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Abstract. Data streams are potentially unbounded data sequences that
are made available rapidly and over time. Due to their pervasiveness,
mining data streams has become a major scientific and practical issue.
Scenarios involving data streams present multiple challenges, including
the requirement for single-pass processing due to constraints on com-
putational resources and the necessity to respond to concept drift over
time. Another common trait of several streaming scenarios is class imbal-
ance, that is, a class, often of interest, is majorly outnumbered by others,
thus hardening the learning process. This paper introduces Online Stack-
ing Inverse Random Under and Over Sampling (OnlineSIRUOS). This
ensemble-based approach combines meta-learning, sampling, and hetero-
geneous components to address class-imbalanced data stream classifica-
tion. We evaluated our proposal against existing work tailored for class
imbalance in data streams using synthetic and real-world datasets. Ex-
perimental results show that our proposal achieves competitive F1 scores
in different imbalance ratios and is less computationally intensive than
its competitors in processing time and memory consumption. The re-
sults also show that our proposal is particularly well-suited for highly
imbalanced data streams.

Keywords: Data Stream Classification - Class Imbalance - Ensemble
Learning

1 Introduction

The immense amount of data generated daily creates a special machine learn-
ing scenario known as data stream mining. In data stream mining, algorithms
must always be available for prediction and up-to-date with current data without
over-consuming computational resources. Given these constraints, several algo-
rithms have been adapted from traditional batch learning to streaming variants,
including monolithic and ensemble-based methods [18].
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Regarding the most common task in machine learning, i.e., classification, a
recurring challenge is class imbalance, which occurs when the number of instances
associated with each class is disproportionate. Even though this phenomenon
may occur in different degrees, there are scenarios in which class ratios are so
imbalanced that a classifier might overfit the majority class while ignoring the
minority class.

Multiple classifiers have been developed focusing on streaming scenarios to
address the class imbalance, including ensembles, sampling algorithms, cost-
sensitive learning, and algorithm modification approaches [15]. The most promi-
nent algorithms include CSARF [21] and ARFRE [16], which are Adaptive
Random Forest [18] variants. However, they present significant computational
resource usage. With this in mind, we propose an algorithm named Online Stack-
ing Inverse Random Under and Over Sampling (OnlineSIRUOS) that combines
essential data stream mining concepts to address imbalanced data stream clas-
sification while presenting reduced memory consumption and processing time.

The contribution of the present work is two-fold: i) a novel algorithm (Online-
SIRUOS) inspired by the work of [33], which incorporates three key components:
ensemble learning, inverse random under and oversampling, and meta-learning to
address the challenges of class imbalance in online data streams; and ii) a robust
experimental analysis to validate the effectiveness of OnlineSIRUOS compared
to existing works. Synthetic and real-world data are used in the experiments to
evaluate the performance of the proposed algorithm across various scenarios.

This paper is divided as follows. Section 2 describes the core concepts of data
stream classification and class imbalance. Section 3 describes related works on
imbalanced data stream classification. Section 4 introduces our proposal, which
is experimentally assessed in Section 5. Finally, Section 6 concludes this paper
and discusses envisioned future works.

2 Data Stream Classification and Class Imbalance

Data streams are potentially unbounded data sequences S = (s!,s%, 5%, ..., 5%)
where every item (s!) is an independent instance composed of (x?,y?) that is
made available at a timestamp t. In particular, ! represents a d-dimensional
vector, and y; € Y represents its corresponding class. In classification, the inter-
est lies in creating and updating a predictive model f : @ — Y over time that is
as accurate as possible.

Streaming data poses several challenges compared to batch scenarios, includ-
ing mainly data availability, processing time, and memory consumption. Accord-
ing to [6], to consider an algorithm apt to work with data streams, it has to meet
the following requirements:

1. Process one instance at a time and only once.
2. Use a limited amount of memory.

3. Use a limited amount of time.

4. Be ready to predict new examples at any time.
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5. Be able to detect and adapt to concept drifts, which are changes in the data
distribution that occur over time [30].

