
Just Change on Change: Adaptive Splitting Time for Decision
Trees in Data Stream Classification

Daniel Nowak Assis
Programa de Pós-Graduação em

Informática (PPGIa)
Pontifícia Universidade Católica do

Paraná
Curitiba, Paraná, Brazil

daniel.nassis@ppgia.pucpr.br

Jean Paul Barddal
Programa de Pós-Graduação em

Informática (PPGIa)
Pontifícia Universidade Católica do

Paraná
Curitiba, Paraná, Brazil

jean.barddal@ppgia.pucpr.br

Fabrício Enembreck
Programa de Pós-Graduação em

Informática (PPGIa)
Pontifícia Universidade Católica do

Paraná
Curitiba, Paraná, Brazil
fabricio@ppgia.pucpr.br

ABSTRACT
Hoeffding Trees are well-established decision trees for classifying
streaming data. The Hoeffding bound was widely used in a static
periodic manner, applying the bound for impurity measures to de-
termine whether leaf nodes should split. However, this approach
does not account for the tree state and its leaf nodes over time.
We hypothesize that splitting when data distribution and accuracy
changes occur in leaf nodes enhances decision tree performance.
This paper introduces the use of change detection algorithms that
dictate the moment a split will happen. First, in the local approach,
each leaf node has a change detector that monitors either the error
rate or purity of a leaf node and a global one, where a detector
monitors statistics from the leaf nodes where the instances arrive.
Results show that our methods had competitive results while be-
ing more efficient regarding processing time than state-of-the-art
Hoeffding-based Trees since the periodic and constant evaluation
of splits is costly.

CCS CONCEPTS
• Computing methodologies→ Online learning settings; •
Classification and regression trees; • Machine Learning algo-
rithms;

KEYWORDS
Decision Trees, Stream mining, Split conditions

ACM Reference Format:
Daniel Nowak Assis, Jean Paul Barddal, and Fabrício Enembreck. 2024. Just
Change on Change: Adaptive Splitting Time for Decision Trees in Data
Stream Classification. In Proceedings of ACM Conference (Conference’17).
ACM,NewYork, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Decision Trees are successful methods for mining tabular data due
to their simplicity, interpretability, and prediction quality. Since the
work of [11], they are feasible and efficient algorithms for mining
potentially infinite arriving streaming data. Data stream mining
algorithms must face challenges that broaden memory and time
processing issues since storing all arriving instances can collapse
the system due to the lack of memory. Instances can arrive hastily,
and the algorithms must process an instance as fast as the arrival

Conference’17, July 2017, Washington, DC, USA
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

of another instance; otherwise, the machine learning model will
not be able to predict new arriving data and will be outdated [16].

Another intrinsic problem of streaming data is concept drift [20].
Concept drift is known as changes throughout time in the proba-
bility properties of data. Concept drifts can decrease the accuracy
of machine learning models, which must swiftly detect and adapt
to those situations to not jeopardize the entire learning process.

The Hoeffding Tree [11] algorithm adapts standard decision trees
[7, 22] to be incremental and learn from new incoming instances.
A user-given parameter (known as Grace Period) determines the
frequency at which a leaf node will attempt to split. If the number
of observations at a leaf node is divisible by the Grace Period, a split
attempt based on the Hoeffding bound will occur. This distributes
the cost of verifying the best splits at leaf nodes along the stream.

Although Hoeffding Trees are the leading choice as base learners
of ensembles [14] and are widely used in streaming problems, the
periodic evaluation of splits performed by Hoeffding trees are static,
in the sense that they do not consider the state of the tree through-
out time. This paper proposes two new decision tree algorithms:
Local and Global Adaptive Streaming Trees (LAST and GAST, re-
spectively). These algorithms assume that increases in error rate
and impurity of leaf nodes are ideal moments for performing a
split. These statistics are constantly evaluated by a change detector
algorithm, implying that our approach is adaptive and considers
the evolution of the state of the leaf nodes and the stream.

LAST and GAST integrate change detection algorithms into the
incremental decision tree. Results show that our approach can be
more accurate and efficient than Hoeffding Tree variants in time
processing and memory usage.

The contributions of this work are summarized below:

• The proposition of two new decision tree algorithms for
stream mining.
• A comparison of decision tree-based models for data stream
mining.
• An empirical demonstration that our proposition can be
more accurate than Hoeffding Tree variants while demand-
ing less processing time.

This paper is divided as follows. Section 2 formalizes data stream
classification and concept drift problems. Section 3 discusses the
Hoeffding Tree algorithm and variants proposed in the literature.
Section 4 introduces our methods. Section 5 reports the experimen-
tal results obtained. Finally, Section 6 concludes this paper and
states future works.

https://orcid.org/0000-0002-0975-8665
https://orcid.org/0000-0001-9928-854X
https://orcid.org/0000-0002-1418-3245
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Daniel Nowak Assis, Jean Paul Barddal, and Fabrício Enembreck

2 DATA STREAMMINING
The ginormous amount of data generated in different contexts, like
social media, sensors, and smart cities, gathered researchers’ at-
tention to develop data stream mining algorithms. Classification
is the task of predicting a discrete class given a vector of nominal,
numerical, or mixed data. Data stream classification can be formal-
ized as follows: given continuously arriving instances 𝑖 of the form
(®𝑥𝑛, 𝑦𝑛) where 𝑦𝑛 is a discrete class label and ®𝑥𝑛 is a d-dimensional
vector of attributes, such that potentially 𝑛 → ∞, the goal is to
create a predictive model that better outputs𝑦𝑛 given ®𝑥𝑛 as an input
(𝑓 : ®𝑥 → 𝑦).

