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Abstract. Privacy is critical when using Machine Learning (ML) mod-
els over sensitive data, like healthcare, finance, and legal systems. Many
of these models are trained or executed on cloud services, meaning sensi-
tive data is transmitted over the network, or third-party services operate
directly on unprotected data during training and inference, increasing
exposure to potential leaks. Data encryption is a promising solution that
guarantees high privacy levels. An adequate cryptography solution for
ML is Homomorphic Encryption, a cryptographic method that allows
mathematical operations on ciphertexts, i.e., encrypted data, producing
encrypted models and outputs that only authorized parties can decrypt.
However, the protection offered by Homomorphic Encryption comes at
a significant computational overhead. Additionally, only specific mathe-
matical operations (typically additions and multiplications) are allowed,
and encrypted computations accumulate noise that reduces the result’s
precision. This paper discusses the challenges of using encrypted data
in training and test steps of ML models. It experimentally analyzes the
impact on error rates and processing times when traditional classifiers,
such as Artificial Neural Network and Logistic Regression, are adapted
to process encrypted data. We adopt the CKKS scheme, a Homomor-
phic Encryption method that supports approximate computations over
real numbers and adapted the activation functions of the classifiers us-
ing three approximation methods in an experimental evaluation with five
medical datasets.

Keywords: Cryptography · Homomorphic Encryption · Classification ·
Artificial Neural Networks · Logistic Regression · Privacy Preserving.

1 Introduction

The increasing deployment of Machine Learning (ML) models in domains in-
volving sensitive data, such as healthcare, finance, and legal systems, raises fun-
damental concerns about privacy, security, and regulatory compliance. Many of
these models are trained or executed using cloud services, which means that
sensitive data is transmitted over the network, or third-party services operate
directly on unprotected data during training and inference, increasing exposure
to potential leaks.
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The emergence of Privacy-Preserving Machine Learning (PPML) [2] ad-
dresses the need for ML models capable of preserving data privacy in their
different steps, from training to inference. Among the various approaches, Ho-
momorphic Encryption (HE) [14] provides a particularly strong privacy guar-
antee. It allows computations (e.g., weight updates or gradient calculations) to
be performed directly over encrypted inputs, producing encrypted outputs (e.g.,
predicted labels) that can be decrypted only by authorized parties. In contrast to
other paradigms such as Differential Privacy (DP) [13] and Federated Learning
(FL) [23], which rely on trust in local devices or aggregation mechanisms, HE
maintains end-to-end cryptographic protection, rendering the data unintelligible
throughout the computation process in the model training and inference.

The transition from traditional ML to PPML introduces non-trivial chal-
lenges. While conventional models have unrestricted access to training data and
their algorithm performs a wide range of arithmetic and logical operations, an
encrypted ML model must operate under strict constraints: (i) no access to plain-
text data at any point during the computation in training and inference steps;
(ii) restricted support to arithmetic operations, usually limited to additions and
multiplications over a ciphertext space; and (iii) noise growth during the compu-
tations that can render ciphertexts undecipherable if it exceeds a certain depth.
These constraints require algorithmic reformulations, such as controlling noise
growth, polynomial approximations for non-linear functions and careful param-
eter selection to balance precision, security, and efficiency.

This paper discusses the challenges of implementing privacy preserving mod-
els using encrypted data in training and testing steps. Our discussions regarding
the current capabilities and bottlenecks of PPML are grounded in theoretical
and experimental analysis considering different healthcare problems requiring
sensitive data protection. The main contributions of this study include:

– A discussion of the constraints imposed by Homomorphic Encryption on
the implementation of ML algorithms, including the lack of native Boolean
operations, limited supported arithmetic, and computational overhead.

– An analysis of the limitations of current HE schemes (e.g., BFV, BGV, and
CKKS), such as noise accumulation, circuit depth, and restricted operation
support, and their implications for model complexity and training scalability.

– Results obtained by adapting classical supervised learning models, such as
Artificial Neural Networks (ANN) and Logistic Regression, for training and
test phases using encrypted data for different healthcare problems.

– An evaluation of different approximation methods, including Chebyshev poly-
nomials, Taylor expansion, and the Least Squares method, for implementing
activation functions of classical ML models under encryption constraints.

