
Applied Soft Computing Journal 152 (2024) 111271

A
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Adaptive learning on hierarchical data streams using window-weighted
Gaussian probabilities
Eduardo Tieppo a,b,∗, Júlio Cesar Nievola a, Jean Paul Barddal a

a Programa de Pós-Graduação em Informática (PPGIa), Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
b Instituto Federal do Paraná (IFPR), Pinhais, Brazil

A R T I C L E I N F O

Keywords:
Hierarchical classification
Data stream classification
Gaussian Naive Bayes

A B S T R A C T

The hierarchical data stream classification task addresses challenges in both hierarchical and data stream
classification primary areas. In these scenarios, machine learning models must simultaneously deal with
class hierarchies and adapt to respond to nonstationary data. Given such a challenging set of traits, existing
techniques are deficient, as they perform incremental learning and are slow to adapt to newer data, thus not
capturing their dynamics in a timely fashion. In this study, we propose two novel adaptive Gaussian Naive
Bayes classifiers tailored to classify hierarchical data streams. The models use window-weighted Gaussian
probabilities to consider current and historical data and improve the adaptability of the classifiers, especially
for nonstationary data streams. As a result of our research, we introduce a unified protocol for evaluating
and comparing hierarchical data stream classifiers and establish a benchmark for the hierarchical data stream
classification task encompassing the proposed methods and state-of-the-art classifiers. The results demonstrate
that our proposed algorithms achieve better prediction correctness than their state-of-the-art counterparts while
responding more swiftly to changes in data distribution.
1. Introduction

Learning algorithms are usually tailored for problems with specific
characteristics. For instance, learning models tailored to the hierarchi-
cal classification task work with labels that are appropriately hierar-
chical [1]. Similarly, learning models for streaming scenarios utilize
continuous incoming data provided by a stream rather than batch data
or a full view of the dataset [2]. However, progress in data acquisition
and storage technologies is resulting in challenges characterized by fea-
tures that extend beyond a single classification task. A recent example
is the work of [3], in which the authors bring forward a dataset related
to public health that exhibits both streaming and hierarchical traits.
Therefore, it is necessary to formulate solutions that simultaneously
address these characteristics [4] instead of handling each individually.

This paper targets hierarchical data stream classification, which
inherits challenges from its foundation classification tasks, i.e., hierar-
chical classification and data stream classification [4]. On data stream
classification, learning models often assume the class structure as flat
and without relationships between the classes, thus losing potentially
valuable information within the class taxonomy. Meanwhile, on hierar-
chical classification, learning models assume finite and stationary data,
with models not updating themselves, disregarding time or incoming
data [1,2]. In addition, challenges at the intersection of streaming and

∗ Corresponding author at: Programa de Pós-Graduação em Informática (PPGIa), Pontifícia Universidade Católica do Paraná, Curitiba, Brazil.
E-mail address: eduardo.tieppo@pucpr.edu.br (E. Tieppo).

hierarchical classification may also exhibit data distribution changes, a
phenomenon called concept drift [5].

Concept drifts result in dynamic environments where learning mod-
els must decide when and how to adapt to non-stationary incoming
data. At the same time, models must adapt swiftly to data drifts
(plasticity) while retaining older patterns observed in previous data
(stability). This trade-off is pursued when developing new algorithms
and is referred to as the plasticity–stability dilemma [6].

In this paper, we propose two adaptive learning method variants
fitted to work with hierarchical data streams using window-weighted
Gaussian probabilities to obtain a balance on the stability–plasticity
dilemma trade-off.

The first method variant weights the historical Gaussian probabil-
ities using updated data considering incoming samples from the data
stream. Meanwhile, the second method uses only the incoming data to
calculate an adaptive Gaussian probability. Our proposal uses window-
weighted probabilities along with Bayes’ Theorem to perform adaptive
learning using historical and recent data to calculate probabilities.
Experimentation-wise, we append these window-weighted probabilities
to a Gaussian Naive Bayes classifier. The results demonstrate improve-
ments in its application on the predictive performance of the learning
vailable online 17 January 2024
568-4946/© 2024 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.asoc.2024.111271
Received 25 April 2023; Received in revised form 10 October 2023; Accepted 13 J
anuary 2024

https://www.elsevier.com/locate/asoc
https://www.elsevier.com/locate/asoc
mailto:eduardo.tieppo@pucpr.edu.br
https://doi.org/10.1016/j.asoc.2024.111271
https://doi.org/10.1016/j.asoc.2024.111271
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2024.111271&domain=pdf


Applied Soft Computing 152 (2024) 111271E. Tieppo et al.

p
f
𝑡
m
f
a
u
(
t
s

c
s
p
f
d
𝑓
i

model, especially on unstable data streams with well-described concept
drifts.

As a byproduct of this research, we propose a unified assessment
protocol to compare hierarchical data stream classifiers using different
evaluation metrics as criteria in a Multi-Criteria Decision-Making anal-
ysis, resulting in a reproducible testbed for further studies with other
classifiers in the hierarchical data stream classification area.

The remaining sections of this paper are structured as follows.
Section 2 provides the theoretical background of this study, including
both hierarchical classification and data stream classification areas.
Section 3 depicts existing works in hierarchical data stream classi-
fication, comprehending their background and research gaps. Next,
Section 4 describes our proposed adaptive learning methods. Section 5
outlines the unified assessment protocol planned as a reproducible
testbed. Section 6 benchmarks our proposal against existing techniques
using real-data hierarchical data streams. Finally, Section 7 concludes
this study and states envisioned future works.

2. Theoretical background

This section describes hierarchical classification, data stream classi-
fication, and the result at the intersection of such areas, which is the
problem our proposal tackles.

2.1. Hierarchical classification

In hierarchical classification, instances are assigned to a class that
is part of a set of related classes, with specific classes in the set
representing hierarchical relationships to general classes [1,7,8].

A class hierarchy can be defined as regular concept hierarchy [9]
structured over a partially ordered set (𝑌 , ≻), where 𝑌 stands for a finite
set comprising all objective classes from a problem and the relation
≻ is defined as a subsumption relation, i.e., a data sample assigned
to a specific class (child class) in the hierarchy is consequently also
assigned to all linked general nodes (parent classes) [1,10]. Due to
this data trait, hierarchical classifiers differ from traditional ones in
some key aspects. The authors in [1] specified these aspects in a four-
tuple with the format (𝛺,𝛥,𝛯,𝛩), where 𝛺 refers to the data structure
used in the representation of the hierarchy of classes, 𝛥 and 𝛯 to the
cardinality and label depth applied by the hierarchical classifiers, and
𝛩 to the approach used by the classification algorithm to treat the
hierarchy [1,4].

We focus on hierarchical classifiers built with trees as data structure,
assign leaf node classes (mandatory leaf-node prediction - MLNP) as the
last class of at most one predicted label path (single path prediction
- SPP), and in which their learning models consist of one classifier
per node/class to predict between the child nodes of the class (Local
classifier per parent node - LCPN) or one single classifier to handle all
classes using the hierarchy information (Global classifier - GC).

As hierarchical classifiers assign label paths to instances, it is im-
perative to consider the entire label path when assessing the predictive
performance of the learning model. In this sense, the authors in [11]
proposed hierarchical versions of the traditional evaluation metrics
Precision, Recall, and F-Measure. Related to the Precision metric, the
hierarchical Precision (ℎ𝑃 ) computes the number of classes that are
components of a predicted hierarchical set of classes that also appear in
the ground-truth hierarchical set of classes for a given instance. Related
to the Recall metric, the hierarchical Recall (ℎ𝑅) counts the number
of ground-truth classes comprised by the predicted hierarchical set of
classes for a given instance. As in the traditional classification metrics,
the hierarchical F-Measure (ℎ𝐹 ) is the harmonic mean between their
hierarchical Precision and hierarchical Recall components [12].

2.2. Data stream classification

Data stream classification places specific demands on classifiers
2

compared to traditional classification scenarios and methods. u
Traditional classifiers assume finite and stationary data used in a well-
defined training step. This premise is not applicable in streaming
scenarios, wherein a data stream continuously supplies data to a
learning model [2].

Note that this single unique trait in how the stream provides data to
the learning model requires some characteristics for data stream classi-
fiers. As data streams are potentially unbounded, they may surpass the
capacity of any computational resources available, and their underlying
distribution may change over time, which may also lead to changes in
the discovered patterns (concept drifts). Data stream classifiers should
be able to adapt to concept drift to avoid or reduce the impact of these
drifts on the learned concepts [2,13,14].

Moreover, a classifier tailored to the streaming scenario must oper-
ate with limited memory, where each instance is processed once and
discarded to avoid memory overflow. In this sense, models typically
store only a summary of the stream, and approximate results are
allowed. In addition, classifiers typically follow time-window models
that consider only certain parts of the data (usually the most recent).
For example, a classifier interested in the most recent data may consider
only data within a window that slides along with the data stream
and discards data outside the window or that weights incoming data
samples differently depending on their recentness [14,15].

Due to the memory and time constraints imposed by the streaming
scenario, stream classifiers must at least use batch mode adaptations
(mini-batches) to process all data. However, it is desirable for methods
to be incremental or adaptive [16]. Here, we focus on adaptive stream
classifiers that update themselves by using strategies to forget previ-
ously learned information and, thus, can adapt to data changes over
time [16].

Data stream learning models are assessed utilizing the same metrics
employed in traditional classification but on a per-instance basis. In this
protocol, known as the prequential evaluation method or interleaved
test-then-train method, each instance is initially used to assess the
model and calculate the evaluation metrics and then to train and update
the model [17].

2.3. Hierarchical data stream classification

The hierarchical data stream classification merges the foundation
areas described above. Consequently, it inherits their properties and
constraints.

First, a hierarchical data stream classifier must use a data stream
as input to the learning process not as a data source only but by effec-
tively processing portions of the data over time (preferably instance by
instance) without a complete view of the data set at any point in time.

Hereafter, let ℎ𝐷𝑆 = [(�⃗�𝑡, 𝑦𝑡)]∞𝑡=0 be a hierarchical data stream that
rovides instances (�⃗�𝑡, 𝑦𝑡) over time 𝑡, where �⃗�𝑡 stands for the set of
eatures and 𝑦𝑡 for the corresponding ground-truth set of classes for the
th instance. Thus, a hierarchical data stream classifier is a learning
odel function 𝑓 𝑡 ∶ �⃗�𝑡 ↦ 𝑦𝑡, where the training data consists of

eatures represented by �⃗� for each 𝑡 [4]. At this point we highlight that,
s in the hierarchical classification, 𝑦𝑡 includes class labels organized
nder a regular concept hierarchy structured on a partially ordered set
𝑌 , ≻), where 𝑌 is a prior known finite set containing all classes and
he relation ≻ is defined as an asymmetric, anti-reflexive and transitive
ubsumption relation.

As for the data stream classification, a hierarchical data stream
lassifier must also consider non-stationary data distributions and con-
equently be able to adapt to possible concept drifts. Given a set 𝐶 of
rior probabilities of classes and a class-conditional probability density
unction given by 𝐶 =

⋃

𝑦∈𝑌 {(𝑃 [𝑦], 𝑃 [�⃗�|𝑦])} [18,19], the hierarchical
ata stream classifier must be able to update its learning model function
𝑡 if between two distinct timestamps 𝑡𝑖 and 𝑡𝑗 a concept drift occurs,

.e., 𝐶 𝑡𝑖 differs from 𝐶 𝑡𝑗 .
To swiftly adapt 𝑓 𝑡, a hierarchical data stream classifier typically
ses a windowing strategy to focus on specific data portions (usually



Applied Soft Computing 152 (2024) 111271E. Tieppo et al.

w
(
t

3

e
g
s
h
d
t

3

t
l
s
c
c
r

s
f
d
t
p
w

t
n
s
i

o
s
s
c
w
v

i
p
a
t
t
r
t
u

f
p
d
n

h
h

the recent). As mentioned above, the stability–plasticity dilemma must
be accounted for since small windows lead to a faster adaptation of
𝑓 𝑡 to concept drifts (plasticity). In contrast, large windows preserve
historical data and produce more stable 𝑓 𝑡 (stability).

Finally, a hierarchical data stream learning model must operate
ithin limited computational resources and analyze each instance
�⃗�𝑡, 𝑦𝑡) only once in the order in which it arrives and not reuse it. Next,
he model must be able to provide a prediction �⃗�𝑡 on demand given the

updated 𝑓 𝑡 based on the training information provided by (�⃗�𝑡, 𝑦𝑡).

. Related works

This section discusses existing works and efforts regarding the hi-
rarchical data stream classification area, comprehending their back-
round, research gaps, and current methods. First, in the following sub-
ection, we briefly describe the background of the state of the art and
ighlight the need for novel methods based on an existing hierarchical
ata stream set. Next, we list and detail the current state-of-the-art
echniques tailored for the hierarchical data stream classification task.

.1. Background

Despite both fundamental areas being well-established research
opics, their properties are not usually addressed simultaneously in the
iterature. Moreover, current techniques cannot solve hierarchical data
tream classification problems straightforwardly. For instance, hierar-
hical classifiers cannot handle changing and unbounded data, while
lassifiers tailored for streaming data often overlook the hierarchical
elationships between classes of data samples [4].