In this paper, we are particularly interested in data stream classification
scenarios in which classes are unequally represented, thus giving rise to a phe-
nomenon called "class imbalance". In class imbalance scenarios, the less frequent
class is often the most significant and complex to identify. For instance, in an
image classification problem that aims to discern between benign and malig-
nant tumors, the latter are much less frequent than the former and also more
significant.

The level of imbalance of a task can be measured with an imbalance ratio
(IR). Considering a binary problem, the class with fewer instances is called
positive class and its counterpart negative class. The IR can be calculated
by dividing the number of majority class instances by the number of minority
class instances [34]. In practice, the higher the IR, the more likely classifiers are
to overfit the majority class and underfit the minority one. This occurs since
classifiers are designed to minimize the overall error rate, thus considering the
classification error of all classes equally [31].

3 Related Works

Different proposals have been developed to handle class imbalance in data stream
scenarios. In this section, we categorize the existing algorithms according to the
taxonomy given in [15], i.e., ensemble algorithms, sampling algorithms, cost-
sensitive learning, and algorithm modification. It is noteworthy to highlight that
several algorithms fall under different categories; thus, these are not mutually
exclusive.

3.1 Ensemble

Ensemble learning focuses on decreasing bias and variance by training and com-
bining multiple weak learners into a strong one. A relevant aspect of ensemble
learning is that its members must be diverse. Thus, different techniques for train-
ing each component have been proposed, including bagging, boosting, random
subspaces, and random forests [19]. Regarding the prediction step, members’
votes are often combined using majority vote, weighted majority vote, or using
selection methods [19].

Focusing on imbalanced data streams, different ensemble techniques have
been proposed. One example is the OnlineAdaC2 (31|, which has been inspired
by AdaC2 [28]. OnlineAdaC2 is based on boosting, and it uses different classi-
fication error costs to assign different weights to the instances, thus strengthen-
ing the training on instances of the minority class. OzaBoost has also adopted
the OnlineAdaC2 rationale [26], which samples instances initially according to
Poisson(A = 1) and then adjusts the training weights according to the mis-
classification rates of other classifiers to prioritize hard-to-classify instances. In
addition, to identify and handle concept drifts, OzaBoosts’ implementations,
e.g., in MOA [5] and River [22], are coupled with the ADWIN drift detector [4].
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3.2 Sampling

Sampling techniques target balancing the number of instances of each class used
for training. An interesting trait of sampling algorithms is that they are classifier-
agnostic, and thus, they can be coupled with any learning algorithm [25]. There
are three categories of sampling approaches: oversampling, undersampling, and
hybrid. Oversampling regards the balancing of classes via the generation of in-
stances from the minority class, while undersampling seeks class balance by
removing cases that belong to the majority class. Finally, hybrid algorithms
combine both of the approaches above.

In the context of imbalanced data stream classification, a relevant work is the
Adaptive Random Forest with Resampling (ARFRE) [16], which is a variant of
the original Adaptive Random Forest (ARF) [18]. In ARF, instances are sampled
for training in each tree according to Poisson(A = 6), resulting in each instance
being selected for training at least once, approximately 99% of the time. In
ARFRE;, this process is adjusted so that instances are resampled and reweighted
considering class imbalance according to Equation 1, where I,, represents the
number of instances of class y; observed thus far, and I = ZyjeY I, represents
the total number of instances observed regardless of the class.

100 — Lux100

Weight(x,y) = TOI x Poisson(\) (1)

With this sampling-based change, minority class instances are selected more
often than their original counterparts, thus avoiding the overfitting issue towards
the majority class.

3.3 Cost-sensitive

Cost-sensitive learning uses classification errors to enhance classifiers during
training or prediction. In practice, different types of errors are coupled with
costs (weights) that are used to penalize each classifier so that classes with more
errors are prioritized during training.