This paper is organized as follows: Section 2 overviews key PPML paradigms
and their trade-offs. Section 3 reviews previous work on encrypted ML. Section
4 outlines the experimental setup, including the adjustments conducted for fully
HE adoption in the learning and inference phases. Section 5 reports the results in
problems with sensitive data. Section 6 discusses the challenges of training and
testing ML models on encrypted data, and suggests future research directions.
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2 Privacy-Preserving Machine Learning (PPML)
Privacy-Preserving Machine Learning (PPML) encompasses a broad range of
methods that enable statistical analysis and model training while preserving the
data privacy. The main approaches include Differential Privacy (DP), Federated
Learning (FL) and Homomorphic Encryption (HE), as discussed in the following.

2.1 Differential Privacy (DP)
Differential Privacy (DP) is a framework that offers provable privacy guarantees
by introducing calibrated random noise into the computation process, whether at
the input, intermediate, or output level, to ensure that the inclusion or exclusion
of any single individual’s data does not significantly affect the result [13]. This
ensures that individual data points cannot be easily inferred from the model’s
behavior, thereby protecting the privacy of the data.

A randomized algorithm A, i.e., an algorithm that introduces randomness in
its computations, satisfies (ε, δ)-differential privacy if, for all pairs of datasets D
and D′ differing in at most one record, and for all measurable subsets S of the
output space, Equation 1 holds.

Pr[A(D) ∈ S] ≤ eε · Pr[A(D′) ∈ S] + δ (1)

The parameter ε > 0 controls the privacy loss, with smaller values indicating
stronger privacy. The parameter δ allows for a negligible probability of failure,
typically required when using approximate mechanisms. DP is typically enforced
by injecting calibrated noise into query outputs, gradients, or model parameters.

DP can be implemented under centralized or local models, each with distinct
trust and responsibility assumptions [9]. In the centralized model, a trusted
server manages privacy, security, and utility, requiring a secure data processor.
In contrast, the local model shifts this responsibility to users, who perturb their
data before sharing, enhancing privacy but often reducing accuracy. Despite its
strong guarantees, DP entails a privacy-utility trade-off: lower ε increases noise,
potentially degrading performance, especially in data-limited scenarios.

2.2 Federated Learning
Federated Learning (FL) is a decentralized learning paradigm in which the model
training occurs on a federation of client devices that retain their local data. The
central idea, introduced by McMahan et al. [20], is to preserve data locality while
aggregating learned model updates in a privacy-conscious manner.

Formally, let K denote the number of participants, i.e., client devices. Train-
ing proceeds in communication rounds, where in each round t, a central server
broadcasts the current global model parameters w(t) to all clients. These pa-
rameters w(t) represent the state of the model at round t, such as the vector of
weights in a linear model or the parameters of a neural network. Each client k
then updates w(t) using its own local dataset Dk, often by applying a few steps
of a local optimization algorithm, yielding an updated model w(t+1)

k . The server
aggregates the received updates, e.g., via weighted averaging, to produce the
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next global model w(t+1). This iterative process continues over multiple rounds,
progressively improving the model without access to the clients’ data.

FL removes the need for centralized data storage and reduces privacy risks.
However, it does not inherently provide formal privacy guarantees because model
updates can encode sensitive information about the local training data. Besides,
its effectiveness depends on trusted client devices, secure communication, and
proper protocol implementation. Multiple studies have shown that private fea-
tures can be extracted from shared updates using attacks such as gradient in-
version, member inference, and property inference [10].

2.3 Homomorphic Encryption
Homomorphic Encryption (HE) is a form of encryption that allows arithmetic
operations be performed directly on encrypted data, also known as ciphertexts.
The result of such operations, when decrypted, yields the same value as if the
operations had been performed on plaintexts.

HE schemes are classified into categories based on the types and number of
operations supported: (i) Partially Homomorphic Encryption (PHE), which sup-
ports only a single operation, the addition or the multiplication, but not both; (ii)
Somewhat Homomorphic Encryption (SHE), which supports a limited number
of both additions and multiplications before the noise in the ciphertext becomes
too large to allow correct decryption; and (iii) Fully Homomorphic Encryption
(FHE), which supports an unlimited number of operations by periodically ap-
plying a process called bootstrapping. Bootstrapping refreshes ciphertexts by re-
ducing the accumulated noise, effectively allowing further computation without
compromising decryptability. FHE is therefore the most suitable choice for en-
crypted ML, where models often perform successive operations.

