
Random Forest Kernel for High-Dimension

Low Sample Size Classification

Lucca Portes Cavalheiro1,2*, Simon Bernard1, Jean Paul
Barddal2 and Laurent Heutte1,2

1LITIS (UR 4108), Université de Rouen Normandie, F-76000
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Abstract

High dimension, low sample size (HDLSS) problems are numerous among
real-world applications of machine learning. From medical images to
text processing, traditional machine learning algorithms are usually
unsuccessful in learning the best possible concept from such data. In
a previous work, we proposed a dissimilarity-based approach for multi-
view classification, the Random Forest Dissimilarity (RFD), that perfoms
state-of-the-art results for such problems. In this work, we transpose
the core principle of this approach to solving HDLSS classification prob-
lems, by using the RF similarity measure as a learned precomputed SVM
kernel (RFSVM). We show that such a learned similarity measure is
particularly suited and accurate for this classification context. Experi-
ments conducted on 40 public HDLSS classification datasets, supported
by rigorous statistical analyses, show that the RFSVM method outper-
forms existing methods for the majority of HDLSS problems and remains
at the same time very competitive for low or non-HDLSS problems.

Keywords: High Dimension Low Sample Size, Classification, Random
Forest, Similarity learning, SVM, Kernel
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1 Introduction

In many modern machine learning problems, data are made available as small
samples while being described in high dimensions. These datasets are gener-
ally referred to as “High Dimension, Low Sample Size” (HDLSS) datasets.
These situations occur when the data are intrinsically complex and need to be
described with many features, and when at the same time they are available
only in potentially very limited quantities. Formally, a dataset T composed of
{(x1, y1), (x2, y2), . . . , (xn, yn)} instances, where xi is the vector of descriptive
features belonging to Rm and yi is its corresponding class label, is considered
to be a HDLSS dataset when m ≫ n [1, 2]. However, it should be noted that
there is no consensus on the threshold to apply to the ratio between m and n to
unambiguously decide whether a dataset is pertaining to an HDLSS learning
problem [1–3].

HDLSS datasets are recurring in many real-world applications, including,
but not limited to, medical imaging, DNA microarrays, and text processing
[1, 4]. For instance, for pattern recognition tasks in medical imaging, numerical
image representations are known to be high dimensional, whether they are
built with hand-crafted features or with automatically learned deep features
[5]. This is combined with the fact that acquiring samples for medical-related
pattern recognition applications is not an easy task due to health data privacy
policies, political concerns, or even the homogenization of medical protocols.
In general, this means dealing with particularly small-sized datasets.

HDLSS datasets pose a number of challenges to general-purpose machine
learning algorithms. These datasets usually embed very complex concepts
due to a large number of relevant features, while they generally do not con-
tain a sufficient number of instances for learning these concepts. This leads
to several machine learning issues, well known to the community and often
referred to as the curse of dimensionality. For example, for the many methods
based on distance metrics, like the k-Nearest Neighbors methods, the notion
of “neighborhood” becomes progressively ill-defined in high dimensions [6].
This is because the distances between instances become more and more similar
when the dimension increases [7]. Another example of difficulties encountered
in learning HDLSS data is the presence of outliers. Some methods are known
to be particularly sensitive to outliers [8], and such data are quite common
in high-dimensional feature spaces [6]. A last example of well-known learning
problems often encountered in the HDLSS context is overfitting. In this con-
text, many general-purpose machine learning techniques are likely to overfit.
It is the case of SVM-based methods for example, for which the so-called data-
piling phenomenon is particularly salient in the HDLSS context and leads to
strong overfitting [9].

The most common approach in the literature for dealing with HDLSS
learning tasks is based on dimensionality reduction. The key idea is to reduce
the dimension to transform a high dimensional problem into a learning prob-
lem where m ≈ n. However, these methods can be considered as workarounds
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rather than true solutions for learning HDLSS datasets. Moreover, they often
suffer from two major drawbacks:

• Using dimensionality reduction often result in a significant loss of informa-
tion if the features are mostly relevant and poorly correlated [10, 11].

• Selecting a small subset of the most relevant features may not yield good
results if the number of data is too small [11, 12].

In contrast, few methods have been proposed in the literature specifically
to handle HDLSS learning tasks, which we review in Section 2. The most effi-
cient ones are derived from the SVM principle, with a modified formulation of
the underlying optimization problem in order to better adapt to the HDLSS
specificities [11, 13]. However, we think that another promising approach is
to use a HDLSS-compliant similarity measure as a kernel for SVM, instead of
relying on a specific problem formulation. This idea has been recently applied
to multi-view learning as in this context, similarity representations allow to
easily merge the different views together [10]. This approach, named Random
Forest Dissimilarity (RFD), leans on Random Forest classifiers to build dis-
similarity representations that are then used as pre-computed kernels in SVM
classifiers. We show in this paper that this principle can be straightforwardly
and efficiently applied to HDLSS classification problems, for which we think it
presents real assets: (i) Learning based on (dis)similarities between instances
is a good way to deal with particularly small-sized datasets and (ii) the Ran-
dom Forest (dis)similarity measure is known to be particularly robust to high
dimensions. Therefore, this work presents:

• a transposition of the RFD method to HDLSS classification tasks with an
emphasis on its strength to face the HDLSS challenges.

• a rigorous experimental validation, including comparisons with several state-
of-the-art HDLSS learning methods on 40 real-world problems, along with
a thorough statistical analysis of the results.

Note that for simplicity, we focus only on classification problems in this study.
However, our proposal is straightforwardly applicable to regression tasks, as
well as all the other methods used for comparison.

The remainder of this paper is organized as follows. Section 2 reviews the
main state-of-the-art approaches for HDLSS learning. Section 3 presents the
Random Forest SVM method and discuss its assets fro HDLSS classification.
Section 4 describes the experimental setting, followed by the presentation and
analysis of the results in Section 5. Finally, Section 6 gives our conclusion and
future works.

2 Related Work

This section focuses on solutions to address the challenges posed by HDLSS
learning tasks and provides an overview of the leading solutions that can
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be found in the literature, with the exception of dimensionality reduction
approaches, not included for reasons explained in the introduction.

2.1 Limitations of traditional methods for dealing with
HDLSS problems

Traditional general-purpose machine learning techniques like Discriminant
Analysis [14], k-Nearest Neighbors [15], and Support Vector Machines [9] usu-
ally fail to handle HDLSS datasets mainly due to the fact that such a context
leads to ill-posed problems or to unsuitable learning conditions. For example,
Linear Discriminant Analysis (LDA) suffers from a well-known problem when
the dimension is larger than the number of training instances, i.e., m ≫ n.
The underlying principle of LDA is to find a projection of the data in which
the between-class separability is maximized while the within-class variability
is minimized. To do so, it uses a within-class scatter matrix that is known to be
singular when m ≫ n. This is an important problem since the non-singularity
of this matrix is required to find the LDA basis vectors. The usual ways to
circumvent this situation is either to perform dimensionality reduction before-
hand (which is beyond the scope of this work as previously explained), or to
use regularization techniques, as in the Regularized Discriminant Analysis [14]
which has been successfully used for real-world HDLSS problems [16].