A relevant example of cost-sensitive learning in imbalanced data stream clas-
sification is the Cost-sensitive Adaptive Random Forest (CSARF) [21], which,
similarly to ARFRE, is also an adaptation of ARF. However, unlike its counter-
parts, it uses the costs of misclassifications to handle class imbalance. CSARF
adopts a sliding window to check the class distribution over time. This slid-
ing window is relevant to compute the imbalance ratio and, consequently, the
costs coupled with each class. Next, CSARF guarantees that all its members
are trained with minority class samples, regardless of whether they can correctly
predict such samples. Even though the original paper depicts that the prediction
step of CSARF assumes the Matthews Correlation Coefficient (MCC) to weigh
in members’ votes, the implementation in [5] has been adjusted by the authors
to assume the Fl-score. Finally, costs are used during prediction using either a
local or a global approach. The local approach associates each ensemble classifier
prediction with their respective costs, which come from user-given cost matrices
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before the weighted majority vote strategy is used on all votes from all classifiers
in the ensemble. In the global approach, the votes of each base classifier in the
ensemble are combined using the majority vote first. Then, the cost matrix is
applied to the probability vector representing the combination of these votes.

3.4 Algorithm Modification

Algorithm modification regards changes in the inner parts of a classifier so that
it favors the classification of the minority class. One of the main drawbacks of
this approach is that the modification made to a specific classifier may not be
reproducible to another classifier. Examples of algorithm modifications include
OnlineAdaC2 and CSARF, which were discussed in the sections above.

4 Proposal

This section describes our proposal, the Online Stacking Inverse Random Un-
der and Over Sampling (OnlineSIRUOS) algorithm. OnlineSTRUOS combines
stacking, inverse random under and oversampling, and ensemble learning to ad-
dress imbalanced data stream classification while presenting reduced memory
consumption and processing time. First, we describe SIRUS [33], an algorithm
for batch imbalanced classification that inspired OnlineSIRUOS’ design. Next,
we detail OnlineSTRUOS and its training and test steps.

4.1 Preliminaries on SIRUS

Stacking and Inverse Random UnderSampling (SIRUS) [33] is an ensemble-based
algorithm for batch classification that uses sampling and meta-learning to deal
with class imbalance. SIRUS assumes an inverse random undersampling process
[29] that consists of creating B groups of instances from the training dataset.
However, in contrast to Bagging [10], it maintains all instances from the minority
class and undersamples elements from the majority class until the imbalance
ratio (IR) of each group is the inverse of the original set. We denote the original
dataset’s IR as %, where Z and W represent the cardinality of the sets of
instances from each class. Therefore, the IR of the undersampled groups follows
Equation 2, where W; represents the number of instances of the majority class
randomly selected for the i-th group.

Z

Wi

Each data group created is used to train one of the B sets of classifiers.
This also means that each classifier in the ensemble will only be trained on
one data group. Also, it is important to note that SIRUS has heterogeneous
ensembles built with the following rule: B sets of classifiers will each have one
classifier of each type from R defined to compose the ensemble. Consequently,
assuming |R| as the number of algorithms to form each group, the ensemble will

w
~ (2)
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have |B| x |R| classifiers since each group has |R| members. Another relevant
trait of SIRUS is meta-learning, which combines the votes cast by the ensemble
members. In particular, SIRUS uses stacking [32], in which the outputs of the
ensemble members are used as predictive features of another learner responsible
for combining these predictions into a final vote.

4.2 OnlineSTRUOS

Online Stacking Inverse Random Under and Over Sampling (OnlineSTRUOS) is
inspired by the SIRUS algorithm. OnlineSIRUS is composed of |B| groups of
classifiers, and each group contains |R| heterogeneous classifiers.

One of the significant traits of OnlineSIRUQOS is the sampling process, which
is tailored to be performed incrementally. In practice, OnlineSIRUOS introduces
an inverse random under and oversampling process for which the class imbalance
is accounted. In practice, the ratio between the number of instances already
observed for training and that belong to the same class of a new instance ()

and the total number of instances used for training (I = >, .y Iy;) is used

to adjust the sampling process with Poisson(\A = 6)! according to Equation 3.
The result of the aforementioned equation (w) indicates the number of times an
instance will be used for training in each ensemble group.

w(N,y) = ’7<1 - Zlyyfy> x Poisson (A = X)“ (3)

This process is similar to the resampling process used in ARFRE (see Section
3.2). However, the sampling process is used per group rather than for ensemble
members. The rationale behind this process is to avoid overfitting the majority
class via oversampling the minority class and undersampling the majority class.