Another fact that gathered the attention of researchers is that an
assumption of data stationary may not hold in streaming scenarios,
i.e., concept drifts might happen over time. A concept drift is said
to occur if in two timestamps 𝑡 and 𝑡 +Δ in a stream 𝑆 , while Δ > 1
and 𝑃𝑡 (𝑋,𝑌) ≠ 𝑃𝑡+Δ (𝑋,𝑌). Since 𝑃𝑛 (𝑋,𝑌) = 𝑃𝑛 (𝑋)𝑃𝑛 (𝑌 |𝑋), two
types of drifts are noticeable. Changes on 𝑃𝑛 (𝑌 |𝑋) mean that the
decision boundaries changed (known as real drifts) and are known
to affect the accuracy of the models, and changes in 𝑃𝑛 (𝑋) are
changes in the distribution of attribute values (known as virtual
drifts). We reference the reader to the following work for more
details about concept drift [20].

3 HOEFFDING TREES AND VARIANTS
This section presents existing Hoeffding Tree-based algorithms.

3.1 Hoeffding Tree
Domingos and Hulten proposed the Hoeffding Tree (HT) algorithm
and VFDT (Very Fast Decision Tree) system in [11].

Algorithm 1 presents the VFDT algorithm. The two main com-
ponents of the VFDT system are the Hoeffding bound constraint
to prevent overgrowth and the periodic evaluation of splits in leaf
nodes. The Grace Period (𝐺𝑃) is a user-given parameter that sets
the frequency a leaf node will attempt to split. Given 𝑛𝑙 the number
of samples seen at leaf 𝑙 , if 𝑛𝑙 mod𝐺𝑃 = 0, a split attempt will ensue
(line 8, Algorithm 1).

The Hoeffding bound [17] is a theorem that presents a probability
inequality for the difference between the mean (𝑋) and expected
value (E[𝑋]) of a set of random variables. With a level of confidence
𝛿 , one can derive that 𝑋 − E[𝑋] ≥ 𝜖 , where

𝜖 =

√︄
𝑅2 log(1

𝛿
)

2𝑛
(1)

and 𝑅 is the range of the random variables, and 𝑛 is the number of
random variables. The Hoeffding Tree applies this bound for impu-
ritymeasures to determine if𝑋𝑎 , the attributewith the highest impu-
rity measure Δ𝐺 (such as gini index [7] or information gain[22]), is
the ideal attribute to split on a split attempt. Given 𝑋𝑏 , the attribute
with the second-highest impuritymeasure, ifΔ𝐺 (𝑋𝑎)−Δ𝐺 (𝑋𝑏) ≥ 𝜖 ,
a split will occur on 𝑋𝑎 (line 13, Algorithm 1).

The lim𝑛→+∞ 𝜖 = 0, and if in a node Δ𝐺 (𝑋𝑎) and Δ𝐺 (𝑋𝑏) have
similar values, a split will take many observations to split. To relax
the Hoeffding constraint in these situations, the Hoeffding Tree has
a tie threshold. Given 𝜏 (user-given threshold), a split will ensue
when 𝜏 > 𝜖 .

If 𝑑 is the number of attributes, 𝑣 is the maximum number of
values per attribute, 𝑐 is the number of classes, and 𝑙 is the number of
leaf nodes, the Hoeffding tree algorithm requires O(𝑙𝑑𝑣𝑐) memory
to store the necessary counts.

Algorithm 1 VFDT, adapted from [11]
Input: 𝑆 : a data stream,

𝑋 : a set of attributes,
Δ𝐺 (·) : a split evaluation function,
𝛿 : one minus the desired probability of choosing the correct
attribute at any given node,
𝐺𝑃 : Grace Period (the frequency a leaf node will attempt to
split)
𝜏 : Tie threshold

Output: 𝐷𝑇 : a decision tree
1: Let 𝐷𝑇 be a tree with a single leaf 𝑙1 (the root)
2: Let 𝑛𝑙1 ← 0 ⊲ number of observations in the leaf
3: for each sample (®𝑥,𝑦) ∈ 𝑆 do
4: Sort ®𝑥 into a leaf 𝑙 using 𝐷𝑇
5: Classify ®𝑥 with the majority class in 𝑙
6: Update 𝑙 statistics using (®𝑥,𝑦)
7: 𝑛𝑙 ← 𝑛𝑙 + 1
8: if 𝑛𝑙 mod 𝐺𝑃 = 0 ∧ ¬(𝑙 contains samples from only one

class) then
9: Compute Δ𝐺 (𝑋𝑖) for each 𝑋𝑖 ∈ 𝑋𝑙 stored in 𝑙
10: Let 𝑋𝑎 be the attribute with highest Δ𝐺
11: Let 𝑋𝑏 be the attribute with second highest Δ𝐺