Distance-based classification techniques, like the k-Nearest Neighbors fam-
ily of methods, are classifiers that usually perform well when n > m. However,
they are also known to suffer from the curse of dimensionality in the opposite
situation because the pairwise distances between all observations concentrate
around a single value in this case [17]. Similarly as before, a large part of the
solutions proposed in the literature are based on dimensionality reduction tech-
niques, e.g., [18]. A few others, however, propose alternative mechanisms for
dealing with HDLSS data like weighted voting scheme [19], fuzzy neighborhood
[20], or new proximity measurements [21] to name a few.

Nevertheless, most state-of-the-art methods tailored for HDLSS classifica-
tion in the literature are based on adaptations of SVM classifiers. SVM are
known to be particularly prone to overfitting in the HDLSS context, which
is often illustrated through the data-piling phenomenon [9]. The following
section details this phenomenon as well as the different solutions that have
been proposed in the literature.

2.2 SVM-inspired methods

In binary classification, the underlying principle of Support Vector Machines
(SVM) [22] is to find a hyperplane that best separates the instances according
to their classes by maximizing the distance (called the margin) to its closest
instances (called the support vectors). The solution is the hyperplane whose
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parameters that minimizes the following problem:

min
w,b,{ξi}

1

2
∥w∥2 + C

n∑
i=0

ξi (1)

s.t. yi
(
w⊤xi + b

)
≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n

where w is the normal vector of the hyperplane, b its intercept term, and
where C is a regularization hyperparameter to control a trade-off between
maximizing the margin and taking into account some training errors when the
problem is not strictly linearly separable.

The behavior of this SVM method for HDLSS classification has been exten-
sively analyzed and discussed in [9]. The authors show that in such a setting,
SVM classifiers face the so-called data-piling problem. This problem arises
specifically with HDLSS datasets because, in this case, a large proportion of
the training instances are support vectors, i.e. they lie on the margin bound-
aries resulting from the minimization of Equation 5. When projected in the
discriminant direction (i.e. to the normal vector w obtained by minimizing
Equation 5), all these support vectors ”pile up on top of each other”, i.e. they
are projected onto exactly two points, one for each class. In this discriminant
projection, the separating hyperplane is exactly halfway between these two
points. Nevertheless, this usually reflects severe overfitting since independent
test instances may not be projected the same way in the discriminant direc-
tion. As a result, while the resulting linear classifier perfectly fit (most of) the
training instances, there is a strong risk that it will not generalize well to new
data points. This phenomenon has been widely illustrated and analyzed in the
literature and we refer the reader to [2, 9, 23] for further details.

Variations have been proposed to solve this problem, mainly by modifying
the underlying optimization problem. For example, the Distance Weighted
Discrimination (DWD) [9] leans on a minimization problem for which the best
separating hyperplane is the one that maximizes the harmonic mean of all
distances to the hyperplane:

min
w,b,{ξi}

n∑
i=1

(
1

ri
+ Cξi

)
(2)

s.t. ri = yi
(
w⊤xi + b

)
+ ξi,

ri ≥ 0, ξi ≥ 0, ∥w∥2 ≤ 1

In this process all training instances are taken into account to find the
hyperplane, instead of relying only on the support vectors. A variant of
this principle, named Weighted Distance Weighted Discrimination (wDWD)
[23], has been proposed to allow for more flexibility and robustness, as the
method is known to be sensitive to imbalanced classes and quickly become
computationally expensive as the number of training instances increases [2].
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Another SVM-inspired method is proposed in [2] named the Population-
Guided Large Margin Classification (PGLMC) method, that aims to take up
the idea of DWD while improving its computational performance. Equation
5 is modified to take into account the distance between the centroids of the
classes (instead of all the traning instances) to ensure the training instances
of both classes are as far as possible along the projecting direction w:

min
w,b,{ξi}

∥w∥2

(m1 −m2)⊤w
+ C

n∑
i=0

ξi (3)

s.t. yi
(
w⊤xi + b

)
≥ 1− ξi, i = 1, . . . , n

(m1 −m2)
⊤w ≥ 2 (4)

ξi ≥ 0, i = 1, . . . , n

where m1 (resp. m2) is the centroid of the first class (resp. the second class).
Following a similar principle, a slightly different formulation is proposed in
[11] that still maximize the distance between classes but that also strives to
distribute the points as much as possible in the projection direction to avoid
data-piling. The resulting method is named No-separated Data Maximum
Dispersion classifier (NPDMD).

2.3 SVM with an HDLSS-robust kernel

The solutions mentioned above are all based on different formulations of the
underlying optimization problem, whose solution leads to the final linear clas-
sifier. However, SVMs are known to allow the learning of non-linear classifiers
using the kernel trick. Intuitively, it consists in applying a non-linear projec-
tion of the data into an implicit feature space in which a separating hyperplane
exists. The key feature of this projection is that it does not require coordi-
nates to be calculated explicitly, as all operations are performed through scalar
products in this space, calculated with a kernel function.

Formally, this trick is based on the Lagrangian dual form of the SVM
optimization problem:

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
⊤
j xi (5)

s.c. αi ≥ 0, i = 1, . . . , n (6)
n∑

i=1

αiyi = 0 (7)

where the αi are the Lagrange multipliers. This dual form can be efficiently
solved by quadratic programming algorithm, with the notable advantage of
searching for n parameters (the Lagrange multipliers) instead of m+1 param-
eters with the primal version (the m values of w and b). This makes it
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particularly suitable for HDLSS problems where m ≫ n. This also allows to
express the resulting classifier has a function of the support vectors:

h(x) =

n∑
i=1

αiyix
⊤
i x+ b =

n∑
i=1

αiyiK(xi,xj) + b (8)

As a consequence, all instances are only accessed through scalar product,
allowing the use of any kernel functions K, as in the right-hand expression of
Equation 8. We refer the reader to [24] for further details about the kernel
trick, and kernel methods in general.

There are several popular kernels for SVM in the literature, but the best
performing one for a wide range of real-world problems is the radial basis
function (RBF) kernel, defined as:

K(xi,xj) = exp
(
−γ∥xi − xj∥2

)
(9)

where xi,xj is any pair of instances, and where γ is a hyperparameter. It is
important to note that the behavior of the resulting model is highly sensitive
to the value of γ and that it must be tuned in conjunction with the regulariza-
tion parameter C. The traditionally recommended protocol for tuning these
hyperparameters is detailed in Section 4.

