others, showing that our methods work well in large datasets with a high
incidence of new users and items.

6. Conclusion

In this study, we proposed novel adaptive learning rate optimizers for
incremental MF recommender systems. Our variants consider user (user-
specialized and user-specialized-generalized) or item (item-specialized and
item-specialized-generalized) identifiers to model and learn optimizer parame-
ters for each user or item, respectively. We selected four adaptive optimizers,
Adam, Nadam, AMSGrad, and RMSProp, and coupled them with the pro-
posed optimizers. We tested our approaches on three real-world datasets
and compared their results with those of a traditional SGD optimizer. Our
proposed optimizers presented superior performance when datasets have many
users and items. The larger the number of users and items, the higher the
incidence of cold-start. In this sense, the specialization is more suitable when
fewer interactions per user exist and more users for which we do not have
information emerge from the stream. We observed that the InAMSGradUser
and InNadamUser variants, which are user-specialized versions of the AMS-
Grad and Nadam optimizers, significantly outperform the SGD among all
datasets, increasing the RECALL@10 values by up to 11.1 percentage points
and NDCG@10 by up to 7.5 percentage points. Therefore, we conclude that
combining adaptive learning rate optimizers in the MF model provides more
accurate recommendations to users because adapting the learning rates during
models’ incremental updates makes the models adaptive to changes in data
behavior.

Regarding disadvantages and limitations, our method increases the number
of model parameters to train and update according to the number of optimizer

30

parameters. In practice, the number of parameters is directly proportional to
the number of base optimizer parameters. Suppose the base optimizer has a
single parameter. In that case, our method stores the user and item latent
factors as well as the user or item specialized optimizer parameters, i.e., for
the RMSProp, the −−→vp(t) parameter, for Adam and Nadam, the −−→vp(t) and −−→mp(t)

parameters, and for the AMSGrad, the −−→vp(t), −−→mp(t) and
−−−−−−−→
max(vp(t)) parameters.

In future work, we plan to investigate other adaptive learning rate optimiz-
ers to analyze their incremental efficiency in updating MF models. We intend
to incorporate our optimizer variants into other MF recommender models,
such as the PMF and BMPMF models presented in this study. In particular,
we also plan on developing specialized and generalized optimization processes
for high-dimensional and sparse (HiDS) collaborative filtering settings, in-
cluding L1-and-L2 latent factor models [18], graph convolutional network
latent feature analysis [19], and alternating direction methods [15], which
are available for batch settings and still require adaptations for streaming
settings. Finally, we plan to investigate the application of drift detectors
as part of the learning process to adapt the model parameters according to
changes in the data.

Acknowledgements

We would like to thank the Conselho Nacional de Desenvolvimento
Cient́ıfico e Tecnológico - CNPq (grant #142195/2019-7) for financing this
research and HiMarket for their financial support. We also gratefully acknowl-
edge the support by NVIDIA Corporation for the donation of the Titan V
GPU used in this research.

References

[1] F. Ricci, L. Rokach, B. Shapira, Introduction to recommender systems
handbook, in: Recommender Systems Handbook, Springer, 2011, pp.
1–35.

[2] S. Zhang, L. Yao, A. Sun, Y. Tay, Deep learning based recommender
system: A survey and new perspectives, ACM Compututing Surveys 52
(2019) 5:1–5:38.

31

[3] G. Li, Z. Zhang, L. Wang, Q. Chen, J. Pan, One-class collaborative
filtering based on rating prediction and ranking prediction, Knowledge
Based Systems 124 (2017) 46–54.

[4] J. Bobadilla, F. Ortega, A. Hernando, A. Gutiérrez, Recommender
systems survey, Knowledge-based systems 46 (2013) 109–132.

[5] T. Yu, O. J. Mengshoel, A. Jude, E. Feller, J. Forgeat, N. Radia, In-
cremental learning for matrix factorization in recommender systems,
in: 2016 IEEE International Conference on Big Data, BigData 2016,
Washington DC, USA, December 5-8, 2016, IEEE Computer Society,
2016, pp. 1056–1063.

[6] A. D. Viniski, J. P. Barddal, A. de Souza Britto Jr., F. Enembreck,
H. V. A. de Campos, A case study of batch and incremental recommender
systems in supermarket data under concept drifts and cold start, Expert
Systems with Applications 176 (2021) 114890.

[7] E. S. Babüroglu, A. Durmusoglu, T. Dereli, Novel hybrid pair recom-
mendations based on a large-scale comparative study of concept drift
detection, Expert Systems with Applications 163 (2021) 113786.