Comprehensive reviews of hierarchical classification have been pre-
ented in [7,20], where the basic concepts and terminologies of the
ield have been formally defined. Similarly, comprehensive reviews of
ata stream classification have been presented in [21–23], which show
hat substantial attention has been paid to scenarios in which data is
rovided as a stream and how to overcome the challenges associated
ith it.

Data stream classification has been revisiting the classification sub-
asks, resulting in new research connections, initially with the bi-
ary classification of data streams and then handling hierarchically
tructured problems. This evolution seems reasonable considering the
mprovement in obtaining, collecting, and storing large-scale data.

For example, the authors in [3] proposed a new version of one
f the datasets initially introduced in [24], comprehending more in-
tances and with a formal definition of concept drifts within the data
tream. This dataset is composed of instances representing flying insects
aptured by electronic traps built with optical sensors, obtaining the
ing-beat frequency of the insects. The dataset aims to identify disease
ectors or agricultural damage-causing species via classifiers.

The dataset generated by the authors contains all instances collected
n natural order (randomly) along the data stream. The authors also
roposed different filters and arrangements of the dataset based on
mbient features, such as the temperature or the luminosity at a given
ime in which an instance was collected. Hence, the authors controlled
he occurrence and representation of concept drift in the datasets. As a
esult, the authors proposed 11 datasets, including the one containing
he complete data, plus another ten sets representing balanced and
nbalanced versions of five distinct patterns simulating concept drifts.

Despite the dataset being initially introduced by the authors as a
lat dataset, the data stream retains its hierarchical characteristic as
roposed in [24]. In other words, each instance component of the
ata stream represents species of disease vector mosquitoes, which are
aturally organized in an entomological taxonomy.

From the perspective of the classification task, it is possible to
andle this dataset in a few different ways. Note that despite being a
3

ierarchical data stream, textcolorblueone can apply learning models
from other classification subtasks if particular data traits are unac-
counted for. For instance, one can apply a hierarchical classifier to a
hierarchical data stream, handling it as a batch dataset or a flat data
stream classifier by bypassing data hierarchy. However, both strategies
have some drawbacks, as discussed below.

On the one hand, regarding hierarchical classification, the main dis-
advantages of learning models are the premise of finite data available
for a well-defined training step and the building of a stationary model.
Data streams are potentially unbounded, and data are continuously
made available to the model over time. Thus, several strategies used by
hierarchical classifiers would fail in a data stream environment, such as
storing all data or reprocessing a given instance.

In addition, due to the ephemeral trait of the data, the stationary
model could result in model degradation over time since it would use
old information as a reference that may no longer describe the current
data.

Note that the forced use of exclusively hierarchical classifiers in
a hierarchical data stream is possible, for example, if considered in
hypothetical circumstances where one can store all data in memory.
However, it may render a noticeable drawback to the classification
results since the learning model would not use any update strategy to
respond to possible changes in data distribution that affect predictions.

On the other hand, concerning data stream classification, learning
models have the main drawback of not considering intrinsic class
hierarchies present in hierarchical data streams, losing information that
could be useful to the classification process.

Note that the forced use of flat data stream classifiers in a hierar-
chical data stream is even feasible by ignoring the hierarchy of classes,
predicting a class in a flat and isolated way, and retrieving a hier-
archical label path through further analysis of an attached ontology.
However, all the information on the relationship between the classes is
wasted mainly in two aspects.

First, the model would not consider any similarity between classes,
which may affect the prediction and the classification costs (since the
classification costs are distinct at different spots in the hierarchy).
Second, the trade-off between prediction reliability and usefulness is
not an option since the classifiers do not have enough information to
walk through the hierarchy and decide between discriminating generic
classes (where there are more examples and thus more confidence but
less usefulness) or specifying the prediction to deeper hierarchy classes
(where there are fewer examples and thus less confidence but more
usefulness) [8].

3.2. State-of-the-art techniques

The authors in [4] presented a comprehensive review of the state of
the art of the hierarchical data stream classification field. The survey
listed the algorithms used to deal with problems involving hierarchical
data streams and tagged the methods with the area constraints to check
their adherence to the hierarchical data stream classification task. As
a finding, the first method fully adherent to the task was proposed
in [24], where the authors proposed a k-Nearest Neighbors (kNN)
classifier fitted to work with hierarchically structured data streams.

In addition to this classifier, we retrieved another seven methods
published subsequently in the literature that also fulfill hierarchical
data stream constraints. To our knowledge, these methods represent all
the available classifiers tailored for the hierarchical data stream classi-
fication task. In the following subsections, we provide explanations of
these techniques and highlight their differences and relevance to our
work.

3.2.1. Local kNN-hDS
Local kNN-hDS [24] is a pioneering method designed to work with

hierarchically structured data streams. It employs a sliding window
strategy to manage data instances, ensuring that older data is forgotten
using a first-in/first-out approach. This method also utilizes local classi-
fiers per parent node (LCPN) and computes distances between instances
to perform predictions. Its data representation involves maintaining

buffers of instances associated with each class node in the hierarchy.



Applied Soft Computing 152 (2024) 111271E. Tieppo et al.
Table 1
Overview of the state-of-the-art techniques.

Method Data representation Prediction strategy

Local kNN-hDS [24] Buffers of instances Nearest neighbors
Global kNN-hDS [25] Buffers of instances Nearest neighbors and label path analysis
Local kNC-hDS [26] Centroids Nearest neighbors
Local Dribble-hDS [26] Cluster Feature Vectors Nearest neighbors
Global kNC-hDS [27] Centroids Nearest neighbors and label path analysis
Global Dribble-hDS [27] Cluster Feature Vectors Nearest neighbors and label path analysis
GNB-hDS [28] Statistical descriptors Bayesian probabilities
GNB-hDS-iYJ [29] Statistical descriptors Bayesian probabilities
3.2.2. Global kNN-hDS
Built upon Local kNN-hDS, Global kNN-hDS [25] introduces a global

classification (GC) variant. It reduces the reliance on distance com-
putations by analyzing the label path of nearest neighbors instead
of employing the LCPN approach. This analysis involves splitting the
label path into levels and selecting label paths containing the most
frequent label for each hierarchy level. This adaptation results in
reduced computational resource usage while maintaining prediction
correctness.

3.2.3. Local kNC-hDS and Local Dribble-hDS
Local kNC-hDS and Local Dribble-hDS [26] are methods tailored

for hierarchical data streams. They employ summarization techniques,
specifically incremental centroids and cluster feature vectors (CFs),
to represent the data instances. Local kNC-hDS uses incremental cen-
troids at each hierarchy node and performs predictions by comparing
incoming instances to k-nearest centroids. On the other hand, Local
Dribble-hDS stores CFs representing instances and utilizes the nearest
neighbor as a prediction strategy. Both methods apply adaptive learn-
ing through a sliding window, ensuring efficient memory usage and
timely updates.

3.2.4. Global kNC-hDS and Global Dribble-hDS
Global kNC-hDS and Global Dribble-hDS [27] merge the strategies

of Global kNN-hDS and Local kNC-hDS/Local Dribble-hDS. These clas-
sifiers share a global classification approach and employ summarization
techniques. They have demonstrated superior prediction correctness
and processing speed compared to Local kNN-hDS and their local
counterparts.

3.2.5. GNB-hDS
GNB-hDS [28] is an incremental Gaussian Naive Bayes classifier

designed for classifying hierarchical data streams. It employs statistical
summaries of the data stream instead of storing raw instances and relies
on Bayes’ Theorem for predictions. The method uses an LCPN approach
and a landmark window, summarizing the entire data stream into
incremental statistical descriptors. GNB-hDS offers improved processing
speed compared to Local kNN-hDS while achieving similar prediction
correctness.

3.2.6. GNB-hDS-iYJ
GNB-hDS-iYJ [29] is a variant of GNB-hDS that incorporates an

incremental adaptation of the Yeo–Johnson Power Transformation.
This transformation reduces the data stream variables’ skewness and
can be applied to any data stream mining task. GNB-hDS-iYJ utilizes
statistical models to determine the appropriate power parameter for
data transformation. In the same paper, authors showed that this
4

adaptation improves prediction correctness significantly.
3.3. Overview and comparison

Table 1 summarizes these state-of-the-art techniques, including their
data representation and prediction strategies.

Table 2 also specifies the methods concerning the hierarchical data
stream classification properties (using the same categorization previ-
ously discussed). Each method depicted in Tables 1 and 2 is detailed as
follows.

Note that the GNB-hDS method was proposed as an incremental
model since it does not have a built-in mechanism to forget data.
Thus, there is room to improve it by making it adaptive. As mentioned
above, adaptive methods are more suited to respond quickly to concept
drifts since the classifier’s mapping function can emphasize recent data,
which is more representative concerning changes, and capture the data
dynamics accordingly. Therefore, in this study, we propose a sliding
window with a Gaussian Naive Bayes classifier to handle more unstable
hierarchical data streams and improve its adaptation to concept drifts.
4. The window-weighted Gaussian probabilities

In this section, we propose window-weighted Gaussian probabilities
to enhance the adaptiveness of the Gaussian Naive Bayes classifier tai-
lored for hierarchical data stream classification (GNB-hDS). We present
two variations of the classifier, each employing a distinct weighting
strategy for integrating window-weighted Gaussian probabilities.

We applied the window-weighted Gaussian probabilities within
the incremental Gaussian Naive Bayes GNB-hDS previously introduced
in [28], making it adaptive and resulting in two variations of the
original classifier using two different weighting strategies.

First, the traditional GNB-hDS must adhere to two fundamental
properties: the ability to handle potentially unbounded data streams
and hierarchical class structures. This classifier maintains incremental
statistical descriptors to capture information about observed instances
and efficiently forget older data. It also considers the entire set of
classes within the hierarchy when updating these statistical descriptors,
traversing from specific nodes to the root.

The incremental statistical descriptors encompass a triplet in the
format (𝑛, �̄�𝑛, 𝜎𝑛), where 𝑛 represents the number of observed instances,
and �̄�𝑛 and 𝜎𝑛 correspond to the incremental mean and incremen-
tal standard deviation of these instances The incremental standard
deviation 𝜎𝑛𝑖 is computed using Eq. (1) for each feature 𝑖 [30,31].

𝜎𝑛𝑖 =

√

√

√

√

√

(𝑛 − 2) 𝜎2𝑛−1𝑖 + (𝑛 − 1)
(

�̄�𝑛−1𝑖 − �̄�𝑛𝑖
)2

+ (𝑥𝑛𝑖 − �̄�𝑛𝑖 )
2

𝑛 − 1
(1)

To introduce adaptability into GNB-hDS, we also store an additional
triplet (𝑐, �̄�𝑐 , 𝜎𝑐 ), representing the current statistical description of the
last 𝑐 instances.

Let us explore how we use these statistical descriptors to calculate
weighted Gaussian probabilities. The prediction of the class for an
incoming instance from the data stream involves the calculation of a
priori probabilities based on 𝑛 or 𝑐, likelihood probabilities using Bayes’
theorem, and the determination of the maximum a posteriori probability
among all classes.



Applied Soft Computing 152 (2024) 111271E. Tieppo et al.

𝑝

Table 2
Specification of the state-of-the-art techniques concerning the hierarchical data stream classification properties.

Method Data
structure (𝛺)

Label
cardinality (𝛥)

Label
depth (𝛯)

Hierarchy
handling (𝛩)

Single-pass Readiness Bounded
memory

Concept
drift

Time
window

Data stream
handling

Local kNN-hDS Tree SPL/SPP FD/MLNP GC Yes Yes Yes Yes Sliding Adaptive
Global kNN-hDS Tree SPL/SPP FD/MLNP GC Yes Yes Yes Yes Sliding Adaptive
Local kNC-hDS Tree SPL/SPP FD/MLNP LCPN Yes Yes Yes Yes Sliding Adaptive
Global kNC-hDS Tree SPL/SPP FD/MLNP GC Yes Yes Yes Yes Sliding Adaptive
Local Dribble-hDS Tree SPL/SPP FD/MLNP LCPN Yes Yes Yes Yes Sliding Adaptive
Global Dribble-hDS Tree SPL/SPP FD/MLNP GC Yes Yes Yes Yes Sliding Adaptive
GNB-hDS Tree SPL/SPP FD/MLNP LCPN Yes Yes Yes Yes Landmark Incremental
GNB-hDS-iYJ Tree SPL/SPP FD/MLNP LCPN Yes Yes Yes Yes Landmark Incremental
𝑥

The likelihood probability for feature 𝑖 and class 𝑗 is calculated as
shown in Eq. (2):

𝑝
(

𝑥𝑖| 𝐶𝑗
)

= 1
√

2𝜋𝜎2𝑖,𝑗
exp

{

−1
2

(𝑥𝑖 − �̄�𝑖,𝑗
𝜎𝑖,𝑗

)2
}

(2)

The a posteriori probability, depicted in Eq. (3), is obtained from the
product of the independent feature probabilities for each class 𝐶 [32].

(

𝐶𝑗 |𝑥
)

∝

{

∏

𝑖
𝑝
(

𝑥𝑖| 𝐶𝑗
)

}

𝑝(𝐶𝑗 ) (3)

The prediction for the incoming instance is determined by selecting
the class with the maximum value of the weighted Gaussian proba-
bilities, considering both the sets (𝑛, �̄�𝑛, 𝜎𝑛) and (𝑐, �̄�𝑐 , 𝜎𝑐 ) of statistical
descriptors.