The asymptotic behaviors of SVM with RBF kernel in the HDLSS context
are further investigated in [3]. This study shows that nonlinear SVM classi-
fiers with RBF kernels are highly biased in the HDLSS context, especially
with imbalanced classes, and we therefore believe that using an HDLSS-robust
kernel would be more relevant. For this, one can rely on the fact that the ker-
nels can be directly interpreted as a similarity measurement [25]. In fact, any
similarity measure can be used as kernel provided that it fulfills specific math-
ematical conditions [10, 26]. Therefore, using SVM for tackling the HDLSS
classification challenges could be addressed by proposing a suitable similarity
measure instead of modifying the underlying SVM optimization problem. This
is the main idea of the method we propose to evaluate in this work and which
is described in the next section.

3 The Random Forest-SVM method (RFSVM)

3.1 Using Random Forest as a kernel

Random Forest is a very versatile general-purpose learning method, that
have shown to be accurate for many real-world problems [27]. These meth-
ods are also known to provide a number of mechanisms for analysis and
interpretability, such as a similarity (or proximity) measure [10].

For computing the RF similarity between any pair of instances, one must
have a previously trained RF classifier noted H(x) = {hk(x) | 1 ≤ k ≤ M},
made up with M decision trees hk. Any RF learning algorithm can be used
for that purpose, as the similarity measurement leans on the final ensemble of
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decision trees grown during learning. Note that for all experiments of this work,
the Breiman’s Random Forest method [28] has been used, via the implemen-
tation proposed in the Scikit-learn python library [29]. The similarity between
two instances (xi,xj) is inferred by the forest by comparing the descending
paths followed by both instances in each tree: let Lk denote the set of leaves
of hk, and let lk(x) denote a function from the input domain X to Lk, that
returns the leaf of hk where x lands when one wants to predict its class. The
similarity measure sk is defined as in Equation 10: if the two instances xi and
xj land in the same leaf of hk, then the similarity between both instances is
set to 1, else it is equal to 0.

sk(xi,xj) =

{
1, if lk(xi) = lk(xj)
0, otherwise

(10)

The RF similarity measure sH(xi,xj) derived from the whole forest H
consists in calculating sk for each tree hk, and in averaging the resulting values
over the M trees:

sH(xi,xj) =
1

M

M∑
k=1

sk(xi,xj) (11)

A remarkable property of this similarity measure is that it can be assimi-
lated to a positive semi-definite (p.s.d.) kernel function [10]. Similarly, one can
show that the similarity matrix SH :

SH =


sH(x1, x1) sH(x1, x2) . . . sH(x1, xn)
sH(x2, x1) sH(x2, x2) . . . sH(x2, xn)

. . . . . . . . . . . .
sH(xn, x1) sH(xn, x2) . . . sH(xn, xn)

 (12)

whose elements are the RF similarity measures between each pair of training
instances, is a positive semi-definite matrix (see the proof in Appendix A of
[10]). As a consequence, such a matrix can be used in a kernel method as a
pre-computed kernel.

In a nutshell, using such a pre-computed kernel with SVM classifier, noted
RFSVM in the following, consists of:

1. Training a Random Forest classifier H on the training set T ;
2. Building a similarity matrix SH from H;
3. Feeding an SVM classifier with SH as a pre-computed kernel.

As for the prediction phase, once the RFSVM classifier is trained this way, an
unseen testing instance x can be predicted as follows:

1. The similarity values between x and all the n training instances from T are
computed, leading to a n-sized vector of sH(x,xi), i = 1, . . . , n;

2. This vector is given as input to the RFSVM classifier for prediction.
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The whole learning procedure is further detailed in Algorithm 1. Note that the
Random Tree building method used in this work is the CART-based implemen-
tation from the Scikit-learn library [29] and the SVM solver used in this work
is the LIBSVM solver that implements the sequential minimal optimization
(SMO) algorithm for kernelized SVM [30].

Algorithm 1: The RFSVM learning method
input : T , a training set composed of n instances (xi, yi)
input : M , the number of trees in the random forest
input : Θ, the random tree learning hyperparameter values
input : C, the SVM regularization hyperparameter value
output: SVMH , a RFSVM model trained on T

begin

// 1. Train a random forest composed of M random trees
H ← ∅
for k = 0 to M do

Tk ← BootstrapSampling(T )
hk ← RandomTree(Tk,Θ)
H ← H ∪ hk

end
// Note: the booststrap sampling method and the random tree method used in

this work are those of the random forest implementation of the Scikit-learn
library [29]

// 2. Compute the similarity matrix from the random forest
SH ← In /* init. SH to a n× n identity matrix */
for i = 1 to n− 1 do /* for each pair xi,xj ∈ T */

for j = i + 1 to n do
for k = 1 to M do /* for each tree hk ∈ H */

li ← getLeaf(hk,xi) /* get the leaf of hk where xi lands */
lj ← getLeaf(hk,xj) /* get the leaf of hk where xj lands */
if li = lj then

SH(i, j)← SH(i, j) + 1
end

end
SH(i, j)← SH(i, j)/M
SH(j, i)← SH(i, j)

end

end

// 3. Use SH as a precomputed kernel for the SVM learning
SVMH ← LIBSVMSolver(SH , C)
// Note: the LIBSVM solver used in this work implements the sequential minimal

optimization (SMO) algorithm [30]

end

3.2 Discussion

It is worth noting that the RFSVM procedure can be applied with any similar-
ity measure provided that the resulting similarity matrix is p.s.d. For example,
the well-known cosine measure could be used to replace the Random Forest
similarity measure. However, we would like to stress that the Random Forest
similarity measure is particularly suitable to do so for classification tasks. The
reason is that it is computed in such a way it can well reflect the class belong-
ing of the instances. According to this measure, two instances that belong to
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the same class are more likely to be similar than two instances from differ-
ent classes. This is due to the fact that the Random Forest classifier is built
beforehand by taking the class into account so that the leaves of all the trees
are expected to gather instances from the same class.

Similarly, metric learning methods could replace the RF classifier for infer-
ring the similarity values. However, we argue that the state-of-the-art metric
learning methods require a formulation of the metric beforehand, which is not
the case of RF methods, and more importantly, they are known to be sensitive
to high dimensions. For example, most of the state-of-the-art metric learning
methods that are based on the Mahalanobis distance suffer from two important
drawbacks for HDLSS classification:

1. They are computationally intractable in high dimensions since the number
of parameters to learn (the covariance matrix elements) is O(m2).