Encryption schemes such as RSA [22] lack full homomorphism, being unsuit-
able for ML. Examples of FHE schemes include BFV [6], BGV [7], and CKKS
[12], each with distinct trade-offs in arithmetic precision and performance. While
BFV and BGV support exact integer arithmetic, CKKS enables approximate
real-number computations, making it particularly well-suited for adapting ML
models such as ANN and Logistic Regression. CKSS is detailed as follows.

Cheon-Kim-Kim-Song (CKKS): CKKS is a FHE scheme that enables ap-
proximate arithmetic over real and complex numbers. Its security relies on the
Ring Learning With Errors (RLWE) [8], a mathematical problem considered
hard to solve even with quantum computers. RLWE involves hiding information
by adding small errors to polynomial equations in a way that makes it extremely
difficult to recover the original data without a secret key. In our setting, the fea-
ture vectors used to represent the instances are encoded as polynomials.

Formally, let R = Z[x]/(xN + 1) be the ring of polynomials modulo the
cyclotomic polynomial xN +1, where N is a power of two, and let Rq = R mod
q = Zq[x]/(x

N +1) for a ciphertext modulus q ∈ Z. The CKKS scheme supports
approximate encryption of plaintext vectors m ∈ Ck by first mapping them to a
polynomial m′(x) ∈ R via a canonical encoding procedure, which is multiplied by



Training and Test Machine Learning Models on Encrypted Data 5

a scaling factor ∆ ∈ R. Since the security of the scheme is based on RLWE, real
or complex numbers cannot be directly represented in this structure, requiring
a scaling to transform the numbers into large integers that approximate their
values with high precision. After decryption, a division by the same ∆ recovers
an approximated version of the original values.

CKKS is an asymmetric scheme employing a secret-public key pair. The se-
cret key is a small polynomial s(x) ∈ Rq, sampled from a binary or ternary
distribution and kept secret on the client side. Auxiliary keys derived from it en-
able homomorphic operations, such as multiplication, rotation, and bootstrap-
ping, through key switching [1], but do not allow decryption. The public key,
pk = (b(x), a(x)) ∈ R2

q, is constructed by sampling a(x) uniformly from Rq and
computing b(x) = −a(x) · s(x) + e(x) with noise e(x) drawn from a discrete
Gaussian distribution. This public key is used for encryption and is typically
shared with the server, for example, to encrypt model weights of ANNs.

Noise is essential for CKKS security, as the hardness of RLWE relies on small
random errors in ciphertexts. However, noise increases with each homomorphic
operation, especially multiplications, and must be kept below a threshold to en-
sure correct decryption. CKKS mitigates this issue via rescaling, which controls
noise while limiting multiplicative depth. For deeper computations, bootstrap-
ping [11] refreshes ciphertexts by reducing accumulated noise, enabling continued
operations at the cost of significant computational overhead.

The CKKS parameters are essential for balancing security and efficiency. The
ring dimension N affects both security and computational cost. Larger values
lead to higher resource usage but also make it significantly harder for attacks
(i.e., decryption without the secret key). The ciphertext modulus q must be
large enough to support noise growth during computations, especially multipli-
cations, yet appropriately scaled with N to maintain security. Parameter choices
are guided by security estimates, like the LWE estimator [5] and standardized
recommendations, such as Homomorphic Encryption Standard [4].

3 Related Work

Homomorphic Encryption has been applied to a range of classical ML models
to enable secure training and inference on encrypted data. This section reviews
key contributions involving Logistic Regression and ANNs.

Cheon et al. [16] proposed a scalable approach for encrypted Logistic Regres-
sion using CKKS. They evaluated their method on the MNIST dataset, achieving
96.4% classification accuracy using encrypted inference, and showed that their
solution scales to datasets with over 10,000 records with reasonable execution
time (under one minute per inference). In the biomedical domain, Kim et al.
[17] applied FHE to train Logistic Regression models on encrypted genomic data
(SNP datasets), achieving similar classification performance to plaintext models
(AUC ≈ 0.85), with encryption increasing computation time by 15–20×.