Thus, the method follows one of the following weighting
approaches:

1. GNB-hDS-Hw (Historical window): In this approach, the histor-
ical window, i.e., the historical statistical descriptors (𝑛, �̄�𝑛, 𝜎𝑛),
are weighted by the statistical descriptors of the current window
(𝑐, �̄�𝑐 , 𝜎𝑐 ). The arguments of the maxima for 𝑝

(

𝐶𝑗 |𝑥
)

(Eq. (3))
are computed as 𝑝𝑤 = 𝑝𝑛

(

𝐶𝑗 |𝑥
)

× 𝑝𝑐
(

𝐶𝑗 |𝑥
)

, where 𝑝𝑛 and
𝑝𝑐 represent the a posteriori probabilities calculated using their
respective sets of statistical descriptors.

2. GNB-hDS-Cw (Current window): In this approach, only the cur-
rent window, i.e., the current statistical descriptors (𝑐, �̄�𝑐 , 𝜎𝑐 ),
are considered. The arguments of the maxima for 𝑝

(

𝐶𝑗 |𝑥
)

are
calculated using only 𝑝𝑐

(

𝐶𝑗 |𝑥
)

.

After making a prediction, the statistical descriptors are updated
adaptively. It is important to note that discarding the oldest instance
in the window is impossible, as it has already been removed right
after processing. Instead, the methods employ a forgetting strategy by
subtracting one pseudo-instance (a mean instance) from the current
statistical descriptors (𝑐, �̄�𝑐 , 𝜎𝑐 ), representing the oldest instance within
the current sliding window.

Note that within hierarchical data streams, the sliding window strat-
egy plays a pivotal role in addressing the challenges posed by evolving
class distributions and the need for adaptive learning. The sliding
window allows the model to focus on recent data while discarding older
instances. It ensures that the classifier remains responsive to changes
in the data distribution, a critical consideration in hierarchical data
streams where class distributions may evolve independently in various
branches.

Fig. 1 shows an illustrative example of the sliding window and the
resulting adaptive learning regarding the current window aforemen-
tioned.

At each node in the hierarchy, we maintain both sets (𝑛, �̄�𝑛, 𝜎𝑛)
and (𝑐, �̄�𝑐 , 𝜎𝑐 ) of statistical descriptors of the last 𝑛 (total, or historical)
and 𝑐 (current) observed instances. In the figure, �̄�𝑛 and �̄�𝑐 repre-
sent incremental mean across instances 𝑥𝑛. Note that the incremental
mean �̄�𝑛 (solid underline) is based on historical window (instances
5

encompassed by the solid border), while the incremental mean �̄�𝑐
Fig. 1. Illustrative example of the sliding window applied in the incremental mean
computation.

(dashed underline) relies on current window (instances encompassed
by the dashed border). On �̄�𝑐 , the incremental mean reflects the last 𝑐
instances by subtracting one pseudo-instance (a mean instance) from
̄𝑐 before performing the computation. Note that this strategy speeds
up the convergence of the incremental mean to the ground-truth mean
of the last 𝑐 observed instances. Also, removing the observed oldest
instance from the window is unfeasible since the model maintains only
statistical descriptors and current 𝑥𝑛 (in the figure, in black).

Additionally, it is worth observing that the described sliding win-
dow strategy occurs at each hierarchy node. Thus, the model can
heed recent data and adapt to concept drifts at different levels in
the hierarchy. This hierarchical adaptation is crucial for maintaining
classification accuracy, as it allows the classifier to prioritize recent
data that may be more indicative of changes in specific branches of
the hierarchical structure.

Algorithm 1 shows the pseudocode for the proposed Adaptive Gaus-
sian Naive Bayes for Hierarchical Data Streams with Historical Window
method (GNB-hDS-Hw). Likewise, Algorithm 2 depicts the pseudocode
for the Adaptive Gaussian Naive Bayes for Hierarchical Data Streams
with Current Window method (GNB-hDS-Cw). Both algorithms are
similar and differ in the statistical descriptor sets to calculate the
Gaussian probabilities.

Both algorithms receive a hierarchical data stream ℎ𝐷𝑆 providing
instances (�⃗�𝑡, 𝑦𝑡) over time 𝑡, and the 𝑤 (window size) parameter
representing the maximum number of instances to be considered on
the current statistical descriptors (𝑐, �̄�𝑐 , 𝜎𝑐 ).

At any time, if required, the algorithms can output a set of predicted
class labels (a hierarchical label path) ̂⃗𝑦𝑡 for each given instance (�⃗�𝑡, 𝑦𝑡),
where �⃗�𝑡 represents a 𝑑-dimensional feature set and its values, and 𝑦𝑡
represents the corresponding ground-truth set of hierarchical classes of
that instance.

The algorithms start by representing the class hierarchy from the
hierarchical data stream ℎ𝐷𝑆 (line 1). On both algorithms, the first
loop (line 2 onwards) receives an arriving instance from the hierarchi-
cal data stream, and the following loop (line 4 onwards) handles the
hierarchy using an LCPN approach by predicting one of the children
labels possible for a current parent node.

The a priori probabilities are calculated using the counting of class
instances, and the likelihood and a posteriori probabilities are calcu-
lated by the application of Eqs. (2) and (3), respectively. Note that
each algorithm uses different statistical descriptor sets to calculate the



Applied Soft Computing 152 (2024) 111271E. Tieppo et al.

r

Algorithm 1: GNB-hDS-Hw - Adaptive Gaussian Naive Bayes for
Hierarchical Data Streams with Historical Window

input : ℎ𝐷𝑆: a hierarchical data stream providing instances
(�⃗�𝑡, 𝑦𝑡) over time 𝑡
𝑤: maximum number of instances (window size) on
the current statistical descriptors

output: ̂⃗𝑦𝑡: a predicted label path for the input instance

1 Tree ← classTaxonomy(hDS);
2 foreach (�⃗�𝑡 ∈ ℎ𝐷𝑆) do
3 predictedNode ← Tree.root;
4 while ¬(predictedNode.isLeaf) do
5 foreach childNode ∈ predictedNode.children do
6 priors𝑛 ← priorProbability(childNode.Class𝑛);
7 priors𝑐 ← priorProbability(childNode.Class𝑐);
8 end
9 likelihood𝑛 ← likelihoodProbability(�⃗�𝑡, priors𝑛);
10 posterior𝑛 ← posteriorProbability(likelihood𝑛, priors𝑛);
11 likelihood𝑐 ← likelihoodProbability(�⃗�𝑡, priors𝑐);
12 posterior𝑐 ← posteriorProbability(likelihood𝑐 , priors𝑐);
13 weightedPosterior ← posterior𝑛 × posterior𝑐 ;
14 predictedNode ← argmax(weightedPosterior);
15 ̂⃗𝑦𝑡 ← ̂⃗𝑦𝑡 ∪ {predictedNode.label};
16 end
17 UpdateStatisticalDescriptors(�⃗�𝑡, 𝑦𝑡);
18 correctNode ← Tree.𝑦𝑡;
19 if correctNode.data𝑐 .count > 𝑤 then
20 UpdateStatisticalDescriptors(𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑜𝑑𝑒.𝑑𝑎𝑡𝑎𝑐 );
21 end
22 end

Algorithm 2: GNB-hDS-Cw - Adaptive Gaussian Naive Bayes for
Hierarchical Data Streams with Current Window

input : ℎ𝐷𝑆: a hierarchical data stream providing instances
(�⃗�𝑡, 𝑦𝑡) over time 𝑡
𝑤: maximum number of instances (window size) on
the current statistical descriptors

output: ̂⃗𝑦𝑡: a predicted label path for the input instance

1 Tree ← classTaxonomy(ℎ𝐷𝑆);
2 foreach (�⃗�𝑡 ∈ ℎ𝐷𝑆) do
3 predictedNode ← Tree.root;
4 while ¬(predictedNode.isLeaf) do
5 foreach childNode ∈ predictedNode.children do
6 priors𝑐 ← priorProbability(childNode.Class);
7 end
8 likelihood𝑐 ← likelihoodProbability(�⃗�𝑡, priors𝑐);
9 posterior𝑐 ← posteriorProbability(likelihood𝑐 , priors𝑐);
10 predictedNode ← argmax(posterior𝑐);
11 ̂⃗𝑦𝑡 ← ̂⃗𝑦𝑡 ∪ {predictedNode.label};
12 end
13 UpdateStatisticalDescriptors(�⃗�𝑡, 𝑦𝑡);
14 correctNode ← Tree.𝑦𝑡;
15 if correctNode.data𝑐 .count > 𝑤 then
16 UpdateStatisticalDescriptors(correctNode.data𝑐);
17 end
18 end

probabilities. On GNB-hDS-Hw, historical and current stats are used to
calculate prior (lines 6 and 7) and likelihood and posterior probabilities
(lines 9–12). On GNB-hDS-Cw, only current stats are used (lines 6, 8,
and 9).
6

On GNB-hDS-Hw, the historical posterior probabilities are weighted
by current ones (line 13). Note that this step is unneeded on GNB-hDS-
Cw since the model only uses the current posterior probabilities. The
predicted node for the evaluated parent node is then obtained via the
arguments of the maxima for 𝑝

(

𝐶𝑗 |𝑥
)

(line 14 on GNB-hDS-Hw, and
line 10 on GNB-hDS-Cw), and the respective single label is appended
to a partial label path ̂⃗𝑦𝑡. This process is repeated until a leaf node is
eached and the label path ̂⃗𝑦𝑡 is complete and ready to be output by the

algorithm.
Finally, the algorithms update the statistical descriptors from the

leaf to the root class. After that, both methods test whether the number
of instances represented in the current statistical descriptors (𝑐, �̄�𝑐𝜎𝑐 )
(𝑑𝑎𝑡𝑎𝑐) exceeds the stipulated maximum number 𝑤 allowed. If so, the
sliding window strategy is applied by forgetting a representation of the
oldest instance of (𝑐, �̄�𝑐𝜎𝑐 ).

Finally, in the context of our proposed adaptation, which employs
window-weighted Gaussian probabilities, it is essential to address the
assumption of Gaussian data distribution. While our approach utilizes
Gaussian probabilities as weights in a Gaussian Naive Bayes model,
it may encounter limitations when dealing with data that deviates
significantly from Gaussian distribution, such as data with annular
shapes or one-dimensional signals.

To address this concern, we experimented with the previously de-
scribed Incremental Yeo–Johnson transformation as part of our testing
process. This transformation aims to mitigate the non-Gaussian nature
of the data by applying incremental adjustments and can be attached
to the proposed GNB-hDS-Hw and GNB-hDS-Cw. While it may not
entirely resolve the non-Gaussian characteristics, the Incremental Yeo–
Johnson transformation enhances the adaptability of our approach to
a broader range of diverse data distributions. In subsequent sections,
we describe and discuss our experiments and the impact of the Incre-
mental Yeo–Johnson transformation on the data conformity to Gaussian
assumptions.

5. Evaluation protocol

In this section, we propose a unified assessment protocol to compare
hierarchical data stream classifiers using different evaluation metrics
as criteria in a Multi-Criteria Decision-Making analysis, resulting in a
reproducible testbed. Besides, we instantiate the protocol and describe
the experimental setup to assess the proposed methods against the
previously described state-of-the-art techniques.

5.1. Unified protocol

The literature review presented in [4] revealed no baseline for
a testbed creation in the hierarchical data stream classification area
regarding hierarchical data stream sets or evaluation protocols.

Overall, all the retrieved studies in the literature review use the
previously described Hierarchical Precision (ℎ𝑃 ), Recall (ℎ𝑅), and F-
Measure (ℎ𝐹 ) evaluation metrics. Note that, except for studies in
specific areas, these metrics are widely applied in the evaluation of
hierarchical classification learning models [1]. Furthermore, the stan-
dard protocol for evaluating data stream learning models, regardless of
the metric used, is the prequential evaluation method [16]. Besides,
the review also pointed out the need for metrics for measuring the
computational performance of the learning methods.

In this sense, the authors in [25–28] use the number of instances
per second (𝑖𝑛𝑠𝑡∕𝑠) that a learning model can process and classify per
second under the prequential protocol, and at the same experimental
setup when performing comparisons with other learning models.

In this section, we propose a unified protocol to fill this gap by
merging the fundamental aspects of the evaluation strategies used in
recent hierarchical data stream studies. Fig. 2 illustrates the proposed
unified assessment protocol. The main steps of the protocol are rep-
resented in the boxes, where dashed ellipses describe user-defined



Applied Soft Computing 152 (2024) 111271E. Tieppo et al.

s
r
a
D
d
t
a
S
t
d
t
u
e

a
r
a
o
v
t
T
t
l
s

t
i
t
l

Fig. 2. Steps performed on the proposed unified assessment protocol.

instantiations related to that step, and dashed arrows and notes depict
possible outputs.

The first three steps of the protocol are commonly applied in
evaluation protocols in classification tasks and involve the definition
of tested classifiers (including state-of-the-art techniques), the defini-
tion of datasets with different features, instances, and domains, thus
allowing a reasonable assessment of the behavior of the classifiers
in different scenarios, and the configuration of classifiers’ parameters
comprehending at least a moderate range of values.