2. They face a strong risk of overfitting phenomenon since the number of
training instances used to estimate these parameters is very low in the
HDLSS context.

Consequently, we argue that classical metric learning methods are not suit-
able for HDLSS problems, contrary to RF classifiers, known to be very robust
to high dimensions without the need for a proportionally large training set.
To support this statement, the most popular metric learning method, namely
Large Margin Nearest Neighbors (LMNN) [31], has been included in the exper-
iments as an alternative to RF classifiers for building a pre-computed kernel
in SVM. The resulting method is named LMNNSVM in the following.

The RFSVM method explained in the previous section has been success-
fully applied to multi-view classification problems [10, 32, 33]. These studies
have mainly focused on using RF (dis)similarity matrices on each view and fuse
them in order to take benefit from the complementarity between the different
views. However, the extent to which the success of this approach depends on
how well it exploits complementarities in multi-view learning or on the use of
the RF similarity measure itself has not yet been studied. Therefore, the main
contribution of this work is to extend the experimental study and validate this
approach to regular HDLSS single-view classification problems.

4 Experiments

This section details the experimental protocol, as well as its underlying goal
of evaluating how the proposed method compares to general-purpose machine
learning methods, similarity-based methods, and HDLSS-specific methods for
a variety of datasets that exhibit different levels of HDLSS.

4.1 Datasets

Our experimentation encompasses 40 public datasets, among which 21 datasets
were acquired from the OpenML repository [34], 3 text processing datasets
from the UCI repository [35], and 16 medical datasets from [36].
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In the literature, the only consensus to formally define an HDLSS problem
is “m ≫ n” [1–3]. Therefore, HDLSSness could be measured by the ratio
between the number of instances and the number of features in the associated
dataset. However, this does not take into account the number and imbalance of
classes, which can have a major impact on the difficulties arising from HDLSS
learning. Therefore, we propose to quantify a level of HDLSS for each dataset,
with the measure defined as:

Ω =
1

m
×

∑c
j=1 nj

c
, (13)

where c is the number of classes, m is the number of features, and nj is
the number of instances from the j-th class in a dataset. This Ω measure
corresponds to the average number of instances per class divided by the number
of features in a dataset. Consequently, the smaller the value of Ω, the more
HDLSS a dataset is. Using the average number of instances per class, instead of
the total number of instances in the dataset, allows to limit the bias introduced
by strong class imbalances, such as those found in some of the datasets we
selected in our experiments.

Table 1 gives a description of all the datasets used in our experiments, with
the number of instances, the number of features, the imbalance ratio (IR),
the number of classes, and the Ω value. The IR is computed by dividing the
number of instances from the majority class by the number of instances from
the minority class. In this table, datasets are sorted by increasing value of Ω.
One can observe that as Ω increases, the number of instances also increases,
and the dimensionality decreases. This table also contains a separation between
HDLSS datasets in the upper part and non-HDLSS datasets in the lower part,
corresponding to values of Ω = 1. This allows to highlight that these datasets
have been chosen in a wide range of cases, including datasets corresponding
to traditional classification problems. This will also allow us to show that the
RFD method remains competitive in a more classical learning context.

4.2 Methods and parametrization

In addition to the RFSVM method, several learning methods were selected
for comparison, in three families of methods: general-purpose methods, SVM
variants, and similarity-based methods. In the first group, the Random Forest
classifier and the Extreme Gradient Boosting (XGBoost) method were selected
because of their state-of-the-art performance on various ML problems [27, 28,
37]. Regarding SVM variants, the regular method with RBF kernel [22] has
been retained, as well as the DWD method presented in Section 2. The reasons
why the DWD methods has been retained in our experiments instead of the
other SVM variants listed in Section 2 are (i) because the results obtained
in [11] from the experimental comparison between all these methods show
very similar results without any statistical test of significance supporting the
superiority of one method over the others and (ii) because it is the only one
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Table 1 Datasets description with the number of instances, the number of features, the
imbalance ratio (IR), the number of classes, and the Ω value. Datasets with Ω < 1 are
considered to be HDLSS datasets, whereas Ω ≥ 1 are non-HDLSS datasets.

Name Instances Features IR Classes Ω

UMIST Faces Cropped [34] 575 10304 2.526 20 0.003
leukemia [34] 72 7129 1.88 2 0.005

alizadeh-2000-v3 [36] 62 2091 2.333 4 0.007
tr45.wc [34] 690 8261 11.429 10 0.008

laiho-2007 [36] 37 2202 3.625 2 0.008
bittner-2000 [36] 38 2201 1.0 2 0.009

arcene [34] 200 10000 1.273 2 0.010
ramaswamy-2001 [36] 190 1363 3.0 14 0.010
armstrong-2002-v2 [36] 72 2194 1.4 3 0.011

su-2001 [36] 174 1571 4.667 10 0.011
lapointe-2004-v2 [36] 110 2496 3.727 4 0.011
golub-1999-v2 [36] 72 1868 4.222 3 0.013

Dexter [34] 600 20000 1.0 2 0.015
yeoh-2002-v2 [36] 248 2526 5.267 6 0.016

tomlins-2006-v2 [36] 92 1288 2.462 4 0.018
khan-2001 [36] 83 1069 2.636 4 0.019
west-2001 [36] 49 1198 1.042 2 0.020
eating [34] 945 6373 1.176 7 0.021

bhattacharjee-2001 [36] 203 1543 23.167 5 0.026
micro-mass [34] 360 1300 1.0 10 0.028
oh15.wc [34] 913 3100 2.962 10 0.029
oh10.wc [34] 1050 3238 3.173 10 0.032

shipp-2002-v1 [36] 77 798 3.053 2 0.048
cnae-9-half [34] 540 856 1.283 9 0.070
OVA Colon [34] 1545 10935 4.402 2 0.071
OVA Breast [34] 1545 10935 3.491 2 0.071

imdb [35] 748 3047 1.066 2 0.123
cnae-9 [34] 1080 856 1.0 9 0.140
lsvt [34] 126 310 2.0 2 0.203
yelp [35] 1000 2033 1.0 2 0.246

amazon [35] 1000 1847 1.0 2 0.271
chowdary-2006 [36] 104 182 1.476 2 0.286

chen-2002 [36] 179 85 1.387 2 1.053
gina [34] 3153 970 1.034 2 1.625

madelon [34] 2600 500 1.0 2 2.600
scene [34] 2407 299 4.585 2 4.025
wdbc [34] 569 30 1.684 2 9.483
led24 [34] 3200 24 1.139 10 13.333

segment [34] 2310 19 1.0 7 17.368
spambase [34] 4601 57 1.538 2 40.360

with a freely available implementations. As for similarity-based methods, the
cosine distance and the LMNN variant of the Mahalanobis distance were used
in the same way as with the RFSVM method, i.e. as a precomputed kernel, to
support the claims given in the discussion subsection of the Section 3.