12: Let 𝜖 ←
√︃

𝑅2 log(1
𝛿
)

2𝑛 ⊲ Hoeffding bound
13: if (Δ𝐺 (𝑋𝑎) − Δ𝐺 (𝑋𝑏) > 𝜖 ∨ 𝜏 > 𝜖) ∧ 𝑋𝑎 ≠ ∅ then
14: Replace 𝑙 by leaf nodes that split on 𝑋𝑎

15: for each leaf node 𝑙𝑖 from splitting on 𝑋𝑎 do
16: Let 𝑛𝑙𝑖 ← 0
17: end for
18: end if
19: end if
20: end for
21: return 𝐷𝑇

3.2 Additions to the Hoeffding Tree algorithm
An aspect that established Hoeffding Trees as accurate decision
trees was the addition of Naive Bayes at leaf nodes [13]. It was
observed that Naive Bayes could outperform decision trees in initial
streaming scenarios where the decision tree has trained with little
data. In [19], the authors propose the selection of Naive Bayes or
majority class strategy prediction according to the method with
the highest accuracy at the leaf.

Another critical aspect of Hoeffing Trees is memorymanagement
since storing all instances from a data stream is unfeasible. Leaf
nodes maintain statistics from data, such as histograms for nominal
data, and rely on forgetting mechanisms. We refer the interested
reader to [19] for more details.

Just Change on Change: Adaptive Splitting Time for Decision Trees in Data Stream Classification Conference’17, July 2017, Washington, DC, USA

3.3 CVFDT
The Concept-adapting Very Fast Decision Tree (CVFDT) [18] adapts
the Hoeffding Tree to concept drifts implicitly (the model’s inter-
nal mechanisms adapt to concept drift). The CVFDT gives higher
weights for the most recent instances. The main idea of the algo-
rithm is to maintain a sliding window of data and ensure that the
tree statistics (like splits that happened with the Hoeffding bound)
are still consistent and valid.

When more instances arrive, there is the possibility that the
Hoeffding bound is not valid for specific nodes. Periodically, the
algorithm checks for new attributes to split on nodes that the Ho-
effiding inequality is not valid anymore and creates subtrees. If the
subtree’s accuracy surpasses the existing subtree’s, the constructed
background subtree replaces the existing one.

3.4 Hoeffding Adaptive Tree
The main problem of CFVDT is to estimate the correct sliding
window size for each problem. The authors in [5] propose the
Hoeffding Adaptive Tree (HAT) to overcome this issue. For each
node of the tree, an ADaptive WINdowing (ADWIN) [4] algorithm
monitors the accuracy of the branches of the node. If the algorithm
triggers a change, a new subtree is created and replaces the node
and its branch if the subtree is more accurate.

ADWIN is one of the most famous and used algorithms for
change detection and is widely used as an explicit drift detector
(monitors concept drift given the output of a model, which resets
in case of triggering a concept drift). ADWIN creates a window
𝑊 and checks if all the subwindows𝑊1 and𝑊2 in𝑊 have similar
mean according to the Hoeffding bound. If so,𝑊1 is discarded and
𝑊 =𝑊2. Due to the cost of verifying each subwindow of𝑊 can
have a high computational cost, the authors propose an efficient
version of ADWIN that uses exponential histograms [9].

Since ADWINmemory complexity isO(log𝑊), HAT complexity
is O(𝑛𝑑𝑣𝑐 × log𝑊) as 𝑛 is the number of nodes.

3.5 EFDT
In [21] the authors propose the Extremely Fast Decision Tree (EFDT)
algorithm. In the split attempt process, instead of comparingΔ𝐺 (𝑋𝑎)−
Δ𝐺 (𝑋𝑏) ≥ 𝜖 , the authors propose comparingΔ𝐺 (𝑋𝑎) with the occa-
sion of any split occurrence, or Δ𝐺 (𝑋𝑎)−Δ𝐺 (𝑋∅) ≥ 𝜖 ≡ Δ𝐺 (𝑋𝑎) ≥
𝜖 . In situations where Δ𝐺 (𝑋𝑎) is high and could enhance the tree’s
predictive performance, EFDT is not affected when Δ𝐺 (𝑋𝑏) has a
similar value to Δ𝐺 (𝑋𝑎).

Like CVFDT and HAT, EFDT also has a re-evaluation mechanism
of previous splits. However, the EFDT re-evaluation process is
similar to the Hoeffding Tree split attempt process. The user defines
the frequency intermediate nodes attempt a re-evaluation of splits.
Given Δ𝐺 (𝑋𝑛), the split quality at the time node 𝑛 split, 𝑛 and
its branch is replaced by a new split on a newly evaluated 𝑋𝑎 if
Δ𝐺 (𝑋𝑎) − Δ𝐺 (𝑋𝑛) ≥ 𝜖 . In other words, it is a comparison between
a new split and the previous one done at the terminal node.

Since EFDT must store data at intermediate nodes to perform re-
evaluation of splits, it requires O(𝑛𝑑𝑣𝑐) memory, as 𝑛 is the number
of nodes.