CryptoNets [15] demonstrated that a convolutional neural network could
perform encrypted inference using HE over the MNIST dataset, achieving 99%
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accuracy. Each encrypted prediction required approximately 250 sec., highlight-
ing the significant computational overhead introduced by HE. More recently,
Nocker et al. [21] introduced HE-MAN, a framework for performing encrypted
inference using HE. Their work focuses on evaluating pre-trained quantized neu-
ral networks on encrypted inputs using the Concrete and TenSEAL libraries. Ex-
perimental results on the MNIST dataset show that encrypted inference using a
CryptoNets-style architecture requires approximately 7.1 sec. per sample, while
encrypted face recognition using a MobileFaceNets architecture takes around 69
sec. per sample. However, all these framework do not support encrypted training,
and computational performance remains a bottleneck for larger datasets.

Despite significant progress, current research on encrypted ML has largely
focused on inference or simplified training tasks, often under constrained settings
such as shallow models or small datasets. While several works have demonstrated
the feasibility of encrypted inference and even partial training using HE, fully
supporting the end-to-end lifecycle of machine learning, especially training deep
or complex models on encrypted data, remains an open challenge. This is pri-
marily due to the computational complexity, noise management, and parameter
tuning required by HE schemes. The high cost of bootstrapping, limited mul-
tiplicative depth, and difficulties in approximating non-linear functions under
encryption all contribute to the gap between theory and practical deployment.

4 Experimental Methodology

This section outlines the methodology for training and testing ML models on
encrypted data, algorithm adaptations, cryptographic parameters, and datasets.

4.1 Privacy-preserving machine learning pipeline

Fig. 1 illustrates our privacy-preserving ML pipeline using homomorphic en-
cryption. In this setting, only the client can access plaintext data, while a server
accesses encrypted data for model training and inference. The client begins by
generating a CKKS encryption key set, which includes a secret key (S), a pub-
lic key (P), and a set of evaluation keys (E), such as relinearization and rota-
tion keys, required for performing specific homomorphic operations on encrypted
data. The public and evaluation keys are securely transmitted to the server, while
the secret key remains exclusively with the client for data decryption.

The client encrypts the training and testing data using the public key, then
sends the ciphertext and public/evaluation keys to the server. The server then
trains a model directly on the encrypted training data. All computations, includ-
ing weight updates and intermediate operations, are performed homomorphically
using the evaluation keys and public key, without accessing the data in plaintext.

After training, the encrypted model performs inference on the encrypted
testing dataset. The resulting encrypted predictions are returned to the client,
who then decrypts them using the secret key to recover the plaintext outputs.
The server never accesses unencrypted data throughout the process, ensuring
end-to-end data confidentiality.
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Fig. 1. Privacy-preserving ML pipeline. The client generates the keys before encrypting
the data. The secret key remains on the client side and is never shared with the server,
which performs model training and inference on encrypted data.

4.2 Adapting machine learning models for encrypted data
In the classical setting, Logistic Regression is a generalized linear model for
binary classification that computes a score z = wTx, where w ∈ Rn denotes the
weight vector and x ∈ Rn the input feature vector. The score z is then mapped
to a probability value in the interval [0, 1] using the sigmoid function, as shown
in Eq. 2. A binary decision is typically made by applying a threshold of 0.5 to
the predicted probability. In this work, we also explore the use of the hyperbolic
tangent function (tanh), defined in Eq. 3, which maps the score z to the interval
[−1, 1]. The prediction is made by choosing one class if the output is positive,
and another if it is zero or negative.

sigmoid(z) =
1

1 + e−z
(2) tanh(z) =

ez − e−z

ez + e−z
(3)

In addition to Logistic Regression, we also consider ANNs, which extend the
linear model by introducing one or more hidden layers composed of neurons that
apply nonlinear activation functions to weighted sums of their inputs. This ar-
chitecture allows ANNs to model complex nonlinear relationships between input
features and target outputs. We explore sigmoid and tanh at the neuron level.