For each dataset, all classifiers had their hyperparameters tuned using a
3-fold cross-validation procedure. The tuning process was performed using
the hyperopt library [38]. This library requires as input a search space for
each hyperparameter and the number of evaluations for the tuning process.
In the following experiments, the number of evaluations was set to 100, and
the optimization criterion was accuracy maximization. Internally, hyperopt
conducts hyperparameter optimization by converting the search process into
a generative process using Tree-structured Parzen Trees (TPEs) [39]. We refer
the reader to [38] for more details about its functionning.

Regarding the Random Forest method, the maximum tree depth1, the max-
imum number of features assessed for a split decision, the minimum number
of samples at leaf nodes, the minimum number of samples for a split, and the
number of trees have been tuned following the values given in the upper part
of Table 2. The search space for XGBoost is given in the middle part of the

1The None option stands for fully grown trees, i.e., the trees are grown until all leaf nodes have
pure class distributions.
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same table. XGBoost search space follows the suggestion given in [40], where
the maximum tree depth, instance subsample ratio, column sample by tree
portion, regularization lambda, and the maximum number of iterations were
tuned. Finally, the search space for SVM with the gaussian kernel is depicted
in the bottom part of Table 2, where the hyperparameter C and γ were opti-
mized. For all other SVM-based methods, i.e. RFSVM, DWD, COSSVM and
LMNNSVM, only C needs to be optimized, and it has also been done following
the values in Table 2.

Table 2 Hyperparameter search space for Random Forest, XGBoost, SVM, and other
SVM-based methods (RFSVM, COSSVM, LMNNSVM, and DWD).

Random Forest
Max. Depth {10i|i = 1, . . . , 10} and None
Max. Features {1%, 5%, 10%, 20%, 30%}
Min. Samples Leaf {1, 2, 4}
Min. Samples Split {2, 5, 10}
Number of trees 500

XGBoost
Max. Depth {x|x ∈ N, 4 ≤ x ≤ 15}
Subsample [0.8, 1]
Column sample by tree [0.5, 1]
Regularization Lambda [0, 1]
Max. number of iterations 500

SVM
C {10i| i = −2, . . . , 4}
γ {10i| i = −4, . . . , 2}

RFSVM, COSSVM, LMNNSVM, and DWD
C {10i| i = −2, . . . , 4}

4.3 Validation protocol and implementation details

For each dataset used in this experimental comparison, all the methods were
tested 10 times, each time with a random half of the dataset for training
and the remaining half for test. The hyperparameter setting procedure was
performed on the training set and the performance was measured with the
traditional accuracy measurement.

Two different statistical tests of significance have been used to analyze the
differences in performance between the methods. The tests used are (i) the
Friedman test along with the Nemenyi post-hoc test [41], and (ii) the Bayesian
sign test [42]. The Friedman/Nemenyi test is classically used to assess the sta-
tistical significance of a comparison of several methods over multiple datasets,
based on the average ranks of the methods. We refer the reader to [41] for
more details about its functioning and the reasons why this test is advised
for this type of comparisons. In contrast, the Bayesian sign test is a pairwise
test based on the difference in performance of the two methods over multiple
datasets. Unlike frequentist null-hypothesis tests such as the Friedman test,
Bayesian analysis can provide more insight than simply rejecting the hypoth-
esis that the two classifiers are of equivalent performance. In particular, it
outputs probabilities of one classifier a to be practically better than another
classifier b, based on a set of results from multiple datasets. It also allows to
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integrate in the analysis a “region of practical equivalence” (rope) defined by
an average performance gap at which the classifier a is considered practically
better than the classifier b. For instance, with rope = 0.05, if the mean accu-
racy of classifier a is 0.980 and the mean accuracy of classifier b is 0.976, both
classifier will be considered to be practically equivalent in the Bayesian anal-
ysis because the difference 0.980 − 0.976 = 0.04 is less than the rope. In our
experiments, we considered two values for rope, 0.005 and 0.01.

Finally, all the experiments were executed in Python. Random Forest (RF),
SVM, and cosine distance implementations were those available in the scikit-
learn library [29] version 0.23.2. The implementation of DWD was found
in the IDC9 repository2, and the PYLMNN library [43] version 1.6.4 was
used for computing the LMNN distance. XGBoost was performed using the
implementation provided in its original paper (version 1.1.1).

5 Results and Discussion

Table 3 presents the mean accuracy rates (and standard deviations) obtained
by the seven methods across all 40 datasets. The values in bold are the
best mean accuracy rates obtained for each of the datasets. In this table,
the datasets are separated into three groups: the very-HDLSS datasets at
the top (when Ω < 0.015), the mid-HDLSS datasets in the middle (when
0.015 ≤ Ω < 1), and non-HDLSS datasets at the bottom. In this section, we
analyze these results first globally and then in more detail for each of these
three groups.

5.1 Analysis of overall results

The first observation that can be made from Table 3 is that most of the
values in bold, the best mean accuracy rates, are obtained by the methods
on the right-hand side of the table, that is to say the kernel based SVM.
More precisely, as shown in the last row of Table 3, RFSVM is the method
that achieves the best performance on most of the datasets (on 16 of the 40
datasets), followed by COSSVM (on 7 of the 40 datasets), and LMNNSVM
(on 5 of the 40 datasets, ex aequo with Random Forest).

For a more precise analysis of these global results, it is necessary to look
at the results of post-hoc statistical tests. Figure 1 shows the Critical Differ-
ence diagram [41] drawn from the results of the Friedman/Nemenyi test. This
diagram sorts the seven methods by their average rank across the 40 datasets
and indicates whether the difference between them is statistically significant:
methods that are connected by a thick line are the one for which the statisti-
cal test does not reject the null-hypothesis that the classifiers perform equally
well. RFSVM and COSSVM are the two best methods on average but closely
followed by Random Forest. Considering statistical significance, RFSVM is the

2https://github.com/idc9/dwd



Random Forest Kernel for High-Dimension Low Sample Size Classification 15

Table 3 Mean accuracy rates (along with standard deviations) obtained by the seven
methods on all the 40 datasets. Bold values are the best mean accuracy rates obtained on
each dataset.