4 LOCAL AND GLOBAL ADAPTIVE
STREAMING TREES

Hoeffding-based Trees, per se, have a static and periodic evaluation
of splits. Even when an evident change occurs in the purity of a leaf
node, a leaf node will possibly split if the number of observations at
the leaf node reaches a number divisible by the Grace Period. And
even when little change ensued, the greedy evaluation of attributes
and their values that compose the best split will still be performed.

For that reason, we propose new trees that constantly monitor
the statistics of leaf nodes to determine ideal moments for splitting.
Figure 1 shows how adaptability can be well suited in incremental
decision trees.

Figure 1: Illustration of the adaptability of our method in
comparison to Hoeffding Trees with 𝐺𝑃 = 160.

Detecting increases in real-valued variables (such as error rates
and impurity measures) are well known in streaming scenarios, and
many algorithms were proposed in the literature for this task [20].
Therefore, we integrate change detection algorithms into incre-
mental decision trees. We propose two forms of integrating change
detection algorithms into decision trees, and they are explained as
follows.

Local Adaptive Streaming Tree (LAST): Algorithm 2 presents
the LAST algorithm. LAST creates and maintains change detectors
only at leaf nodes (lines 3 and 21, Algorithm 2). At the leaf, change
detectors can monitor either the impurity (line 10, Algorithm 2)
or error rate (line 12, Algorithm 2). If a change detector at the leaf
triggers a change, then a split will ensue if Δ𝐺 (𝑋𝑎) > 0.0 (line 17,
Algorithm 2).

Monitoring the impurity of a leaf node favors the majority class
strategy, and monitoring error rates consider Naive Bayes’s perfor-
mance, i.e., if its performance is superior predictions based on the
majority class.

Change detectors are constantly updated with arriving instances,
meaning that these algorithms track how the stream evolves.

Conference’17, July 2017, Washington, DC, USA Daniel Nowak Assis, Jean Paul Barddal, and Fabrício Enembreck

GlobalAdaptive StreamingTree (GAST): Algorithm 3 presents
the GAST algorithm. In GAST, only a single drift detector monitors
the impurity of all the leaf nodes. The drift detector receives infor-
mation from more than one leaf node, having a general overlook
of the tree. But at the same time, when the drift detector triggers
that a change occurred, the probability that the leaf node will be
the appropriate one for splitting equals 1

|𝐿 | as |𝐿 | is the number of
leaf nodes in the tree.

GAST does not monitor error rate because this is exactly what
explicit drift detectors do. If GAST monitored the error rate and
had an explicit drift detector, the tree would always have just a root
node, since the time for splitting and resetting would be the same.

Algorithm 2 LAST
Input: 𝑆 : a data stream,

𝑋 : a set of attributes,
Δ𝐺 (·) : a split evaluation function,
𝐻 (·) : impurity measure analogous to Δ𝐺 (·)
𝜓 : A change detection algorithm
𝑢𝑠𝑒𝐻 : boolean variable. If true,𝜓 has input 𝐻 (·), else𝜓 input
is 1 for misclassifications, otherwise 0

Output: 𝐷𝑇 : a decision tree
1: Let 𝐷𝑇 be a tree with a single leaf 𝑙1 (the root)
2: Let 𝑛𝑙1 ← 0 ⊲ number of observations in the leaf
3: 𝑙1𝜓 ← 𝜓 ⊲ create a change detector at leaf
4: for each sample (®𝑥,𝑦) ∈ 𝑆 do
5: Sort ®𝑥 into a leaf 𝑙 using 𝐷𝑇
6: Classify ®𝑥 with the majority class in 𝑙
7: Update 𝑙 statistics using (®𝑥,𝑦)
8: 𝑛𝑙 ← 𝑛𝑙 + 1
9: if 𝑢𝑠𝑒𝐻 then
10: Update 𝑙𝜓 with 𝐻 (𝑙)
11: else
12: Update 𝑙𝜓 with 1{𝐷𝑇 (®𝑥) ≠ 𝑦}
13: end if
14: if 𝑙𝜓 detected change ∧ ¬ (𝑙 contains samples from only

one class) then
15: Compute Δ𝐺 (𝑋𝑖) for each 𝑋𝑖 ∈ 𝑋𝑙 stored in 𝑙
16: Let 𝑋𝑎 be the attribute with highest Δ𝐺
17: if (Δ𝐺 (𝑋𝑎) > 0.0) ∧ 𝑋𝑎 ≠ ∅ then
18: Replace 𝑙 by leaf nodes that split on 𝑋𝑎

19: for each leaf node 𝑙𝑖 from splitting on 𝑋𝑎 do
20: Let 𝑛𝑙𝑖 ← 0
21: 𝑙𝑖𝜓 ← 𝜓 ⊲ create a change detector at each leaf
22: end for
23: end if
24: end if
25: end for
26: return 𝐷𝑇

Both LAST andGAST apply the softest split constraint (Δ𝐺 (𝑋𝑎) >
0.0), meaning that the change detectors control how the tree grows.

LAST requiresO(𝜓𝑙𝑑𝑣𝑐)memory, as𝜓 is thememory complexity
of the change detection algorithm applied, andGAST requiresO(𝜓+
𝑙𝑑𝑣𝑐).