The next step regards the definition of the evaluation metrics ob-
tained by the classifiers to be measured during the experiments. Here,
we suggest the previously reported ℎ𝐹 and 𝑖𝑛𝑠𝑡∕𝑠 metrics.

Furthermore, we highlight two key points to be considered in this
tep. First, the evaluation metrics should comprise prediction cor-
ectness and computational performance in a balanced way, prefer-
bly equally. Note that the chosen metrics are used as Multi-Criteria
ecision-Making (MCDM) criteria afterward and will be discussed in
etail below. Thus, having more metrics related to one type of evalua-
ion (prediction correctness or computational performance) can unbal-
nce the analysis for one measure at the expense of the other one(s).
econd, it is important to observe that each evaluation metric has in-
rinsic usage requirements. For instance, when considering imbalanced
atasets, the hierarchical F-Measure metric is more representative than
he hierarchical Precision. Similarly, the 𝑖𝑛𝑠𝑡∕𝑠 metric must be eval-
ated only internally to a set of experiments since it depends on the
nvironment in which the experiment is performed.

Next, the chosen evaluation metrics are observed in one or more
ssessment view types, depending on the problem characteristics and
equirements. Here, we suggest two assessment view types, i.e., a best
verage performance regarding prediction correctness and a trade-
ff performance concerned with computational performance. The first
iew represents the common target of the classification task and intends
o obtain the most accurate model possible regarding the input data.
he second view adds feasibility to the first by considering the compu-
ational resources usage and environment limitations, such as hardware
imitations in real-world applications, which may be prohibitive in
treaming scenarios as discussed in previous work [4,33].

At that point, the assessment view types represent value sets ob-
ained on each evaluation metric by each classifier on all datasets. It
s not uncommon for studies with proposals of novel classifiers to stop
he evaluation process at this stage and draw conclusions based only on
7

ocal differences in an isolated view of the result matrices. However, it
is critical to highlight the need to verify statistical differences between
classifiers [34].

Therefore, the statistical validation step understands the results
obtained by all methods as sample sets used as a basis for statistical
tests. These sample sets comprehend ordinal, non-parametric data,
representing the evaluation metrics obtained by the classifiers in dif-
ferent hierarchical data stream sets, assuming the null hypothesis that
there is no significant difference between the results of the classifiers.
Observe that statistical validation, claims, or conclusions occur for each
criterion. This step outputs significant differences between classifiers
for each selected criterion isolated [34].

Finally, in the last step of the protocol, a separate analysis may be
conducted to compare all classifiers together. In addition to the above-
mentioned statistical validation tests, this analysis compares the meth-
ods using the evaluation metrics (i.e., ℎ𝐹 and 𝑖𝑛𝑠𝑡∕𝑠 rates) understood
as multiple attributes in a problem of Multi-Criteria Decision-Making.
Multi-Criteria Decision-Making (MCDM) is a problem-solving technique
fitted to deal with multiple conflicting objectives. It was first introduced
in [35] and used to develop multiple criteria metrics for the evaluation
of data mining algorithms in [36].

The MCDM analyzes distinct alternatives representing possible so-
lutions to a problem. These alternatives are assumed to be finite and
eventually ranked. The problem is associated with multiple decision
criteria representing the dimensions from which the alternatives can
be evaluated. Also, the criteria are usually conflicting and depicted via
incommensurable units [37].

Formally, one can express an MCDM problem as a finite set 𝐴 =
𝑎𝑖, 𝑖 = {1, 2, 3,… , 𝑛} of alternatives and a finite set 𝐺 = 𝑔𝑗 , 𝑗 =
{1, 2, 3,… , 𝑚} of goals or criteria, and each goal has an associated
weight 𝑊 (or desirability). The solution determines the optimal alter-
native 𝑎 that maximizes the degree of desirability concerning all goals
𝑔𝑗 [37].

The analysis performed in our protocol understands the classifiers
as the alternatives in the MCDM problem and the goals, or multiple
decision criteria, as the evaluation metrics (e.g., ℎ𝐹 and 𝑖𝑛𝑠𝑡∕𝑠).

Specifically, the MCDM is applied through a weighted product
model (WPM) where each alternative (classifier) is compared against
other alternatives by multiplying ratios for each weighted criterion (ℎ𝐹
and 𝑖𝑛𝑠𝑡∕𝑠 rates). When used to compare or rank multiple alternatives, a
variant approach of the WPM that uses only products without ratios can
be applied. Eq. (4) shows the MCDM-WPM calculation, where 𝑛 is the
number of criteria, 𝑎𝑖𝑗 is the metric value obtained by the 𝑖th classifier
concerning the 𝑗th criterion, and 𝑤𝑗 is the weight of 𝑗th criterion [37].

WPM
(

𝐴𝑖
)

=
𝑛
∏

𝑗=1

(

𝑎𝑖𝑗
)𝑤𝑗 (4)

Note that the evaluation metrics should be normalized to avoid
impacts of different value scales. Here, we suggest the linear scale
transformation (Max-Min method), considering both maximum and
minimum performances of evaluation metrics. The normalized value
𝑟𝑖𝑗 obtained by the linear scale transformation is calculated via Eq. (5),
where 𝑎𝑖𝑗 is the metric value obtained by the 𝑖th classifier concerning
the 𝑗th criterion, and 𝑎max

𝑗 and 𝑎min
𝑗 are the maximum and the mini-

mum performance rate obtained by the classifiers concerning the 𝑗th
criterion [38].

𝑟𝑖𝑗 =
𝑎𝑖𝑗 − 𝑎min

𝑗

𝑎max
𝑗 − 𝑎min

𝑗

(5)

Besides, a constant equal to 10−𝑛, with 𝑛 ∈ N can be added to 𝑟𝑖𝑗
to avoid zero multiplication (which would result in ignoring the 𝑗th
criterion) when 𝑎𝑖𝑗 = 𝑎min

𝑗 .
Finally, the criteria weights can assume complementary values in

distinct scenarios representing different importance given to prediction
correctness and speed performance. As a final output of the protocol,
this step results in an overall ranking of the tested classifiers regarding

all evaluation metrics together.



Applied Soft Computing 152 (2024) 111271E. Tieppo et al.

h
p

Table 3
Description of hierarchical data stream sets used in the experiments.

Dataset Instances Features Classes Labels per level

Entomology [24] 21,722 33 14 4,6,9,14
Ichthyology [24] 22,444 15 15 2,6,10,15
Insects-a-b [3] 52,848 33 6 1,1,2,6
Insects-a-i [3] 355,275 33 6 1,1,2,6
Insects-i-a-r-b [3] 79,986 33 6 1,1,2,6
Insects-i-a-r-i [3] 452,044 33 6 1,1,2,6
Insects-i-b [3] 57,018 33 6 1,1,2,6
Insects-i-g-b [3] 24,15 33 6 1,1,2,6
Insects-i-g-i [3] 143,323 33 6 1,1,2,6
Insects-i-i [3] 452,044 33 6 1,1,2,6
Insects-i-r-b [3] 79,986 33 6 1,1,2,6
Insects-i-r-i [3] 452,044 33 6 1,1,2,6
Insects-o-o-c [3] 905,145 33 24 4,10,14,24
Instruments [24] 9,419 30 31 5,10,31
5.2. Experimental setup

We now instantiate the above-described protocol and detail the ex-
perimental setup to assess the proposed GNB-hDS-Hw and GNB-hDS-Cw
methods against the previously described state-of-the-art techniques.

The literature review in [4] listed the datasets used in studies in
the hierarchical data stream classification area. However, most studies
were false positives concerning the target area when considering the
area constraints. As an outcome, the datasets used by the studies
returned in the review do not necessarily represent hierarchical data
stream sets [4]. Therefore, we limited our analysis to datasets with
complete adherence to the hierarchical data stream classification area,
resulting in three hierarchical data streams proposed in [24].

In addition, as previously introduced in Section 3, the authors in [3]
introduced a new version of one of the datasets used in [24], with more
instances and a formal definition of the concept drifts within the data
stream.

While the authors initially presented this dataset as flat, it re-
tained its inherent hierarchical structure, as originally proposed in [24],
given that the instances still correspond to species of disease vec-
tor mosquitoes, which naturally adhere to an entomological taxon-
omy [26].

Table 3 depicts the resulting 14 hierarchical data stream sets used
in the experiments, comprehending the three data sets proposed in [24]
plus the 11 hierarchically labeled datasets resulting from the hierarchy
incorporation on the Insects datasets proposed in [3].

Note that, among the datasets proposed in [3], the ‘‘Insects-o-o-
c’’ represents the main dataset, while other ones represent datasets
built with different sampling strategies to simulate natural effects in
insects’ behavior and induce distinct concept drifts on data. Also, in
the same datasets, the words ‘‘Abrupt’’, ‘‘Balanced’’, ‘‘Gradual’’, ‘‘Imbal-
anced’’, ‘‘Incremental’’ and ‘‘Reoccurring’’ are reduced to their initials
to increase readability.

The classifiers used in the experiments comprehend the methods
proposed here and the state-of-the-art techniques described in Sec-
tion 3. Table 4 lists these methods and summarizes the parameters used
across all experiments. Note that all the classifiers were experimented
with identical parameters when applicable. The comparison of Local
and Global kNN-hDS used identical 𝑛 and 𝑘 parameters. Then, the
comparison between the Local kNN-hDS and kNC-hDS and Dribble-hDS
also used 𝑛 and 𝑘, in addition to 𝑚 used on both kNC-hDS and Dribble-
DS methods to perform the summarization strategy. Differently, the
roposed adaptive GNB-hDS-Cw and GNB-hDS-Hw use a 𝑤 parameter

as the window size to perform a forgetting strategy in the statistical
descriptors unrelated to the other methods.

In addition, note that we also tested the original GNB-hDS method
and our two adaptive proposals with the previously described In-
cremental Yeo–Johnson Power Transformation [29] as an attached
8

preprocessing step, resulting in additional variants specified in Table 5.
All the experiments related to the Incremental Yeo–Johnson Power
Transformation were performed using 𝑁 = 107, 𝑑 = (0.95, 0.02), 𝑝 = 0.5,
𝛼 = 0.05 and 𝑙 = 1, following the same protocol provided in [29].

Related to the evaluation metrics to be observed during the experi-
ments, the predictive correctness of the classifiers was measured using
the hierarchical F-Measure (ℎ𝐹 ) following a prequential evaluation
method (interleaved test-then-train). The ℎ𝐹 rates were computed and
incrementally averaged for all incoming instances from the hierarchi-
cal data stream. The computational performance of all methods was
measured by the previously described 𝑖𝑛𝑠𝑡∕𝑠 metric by calculating the
number of instances that each method can process and classify per
second.

We retrieved the results obtained by the classifiers based on the
two assessment view types previously introduced, i.e., the best average
performance of all methods regarding prediction correctness (ℎ𝐹 ) and
the best trade-off performance, which considered the best trade-off be-
tween ℎ𝐹 and 𝑖𝑛𝑠𝑡∕𝑠 rates obtained by all methods separately resulting
from an MCDM-WPM analysis.

To statistically validate the results, each assessment view type was
submitted to significance tests of multiple comparisons considering
a 95% confidence level according to the protocol provided in [34].
More specifically, the Friedman’s hypothesis test [39] was used to
make multiple comparisons in non-parametric data, assuming a null
hypothesis that there is no significant difference between the results of
all methods in terms of predictive (ℎ𝐹 and performance (𝑖𝑛𝑠𝑡∕𝑠) rates.
In the case of the null hypothesis being rejected, the Nemenyi post-hoc
test [40] was applied to identify significant differences between two
specific classifiers.

Finally, regarding the MCDM analysis, the weights of the ℎ𝐹 and
𝑖𝑛𝑠𝑡∕𝑠 rates were defined following ratios 𝑤 ∈

{

1
6 ,

2
6 ,

3
6 ,

4
6 ,

5
6

}

, with ℎ𝐹
and 𝑖𝑛𝑠𝑡∕𝑠 assuming complementary values on five distinct scenarios
representing different importance given to prediction correctness and
speed performance.

6. Analysis

This subsection compares the proposed methods and provides a
benchmark of the hierarchical data stream classification area.

We compared both GNB-hDS-CW and GNB-hDS-HW methods
against the state-of-the-art related work. The following sections de-
pict two analyses based on the best average performances regarding
prediction correctness (ℎ𝐹 ) and the best trade-off performances of all
methods. Next, Section 6.3 discusses both proposed methods regarding
their adaptive learning strategies. Finally, Section 6.4 portrays an
overall analysis considering all methods together.



Applied Soft Computing 152 (2024) 111271E. Tieppo et al.

i
T
t

l
m
a
i
h
t
r

i

Table 4
Hyper-parameter settings used on methods across experiments.

Method Parameter Description Experimented values

𝑛 Maximum number of instances to be stored in a node {1, 5, 10, 15, 20}Local kNN-hDS
𝑘 Nearest neighbors {1, 3, 5}

𝑛 Maximum number of instances to be stored in a node {1, 5, 10, 15, 20}Global kNN-hDS
𝑘 Nearest neighbors {1, 3, 5}

𝑛 Number of centroids {1, 5, 10, 15, 20}
𝑚 Maximum number of instances summarized in a centroid {5, 10, 30}

kNC-hDS
(Local and Global)

𝑘 Nearest centroids {1, 3, 5}

𝑛 Number of 𝐶𝐹𝑠 {1, 5, 10, 15, 20}
𝑚 Maximum number of instances summarized in a 𝐶𝐹 {5, 10, 30}

Dribble-hDS
(Local and Global)

𝑘 Nearest 𝐶𝐹 means {1, 3, 5}

GNB-hDS – – –

GNB-hDS-Hw 𝑤 Maximum number of instances summarized in the historical window {10, 50, 100, 500, 1000, 5000}

GNB-hDS-Cw 𝑤 Maximum number of instances summarized in the current window {10, 50, 100, 500, 1000, 5000}
Table 5
GNB-hDS variants.