Dataset XGB RF SVM DWD RFSVM COSSVM LMNNSVM

UMIST. 0.928 ± 0.016 0.985 ± 0.013 0.365 ± 0.402 0.948 ± 0.009 0.988 ± 0.010 0.970 ± 0.011 0.989 ± 0.006
leukemia 0.944 ± 0.045 0.964 ± 0.031 0.950 ± 0.051 0.922 ± 0.057 0.969 ± 0.023 0.961 ± 0.045 0.956 ± 0.052

aliz. 0.771 ± 0.071 0.877 ± 0.064 0.890 ± 0.060 0.897 ± 0.061 0.897 ± 0.054 0.906 ± 0.053 0.903 ± 0.050
tr45.wc 0.970 ± 0.008 0.949 ± 0.012 0.815 ± 0.070 0.665 ± 0.107 0.954 ± 0.007 0.925 ± 0.008 0.900 ± 0.046

laiho-2007 0.805 ± 0.024 0.805 ± 0.034 0.874 ± 0.059 0.826 ± 0.041 0.858 ± 0.041 0.879 ± 0.058 0.911 ± 0.041
bittner-2000 0.716 ± 0.111 0.784 ± 0.044 0.753 ± 0.097 0.816 ± 0.035 0.784 ± 0.050 0.837 ± 0.044 0.800 ± 0.039

arcene 0.772 ± 0.026 0.767 ± 0.043 0.633 ± 0.116 0.820 ± 0.036 0.807 ± 0.038 0.835 ± 0.045 0.853 ± 0.042
ramas. 0.705 ± 0.037 0.751 ± 0.027 0.635 ± 0.038 0.669 ± 0.035 0.773 ± 0.021 0.760 ± 0.042 0.617 ± 0.026
arms. 0.942 ± 0.032 0.975 ± 0.015 0.928 ± 0.042 0.961 ± 0.025 0.972 ± 0.018 0.975 ± 0.015 0.942 ± 0.049
su-2001 0.895 ± 0.026 0.883 ± 0.027 0.897 ± 0.021 0.883 ± 0.025 0.920 ± 0.024 0.894 ± 0.025 0.897 ± 0.027
lapo. 0.804 ± 0.044 0.809 ± 0.030 0.818 ± 0.047 0.815 ± 0.041 0.851 ± 0.039 0.833 ± 0.034 0.853 ± 0.043
gol. 0.939 ± 0.055 0.931 ± 0.031 0.881 ± 0.071 0.864 ± 0.040 0.944 ± 0.030 0.903 ± 0.031 0.914 ± 0.019

Dexter 0.916 ± 0.015 0.925 ± 0.010 0.869 ± 0.030 0.916 ± 0.010 0.934 ± 0.013 0.936 ± 0.006 0.927 ± 0.013
yeoh. 0.842 ± 0.018 0.809 ± 0.015 0.787 ± 0.018 0.715 ± 0.022 0.848 ± 0.024 0.718 ± 0.023 0.815 ± 0.031
tomli. 0.715 ± 0.052 0.730 ± 0.050 0.811 ± 0.071 0.798 ± 0.046 0.763 ± 0.047 0.837 ± 0.049 0.859 ± 0.044

khan-2001 0.960 ± 0.035 0.983 ± 0.015 0.955 ± 0.044 0.955 ± 0.034 0.979 ± 0.020 0.957 ± 0.030 0.974 ± 0.033
west-2001 0.860 ± 0.041 0.884 ± 0.045 0.860 ± 0.048 0.856 ± 0.057 0.880 ± 0.040 0.860 ± 0.057 0.864 ± 0.060
eating 0.560 ± 0.022 0.532 ± 0.025 0.148 ± 0.000 0.551 ± 0.027 0.556 ± 0.018 0.403 ± 0.206 0.300 ± 0.159
bhatt. 0.946 ± 0.014 0.929 ± 0.016 0.937 ± 0.017 0.923 ± 0.022 0.957 ± 0.019 0.936 ± 0.018 0.934 ± 0.017
micro. 0.929 ± 0.032 0.931 ± 0.023 0.429 ± 0.404 0.912 ± 0.040 0.937 ± 0.024 0.908 ± 0.020 0.904 ± 0.027
oh15.wc 0.824 ± 0.014 0.825 ± 0.008 0.742 ± 0.041 0.558 ± 0.170 0.835 ± 0.006 0.803 ± 0.025 0.763 ± 0.010
oh10.wc 0.831 ± 0.012 0.836 ± 0.013 0.759 ± 0.021 0.654 ± 0.103 0.835 ± 0.017 0.765 ± 0.019 0.736 ± 0.014
ship. 0.841 ± 0.057 0.828 ± 0.051 0.890 ± 0.066 0.856 ± 0.071 0.882 ± 0.045 0.921 ± 0.044 0.910 ± 0.038

cnae-9H 0.879 ± 0.021 0.915 ± 0.021 0.888 ± 0.020 0.862 ± 0.034 0.893 ± 0.023 0.914 ± 0.013 0.818 ± 0.027
OVA C. 0.976 ± 0.003 0.974 ± 0.003 0.953 ± 0.046 0.968 ± 0.004 0.976 ± 0.003 0.966 ± 0.005 0.963 ± 0.003
OVA B. 0.972 ± 0.005 0.968 ± 0.006 0.816 ± 0.078 0.970 ± 0.003 0.972 ± 0.005 0.969 ± 0.004 0.964 ± 0.004
imdb 0.626 ± 0.019 0.701 ± 0.021 0.702 ± 0.025 0.633 ± 0.082 0.695 ± 0.027 0.710 ± 0.018 0.689 ± 0.025
cnae-9 0.908 ± 0.012 0.932 ± 0.009 0.917 ± 0.013 0.861 ± 0.020 0.909 ± 0.009 0.935 ± 0.010 0.861 ± 0.021
lsvt 0.832 ± 0.038 0.811 ± 0.056 0.689 ± 0.067 0.871 ± 0.017 0.833 ± 0.048 0.749 ± 0.103 0.660 ± 0.035
yelp 0.709 ± 0.018 0.765 ± 0.017 0.767 ± 0.027 0.755 ± 0.036 0.776 ± 0.022 0.771 ± 0.024 0.741 ± 0.018

amazon 0.725 ± 0.019 0.789 ± 0.011 0.802 ± 0.011 0.798 ± 0.023 0.786 ± 0.013 0.795 ± 0.013 0.771 ± 0.012
chow. 0.948 ± 0.030 0.963 ± 0.013 0.963 ± 0.023 0.977 ± 0.021 0.969 ± 0.018 0.981 ± 0.012 0.915 ± 0.030

chen-2002 0.916 ± 0.027 0.937 ± 0.031 0.931 ± 0.030 0.938 ± 0.015 0.942 ± 0.035 0.928 ± 0.013 0.887 ± 0.031
gina 0.939 ± 0.005 0.925 ± 0.005 0.509 ± 0.000 0.852 ± 0.004 0.947 ± 0.004 0.860 ± 0.007 0.844 ± 0.030