Algorithm 3 GAST
Input: 𝑆 : a data stream,

𝑋 : a set of attributes,
Δ𝐺 (·) : a split evaluation function,
𝐻 (·) : impurity measure analogous to Δ𝐺 (·)
𝜓 : A change detection algorithm

Output: 𝐷𝑇 : a decision tree
1: Let 𝐷𝑇 be a tree with a single leaf 𝑙1 (the root)
2: Let 𝑛𝑙1 ← 0 ⊲ number of observations in the leaf
3: for each sample (®𝑥,𝑦) ∈ 𝑆 do
4: Sort ®𝑥 into a leaf 𝑙 using 𝐷𝑇
5: Classify ®𝑥 with the majority class in 𝑙
6: Update 𝑙 statistics using (®𝑥,𝑦)
7: 𝑛𝑙 ← 𝑛𝑙 + 1
8: Update𝜓 with 𝐻 (𝑙)
9: if 𝜓 detected change ∧ ¬ (𝑙 contains samples from only

one class) then
10: Compute Δ𝐺 (𝑋𝑖) for each 𝑋𝑖 ∈ 𝑋𝑙 stored in 𝑙
11: Let 𝑋𝑎 be the attribute with highest Δ𝐺
12: if (Δ𝐺 (𝑋𝑎) > 0.0) ∧ 𝑋𝑎 ≠ ∅ then
13: Replace 𝑙 by leaf nodes that split on 𝑋𝑎

14: for each leaf node 𝑙𝑖 from splitting on 𝑋𝑎 do
15: Let 𝑛𝑙𝑖 ← 0
16: end for
17: end if
18: end if
19: end for
20: return 𝐷𝑇

Table 1: Decision Trees accuracy (%).

Dataset HT EFDT HAT LAST GAST LAST𝐻
LED𝑎 69.03 69.87 73.73 73.93 70.81 68.57
LED𝑔 68.65 69.72 72.60 71.49 70.11 67.84
SEA𝑎 86.42 86.41 88.81 86.61 84.44 86.59
SEA𝑔 86.42 86.37 88.51 86.38 84.45 86.51
AGR𝑎 77.83 82.87 88.20 83.94 79.52 79.99
AGR𝑔 75.63 80.09 86.70 80.58 77.11 75.76
RBF𝑚 45.49 51.27 61.75 64.11 48.93 62.75
RBF𝑓 32.29 31.87 39.16 36.70 32.05 32.95
HYPER 78.77 81.59 86.69 79.41 70.91 70.91
Outdoor 57.33 59.58 57.27 60.40 60.68 59.92
Elec 79.20 80.64 83.39 81.78 79.90 78.84
Rialto 31.35 57.74 30.62 56.33 21.57 56.07
Airlines 65.08 65.27 63.81 65.52 65.29 65.15
CovType 80.31 84.67 81.89 87.52 83.98 85.73
Nomao 92.23 93.93 93.78 94.68 94.32 91.99
Poker 76.07 76.60 66.87 76.40 77.27 80.13
NOAA 73.43 73.23 73.53 73.92 72.97 72.23

Overall avg. Rank 4.76 3.53 2.76 1.94 4.0 3.94
Real avg. Rank 4.75 3.0 4.37 1.75 3.25 3.87
Synth. avg. Rank 4.78 4.0 1.33 2.11 4.67 4.0

Bold values indicate the best results per data set

Just Change on Change: Adaptive Splitting Time for Decision Trees in Data Stream Classification Conference’17, July 2017, Washington, DC, USA

5 EXPERIMENTS AND RESULTS
In this section, we introduce the experimental protocol adopted,
followed by the results obtained and discussion.

5.1 Experimental Protocol
We assess the predictive performance with the accuracy obtained
in a test-then-train validation strategy, where every instance is
used first for testing and then for training, known as prequential
evaluation [12]. We also evaluate the methods for time processing
and memory usage based on CPU time and RAM (GB) per hour
used.

Experiments were conducted using the Massive Online Analysis
(MOA) framework[6], and the source code for our proposal is also
made publicly available1. All experiments were done in a Intel(R)
Xeon(R) CPU E5649 @ 2.53GHz with 32 GB of RAM. All the trees
evaluated had default parameters from MOA (Grace Period = 200,
level of confidence = 10−7, and impurity measure is information
gain). For LAST and GAST, we decided to run experiments with the
ADWIN [4] change detector with default parameters. An advantage
of ADWIN is that it accepts real values as input (as in [15]), and
most of the change detectors in the literature accept only binary
inputs.

We refer to the LAST version that monitors the impurity as
LAST𝐻 and the one that monitors the error rate simply as LAST.

Experiments were held with 17 datasets, eight real-world and
nine synthetic datasets. The synthetic datasets and parameters used
are discussed as follows.

LED [7]. This generator produces 24 boolean features, while 17
of them are irrelevant. Each feature has a 10% of being inverted,
simulating noise. We simulated three abrupt (LED𝑎) and gradual
(LED𝑔) drifts.

SEA [23]. This generator produces 3 numerical features (𝑓1, 𝑓2, 𝑓3).
If 𝑓1 + 𝑓2 ≤ \ , the class has value 1, otherwise 0. In this dataset,
we simulated three abrupt (SEA𝑎) and gradual (SEA𝑔) drifts by
changing the values of \ .