Smooth activation functions, such as the sigmoid and tanh, are fundamental
to gradient-based optimization and probabilistic modeling. However, their ex-
act evaluation is incompatible with the CKKS scheme, which does not support
conditional branching or discontinuous operations. To overcome this limitation,
we employ 5th-degree polynomial approximations, specifically Taylor expansion,
Least Squares method, and Chebyshev polynomials, constructed over a common
interval [-6, 6] to ensure numerical stability, bounded approximation error, and
consistent comparison across methods.
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To support the depth of arithmetic operations required during training, the
multiplicative depth was configured to its maximum value of 30. Beyond this
bound, noise growth was managed through the use of bootstrapping, which was
applied periodically to refresh ciphertexts and restore their noise budget. In
the following, we introduce each approximation method employed [24]. These
approximations are composed entirely of additions, multiplications, and integer
powers, making them well-suited for HE schemes like CKKS.

Taylor series. It approximates a smooth function f(x) by a polynomial con-
structed from its derivatives at a single point, typically around x = 0. In this
work, we adopt the 5th-degree Taylor expansions of the sigmoid and tanh func-
tions centered at the origin, using only additions and multiplications:

sigmoid(x) ≈ 0.5 + 0.25 · x− 0.020833 · x3 + 0.002083 · x5 (4)

tanh(x) ≈ x− 0.333333 · x3 + 0.133333 · x5 (5)

Their low polynomial degree ensures shallow multiplicative depth, enabling
efficient and precise evaluation on encrypted data. However, as Taylor series
are accurate only near the expansion point, their approximation error increases
substantially for inputs far from zero.

Chebyshev polynomials. Given a continuous function f(x), its Chebyshev
approximation of degree n is defined according to Eq. 6.

Pn(x) =

n∑
k=0

akTk(x), (6)

where Tk(x) denotes the k-th Chebyshev polynomial of the first kind, and the
coefficients ak ∈ R are selected to minimize the maximum approximation er-
ror in the uniform norm. Chebyshev polynomials form an orthogonal basis with
optimal convergence properties, making them well-suited for uniformly approxi-
mating smooth nonlinear functions. Chebyshev approximations are particularly
attractive because they require only additions and multiplications and allow
explicit control over the multiplicative depth, enabling a balance between ap-
proximation accuracy and ciphertext noise growth.

Least Squares. The method approximates a target function f(x) by finding
a polynomial Pn(x) =

∑n
k=0 akx

k that minimizes the mean squared error over
a chosen interval. Unlike Taylor expansion and Chebyshev, which rely on local
derivatives or orthogonal bases, Least Squares fits the polynomial globally by
minimizing the integral of the squared difference between f(x) and Pn(x). The
polynomial fitted for sigmoid and tanh in the interval [-6, 6] are denoted below:

sigmoid(x) ≈ 0.5 + 0.217033 · x− 0.007811 · x3 + 0.0001179 · x5 (7)

tanh(x) ≈ 0.590585 · x− 0.028944 · x3 + 0.000502 · x5. (8)

A key challenge in implementing ANNs using CKKS stems from ciphertext
packing, which encodes multiple values into a single encrypted vector. Although
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this enables parallel computations, it complicates access to individual positions
in the weight matrix during the gradient estimation of backpropagation. To
address this, our implementation employs rotation operations to shift encrypted
elements into positions where the required computations can be carried out.

4.3 Cryptographic parameters
The CKKS security is based on the RLWE problem, which depends on carefully
selecting parameter values, including the ring dimension, modulus size, and error
distribution. To define these parameters, we follow the guidelines provided by the
HE standardization [4], which suggests a ring dimension of 2048 with modulus
logq = 56, providing 128-bit security.

4.4 Datasets and validation procedure
Five medical datasets from the UCI Repository were used in our evaluation.
These datasets were selected for their clinical relevance, diversity in feature
types, and manageable size for encrypted computation. Table 1 summarizes the
main characteristics. We highlight the substantial increase in sizes resulting from
encryption, which can grow from KB to GB. The CKKS scheme causes this over-
head, as even real-valued inputs are transformed into complex-valued vectors and
encoded as high-degree polynomials to support encrypted computation.

Table 1. Datasets characteristics. The number of features is indicated as the sum of
discrete (D) and continuous (C) variables. Dataset sizes are presented in MB.