Method Data stream
handling

Window strategy IncrementalYeo–Johnson

GNB-hDS Incremental No No
GNB-hDS-iYJ Incremental No Yes
GNB-hDS-Cw Adaptive Cw (only current window is considered) No
GNB-hDS-Cw-iYJ Adaptive Cw (only current window is considered) Yes
GNB-hDS-Hw Adaptive Hw (historical window weighted by current window) No
GNB-hDS-Hw-iYJ Adaptive Hw (historical window weighted by current window) Yes
Table 6
Hierarchical F-Measure rates obtained by methods in best average performances regarding prediction correctness.

Datasets Local
kNN-hDS

Global
kNN-hDS

Local
kNC-hDS

Local
Dribble-hDS

Global
kNC-hDS

Global
Dribble-hDS

GNB-hDS GNB-hDS-
iYJ

GNB-hDS-
Cw

GNB-hDS-
Cw-iYJ

GNB-hDS-
Hw

GNB-hDS-
Hw-iYJ

𝑛 = 20
𝑘 = 1

𝑛 = 20
𝑘 = 1

𝑛 = 20
𝑚 = 10
𝑘 = 3

𝑛 = 5
𝑚 = 30
𝑘 = 1

𝑛 = 20
𝑚 = 10
𝑘 = 3

𝑛 = 5
𝑚 = 30
𝑘 = 1

𝑤 = 100 𝑤 = 50 𝑤 = 100 𝑤 = 100

Entomology 51.51 51.48 57.38 53.61 57.41 53.71 48.63 52.82 50.08 50.02 50.41 51.59
Ichthyology 40.55 40.54 41.52 37.00 41.72 37.11 46.82 49.72 46.64 47.15 47.39 48.80
Insects-a-b 80.95 80.95 84.37 83.33 84.37 83.33 81.11 81.96 86.49 86.97 86.10 86.81
Insects-a-i 79.14 79.14 82.62 82.55 82.60 82.55 80.88 84.03 85.46 86.17 85.53 86.90
Insects-i-a-r-b 79.49 79.52 84.30 83.42 84.28 83.42 81.42 84.07 85.84 85.94 86.21 86.59
Insects-i-a-r-i 78.52 78.53 82.64 82.11 82.62 82.11 81.57 83.70 84.93 85.51 85.00 86.22
Insects-i-b 79.78 79.78 84.05 83.91 84.03 83.91 80.55 82.40 83.83 84.05 83.65 84.44
Insects-i-g-b 83.29 83.41 88.02 86.66 87.99 86.66 81.53 81.50 86.16 86.14 85.64 86.03
Insects-i-g-i 78.94 78.95 82.91 83.11 82.93 83.11 80.40 83.38 86.93 85.42 85.23 86.00
Insects-i-i 78.63 78.64 82.58 83.08 82.57 83.08 80.90 83.18 84.97 85.50 84.93 86.14
Insects-i-r-b 80.14 80.18 84.50 83.48 84.50 83.48 78.57 80.21 85.79 86.08 85.64 86.18
Insects-i-r-i 78.60 78.61 82.63 82.70 82.62 82.70 81.61 83.72 84.88 85.51 84.99 86.25
Insects-o-o-c 55.24 55.28 65.66 59.50 65.56 59.50 64.14 69.38 59.33 62.40 61.47 66.54
Instruments 65.42 65.06 55.04 56.53 55.59 56.68 48.31 49.48 40.06 36.91 45.93 42.36

Avg. 𝒉𝑭 72.16 72.15 75.59 74.36 75.63 74.38 72.60 74.97 75.10 75.27 75.58 76.49

Avg. Ranking 10.32 9.96 5.39 6.96 5.71 6.75 9.50 6.07 5.36 4.18 5.07 2.71
t

6.1. Best ℎ𝐹 performance

Table 6 depicts the hierarchical F-Measure obtained by all methods
n the hierarchical data stream sets (greater values highlighted in bold).
hese results represent the ℎ𝐹 rates obtained by methods considering
heir best average performances regarding prediction correctness.

The Local kNN-hDS and Global kNN-hDS methods obtained the
owest average ℎ𝐹 rates and the lowest average rankings among all
ethods (10.32 and 9.96, respectively). Next, the GNB-hDS method

chieved a ranking of 9.50. Most other methods obtained similar rank-
ngs between the fourth and seventh rankings. As an exception and
ighlight, the proposed adaptive GNB-hDS-Hw-iYJ method achieved
he best average ℎ𝐹 rate (76.49%) and the best average ranking (2.71),
eaching the best overall results in 7 out of 14 hierarchical data streams.

The overall ℎ𝐹 results were submitted to a Friedman test, which
dentified a significant difference between the methods (𝑝-value =

−10
9

7.15 × 10 ). Thus, a post-hoc Nemenyi test was applied to perform
pairwise comparisons. Fig. 3 shows the resulting critical difference
chart for the ℎ𝐹 rates obtained by all methods. The four adaptive
variants of GNB-hDS are significantly different from the Local and
Global kNN-hDS methods. Besides, both adaptive GNB-hDS-Hw-iYJ
and GNB-hDS-Cw-iYJ methods that use the incremental Yeo–Johnson
Power Transformation are also significantly different from the primary
incremental GNB-hDS.

In addition to the overall results regarding ℎ𝐹 rates, Table 7 depicts
he overall instance per second (𝑖𝑛𝑠𝑡∕𝑠) rates obtained by all proposed

methods. Likewise, these results represent the 𝑖𝑛𝑠𝑡∕𝑠 rates obtained
by methods considering their best average performances regarding
prediction correctness.

Local kNN and kNC methods obtained the lowest average 𝑖𝑛𝑠𝑡∕𝑠
rates and the lowest average rankings among all methods (11.57 and
11.36, respectively). Next, the GNB-hDS-Hw-iYJ method achieved a
ranking of 9.36. On the other ranking side, GNB-hDS-iYJ and GNB-

hDS-Cw obtained similar rankings of 3.21 and 3.07. Also, GNB-hDS



Applied Soft Computing 152 (2024) 111271E. Tieppo et al.

p
c
p
w
k
G
a

Fig. 3. Critical differences chart for ℎ𝐹 rates obtained by methods in best average performances regarding prediction correctness.
Table 7
Instances per second rates obtained by methods in best average performances regarding prediction correctness.

Datasets Local
kNN-hDS

Global
kNN-hDS

Local
kNC-hDS

Local
Dribble-hDS

Global
kNC-hDS

Global
Dribble-hDS

GNB-hDS GNB-hDS-
iYJ

GNB-hDS-
Cw

GNB-hDS-
Cw-iYJ

GNB-hDS-
Hw

GNB-hDS-
Hw-iYJ

𝑛 = 20
𝑘 = 1

𝑛 = 20
𝑘 = 1

𝑛 = 20
𝑚 = 10
𝑘 = 3

𝑛 = 5
𝑚 = 30
𝑘 = 1

𝑛 = 20
𝑚 = 10
𝑘 = 3

𝑛 = 5
𝑚 = 30
𝑘 = 1

𝑤 = 100 𝑤 = 50 𝑤 = 100 𝑤 = 100

Entomology 127 209 134 327 200 382 380 395 397 370 335 287
Ichthyology 157 223 186 286 291 380 395 426 398 394 366 338
Insects-a-b 151 383 152 452 353 543 490 472 469 437 374 325
Insects-a-i 153 384 151 467 354 542 495 473 472 444 378 325
Insects-i-a-r-b 153 386 152 456 354 541 496 467 475 441 374 320
Insects-i-a-r-i 153 374 150 468 351 542 492 465 476 442 376 323
Insects-i-b 148 363 152 456 345 541 501 503 500 454 402 334
Insects-i-g-b 158 385 165 459 372 542 483 469 466 441 371 323
Insects-i-g-i 154 385 155 466 359 543 496 470 475 444 377 326
Insects-i-i 152 377 151 467 354 545 497 479 473 445 385 323
Insects-i-r-b 153 388 152 458 356 543 491 459 474 439 363 324
Insects-i-r-i 153 386 151 469 353 540 494 451 476 443 377 323
Insects-o-o-c 75 135 78 247 127 275 283 277 280 271 237 212
Instruments 79 110 121 221 164 256 263 284 257 263 259 217

Avg. 𝒊𝒏𝒔𝒕∕𝒔 140.43 320.50 146.54 407.00 309.40 479.60 446.80 434.95 434.77 409.01 355.35 307.20

Avg. Ranking 11.57 8.00 11.36 5.50 9.00 2.00 2.29 3.07 3.21 5.43 7.21 9.36
Fig. 4. Critical differences chart for 𝑖𝑛𝑠𝑡∕𝑠 rates obtained by methods in best average performances regarding prediction correctness.
s
F
r
T

and Global Dribble-hDS achieved similar rankings (2.29 and 2.00,
respectively), with Global Dribble-hDS in first place in 10 out of 14
hierarchical data streams.

The overall 𝑖𝑛𝑠𝑡∕𝑠 results were submitted to a Friedman test, which
identified a significant difference between the methods (𝑝-value =
2.15 × 10−24). Thus, a post-hoc Nemenyi test was applied to perform
airwise comparisons. Fig. 4 shows the resulting critical difference
hart for the 𝑖𝑛𝑠𝑡∕𝑠 rates obtained by all methods. Both Dribble methods
lus four variants of GNB-hDS (incremental ones and both adaptive
ith current window, Cw) are significantly different from the Local
NN-hDS method. Global Dribble-hDS, GNB-hDS, GNB-hDS-iYJ, and
NB-hDS-Cw are also significantly different from both kNN, both KNC
nd GNB-hDS-Hw-iYJ methods.
10
Considering both ℎ𝐹 and 𝑖𝑛𝑠𝑡∕𝑠 rates together, one can observe that
ome methods obtained slightly opposite rankings in both analyses.
or instance, GNB-hDS-Hw-iYJ achieved first place (ranking of 2.71)
egarding ℎ𝐹 rates but third to last place on 𝑖𝑛𝑠𝑡∕𝑠 (ranking of 9.36).
he same can be said about both kNC methods, with competitive ℎ𝐹

rates but smaller 𝑖𝑛𝑠𝑡∕𝑠 rates.

Note that both Dribble methods take advantage of using a smaller
data representation (𝑛 = 5) to obtain their average best performance.
It ensured first place for Global Dribble-hDS among the 𝑖𝑛𝑠𝑡∕𝑠 perfor-
mances and still a competitive ℎ𝐹 rate. A broader analysis regarding
the averaged best performances is shown later in this section, with the
Multi-Criteria Decision-Making (MCDM) technique.



Applied Soft Computing 152 (2024) 111271E. Tieppo et al.

p
d
p

𝑖

r
a

i
p
d
h
p

p
i
t
o
a

h
r
m
a
r
p

b
r
r
d
d
r

Table 8
Hierarchical F-Measure (%) rates obtained by methods on best trade-off performance.

Datasets Local
kNN-hDS

Global
kNN-hDS

Local
kNC-hDS

Local
Dribble-hDS

Global
kNC-hDS

Global
Dribble-hDS

GNB-hDS GNB-hDS-
iYJ

GNB-hDS-
Cw

GNB-hDS-
Cw-iYJ

GNB-hDS-
Hw

GNB-hDS-
Hw-iYJ

𝑛 = 5
𝑘 = 1

𝑛 = 5
𝑘 = 1

𝑛 = 5
𝑚 = 30
𝑘 = 3

𝑛 = 5
𝑚 = 30
𝑘 = 1

𝑛 = 5
𝑚 = 30
𝑘 = 3

𝑛 = 5
𝑚 = 30
𝑘 = 1

𝑤 = 100 𝑤 = 50 𝑤 = 100 𝑤 = 100

Entomology 46.79 46.79 55.68 53.61 55.71 53.71 48.63 52.82 50.08 50.02 50.41 51.59
Ichthyology 36.66 36.66 39.44 37.00 39.53 37.11 46.82 49.72 46.64 47.15 47.39 48.80
Insects-a-b 77.63 77.64 84.05 83.33 84.07 83.33 81.11 81.96 86.49 86.97 86.10 86.81
Insects-a-i 75.32 75.32 82.29 82.55 82.30 82.55 80.88 84.03 85.46 86.17 85.53 86.90
Insects-i-a-r-b 76.89 76.96 84.00 83.42 83.96 83.42 81.42 84.07 85.84 85.94 86.21 86.59
Insects-i-a-r-i 74.98 75.00 82.31 82.11 82.29 82.11 81.57 83.70 84.93 85.51 85.00 86.22
Insects-i-b 76.43 76.42 83.62 83.91 83.62 83.91 80.55 82.40 83.83 84.05 83.65 84.44
Insects-i-g-b 79.97 80.12 87.61 86.66 87.62 86.66 81.53 81.50 86.16 86.14 85.64 86.03
Insects-i-g-i 75.62 75.65 82.22 83.11 82.20 83.11 80.40 83.38 86.93 85.42 85.23 86.00
Insects-i-i 75.01 75.03 82.40 83.08 82.40 83.08 80.90 83.18 84.97 85.50 84.93 86.14
Insects-i-r-b 77.33 77.42 84.33 83.48 84.29 83.48 78.57 80.21 85.79 86.08 85.64 86.18
Insects-i-r-i 75.05 75.06 82.31 82.70 82.31 82.70 81.61 83.72 84.88 85.51 84.99 86.25
Insects-o-o-c 49.99 50.21 65.00 59.50 64.90 59.50 64.14 69.38 59.33 62.40 61.47 66.54
Instruments 50.60 50.48 50.29 56.53 50.68 56.68 48.31 49.48 40.06 36.91 45.93 42.36

Avg. 𝒉𝑭 67.73 67.77 74.68 74.36 74.71 74.38 72.60 74.97 75.10 75.27 75.58 76.49

Avg. Ranking 11.21 10.79 6.14 6.43 5.86 6.14 9.07 5.79 5.07 4.00 4.79 2.71
F

6.2. Best trade-off performance

As described before, the MCDM analysis was applied to all clas-
sifier performances in an isolated view to retrieve the best trade-off
performances of all methods considering both ℎ𝐹 and 𝑖𝑛𝑠𝑡∕𝑠 rates
concomitantly.