AGRAWAL [2]. This generator has six nominal features and
three numerical features. Ten distinct functions map two classes. In
this dataset, we simulate three abrupt (AGR𝑎) and gradual(AGR𝑔)
datasets.

RBF. This generator produces ten features and 5 class values.
Data is generated based on the radial basis function (RBF). Cen-
troids are generated in random positions and mapped with a stan-
dard deviation value, a weight, and a class label. In this dataset,
incremental drifts are simulated by changing the centroids’ position
at a continuous rate. The parameters used were 50 centroids at a
speed change of 10−4 (moderate, RBF𝑚) and 10−3 (fast, RBF𝑓).

HYPER [18]. A hyperplane is a flat, (𝑛 − 1) dimensional subset
of that space that divides it into two disconnected parts. Drifts
can be simulated incrementally by changing the decision boundary
implied. HYPERwas parametrized with 10 features and amagnitude
of change of 10−3.

1https://sites.google.com/view/just-change-on-change

Table 2: Decision trees size (# of nodes).

Dataset HT EFDT HAT LAST GAST LAST𝐻
LED𝑎 229 278 37 15 77 897
LED𝑔 221 299 78 29 95 873
SEA𝑎 753 357 541 7 5 95
SEA𝑔 743 350 1049 11 5 91
AGR𝑎 1351 966 325 53 181 385
AGR𝑔 1422 623 1234 187 170 924
RBF𝑚 219 1112 46 3277 357 4267
RBF𝑓 139 170 82 1455 199 507
HYPER 1087 795 618 225 1 1
Outdoor 1 17 1 11 33 41
Elec 57 103 97 103 99 61
Rialto 9 164 9 185 1 197
Airlines 8582 15146 91376 8873 6008 12461
CovType 339 893 172 941 1213 1367
Nomao 38 31 10 36 106 39
Poker 301 543 3 683 1475 921
NOAA 13 15 0 7 69 7

Overall avg. Rank 3.35 3.82 2.59 2.88 3.0 4.24
Real avg. Rank 2.12 3.5 2.0 3.38 4.0 4.25
Synth. avg. Rank 4.44 4.11 3.11 2.44 2.11 4.22

Bold values indicate the best results per data set. The smaller the tree size, the higher
the ranking

Figure 2: Nemenyi test on accuracy

The real-world datasets used were Outdoor, Elec, Rialto, Airlines,
CovType, Nomao, Poker, and NOAA. More details on the used
datasets can be found in the auxiliary repository given above.

Tables 1 and 2 show the accuracy and size (number of nodes)
of Decision Trees, respectively. In the case of the tree size, the
lower the tree size, the better the ranking. The CPU-Time results
obtained for real and synthetic data are displayed in figures 3 and 4.
Figures 5 and 6 show the RAM Hours in real-world and synthetic
data, respectively. The algorithms are sorted by median values in
ascending order.

Figure 2 shows a Nemenyi test with 95% confidence in the deci-
sion trees accuracy. TheNemenyi test compares the average ranking
of algorithms [10]. If two algorithms have an absolute difference of
mean ranking greater than the critical distance (CD), they can be
considered statistically different.

5.2 Discussion
The results obtained show competitive results with state-of-the-
art decision trees. Some interesting points can be highlighted by
comparing the decision tree accuracy and cost, which depict how
our methods can be well suited for mining streaming data.

Conference’17, July 2017, Washington, DC, USA Daniel Nowak Assis, Jean Paul Barddal, and Fabrício Enembreck

Figure 3: CPU Time (𝑠) for trees in real-world datasets

Figure 4: CPU Time (𝑠) for trees in synthetic datasets

Figure 5: RAM-Hours (GB/Hour) for trees in real-world
datasets

LAST monitoring error rates had the best-reported results re-
garding average accuracy ranking. LAST outperformed HAT in real-
world datasets and had the second-best results regarding synthetic
datasets while presenting median and upper quartile CPU-Time
lower than EFDT in real and synthetic data and similar tree size
ranking. LAST𝐻 and GAST could outperform Hoeffding Tree but
could not outperform EFDT. One can notice in the Nemenyi test
(Fig. 2) that LAST was statistically different from GAST, while HAT
was not.

In synthetic datasets, it is evident that if a dataset causes a high
accuracy decrease in the leaf nodes, LAST will probably overgrow
due to its soft split condition, such as in the RBF dataset. But LAST
could also show that in datasets with a low number of changes,

Figure 6: RAM-Hours (GB/Hour) for trees in synthetic
datasets

LAST could outperform state-of-the-art trees while significantly
having a smaller size, such as in the AGR𝑔 dataset that the Hoeffding
Tree had 1298 more nodes than LAST.

In real datasets, this is not clear since drift types in real-world
datasets are not known. However, it is evident that LAST could
outperform EFDT in 6 out of 8 real-world datasets while having
similar size regarding average ranking.