Dataset Samples
Train | Test

Features
D | C

Classes
0 | 1

Size of
Plain

Size of
Encr.

Breast Cancer 569 (398 | 171) 30 (0 | 30) 212 | 357 0.334 1,112
Cirrhosis Patient 418 (292 | 126) 17 (17 | 7) 161 | 257 0.101 816
Diabetes 768 (537 | 231) 8 (0 | 8) 500 | 268 0.110 1,048
Differentiated Thyroid 383 (268 | 115) 16 (13 | 3) 275 | 108 0.047 750
Glioma Grading 839 (587 | 252) 23 (20 | 3) 487 | 352 0.107 1,638

We consider holdout validation with 70% for training and 30% for testing.
Categorical features were encoded using one-hot encoding, in which each value
is represented as a binary vector. This transformation was necessary to ensure
numerical compatibility with the HE scheme, which operates over fixed-precision
vector spaces. Continuous features were normalized between [-1, 1] using min-
max [19], reducing the approximation error during encrypted computations.

5 Analysis of results
All implementations are in C++ and available on our support website with ad-
ditional results [18]. The ANN architecture comprises four layers: an input layer
with one neuron per feature, two hidden layers with 10 and 5 neurons, respec-
tively, and an output layer with a single neuron. Training and inference were
performed on plaintext and ciphertext using CKKS, with sigmoid and tanh ac-
tivation functions approximated by three polynomial methods. Both algorithms
were trained with 10 epochs and a learning rate of 0.01. For encryption, we use
OpenFHE [3] library and execute the experiments on an Ubuntu 24.04.2 LTS
server with an Intel(R) Xeon(R) W-1290P CPU @ 3.70GHz and 64 GB of RAM.
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Table 2 presents the Logistic Regression results. Overall, models employing
the sigmoid activation function achieved higher performance, both in plaintext
and under CKKS encryption. Notably, despite the inherent approximation and
error accumulation introduced by HE, it was possible to train encrypted models
with predictive performance equivalent to – or even surpassing – that of plain-
text models. Focusing on the sigmoid activation and F1-score, we observe that
among the five datasets, encrypted models achieved identical results in two cases
(Breast Cancer and Glioma), outperformed plaintext models in two (Diabetes
and Thyroid), and underperformed in only one (Cirrhosis).

Table 2. Results of Logistic Regression using plain and encrypted data.
Dataset Encryption

scheme
Activation func-
tion

Approximation
method

Accur. Prec. Recall F1

Breast
Cancer

CKKS

sigmoid
Chebyshev 0.94 0.91 0.99 0.95
Least Squares 0.94 0.91 0.99 0.95
Taylor 0.94 0.91 1.00 0.95

tanh
Chebyshev 0.70 0.68 1.00 0.81
Least Squares 0.70 0.68 1.00 0.81
Taylor 0.70 0.67 1.00 0.80

Plain sigmoid Native 0.93 0.91 0.99 0.95
tanh Native 0.71 0.68 1.00 0.81

Cirrhosis
Patient

CKKS

sigmoid
Chebyshev 0.75 0.72 0.99 0.83
Least Squares 0.75 0.72 0.99 0.83
Taylor 0.75 0.71 0.99 0.83

tanh
Chebyshev 0.63 0.62 1.00 0.77
Least Squares 0.63 0.62 1.00 0.77
Taylor 0.63 0.62 1.00 0.77

Plain sigmoid Native 0.67 0.65 1.00 0.79
tanh Native 0.62 0.62 1.00 0.76

Diabetes
CKKS

sigmoid
Chebyshev 0.74 0.77 0.37 0.50
Least Squares 0.73 0.75 0.33 0.46
Taylor 0.74 0.76 0.40 0.52

tanh
Chebyshev 0.39 0.37 0.99 0.53
Least Squares 0.39 0.36 0.99 0.53
Taylor 0.40 0.37 0.99 0.54