The ℎ𝐹 and 𝑖𝑛𝑠𝑡∕𝑠 rates obtained by a method with each hyper-
arameter setup were compared among each other concerning five
ifferent assignments of importance (weights, 𝑤) following the com-
lementary percentage set 𝑤 ∈

{

1
6 ,

2
6 ,

3
6 ,

4
6 ,

5
6

}

. In other words, each
result set obtained with a specific hyper-parameter setup was evaluated
with the MCDM-WPM analysis using complementary weighted ℎ𝐹 and
𝑛𝑠𝑡∕𝑠 rates (𝑤ℎ𝐹 and 𝑤𝑖𝑛𝑠𝑡∕𝑠) resulting in a 𝑊𝑃𝑀 performance. Next,

the 𝑊𝑃𝑀 performances were ranked among each other to obtain the
best result set for each pair (𝑤ℎ𝐹 , 𝑤𝑖𝑛𝑠𝑡∕𝑠). Lastly, all sets of 𝑊𝑃𝑀
ankings were averaged, and the best overall average was understood
s the best trade-off performance of that method.

Table 8 depicts the hierarchical F-Measure obtained by all methods
n the hierarchical data stream sets considering their best trade-off
erformance retrieved by the MCDM-WPM analysis (greater values per
ataset are highlighted in bold). Note that the table also depicts the
yper-parameter setup used by each method to achieve its best trade-off
erformance.

All kNN, kNC, and Dribble methods obtained their best trade-off
erformances with 𝑛 = 5 probably because this hyper-parameter setup
s the fastest possible with a reasonable data representation. Also, note
hat the average best performances and the best trade-off performances
f all GNB-hDS methods are the same since the 𝑤 parameter does not
ffect the processing speed.

All proposed methods (GNB-hDS-Hw-iYJ, GNB-hDS-Cw-iYJ, GNB-
DS-Hw, and GNB-hDS-Cw) obtained the best average ℎ𝐹 rates and
ankings regarding the trade-off performances. Next, kNC and Dribble
ethods obtained similar average rates. The incremental GNB-hDS

chieved third to last place, and both kNN obtained the lowest average
ate among all methods, with the Local kNN-hDS method in the last
osition.

Both sides of the ranking (first and last positions) on both averaged
est performances and best trade-off performances are the same. These
ankings occur since the methods with the lowest trade-off performance
ates could not obtain enough increases in ℎ𝐹 rates even with more
ata representations. Also, the primary version of GNB-hDS does not
iffer significantly from both kNN regarding ℎ𝐹 rates, but it does
egarding 𝑖𝑛𝑠𝑡∕𝑠 rates.
11
Following the same analysis protocol performed with the averaged
best performances, the overall ℎ𝐹 results of the trade-off performances
were submitted to a Friedman test. As expected, it identified a signifi-
cant difference between the methods (𝑝-value = 1.49 × 10−12). Thus, a
post-hoc Nemenyi test was applied to perform pairwise comparisons.
Fig. 5 shows the resulting critical difference chart for the ℎ𝐹 rates
obtained by all methods in the trade-off performances.

All proposed methods achieved significantly higher rates compared
to the kNN methods. Also, the incremental GNB-hDS significantly
differs (with lower rates) from its adaptive counterparts that use the
incremental Yeo–Johnson Power Transformation.

Regarding speed comparison, Table 9 depicts the overall 𝑖𝑛𝑠𝑡∕𝑠 rates
obtained by all proposed methods on their best trade-off performances.

Global kNN-hDS obtained the best average 𝑖𝑛𝑠𝑡∕𝑠 rate (485.54),
while Global Dribble-hDS obtained the best average ranking. Global
kNN-hDS and GNB-hDS achieved close rankings, as well as Global kNC-
hDS, GNB-hDS-iYJ and GNB-hDS-Cw. The slower performances resulted
from local kNN and kNC methods and the GNB-hDS-Hw-iYJ.

The 𝑖𝑛𝑠𝑡∕𝑠 rates of the trade-off performances were also submitted
to a Friedman test. As with the ℎ𝐹 rates, the Friedman test identified
a significant difference between the methods (𝑝-value = 1.40 × 10−19).
ig. 6 shows the resulting critical difference chart for the 𝑖𝑛𝑠𝑡∕𝑠 rates

obtained by all methods in the trade-off performances after a post-hoc
Nemenyi test.

All global methods and both incremental GNB-hDS and GNB-hDS-
Cw obtained significantly faster 𝑖𝑛𝑠𝑡∕𝑠 rates than the related work
Local kNN-hDS (and than Local kNN-hDS and GNB-hDS-Hw-iYJ). In
the first and second places, Global Dribble-hDS and Global kNN-hDS
significantly differ from their local counterparts and from both adaptive
GNB-hDS variants with historical windows.

Note that the primary incremental version of GNB-hDS performs
fewer steps than the proposed adaptive variants, resulting in a higher
𝑖𝑛𝑠𝑡∕𝑠. In this sense, the incremental Yeo–Jonhson and the proposed
forgetting strategy used on the adaptive GNB-hDS-Cw and GNB-hDS-
HW constitute additional steps to the learning process and impact
computational performance.

Thus, one can understand that GNB-hDS-iYJ and GNB-hDS-Cw per-
form one additional step than GNB-hDS; also, GNB-hDS-Cw-iYJ and
GNB-hDS-Hw perform two additional steps; and, finally, GNB-hDS-
Hw-iYJ performs three additional steps since the application of the
historical window results in the storage and processing of two distinct
sets of statistical descriptors.

Besides, these additional steps represent opposite results in the
ℎ𝐹 and 𝑖𝑛𝑠𝑡∕𝑠 rates. The methods that perform more additional steps



Applied Soft Computing 152 (2024) 111271E. Tieppo et al.

a

Fig. 5. Critical differences chart for ℎ𝐹 rates obtained by methods with on the best trade-off performance.
Table 9
Instances per second rates obtained by methods on best trade-off performance.

Datasets Local
kNN-hDS

Global
kNN-hDS

Local
kNC-hDS

Local
Dribble-hDS

Global
kNC-hDS

Global
Dribble-hDS

GNB-hDS GNB-hDS-
iYJ

GNB-hDS-
Cw

GNB-hDS-
Cw-iYJ

GNB-hDS-
Hw

GNB-hDS-
Hw-iYJ

𝑛 = 5
𝑘 = 1

𝑛 = 5
𝑘 = 1

𝑛 = 5
𝑚 = 30
𝑘 = 3

𝑛 = 5
𝑚 = 30
𝑘 = 1

𝑛 = 5
𝑚 = 30
𝑘 = 3

𝑛 = 5
𝑚 = 30
𝑘 = 1

𝑤 = 100 𝑤 = 50 𝑤 = 100 𝑤 = 100

Entomology 283 370 265 327 335 382 380 395 397 370 335 287
Ichthyology 294 363 309 286 384 380 395 426 398 394 366 338
Insects-a-b 354 568 355 452 534 543 490 472 469 437 374 325
Insects-a-i 357 570 360 467 534 542 495 473 472 444 378 325
Insects-i-a-r-b 340 583 360 456 535 541 496 467 475 441 374 320
Insects-i-a-r-i 345 582 359 468 535 542 492 465 476 442 376 323
Insects-i-b 365 584 297 456 527 541 501 503 500 454 402 334
Insects-i-g-b 354 579 366 459 540 542 483 469 466 441 371 323
Insects-i-g-i 348 581 364 466 536 543 496 470 475 444 377 326
Insects-i-i 358 448 340 467 536 544 497 479 473 445 385 323
Insects-i-r-b 344 576 360 458 537 543 491 459 474 439 363 324
Insects-i-r-i 343 581 359 469 536 540 494 451 476 443 377 323
Insects-o-o-c 170 196 179 247 231 275 283 277 280 271 237 212
Instruments 178 215 187 221 230 256 263 284 257 263 259 217

Avg. 𝒉𝑭 316.64 485.54 318.60 407.00 466.46 479.60 446.80 434.95 434.77 409.01 355.35 307.20

Avg. Ranking 11.00 3.50 10.50 7.29 4.07 2.71 3.64 4.43 4.57 6.93 8.21 11.14
Fig. 6. Critical differences chart for 𝑖𝑛𝑠𝑡∕𝑠 rates obtained by methods on the best trade-off performance.
chieved the highest ℎ𝐹 rates and, consequently, have lower 𝑖𝑛𝑠𝑡∕𝑠
rates. Likewise, the GNB-hDS method obtained the lowest average ℎ𝐹
rate and the highest number of instances processed per second.

6.3. Adaptive learning analysis

To overview the impact of the window-weighted Gaussian proba-
bilities on the prediction correctness of the classifiers, we measured
the prequential ℎ𝐹 rate over time along the data stream of both adap-
tive GNB-hDS-Hw and GNB-hDS-CW against the incremental GNB-hDS
classifier.

Fig. 7 compares GNB-hDS-Hw and GNB-hDS. Likewise, Fig. 8 shows
the comparison between GNB-hDS-Cw and GNB-hDS. The figures depict
plots of the cumulative prequential ℎ𝐹 rates obtained by the classifiers
on each hierarchical data stream set using the same parameter settings
12
of the results considering the best average performances regarding
prediction correctness.

Overall, we observe that both adaptive GNB-hDS-Cw and GNB-hDS-
Hw classifiers could adapt themselves faster than the incremental GNB-
hDS, especially on the datasets with well-described concept drifts [3].
For instance, on the ‘‘Insects-a-b’’ and ‘‘Insects-a-i’’ datasets, one can
note that while the prediction correctness of the incremental classifier
is affected by a concept drift and drops roughly from 80% to 65%, both
adaptive classifiers adapt themselves swiftly enough to maintain and
even obtain better ℎ𝐹 rates on the same portion of the stream.

On average, this feature results in a higher prediction correctness
rate for the adaptive classifiers when considering all hierarchical data
streams together. However, in cases where the concept drifts are not
well delimited or even nonexistent, the incremental classifier GNB-
hDS uses the information of the entire data stream to achieve a more
stable representation of the concepts and, consequently, a comparably



Applied Soft Computing 152 (2024) 111271E. Tieppo et al.

o
a
d
t
d
c

T
e
o
v

o
r
d
m
m
a

Fig. 7. Hierarchical F-Measure (%) rates obtained by GNB-hDS-Hw and GNB-hDS methods along the hierarchical data stream.
r higher ℎ𝐹 rate; this is the case in the ‘‘Entomology’’, ‘‘Ichthyology’’
nd ‘‘Instruments’’ data stream sets, where no concept drift has been
escribed yet [24]. In this sense, GNB-hDS-Hw is less affected by
his stability than GNB-hDS-Cw since it maintains historical statistical
escriptors only weighted by the current ones, whereas GNB-hDS-Cw
ompletely discards the old information.

We also analyzed the behavior of the methods over variations of 𝑤.
able 10 compares the average ℎ𝐹 (%) rates obtained by methods on
ach variation of the 𝑤 parameter. Observe that this analysis considers
nly the proposed adaptive GNB-hDS-Cw and GNB-hDS-Hw and the
ariants using the Incremental Yeo–Johnson Power Transformation.