Even with similar size in real-world datasets, EFDT presented
median (6.14 seconds) and upper quartile (22.43 seconds) CPU-Time
greater than LAST (4.56 and 10.29 seconds, respectively). LAST me-
dian and upper quartile processing time is similar to HT (4.52 and
9.31 seconds, respectively), suggesting that constantly evaluating
statistics at nodes and search for the best splits only when the
detector triggers a change has a similar cost as periodically and con-
stantly searching for best splits with a lower size tree. In synthetic
datasets, LAST and GAST presented lower median CPU Time.

One advantage of our algorithms is that the user does not need
to specify the Grace Period and 𝜏 threshold values, since the opti-
mal value of these parameters depends on each scenario. Change
detectors can also have parameters, but some are well-established
regarding change detection, and some change detectors even have
no parameters at all.

HAT presented the lowest number of nodes in real-world datasets
due to the reevaluation of the splits strategy applied but had CPU-
Time upper quartile (20.79 seconds) greater than EFDT CPU-Time
upper quartile (15.57 seconds). In synthetic datasets, HAT median
CPU-Time (21.39 seconds) is similar to EFDT upper quartile (22.43
seconds). These results depict how LAST is suitable for mining
streaming data by presenting higher ranking compared to HAT and
being more efficient compared to EFDT in CPU-Time.

LAST presented similar upper quartile (2.53× 10−7) RAM Hours
usage as EFDT (2.59 × 10−7) in real-world datasets but presented
higher median processing time (2.23× 10−8 in comparison to EFDT
1.02×10−8 RamHours usage). Due to low tree size, LAST presented
lower RAM-Hours than HT in synthetic datasets.

LAST𝐻 and GAST presented similar results regarding CPU-
Time and RAM-Hours to LAST (except in synthetic datasets where
LAST𝐻 presented superior CPU-Time upper quartile) but could not
outperform EFDT in accuracy. By receiving as input the impurity
of the leaf nodes, LAST𝐻 and GAST do not take into account the

Just Change on Change: Adaptive Splitting Time for Decision Trees in Data Stream Classification Conference’17, July 2017, Washington, DC, USA

performance of the Naive Bayes in the leaf nodes, which is a key
component of streaming decision trees efficiency [13].

6 CONCLUSIONS
In this work, we proposed LAST and GAST, where change detectors
control how the tree grows. LAST and GAST dictate splitting time
when a change in error rate or impurity of leaf nodes ensues. At the
same time, Hoeffding Trees do periodic evaluations, not considering
how the tree and the stream evolve. LAST and GAST presented
competitive results against state-of-the-art decision trees while
requiring less CPU Time.

In future works, we plan to apply stronger split constraints to
LAST and GAST to avoid unnecessary splits, known as regular-
ization techniques [3]. We also plan to apply the change detection
strategy in EFDT and HAT leaf nodes. We also plan to explore how
our method performs with state-of-the-art ensemble methods.

The HAT has been applied in cybersecurity applications [1, 8],
and our results motivate us to explore if LAST can outperform HAT
in such applications.

7 ACNKOWLEDGMENTS
This work was financed by the Pontifícia Universidade Católica do
Paraná (PUCPR) through the PIBIC Master – Combined Degree
program.

REFERENCES
[1] Uttam Adhikari, Thomas H. Morris, and Shengyi Pan. 2018. Applying Hoeffding

Adaptive Trees for Real-Time Cyber-Power Event and Intrusion Classification.
IEEE Transactions on Smart Grid 9, 5 (2018), 4049–4060. https://doi.org/10.1109/
TSG.2017.2647778

[2] R. Agrawal, T. Imielinski, and A. Swami. 1993. Database mining: a performance
perspective. IEEE Transactions on Knowledge and Data Engineering 5, 6 (1993),
914–925. https://doi.org/10.1109/69.250074

[3] Jean Paul Barddal and Fabricio Enembreck. 2019. Learning Regularized Hoeffding
Trees from Data Streams. In Proceedings of the 34rd Annual ACM Symposium on
Applied Computing, SAC 2019, Limassol, Cyprus, April 08-12, 2019.

[4] Albert Bifet and Ricard Gavaldà. 2007. Learning from Time-Changing Data with
Adaptive Windowing. Proceedings of the 7th SIAM International Conference on
Data Mining 7. https://doi.org/10.1137/1.9781611972771.42

[5] Albert Bifet and Ricard Gavaldà. 2009. Adaptive Learning from Evolving Data
Streams. In Advances in Intelligent Data Analysis VIII, Niall M. Adams, Céline
Robardet, Arno Siebes, and Jean-François Boulicaut (Eds.). Springer Berlin Hei-
delberg, Berlin, Heidelberg, 249–260.

[6] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Philipp Kranen, Hardy Kre-
mer, Timm Jansen, and Thomas Seidl. 2010. MOA: Massive Online Analy-
sis, a Framework for Stream Classification and Clustering. In Proceedings of
the First Workshop on Applications of Pattern Analysis (Proceedings of Machine
Learning Research, Vol. 11). PMLR, Cumberland Lodge, Windsor, UK, 44–50.
https://proceedings.mlr.press/v11/bifet10a.html

[7] Leo Breiman. 1984. Classification and Regression Trees. Wadsworth Statistics,
Wadsworth, Belmont, CA,.