[8] I. Rabiu, N. Salim, A. Da’u, A. Osman, M. Nasser, Exploiting dynamic
changes from latent features to improve recommendation using temporal
matrix factorization, Egyptian Informatics Journal (2020).

[9] K. Laghmari, C. Marsala, M. Ramdani, An adapted incremental graded
multi-label classification model for recommendation systems, Progress
in Artificial Intelligence 7 (2018) 15–29.

[10] T. Tieleman, G. Hinton, Lecture 6.5 - RMSProp, COURSERA: Neural
Networks for Machine Learning, Technical Report, Technical report,
2012.

[11] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, in:
Y. Bengio, Y. LeCun (Eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

[12] S. J. Reddi, S. Kale, S. Kumar, On the convergence of adam and beyond,
in: 6th International Conference on Learning Representations, ICLR

32

2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings, OpenReview.net, 2018.

[13] T. Dozat, Incorporating nesterov momentum into adam (2016)
2013–2016.

[14] X. Luo, W. Qin, A. Dong, K. Sedraoui, M. Zhou, Efficient and high-
quality recommendations via momentum-incorporated parallel stochastic
gradient descent-based learning, IEEE/CAA Journal of Automatica
Sinica 8 (2021) 402–411.

[15] X. Luo, M. Zhou, Z. Wang, Y. Xia, Q. Zhu, An effective scheme for qos
estimation via alternating direction method-based matrix factorization,
IEEE Transactions on Services Computing 12 (2016) 503–518.

[16] S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme, BPR:
bayesian personalized ranking from implicit feedback, CoRR
abs/1205.2618 (2012). arXiv:1205.2618.

[17] X. Luo, Y. Yuan, S. Chen, N. Zeng, Z. Wang, Position-transitional
particle swarm optimization-incorporated latent factor analysis, IEEE
Transactions on Knowledge and Data Engineering 34 (2022) 3958–3970.

[18] D. Wu, M. Shang, X. Luo, Z. Wang, An l1-and-l2-norm-oriented latent
factor model for recommender systems, IEEE Transactions on Neural
Networks and Learning Systems 33 (2022) 5775–5788.

[19] F. Bi, T. He, Y. Xie, X. Luo, Two-stream graph convolutional network-
incorporated latent feature analysis, IEEE Transactions on Services
Computing (2023).

[20] G. Takács, I. Pilászy, B. Németh, D. Tikk, Scalable collaborative filtering
approaches for large recommender systems, Journal of Machine Learning
Research 10 (2009) 623–656.

[21] Y. Koren, R. M. Bell, C. Volinsky, Matrix factorization techniques for
recommender systems, IEEE Computer 42 (2009) 30–37.

[22] J. Vinagre, A. M. Jorge, J. Gama, Fast incremental matrix factorization
for recommendation with positive-only feedback, in: User Modeling,
Adaptation, and Personalization - 22nd International Conference, UMAP

33

2014, Aalborg, Denmark, July 7-11, 2014. Proceedings, volume 8538 of
Lecture Notes in Computer Science, Springer, 2014, pp. 459–470.

[23] J. Chen, J. Fang, W. Liu, T. Tang, C. Yang, clmf: A fine-grained
and portable alternating least squares algorithm for parallel matrix
factorization, Future Gener. Comput. Syst. 108 (2020) 1192–1205.

[24] S. K. Raghuwanshi, R. K. Pateriya, Accelerated singular value decom-
position (asvd) using momentum based gradient descent optimization,
Journal of King Saud University-Computer and Information Sciences
(2018).

[25] F. Rezaeimehr, P. Moradi, S. Ahmadian, N. N. Qader,
M. Jalili, TCARS: time- and community-aware recommen-
dation system, Future Gener. Comput. Syst. 78 (2018) 419–
429. URL: https://doi.org/10.1016/j.future.2017.04.003.
doi:10.1016/j.future.2017.04.003.

[26] X. Yuan, L. Han, S. Qian, G. Xu, H. Yan, Singu-
lar value decomposition based recommendation using im-
puted data, Knowl. Based Syst. 163 (2019) 485–494.
URL: https://doi.org/10.1016/j.knosys.2018.09.011.
doi:10.1016/j.knosys.2018.09.011.

[27] R. Salakhutdinov, A. Mnih, Probabilistic matrix factorization, in:
J. C. Platt, D. Koller, Y. Singer, S. T. Roweis (Eds.), Advances in
Neural Information Processing Systems 20, Proceedings of the Twenty-
First Annual Conference on Neural Information Processing Systems,
Vancouver, British Columbia, Canada, December 3-6, 2007, Curran
Associates, Inc., 2007, pp. 1257–1264.

[28] L. Breiman, Bagging predictors, Machine Learning 24 (1996) 123–140.