madelon 0.760 ± 0.018 0.769 ± 0.017 0.672 ± 0.009 0.595 ± 0.008 0.799 ± 0.014 0.596 ± 0.015 0.600 ± 0.026
scene 0.980 ± 0.005 0.927 ± 0.008 0.990 ± 0.002 0.948 ± 0.042 0.954 ± 0.009 0.989 ± 0.002 0.973 ± 0.004
wdbc 0.968 ± 0.009 0.963 ± 0.011 0.937 ± 0.019 0.978 ± 0.004 0.966 ± 0.010 0.944 ± 0.012 0.956 ± 0.009
led24 0.701 ± 0.005 0.724 ± 0.007 0.717 ± 0.007 0.729 ± 0.007 0.714 ± 0.006 0.719 ± 0.006 0.719 ± 0.007

segment 0.974 ± 0.005 0.970 ± 0.004 0.958 ± 0.007 0.928 ± 0.006 0.976 ± 0.003 0.956 ± 0.004 0.973 ± 0.005
spam 0.952 ± 0.004 0.951 ± 0.003 0.915 ± 0.014 0.884 ± 0.007 0.954 ± 0.005 0.898 ± 0.022 0.939 ± 0.006

# of wins 4 5 2 3 16 7 5

method for which the difference is statistically significant with the most meth-
ods. The differences in performance between all other methods are globally
not significant according to the Friedman/Nemenyi test.

Fig. 1 Critical difference diagram from the Friedman/Nemenyi test results on all the 40
datasets.

These first overall results confirm that RFSVM is particularly relevant for
HDLSS classification. However, this requires further confirmation, with careful
analysis of the results obtained on the HDLSS datasets, which we give in the
following section.
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5.2 Analysis of the results on HDLSS datasets

Since this work focuses on HDLSS classification, we now deepen the analysis
for the HDLSS datasets, that is to say, for the datasets with Ω < 1.0. Figure
2 gives the Critical Difference diagram obtained by considering the HDLSS
datasets only, i.e. 32 of the 40 datasets. The main difference one can observe
from this diagram, compared to the one given in Figure 1, is that LMNNSVM
performs slightly better. This supports the conclusion that the kernel based
approach are generally effective for HDLSS classification. It can also be noted
that, in contrast, the performance of DWD is surprisingly poor compared to
general-purpose machine learning methods. On the other hand, in line with
the analysis given in [9], SVM is the least successful method for these tasks.

Fig. 2 Critical difference diagram from the Friedman/Nemenyi test results on the HDLSS
datasets (Ω < 1.0).

The results of the Bayesian test can now be used to make a more detailed
comparison, by giving the probabilities that one classifier is more accurate than
another. In the following, p(a > b) denotes the probability for the classifier a
to be more accurate than the classifier b according to the Bayesian test. Simi-
larly, p(a ∼ b) denotes the probability that classifiers a and b perform equally
well. In a nutshell, to estimate these probabilities, the Bayesian test uses the
mean differences in accuracy between classifiers a and b on all the datasets,
and deduces a distribution for p(a > b), p(a ∼ b) and p(b > a). We refer the
reader to [42] for more details on how this distribution is obtained. Then M
trinomial vectors of probabilities are drawn at random from this distribution.
These vectors are typically represented as points in the simplex having ver-
tices {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Three examples of such representations are
given in Figure 3, for three pairwise comparisons, RFSVM vs RF, RFSVM vs
COSSVM and SVM vs DWD, on the HDLSS datasets. These representations
allow to observe the proportion of points falling in each of the three zones
corresponding to each of the three situations. By considering the number of
points that fall in the three regions, one can have an estimate of all three
probabilities, p(a > b), p(a ∼ b) and p(b > a).

For our experimental comparison, these estimates are given as two color
maps (the left one for rope= 0.005 and the right one for rope= 0.01) in Figure
4. It should be read as follows: the value in the cell for the row of classifier a and
the column of classifier b is p(a > b) according to the Bayesian test. Note that
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Fig. 3 Examples of trinomial vectors visual representations for the Bayesian analysis on
the 32 HDLSS datasets.

the difference between p(a > b) and p(b > a) corresponds to p(a ∼ b), which is
not given in these color maps. Therefore, smaller values of both p(a > b) and
p(b > a) are expected with larger rope values. However, it should be noted that
this analysis is subject to random draw, and so for cases where the differences
in performance between a and b are larger than the rope, the opposite behavior
may be observed, i.e., marginally larger probabilities occur with larger rope
values.

In both color maps of Figure 4, the column corresponding to the RFSVM
method is the one with the lowest values. This means that overall, it is the
method with the lowest probabilities to be outperformed by any other method.
Thus, although RFSVM, COSSVM, and RF are not significantly different
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Fig. 4 Pairwise Bayesian analysis for HDLSS datasets. The value in each cell is p(a > b),
i.e. the probability that the row classifier a outperforms the column classifier b.

according to the Friedman/Nemenyi post-hoc test, the detailed pairwise anal-
ysis shows that both COSSVM and RF have very low probabilities of giving
better results than RFSVM. Conversely, RFSVM has a high probability of
being better than the cited methods. As for the comparison between SVM and
DWD, these results confirm that the DWD method gives slightly better results
on HDLSS datasets than the regular SVM method but with p(DWD > SVM)
and p(SVM > DWD) being very close to 0.5 each.

Note that for rope= 0.01, most of the probabilities decrease as expected, as
more of the pairwise comparisons now lie into the rope. However, the patterns
observed did not have noticeable changes.

This analysis is given considering all the datasets with Ω < 1.000, that
is to say, the ones at the top and in the middle part of Table 3. It is now
interesting to focus on the 13 very-HDLSS datasets, i.e., where Ω < 0.015.
Figure 5 gives the Critical Difference diagram for these datasets only. What
is interesting to note here is that LMNNSVM is now a lot more competitive
and that all three similarity-based methods are clearly in the lead. The differ-
ence in average rank between these three methods and the other methods is
even greater than it was in the previous results. On the other hand, these dif-
ferences are considered less statistically significant by the Friedman/Nemenyi
test. Nevertheless, when looking at the bayesian analysis for these 13 very-
HDLSS datasets in Figure 6, the probability of any similarity-based methods
to be outperformed by XGBoost, RF, SVM or DWD is very low (see the upper
right part of the color maps). This shows that in the most extreme cases of
HDLSS classification, SVM with well chosen similarity measure as kernel are
particularly relevant.
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Fig. 5 Critical Difference diagram from the Friedman/Nemenyi test results on the very-
HDLSS datasets (Ω < 0.015).

Fig. 6 Pairwise Bayesian analysis for very-HDLSS datasets. The value in each cell is
p(a > b), i.e. the probability that the row classifier a outperforms the column classifier b.