[8] Diego Guarnieri Corrêa, Fabrício Enembreck, and Carlos N. Silla. 2017. An
investigation of the hoeffding adaptive tree for the problem of network intrusion
detection. In 2017 International Joint Conference on Neural Networks (IJCNN).
4065–4072. https://doi.org/10.1109/IJCNN.2017.7966369

[9] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 2002. Main-
taining Stream Statistics over Sliding Windows. SIAM J. Comput. 31, 6 (2002),
1794–1813. https://doi.org/10.1137/S0097539701398363

[10] Janez Demšar. 2006. Statistical comparisons of classifiers over multiple data sets.
The Journal of Machine learning research 7 (2006), 1–30.

[11] Pedro Domingos and Geoff Hulten. 2000. Mining High-Speed Data Streams. In
Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Boston, Massachusetts, USA) (KDD ’00). Association
for Computing Machinery, New York, NY, USA, 71–80. https://doi.org/10.1145/
347090.347107

[12] J. Gama, R. Sebastião, and P.P. Rodrigues. 2013. On evaluating stream learning
algorithms. Machine Learning 90 (2013), 317—-346.

[13] João Gama, Ricardo Rocha, and Pedro Medas. 2003. Accurate Decision Trees
for Mining High-Speed Data Streams (KDD ’03). Association for Computing
Machinery, New York, NY, USA, 523–528. https://doi.org/10.1145/956750.956813

[14] Heitor Murilo Gomes, Jean Paul Barddal, Fabrício Enembreck, and Albert Bifet.
2017. A Survey on Ensemble Learning for Data Stream Classification. ACM
Comput. Surv. 50, 2, Article 23 (mar 2017), 36 pages. https://doi.org/10.1145/
3054925

[15] Heitor Murilo Gomes, Jean Paul Barddal, Luis Eduardo Boiko Ferreira, and Albert
Bifet. 2018. Adaptive random forests for data stream regression. In 26th European
Symposium on Artificial Neural Networks, ESANN 2018, Bruges, Belgium, April
25-27, 2018.

[16] Heitor M Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabrício Enembreck,
Bernhard Pfharinger, Geoff Holmes, and Talel Abdessalem. 2017. Adaptive
random forests for evolving data stream classification. Machine Learning 106
(2017), 1469–1495.

[17] Wassily Hoeffding. 1963. Probability inequalities for sums of bounded random
variables. The collected works of Wassily Hoeffding (1963), 409–426.

[18] Geoff Hulten, Laurie Spencer, and Pedro Domingos. 2001. Mining Time-Changing
Data Streams. In Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (San Francisco, California) (KDD ’01).
Association for Computing Machinery, New York, NY, USA, 97–106. https:
//doi.org/10.1145/502512.502529

[19] R.B. Kirkby. 2007. Improving hoeffding trees. Ph. D. Dissertation. The University
of Waikato.

[20] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, João Gama, and Guangquan Zhang. 2019.
Learning under Concept Drift: A Review. IEEE Transactions on Knowledge and
Data Engineering 31, 12 (2019), 2346–2363. https://doi.org/10.1109/TKDE.2018.
2876857

[21] Chaitanya Manapragada, Geoffrey I. Webb, and Mahsa Salehi. 2018. Extremely
Fast Decision Tree. In Proceedings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining (London, United Kingdom) (KDD
’18). Association for Computing Machinery, New York, NY, USA, 1953–1962.
https://doi.org/10.1145/3219819.3220005

[22] J.R Quinlan. 1992. C4.5: Programs for Machine. Morgan Kaufmann Publishers,
340 Pine Street, 6th Floor San Francisco, CA 94104 USA.

[23] W. Nick Street and YongSeog Kim. 2001. A Streaming Ensemble Algorithm
(SEA) for Large-Scale Classification. In Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (San Francisco,
California) (KDD ’01). Association for Computing Machinery, New York, NY,
USA, 377–382. https://doi.org/10.1145/502512.502568

https://doi.org/10.1109/TSG.2017.2647778
https://doi.org/10.1109/TSG.2017.2647778
https://doi.org/10.1109/69.250074
https://doi.org/10.1137/1.9781611972771.42
https://proceedings.mlr.press/v11/bifet10a.html
https://doi.org/10.1109/IJCNN.2017.7966369
https://doi.org/10.1137/S0097539701398363
https://doi.org/10.1145/347090.347107
https://doi.org/10.1145/347090.347107
https://doi.org/10.1145/956750.956813
https://doi.org/10.1145/3054925
https://doi.org/10.1145/3054925
https://doi.org/10.1145/502512.502529
https://doi.org/10.1145/502512.502529
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1145/3219819.3220005
https://doi.org/10.1145/502512.502568

	Abstract
	1 Introduction
	2 Data Stream Mining
	3 Hoeffding Trees and variants
	3.1 Hoeffding Tree
	3.2 Additions to the Hoeffding Tree algorithm
	3.3 CVFDT
	3.4 Hoeffding Adaptive Tree
	3.5 EFDT

	4 Local and Global Adaptive Streaming Trees
	5 Experiments and Results
	5.1 Experimental Protocol
	5.2 Discussion

	6 Conclusions
	7 Acnkowledgments
	References