Plain sigmoid Native 0.74 0.76 0.38 0.51
tanh Native 0.41 0.37 0.99 0.54

Differentiated
Thyroid

CKKS

sigmoid
Chebyshev 0.90 0.86 0.78 0.82
Least Squares 0.90 0.86 0.78 0.82
Taylor 0.90 0.86 0.78 0.82

tanh
Chebyshev 0.71 0.49 1.00 0.66
Least Squares 0.69 0.47 0.97 0.63
Taylor 0.72 0.50 1.00 0.67

Plain sigmoid Native 0.96 1.00 0.84 0.92
tanh Native 0.69 0.47 0.97 0.63

Glioma
Grading

CKKS

sigmoid
Chebyshev 0.87 0.81 0.90 0.85
Least Squares 0.87 0.81 0.90 0.85
Taylor 0.87 0.81 0.91 0.85

tanh
Chebyshev 0.65 0.55 0.95 0.69
Least Squares 0.65 0.55 0.95 0.70
Taylor 0.67 0.57 0.95 0.71

Plain sigmoid Native 0.87 0.81 0.89 0.85
tanh Native 0.69 0.58 0.96 0.72

Fig. 2 shows the F1-scores obtained by the ANN using the Chebyshev ap-
proximation for the encrypted data. Similar to the Logistic Regression, other
approximation methods produced comparable outcomes. We note that the tanh
yielded the best results, while using sigmoid led to near-zero F1-scores in 3 out
of 5 datasets. This may be due to the use of the same activation function in all
network layers, which can be suboptimal when using sigmoid. More importantly,
the performance on encrypted data remains close to that of the plaintext version.
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Fig. 2. Results of ANN using plain and encrypted data. The activation functions were
approximated with Chebyshev. Sigmoid led to near-zero F1-scores in 3 out of 5 datasets.

5.1 Impact of approximation methods

One of the goals of this study is to evaluate the impact of modifications in
the models to work under encryption constraints. Among these modifications,
we highlight approximation methods for activation functions. As illustrated in
Fig. 3-(a), when considering the F1-score across both sigmoid and tanh acti-
vations, the Taylor expansion was the method that most closely matched the
performance of plaintext models, where no approximation is required.

In Fig. 3-(b), we compute the F1-score across the datasets considering each
activation function. In addition to the superiority of the sigmoid, we can note the
impact of the approximations with the reduction of the median F1-score when
compared with the plaintext. Interestingly, the encrypted models using sigmoid
exhibit lower variability, as indicated by the smaller interquartile ranges in the
box plots, suggesting more consistent results despite the accuracy decrease.

0.6 0.8
F1-score

Breast Cancer

Cirrosis Patient

Diabetes

Differentiated Thyroid

Glioma Grading

CKKS - Chebyshev
CKKS - Least Squares

CKKS - Taylor
Plain - Native

(a) Median across activation functions

0.6 0.7 0.8 0.9
F1-score

sigmoid

tanh

CKKS - Chebyshev
CKKS - Least Squares

CKKS - Taylor
Plain - Native

(b) Median across datasets

Fig. 3. Impact in the predictive performance of Logistic Regression when using ap-
proximation methods (Chebyshev, Taylor, and Least Squares) for activation functions.

5.2 Computational performance

One of the main challenges of adapting ML models to encrypted data is the sig-
nificant computational overhead due to the complexity of encrypted arithmetic
operations. This overhead can impact both the training and inference phases.
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Fig. 4 presents the training and testing times of Logistic Regression when em-
ploying the sigmoid function across the approximation functions. While we note
no difference in the times of approximation methods, the encrypted models ex-
hibit significantly higher computational costs for the training and testing phases
compared to their plaintext counterparts. The similar results across approxima-
tion methods are expected, since the polynomial approximations used produce
expressions of comparable degree and arithmetic complexity. Once compiled into
homomorphic operations, these approximations result in a similar number of
ciphertext multiplications and additions, which dominate the overall runtime.
Thus, the choice of approximation method has a greater impact on predictive
performance than on computational cost under encryption.
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Fig. 4. Training and testing times (sec.) across the approximation methods for sigmoid
on Logistic Regression.

While training and inference with plaintext data remain below 100 millisec-
onds and 1 millisecond, respectively, the encrypted versions of Logistic Regres-
sion require approximately 45 to 70 minutes for training and 2 to 3 minutes for
inference. On the other hand, ANN spends between 12 and 24 hours on train-
ing and between 15 and 20 minutes on inference. For comparison, considering
the plaintext, the training time of ANN is between 2 and 12 sec., and inference
between 15 and 250 milisseconds.