[29] J. Ding, F. Feng, X. He, G. Yu, Y. Li, D. Jin, An improved sampler for
bayesian personalized ranking by leveraging view data, in: Companion
Proceedings of the The Web Conference 2018, 2018, pp. 13–14.

[30] T. Greenberg-Toledo, R. Mazor, A. Haj-Ali, S. Kvatinsky, Supporting
the momentum training algorithm using a memristor-based synapse,
IEEE Transactions on Circuits and Systems I: Regular Papers 66 (2019)
1571–1583.

34

[31] S. Sun, Z. Cao, H. Zhu, J. Zhao, A survey of optimization methods from
a machine learning perspective, IEEE Transasctions on Cybernetics 50
(2020) 3668–3681.

[32] M. Kastrati, M. Biba, A state-of-the-art survey of advanced optimization
methods in machine learning, in: E. Xhina, K. Hoxha (Eds.), Proceedings
of the 4th International Conference on Recent Trends and Applications
in Computer Science and Information Technology, Tirana, Albania, May
21st - to - 22nd, 2021, volume 2872 of CEUR Workshop Proceedings,
CEUR-WS.org, 2021, pp. 1–10.

[33] E. Dogo, O. Afolabi, N. Nwulu, B. Twala, C. Aigbavboa, A com-
parative analysis of gradient descent-based optimization algorithms on
convolutional neural networks, in: 2018 international conference on
computational techniques, electronics and mechanical systems (CTEMS),
IEEE, 2018, pp. 92–99.

[34] Y. Yu, F. Liu, Effective neural network training with a new weighting
mechanism-based optimization algorithm, IEEE Access 7 (2019) 72403–
72410.

[35] S. Chaudhury, T. Yamasaki, Robustness of adaptive neural network
optimization under training noise, IEEE Access 9 (2021) 37039–37053.

[36] D. M. Nguyen, E. Tsiligianni, N. Deligiannis, Learning discrete matrix
factorization models, IEEE Signal Processing Letters 25 (2018) 720–724.

[37] J. McAuley, Amazon product data, 2014.

[38] F. M. Harper, J. A. Konstan, The movielens datasets: History and
context, TiiS 5 (2016) 19:1–19:19.

[39] S. Dooms, T. D. Pessemier, L. Martens, Mining cross-domain rating
datasets from structured data on twitter, in: 23rd International World
Wide Web Conference, WWW ’14, Seoul, Republic of Korea, April 7-11,
2014, Companion Volume, ACM, 2014, pp. 621–624.

[40] J. Gama, R. Sebastião, P. P. Rodrigues, On evaluating stream learning
algorithms, Machine Learning 90 (2013) 317–346.

35

[41] P. Cremonesi, Y. Koren, R. Turrin, Performance of recommender algo-
rithms on top-n recommendation tasks, in: X. Amatriain, M. Torrens,
P. Resnick, M. Zanker (Eds.), Proceedings of the 2010 ACM Conference
on Recommender Systems, RecSys 2010, Barcelona, Spain, September
26-30, 2010, ACM, 2010, pp. 39–46.

[42] M. S. Kristoffersen, S. E. Shepstone, Z. Tan, A dataset for inferring
contextual preferences of users watching TV, in: T. Mitrovic, J. Zhang,
L. Chen, D. Chin (Eds.), Proceedings of the 26th Conference on User
Modeling, Adaptation and Personalization, UMAP 2018, Singapore, July
08-11, 2018, ACM, 2018, pp. 367–368.

[43] J. Demsar, Statistical comparisons of classifiers over multiple data sets,
Journal of Machine Learning Research 7 (2006) 1–30.

[44] M. Friedman, The use of ranks to avoid the assumption of normality
implicit in the analysis of variance, Journal of the american statistical
association 32 (1937) 675–701.

[45] P. B. Nemenyi, Distribution-free multiple comparisons, PhD thesis,
Princeton University, 1963.

[46] Q. Yuan, L. Chen, S. Zhao, Factorization vs. regularization: fusing
heterogeneous social relationships in top-n recommendation, in: Proceed-
ings of the 2011 ACM Conference on Recommender Systems, RecSys
2011, Chicago, IL, USA, October 23-27, 2011, ACM, 2011, pp. 245–252.

[47] X. He, T. Chen, M. Kan, X. Chen, Trirank: Review-aware explainable
recommendation by modeling aspects, in: Proceedings of the 24th ACM
International Conference on Information and Knowledge Management,
CIKM 2015, Melbourne, VIC, Australia, October 19 - 23, 2015, ACM,
2015, pp. 1661–1670.

36