A note on class imbalance

Given the results in Table 1, one can see that some of the datasets have quite
high imbalanced ratios (high values in the ‘IR’ column of Table 1). In partic-
ular, three datasets show very high values in the ‘IR’ column of Table 1: the
tr45.wc dataset, the bhattacharjee-2001 dataset and the yeoh-2002-v2 dataset,
for which the imbalance ratio is superior to 5. In class imbalance scenarios, it
is well-known that accuracy is not a suitable performance evaluation measure.
To determine whether the high IR values affect the results presented so far,
we give additional results for these three specific datasets.

Table 4 gives the results obtained by the seven methods on these three
datasets in terms of F1 (top) and accuracy scores (bottom). F1 represents the
harmonic mean between precision and recall, and it is widely applied in the
assessment of imbalanced classification tasks [44]. When working with non-
binary problems, we used the micro-average for F1, which computes the metric
globally by counting the total number of true positives, false negatives and
false positives per class. When comparing values in both parts of the table,
one can note that most of them are comparable and that the rank of all seven
methods is globally similar with respect to both evaluation measures. It means
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Table 4 F1 Score (top) and Accuracy (bottom) results obtained in imbalanced datasets.

dataset XGB RF SVM DWD RFSVM COSSVM LMNNSVM

tr45.wc 0.972 ± 0.007 0.946 ± 0.001 0.745 ± 0.017 0.754 ± 0.017 0.954 ± 0.006 0.813 ± 0.019 0.784 ± 0.013
bhattacharjee-2001 0.949 ± 0.020 0.930 ± 0.016 0.937 ± 0.017 0.932 ± 0.025 0.959 ± 0.021 0.936 ± 0.018 0.934 ± 0.017

yeoh-2002-v2 0.848 ± 0.017 0.811 ± 0.017 0.787 ± 0.018 0.782 ± 0.029 0.849 ± 0.027 0.718 ± 0.023 0.817 ± 0.034

tr45.wc 0.970 ± 0.008 0.949 ± 0.012 0.815 ± 0.070 0.665 ± 0.107 0.954 ± 0.007 0.925 ± 0.008 0.900 ± 0.046
bhattacharjee-2001 0.946 ± 0.014 0.929 ± 0.016 0.937 ± 0.017 0.923 ± 0.022 0.957 ± 0.019 0.936 ± 0.018 0.934 ± 0.017

yeoh-2002-v2 0.842 ± 0.018 0.809 ± 0.015 0.787 ± 0.018 0.715 ± 0.022 0.848 ± 0.024 0.718 ± 0.023 0.815 ± 0.031

that the high IR values do not call into question the conclusions drawn earlier,
including for the imbalanced HDLSS datasets.

5.3 Analysis of the results on non-HDLSS datasets

Finally, we present the results on non-HLDSS datasets in order to analyze
whether the similarity-based approaches are still competitive for regular clas-
sification tasks, i.e., on datasets with Ω ≥ 1. For that purpose, Figure 7 gives
the Critical Difference diagram on the non-HDLSS datasets, that is to say, the
ones in the bottom part of Table 1.

Fig. 7 Critical Difference diagram from the Friedman/Nemenyi test results on the non-
HDLSS datasets (Ω ≥ 1.0).

From this diagram, one can see that the global ranking is quite different,
with in particular COSSVM and LMNNSVM being a lot less competitive. In
contrast, XGBoost is not surprisingly far more accurate on average on these
datasets. Nevertheless, this time, none of the differences in rank is statistically
significant according to the Friedman/Nemenyi post-hoc test.

However, we would like to emphasize that the RFSVM method is still
ranked first on average and is particularly competitive with the state-of-the-art
general-purpose classification methods, namely XGBoost and Random Forest.
For a more detailed analysis, we also give the results of the Bayesian test in
Figure 8. The competitiveness of RFSVM is confirmed by the fact that the
probabilities of the RFSVM column in these color maps are still very low for
these datasets.

6 Conclusion

HDLSS classification problems are unavoidable in many real-world pattern
recognition problems, and having methods to provide a satisfactory solution
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Fig. 8 Pairwise bayesian analysis for non-HDLSS datasets. The value in each cell is
p(a > b), i.e. the probability that the row classifier a outperforms the column classifier b.

to such problems is of crucial importance. Usually, it is faced with dimension-
ality reduction techniques and posterior induction of general-purpose machine
learning models. However, in many situations, dimensionality reduction tech-
niques give unsatisfactory results and genuine HDLSS learning methods are
needed.

In this work, we show that one of these methods, RFSVM, is particularly
efficient, regardless of the “degree of HDLSS” of the problem. This method,
that has been designed in our previous works for multi-view learning, is based
on the use of Random Forests to estimate the similarity between the training
data and on the use of these similarities as a pre-computed kernel in an SVM
classifier.

To show the suitability and efficiency of RFSVM for HDLSS data, we
designed a rigorous experimental comparison with different state-of-the-art
classification techniques, from general-purpose techniques to state-of-the-art
HDLSS methods. This comparison has been conducted on 40 different datasets,
with 32 HDLSS datasets and 8 regular classification datasets for control, all
publicly available. The HDLSS datasets have been carefully selected to propose
a wide variety of HDLSS levels, from “slightly HDLSS” to “very HDLSS”.
Two statistical analyses of the results have been conducted to support the
superiority of RFSVM over the others, a frequentist analysis with the Friedman
statistical test along with the Nemenyi post-hoc test, and a bayesian analysis
with a Bayesian sign test. Both statistical analyses confirm the superiority
of RFSVM over its competitors, but with the interesting nuance that, more
globally, similarity-based approaches are the most robust to extremely HDLSS
learning conditions.

Based on the success of these similarity-based classification methods, we
believe it is worthwhile to apply them to more specific tasks where HDLSS
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datasets are known to be challenging, as anomaly/outlier detection, nov-
elty detection, or data domain description. Detecting outliers, for example,
is of particular importance in HDLSS problems since without much data for
training, outliers may have an important influence on the result. Estimating
distances between points, which is crucial for detecting outliers, is however
difficult in the HDLSS context. We believe that the Random Forest Kernel
approach could be an efficient alternative in this context.

Finally, many naturally HDLSS real-world applications have a character-
istic that is usually a challenge in machine learning: data sparsity. While
Random Forests are known to be robust to high dimensions, they are also
known to suffer from data sparsity. However, these methods are frequently used
on sparse HDLSS data as they embed efficient pre-processing and/or inter-
pretability tools. For example, they may serve as feature selectors in a sparse
data classification context, as in [45] where they are used for gene selection
and classification of microarray data. For this reason, we believe it is relevant
to further investigate the behavior of our method in the context of sparse data
learning.
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