This computational overhead is intrinsic to HE schemes, where even ba-
sic operations involve expensive polynomial arithmetic over ciphertexts. Fig. 5
shows the accumulated training time of both models over 10 epochs for Diabetes
dataset. The main overhead occurs predominantly in the first epoch due to the
initialization of encrypted data structures and the associated bootstrapping and
rescaling operations.
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In addition, we note a considerable difference between the times per epoch of
Logistic Regression and ANN. While the time of Logistic Regression ranges from
5 to 60 min., ANN spends between 2 hours and 4 hours. Such a difference is due
to the higher number of mathematical operations performed by ANN, which is
required by the backpropagation process.
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(a) Logistic Regression (sigmoid)
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(b) Artificial Neural Network (tanh)

Fig. 5. Accumulated training time (sec.) per epoch on Diabetes dataset. For each
model, we consider the most adequate activation function, i.e., sigmoid for Logistic
Regression and tanh for ANN.

6 Challenges and Conclusions

Homomorphic Encryption offers strong privacy guarantees for ML by enabling
training and inference directly over encrypted data while keeping both the model
and data encrypted throughout the entire pipeline. This setting prevents infor-
mation leakage from the inputs, outputs, and model itself, even when executed in
untrusted environments. However, implementing such models introduces signifi-
cant challenges due to the mathematical and computational constraints imposed
by HE schemes, such as CKKS. These limitations affect the range of algorithms
that can be adapted and computational efficiency, as shown in our results.

A key limitation is the difficulty of implementing boolean logic under CKKS,
requiring approximations through polynomial functions. This constraint makes
the adaptation of popular algorithms such as k-Nearest Neighbors (kNN) and
Decision Trees challenging. For instance, kNN relies heavily on comparisons to
identify the nearest neighbors, and Decision Trees require branching based on
logical conditions, operations that are not natively supported and must be ap-
proximated, affecting the computational cost and accuracy.

For the algorithms investigated in this article, the activation functions were
approximated using low-degree polynomials. However, only smooth and bounded
functions, such as sigmoid and tanh, can be efficiently approximated with this
solution. Functions like ReLU, which rely on conditional logic, are incompati-
ble with the approximation methods evaluated. Although other approximation
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methods to ReLU exist, they tend to introduce significant errors or require higher
polynomial degrees, increasing computational cost and noise growth. In addition,
while the derivatives of sigmoid and tanh functions can be expressed using only
subtractions and multiplications, the derivative of functions such as softplus
involves a division operation, which is not natively supported by CKKS and
therefore complicates gradient computation during backpropagation in ANNs.

A fundamental challenge is balancing numerical precision, computational
cost, and security. Approximation noise accumulates with each operation, requir-
ing high-resolution encoding and deep modulus chains to preserve accuracy—at
the expense of runtime and memory. When depth limits are reached, bootstrap-
ping adds further overhead. Ensuring accurate, efficient learning under 128-bit
security remains a key open problem, especially for iterative algorithms.

Challenges related to the restricted set of arithmetic operations can be sur-
passed by replacing the HE scheme CKKS with alternatives such as TFHE (Fast
Fully Homomorphic Encryption over the Torus). However, we noted a superior
computational time of TFHE in preliminary analysis, which made us choose
CKKS. Hardware acceleration could alleviate the performance bottlenecks, but
current libraries offer limited support. Advancing encrypted ML requires contin-
ued research into improved encryption schemes and hardware accelerations.

The contribution of this work lies in its demonstration of how HE can be
effectively employed to enable privacy-preserving machine learning in realistic
scenarios, particularly in the healthcare domain, where data sensitivity is a crit-
ical concern. We successfully implemented the entire pipeline using encrypted
data, achieving predictive performance equivalent to plaintext models. How-
ever, the implementation of different algorithms and the increased computational
overhead are challenges for future work. The costs can be reduced through hard-
ware acceleration strategies, such as GPU-based implementations, parallelization
techniques, or tailored optimizations for polynomial arithmetic over ciphertexts.
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