GNB-hDS-Hw-iYJ showed the best average results in all variations
f 𝑤, resulting in a clear first ranking. Note that the average ℎ𝐹
ates follow the same order as the one obtained in the previously
escribed results considering the best average performances of the
ethods regarding prediction correctness. Also, the best results of all
ethods occur with 𝑤 ∈ {50, 100}, suggesting that these values obtain
reasonable trade-off between historical and current data.
13

M

Table 10
Average Hierarchical F-Measure (%) obtained by GNB-hDS-Cw and GNB-hDS-Hw on
each variation of 𝑤.
𝒘 GNB-hDS-

Cw
GNB-hDS-
Cw-iYJ

GNB-hDS-
Hw

GNB-hDS-
Hw-iYJ

10 72.55 72.83 73.76 74.52
50 74.85 75.27 75.51 76.52
100 75.10 75.20 75.58 76.49
500 73.94 74.77 74.89 76.01
1000 73.92 74.84 74.66 75.87
5000 74.20 74.64 74.01 75.28

Avg. 𝒉𝑭 74.09 74.59 74.73 75.78

Avg. Ranking 3.83 2.67 2.50 1.00

6.4. Overall comparison

To portray an overview of both ℎ𝐹 and 𝑖𝑛𝑠𝑡∕𝑠 rates together, the

CDM-WPM analysis was also applied to the overall results of all



Applied Soft Computing 152 (2024) 111271E. Tieppo et al.

m
p

t
w

𝑊
w
r
t

v
s
a

(
o
f
t
r

Fig. 8. Hierarchical F-Measure (%) rates obtained by GNB-hDS-Cw and GNB-hDS methods along the hierarchical data stream.
ethods, considering both the best average performances regarding
rediction correctness and trade-off performances.

First, regarding the averaged best ℎ𝐹 performance, Table 11 de-
ails the 𝑊𝑃𝑀 performances for each variation of the ℎ𝐹 criterion
eight (𝑤ℎ𝐹 ). Note that, as previously described, the 𝑤𝑖𝑛𝑠𝑡∕𝑠 is the

complementary percentage of 𝑤ℎ𝐹 . The last row shows the average
𝑃𝑀 performance concerning all 𝑤 variations. Also, note that zero

ith decimal places is a rounding from a constant equal to 10−6 and
epresents the minimum value obtained with the criterion normaliza-
ion.

Additionally, Table 12 shows the rankings corresponding to the
alues shown in Table 11 regarding each 𝑤 variation. The last row
hows the overall average ranking of methods when considering their
veraged best performance.

The Local kNN-hDS method obtained the last combined ranking
11.60), followed by the proposed Global kNN-hDS method. Regardless
f the weights given to ℎ𝐹 and 𝑖𝑛𝑠𝑡∕𝑠 rates, both methods did not per-
orm well in any scenario as they have the lowest individual rates. On
he other hand, the GNB-hDS-Cw method obtained the first combined
anking (2.60), obtaining the second place with smaller weights in the
14
ℎ𝐹 rate, the first place with equal weights in both rates and the third
and fifth place with greater weights on the ℎ𝐹 rate.

The GNB-hDS-Cw-iYJ method obtained the second-best combined
ranking (3.20), with a worse performance than the GNB-hDS-Cw
method, mainly in the speed comparisons. The Global Dribble-hDS and
GNB-hDS-iYJ methods share the third-best combined ranking (4.00).
The GNB-hDS-iYJ method proved competitive in all variations of 𝑤
and even obtained better rankings than the Global Dribble-hDS method
with higher weights in 𝑤ℎ𝐹 . Furthermore, it is noteworthy that Global
Dribble-hDS achieved first place in the ranking when the weights
favored the 𝑖𝑛𝑠𝑡∕𝑠 rate.

The same general MCDM-WPM analysis was applied to the overall
results of the methods regarding their best trade-off performance.
Table 13 details the 𝑊𝑃𝑀 performances for each variation of the
ℎ𝐹 criterion weight (𝑤ℎ𝐹 ). The last row shows the average 𝑊𝑃𝑀
performance concerning all 𝑤 variations.

As well, Table 14 shows the rankings corresponding to the values
shown in Table 13 regarding each 𝑤 variation. The last row shows
the overall average ranking of all methods when considering their best
trade-off performances.



Applied Soft Computing 152 (2024) 111271E. Tieppo et al.

m
t
w
t
d

r
b
t
o

G
r
f
𝑤
w
r

Table 11
MCDM-WPM (values) of methods with best average performance regarding prediction correctness.
𝑤ℎ𝐹 Local

kNN-hDS
Global
kNN-hDS

Local
kNC-hDS

Local
Dribble-hDS

Global
kNC-hDS

Global
Dribble-hDS

GNB-hDS GNB-hDS-
iYJ

GNB-hDS-
Cw

GNB-hDS-
Cw-iYJ

GNB-hDS-
Hw

GNB-hDS-
Hw-iYJ

1∕6 0.0000 0.0590 0.0338 0.7310 0.5393 0.8952 0.6308 0.8273 0.8332 0.7792 0.6575 0.5535
2∕6 0.0000 0.0066 0.0636 0.6799 0.5838 0.8014 0.4406 0.7883 0.8000 0.7668 0.6822 0.6230
3∕6 0.0000 0.0007 0.1194 0.6323 0.6319 0.7174 0.3077 0.7510 0.7681 0.7546 0.7078 0.7012
4∕6 0.0002 0.0001 0.2244 0.5881 0.6841 0.6422 0.2149 0.7156 0.7375 0.7425 0.7344 0.7893
5∕6 0.0006 0.0000 0.4216 0.5470 0.7405 0.5749 0.1501 0.6818 0.7081 0.7307 0.7619 0.8884

Avg. 𝑾 𝑷𝑴 0.0002 0.0133 0.1726 0.6357 0.6359 0.7262 0.3488 0.7528 0.7694 0.7548 0.7088 0.7111

Avg. Ranking 11.60 11.20 9.80 6.80 6.80 4.00 9.00 4.00 2.60 3.20 4.40 4.60
Table 12
MCDM-WPM (rankings) of methods with best average performance regarding prediction correctness.
𝑤ℎ𝐹 Local

kNN-hDS
Global
kNN-hDS

Local
kNC-hDS

Local
Dribble-hDS

Global
kNC-hDS

Global
Dribble-hDS

GNB-hDS GNB-hDS-
iYJ

GNB-hDS-
Cw

GNB-hDS-
Cw-iYJ

GNB-hDS-
Hw

GNB-hDS-
Hw-iYJ

1∕6 12.00 10.00 11.00 5.00 9.00 1.00 7.00 3.00 2.00 4.00 6.00 8.00
2∕6 12.00 11.00 10.00 6.00 8.00 1.00 9.00 3.00 2.00 4.00 5.00 7.00
3∕6 12.00 11.00 10.00 7.00 8.00 4.00 9.00 3.00 1.00 2.00 5.00 6.00
4∕6 11.00 12.00 9.00 8.00 6.00 7.00 10.00 5.00 3.00 2.00 4.00 1.00
5∕6 11.00 12.00 9.00 8.00 3.00 7.00 10.00 6.00 5.00 4.00 2.00 1.00

Avg. Ranking 11.60 11.20 9.80 6.80 6.80 4.00 9.00 4.00 2.60 3.20 4.40 4.60
Table 13
MCDM-WPM (values) of methods with best trade-off performance.
𝑤ℎ𝐹 Local

kNN-hDS
Global
kNN-hDS

Local
kNC-hDS

Local
Dribble-hDS

Global
kNC-hDS

Global
Dribble-hDS

GNB-hDS GNB-hDS-
iYJ

GNB-hDS-
Cw

GNB-hDS-
Cw-iYJ

GNB-hDS-
Hw

GNB-hDS-
Hw-iYJ

1∕6 0.0086 0.3984 0.0973 0.5885 0.8761 0.9286 0.7394 0.7336 0.7349 0.6113 0.3298 0.0000
2∕6 0.0014 0.1587 0.1480 0.6188 0.8596 0.8919 0.6985 0.7512 0.7551 0.6546 0.4028 0.0001
3∕6 0.0002 0.0632 0.2252 0.6506 0.8433 0.8568 0.6598 0.7693 0.7757 0.7010 0.4919 0.0010
4∕6 0.0000 0.0252 0.3427 0.6841 0.8273 0.8230 0.6233 0.7878 0.7970 0.7506 0.6008 0.0100
5∕6 0.0000 0.0100 0.5215 0.7194 0.8116 0.7905 0.5887 0.8068 0.8188 0.8037 0.7338 0.1000

Avg. 𝑾 𝑷𝑴 0.0021 0.1311 0.2670 0.6523 0.8436 0.8581 0.6619 0.7698 0.7763 0.7042 0.5118 0.0222

Avg. Ranking 11.60 9.60 9.40 6.80 1.80 2.00 5.80 4.00 2.80 5.20 7.80 11.20
Table 14
MCDM-WPM (rankings) of methods with best trade-off performance.
𝑤ℎ𝐹 Local

kNN-hDS
Global
kNN-hDS

Local
kNC-hDS

Local
Dribble-hDS

Global
kNC-hDS

Global
Dribble-hDS

GNB-hDS GNB-hDS-
iYJ

GNB-hDS-
Cw

GNB-hDS-
Cw-iYJ

GNB-hDS-
Hw

GNB-hDS-
Hw-iYJ

1∕6 11.00 8.00 10.00 7.00 2.00 1.00 3.00 5.00 4.00 6.00 9.00 12.00
2∕6 11.00 9.00 10.00 7.00 2.00 1.00 5.00 4.00 3.00 6.00 8.00 12.00
3∕6 12.00 10.00 9.00 7.00 2.00 1.00 6.00 4.00 3.00 5.00 8.00 11.00
4∕6 12.00 10.00 9.00 6.00 1.00 2.00 7.00 4.00 3.00 5.00 8.00 11.00
5∕6 12.00 11.00 9.00 7.00 2.00 5.00 8.00 3.00 1.00 4.00 6.00 10.00

Avg. Ranking 11.60 9.60 9.40 6.80 1.80 2.00 5.80 4.00 2.80 5.20 7.80 11.20
As in the analysis concerning the best average performance of the
ethods, the Local kNN-hDS method also obtained the last place in

he combined ranking considering the best trade-off performance. Even
ith smaller data representations (n = 5) and competitive 𝑖𝑛𝑠𝑡∕𝑠 rates,

he method could not maintain the ℎ𝐹 rates obtained when using more
ata.

Next, the GNB-hDS-Hw-iYJ method obtained the second-to-last
anking since it obtained the lowest overall 𝑖𝑛𝑠𝑡∕𝑠 rate. Despite the
est overall ℎ𝐹 rate, the method did not achieve a good position in
he combined ranking, as the gains in ℎ𝐹 rates were not enough to
ffset the low 𝑖𝑛𝑠𝑡∕𝑠 rates in the combined MCDM-WPM analysis.

On the other side of the combined ranking, Global kNC-hDS and
lobal Dribble-hDS methods obtained the first and second places,

espectively (1.80 and 2.00). The Global kNC-hDS method achieved
irst place with 𝑤ℎ𝐹 = 4

6 , and second place in the other variations of
. The Global Dribble-hDS method achieved first place in the ranking
hen the weights favored the inst/s rate and with equal weights in both

ates.
15
Furthermore, when the weights strongly favored the ℎ𝐹 rate, the
GNB-hDS-Cw method obtained first place, resulting in a third place in
the combined ranking (2.80).

Overall, regarding averaged best performance analysis, all GNB-hDS
variants, plus the Global Dribble-hDS method, presented competitive
results with each other, with the Global Dribble-hDS method obtain-
ing higher processing speed rates, GNB-hDS-Hw-iYJ obtaining better
prediction correctness rates, and the other methods in between, with
GNB-hDS-Cw obtaining the best equally weighted performance.

Regarding best trade-off performance analysis, Global kNC-hDS and
Global Dribble-hDS methods stand out, with Global Dribble-hDS obtain-
ing higher processing speed rates and Global kNC-hDS obtaining better
prediction correctness, together with the GNB-hDS-Cw method.

Also, it is noteworthy that the analysis using the best trade-off
performances presents less bias in the comparison of the methods since
the analysis using the best average performances regarding prediction

correctness intrinsically gives greater relevance to the ℎ𝐹 rate in the



Applied Soft Computing 152 (2024) 111271E. Tieppo et al.

y
f
A
r
a
t
m
o
r

i
W
i
e
i
m
t
t
r

7

B
c
W
c
w
c
c

a
s
H
o
r
h
t
c
b

e
f
a
l

selection of the parameter configuration to be considered in the MCDM
analysis, even before assigning weights to the ℎ𝐹 and 𝑖𝑛𝑠𝑡∕𝑠 criteria.

Finally, two key aspects related to the described MCDM-WPM anal-
sis are noteworthy. First, it should be understood only as a guide
or interpreting the results of the methods when compared together.
pplying the MCDM-WPM method with different criteria and weight
anges can change the method ranking. In this study, the MCDM-WPM
nalysis was performed separately on each method (in order to remove
he initial bias of the averaged best performances) and then in the
ethods together, normalizing the rates obtained by them. However,

ther MCDM protocols are possible and could not result in the same
ankings and generate different interpretations.

Second, merging evaluation metrics is not straightforward nor triv-
al, and the resulting overall average ranking obtained in the MCDM-

PM analysis should not be understood as a single measure to be used
nstead of individual ones. The best learning model may depend on sev-
ral external traits not measured by the ℎ𝐹 and 𝑖𝑛𝑠𝑡∕𝑠 metrics computed
n the proposed protocol used in this study. The best learning model
ay also require specific solutions to problems not comprehended by

his work, such as unusual data distributions, higher responsiveness
o concept drifts, and different constraints regarding computational
esources.

. Conclusion

In this study, we introduced two novel adaptive Gaussian Naive
ayes classifiers, GNB-hDS-Hw (Gaussian Naive Bayes with Histori-
al Window) and GNB-hDS-Cw (Gaussian Naive Bayes with Current
indow), specifically designed to address the challenges of hierar-

hical data stream classification. These methods incorporate window-
eighted probabilities into the Bayesian framework, leveraging both

urrent data (GNB-hDS-Cw) and historical data (GNB-hDS-Hw) to cal-
ulate probabilities dynamically and adaptively.

A robust experimental testbed showed that this trait improved the
daptation capability of the classifiers, especially on dynamic data
treams with well-known concept drifts. Results showed that GNB-hDS-
w obtained overall higher prediction correctness, surpassing all state-
f-the-art techniques. The method also achieved two best ℎ𝐹 -weighted
ankings when considering the averaged best performance. Also, GNB-
DS-Cw obtained the best overall combined ranking when considering
he best average performance of the methods regarding prediction
orrectness and one best ℎ𝐹 -weighted ranking when considering the
est trade-off performance.

It is also relevant to highlight that the experimentation protocol
ncompassed existing algorithms for hierarchical data stream classi-
ication and datasets. A by-product of this experimentation yielded

unified protocol to assess and compare hierarchical data stream
earning models using the ℎ𝐹 and 𝑖𝑛𝑠𝑡∕𝑠 literature metrics in a Multi-

Criteria Decision-Making analysis, resulting in a reproducible testbed
to future comparisons.

For further research, we are interested in designing a learning model
based on a different learning paradigm than the ones described in this
study, such as decision trees. State-of-the-art learning models of the
foundation areas – such as CLUS-HMC [41] on Hierarchical Classifica-
tion, and Adaptive Random Forest [42] on Data Stream Classification
– must be accounted for, used as a concept idea for the designing
of a novel decision tree-based method fitted to the hierarchical data
stream classification task, and benchmarked against state-of-the-art
methods to understand its behavior regarding prediction correctness
and computational performance on this new classification task.

Funding

This research was supported by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code
16

001.
CRediT authorship contribution statement

Eduardo Tieppo: Conceptualization, Methodology, Software, Vali-
dation, Formal analysis, Investigation, Resources, Data curation, Writ-
ing – original draft, Writing – review & editing, Visualization. Júlio
Cesar Nievola: Conceptualization, Validation, Formal analysis, Re-
sources, Writing – review & editing, Supervision, Project adminis-
tration, Funding acquisition. Jean Paul Barddal: Conceptualization,
Methodology, Software, Validation, Formal analysis, Resources, Data
curation, Writing – review & editing, Supervision, Project administra-
tion, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] C.N. Silla, A.A. Freitas, A survey of hierarchical classification across different
application domains, Data Min. Knowl. Discov. 22 (1–2) (2011) 31–72.

[2] J. Gama, Knowledge Discovery from Data Streams, Chapman and Hall/CRC,
2010.

[3] V.M.A. Souza, D.M. Reis, A.G. Maletzke, G.E.A.P.A. Batista, Challenges in
benchmarking stream learning algorithms with real-world data, Data Min. Knowl.
Discov. (2020) 1–54, http://dx.doi.org/10.1007/s10618-020-00698-5.

[4] E. Tieppo, R.R.d. Santos, J.P. Barddal, J.C. Nievola, Hierarchical classification of
data streams: A systematic literature review, Artif. Intell. Rev. (2021) 1–40.

[5] A. Tsymbal, The problem of concept drift: Definitions and related work, Comput.
Sci. Dep. Trinity College Dublin 106 (2) (2004) 58.

[6] M. Mermillod, A. Bugaiska, P. Bonin, The stability-plasticity dilemma: Investigat-
ing the continuum from catastrophic forgetting to age-limited learning effects,
Front. Psychol. 4 (2013) 504.

[7] S. Defiyanti, E. Winarko, S. Priyanta, A survey of hierarchical classification
algorithms with big-bang approach, in: 2019 5th International Conference on
Science and Technology, Vol. 1, ICST, IEEE, 2019, pp. 1–6.

[8] A. Freitas, A. Carvalho, A tutorial on hierarchical classification with applications
in bioinformatics, in: Research and Trends in Data Mining Technologies and
Applications, IGI Global, 2007, pp. 175–208.

[9] Y. Lu, Concept Hierarchy in Data Mining: Specification, Generation and Imple-
mentation (Ph.D. thesis), Theses (School of Computing Science)/Simon Fraser
University, 1997.

[10] F. Wu, J. Zhang, V. Honavar, Learning classifiers using hierarchically structured
class taxonomies, in: International Symposium on Abstraction, Reformulation,
and Approximation, Springer, 2005, pp. 313–320.

[11] S. Kiritchenko, F. Famili, Functional annotation of genes using hierarchical text
categorization, in: Proceedings of BioLink SIG, ISMB, 2005.

[12] R. Cerri, G.L. Pappa, A.C.P. Carvalho, A.A. Freitas, An extensive evaluation of de-
cision tree–based hierarchical multilabel classification methods and performance
measures, Comput. Intell. 31 (1) (2015) 1–46.

[13] G. Widmer, M. Kubat, Learning in the presence of concept drift and hidden
contexts, Mach. Learn. 23 (1) (1996) 69–101.

[14] H.-L. Nguyen, Y.-K. Woon, W.-K. Ng, A survey on data stream clustering and
classification, Knowl. Inform. Syst. 45 (3) (2015) 535–569.

[15] J.P. Barddal, H.M. Gomes, F. Enembreck, B. Pfahringer, A survey on feature
drift adaptation: Definition, benchmark, challenges and future directions, J. Syst.
Softw. 127 (2017) 278–294.

[16] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey on
concept drift adaptation, ACM Comput. Surv. (CSUR) 46 (4) (2014) 44.

[17] J. Gama, R. Sebastião, P.P. Rodrigues, On evaluating stream learning algorithms,
Mach. Learn. 90 (3) (2013) 317–346.

[18] J.P. Barddal, H.M. Gomes, F. Enembreck, B. Pfahringer, A. Bifet, On dynamic
feature weighting for feature drifting data streams, in: Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, Springer, 2016, pp.
129–144.

[19] H.-L. Nguyen, Y.-K. Woon, W.-K. Ng, L. Wan, Heterogeneous ensemble for feature
drifts in data streams, in: Pacific-Asia Conference on Knowledge Discovery and
Data Mining, Springer, 2012, pp. 1–12.

[20] A. Naik, H. Rangwala, Large Scale Hierarchical Classification: State of the Art,
Springer, 2018.

http://refhub.elsevier.com/S1568-4946(24)00045-0/sb1
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb1
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb1
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb2
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb2
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb2
http://dx.doi.org/10.1007/s10618-020-00698-5
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb4
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb4
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb4
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb5
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb5
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb5
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb6
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb6
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb6
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb6
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb6
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb7
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb7
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb7
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb7
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb7
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb8
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb8
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb8
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb8
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb8
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb9
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb9
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb9
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb9
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb9
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb10
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb10
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb10
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb10
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb10
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb11
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb11
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb11
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb12
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb12
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb12
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb12
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb12
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb13
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb13
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb13
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb14
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb14
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb14
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb15
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb15
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb15
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb15
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb15
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb16
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb16
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb16
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb17
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb17
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb17
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb18
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb18
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb18
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb18
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb18
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb18
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb18
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb19
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb19
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb19
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb19
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb19
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb20
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb20
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb20


Applied Soft Computing 152 (2024) 111271E. Tieppo et al.
[21] H.M. Gomes, J. Read, A. Bifet, J.P. Barddal, J. Gama, Machine learning for
streaming data: State of the art, challenges, and opportunities, ACM SIGKDD
Explor. Newsl. 21 (2) (2019) 6–22.

[22] K.K. Wankhade, S.S. Dongre, K.C. Jondhale, Data stream classification: A review,
Iran J. Comput. Sci. 3 (4) (2020) 239–260.

[23] M. Bahri, A. Bifet, J. Gama, H.M. Gomes, S. Maniu, Data stream analysis:
Foundations, major tasks and tools, Wiley Interdisc. Rev.: Data Min. Knowl.
Discov. 11 (3) (2021) e1405.

[24] A.R.S. Parmezan, V.M. Souza, G.E. Batista, Towards hierarchical classification
of data streams, in: Iberoamerican Congress on Pattern Recognition, Springer,
2018, pp. 314–322.

[25] E. Tieppo, J.P. Barddal, J.C. Nievola, Adaptive global k-nearest neighbors for
hierarchical classification of data streams, in: 2021 IEEE International Conference
on Systems, Man, and Cybernetics, SMC, IEEE, 2021, pp. 631–636.

[26] E. Tieppo, J.P. Barddal, J.C. Nievola, Automatic disease vector mosquitoes
identification via hierarchical data stream classification, in: Proceedings of the
37th ACM/SIGAPP Symposium on Applied Computing, 2022, pp. 1005–1012.

[27] E. Tieppo, J.P. Barddal, J.C. Nievola, Classifying hierarchical data streams using
global classifiers and summarization techniques, in: The 2022 International Joint
Conference on Neural Networks, IJCNN, IEEE, 2022, pp. 1–8.

[28] E. Tieppo, J.P. Barddal, J.C. Nievola, Classifying potentially unbounded hierarchi-
cal data streams with incremental Gaussian naive Bayes, in: Brazilian Conference
on Intelligent Systems, Springer, 2021, pp. 421–436.

[29] E. Tieppo, J.P. Barddal, J.C. Nievola, Improving data stream classification
using incremental yeo-johnson power transformation, in: 2022 IEEE International
Conference on Systems, Man, and Cybernetics, SMC, IEEE, 2022, pp. 3286–3292.

[30] D. West, Updating mean and variance estimates: An improved method, Commun.
ACM 22 (9) (1979) 532–535.
17
[31] T.F. Chan, G.H. Golub, R.J. LeVeque, Algorithms for computing the sample
variance: Analysis and recommendations, Amer. Statist. 37 (3) (1983) 242–247.

[32] C.M. Bishop, Pattern Recognition and Machine Learning, springer, 2006.
[33] Y. Wang, Z. Gong, J. Guo, Hierarchical classification of business information on

the web using incremental learning, in: 2009 IEEE International Conference on
E-Business Engineering, IEEE, 2009, pp. 303–309.

[34] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach.
Learn. Res. 7 (Jan) (2006) 1–30.

[35] S. Zionts, MCDM—If not a roman numeral, then what? Interfaces 9 (4) (1979)
94–101.

[36] G. Nakhaeizadeh, A. Schnabl, Development of multi-criteria metrics for
evaluation of data mining algorithms, in: KDD, 1997, pp. 37–42.

[37] E. Triantaphyllou, Multi-criteria decision making methods, in: Multi-Criteria
Decision Making Methods: A Comparative Study, Springer, 2000, pp. 5–21.

[38] A. Çelen, Comparative analysis of normalization procedures in TOPSIS method:
With an application to Turkish deposit banking market, Informatica 25 (2) (2014)
185–208.

[39] M. Friedman, The use of ranks to avoid the assumption of normality implicit in
the analysis of variance, J. Amer. Statist. Assoc. 32 (200) (1937) 675–701.

[40] P. Nemenyi, Distribution-free multiple comparisons, in: Biometrics, Vol. 18,
International Biometric Society, 1962, p. 263.

[41] C. Vens, J. Struyf, L. Schietgat, S. Džeroski, H. Blockeel, Decision trees for
hierarchical multi-label classification, Mach. Learn. 73 (2) (2008) 185–214.

[42] H.M. Gomes, A. Bifet, J. Read, J.P. Barddal, F. Enembreck, B. Pfharinger,
G. Holmes, T. Abdessalem, Adaptive random forests for evolving data stream
classification, Mach. Learn. 106 (9) (2017) 1469–1495.

http://refhub.elsevier.com/S1568-4946(24)00045-0/sb21
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb21
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb21
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb21
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb21
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb22
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb22
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb22
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb23
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb23
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb23
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb23
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb23
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb24
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb24
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb24
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb24
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb24
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb25
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb25
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb25
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb25
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb25
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb26
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb26
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb26
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb26
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb26
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb27
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb27
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb27
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb27
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb27
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb28
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb28
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb28
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb28
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb28
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb29
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb29
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb29
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb29
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb29
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb30
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb30
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb30
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb31
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb31
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb31
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb32
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb33
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb33
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb33
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb33
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb33
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb34
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb34
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb34
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb35
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb35
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb35
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb36
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb36
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb36
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb37
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb37
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb37
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb38
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb38
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb38
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb38
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb38
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb39
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb39
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb39
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb40
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb40
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb40
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb41
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb41
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb41
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb42
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb42
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb42
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb42
http://refhub.elsevier.com/S1568-4946(24)00045-0/sb42

	Adaptive learning on hierarchical data streams using window-weighted Gaussian probabilities
	Introduction
	Theoretical Background
	Hierarchical classification
	Data stream classification
	Hierarchical data stream classification

	Related Works
	Background
	State-of-the-art techniques
	Local kNN-hDS
	Global kNN-hDS
	Local kNC-hDS and Local Dribble-hDS
	Global kNC-hDS and Global Dribble-hDS
	GNB-hDS
	GNB-hDS-iYJ

	Overview and comparison

	The Window-Weighted Gaussian Probabilities
	Evaluation Protocol
	Unified protocol
	Experimental Setup

	Analysis
	Best hF performance
	Best trade-off performance
	Adaptive Learning Analysis
	Overall Comparison

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