The second major trait of OnlineSTRUOS is the meta-learning component, in
which stacking is applied. In practice, any classifier can be used as the stacking
meta-learner, and this is represented as {2 in the remainder of this paper. We
also work under the assumption that (2 is an online learner, which means that
it can be updated over time.

The training step of OnlineSIRUOS is detailed in Algorithm 1. The train-
ing step starts by defining an empty array (Y') to store the predictions of each
ensemble member that is later used for updating the meta-learner and incre-
menting the class counts (I) (lines 1 and 2, respectively). Next, the algorithm
loops over each group of members b; € B (lines 3 to 10). For each group, the
resampling process described in Equation 3 determines the number of times an
instance will be used for training (line 4). Next, the algorithm loops over the
ensemble members in the group (lines 5 to 9), in which each member is updated
(line 7), and its prediction is cast and appended to the array of predictions Y’
(line 8). Finally, after the loops are over and all ensemble members’ forecasts

! Even though ) is a user-given parameter, we have assumed \ = 6 given the empirical
observations in [18].
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Algorithm 1 OnlineSIRUOS training step

Require: (x,y): a labeled instance for training

Require: e: the ensemble composed of B groups with R members each

Require: (2: the meta-learner

Require: I: an array for class counting

Require: \: sampling parameter (defaults to 6)

Y 0 > Array of predictions used for meta-learning
Ly~ I,+1

: for b; € B do

w ’7<1 — 17”> x Poisson (A = )\')—‘ > Equation 3

Eyj €Y ij

for r; € b; do
€ij < €lbi[rs]
Update €;; w times with (z,y)
Y «Y' U {61‘,]'(1:)}
end for
10: end for
11: Update 2 with (Y',y) > Updates the meta-learner

RS W

©

are appended to Y, this array is used to update the meta-learner as predictive
features with the corresponding ground-truth label y (line 11).

OnlineSTRUOS’ test step follows the process reported in Algorithm 2. This
step receives as input an unlabeled instance for prediction (), the ensemble e,
and the meta-learner (2. First, Y’ is initialized as an empty array to store the
ensemble members’ votes (line 1). Next, the algorithm loops over all groups (lines
2 to 7) and the corresponding members (lines 3 to 6), obtaining their predictions
and storing them in the array (line 5). Once all predictions are obtained, they
are input to the meta-classifier, yielding the final prediction ¢ (line 8).

Algorithm 2 OnlineSTRUOS test step

Require: x: an unlabeled instance for prediction
Require: e: the ensemble composed of B groups with R members each
Require: (2: the meta-learner

1: Y «0

2: for b; € B do

3 for r; € b; do
4: €5 < €[bi][rj]
5: Y «Y'U {Gi’j (:l:)}
6
7
8
9

end for
. end for
g YY)
: return g
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5 Analysis

In this section, we describe the experimental protocol adopted to assess our
proposal against state-of-the-art algorithms for imbalanced data stream classifi-
cation and discuss the results obtained.

5.1 Experimental Protocol

The method used as a validation scheme for the classifiers tested was prequential
[17]. In prequential validation, each arriving instance is first used for testing
and then for training. Our experimentation tests included both synthetic and
real-world datasets. Synthetic streams included binary classification problems
created using Asset Negotiation [14], Agrawal [2], Random Trees [13], and SEA
[27] experiments that are made available as part of the Massive Online Analysis
(MOA) framework [5]. Synthetic data streams were created with different class
ratios, i.e., 50%-50%, 70%-30%, 80%-20%, 90%-10%, 95%-05%, 99%-01%, 99.5%-
0.5%, to verify how suitable different algorithms are under different levels of class
imbalance. Our experimental protocol also included drifting scenarios, in which
the class ratios shifted amongst the class ratios above, i.e., from 50%-50% to
99.5%-0.5%, with a change at every 200 thousand instances. The rationale behind
this experiment is to verify how the proposed algorithm and its competitors
behave under imbalancedness drifting scenarios.

Furthermore, all synthetic streams had a length U = 1,000, 000, and perfor-
mance metrics were extracted every 10% of the experiment. Different datasets
were gathered with varying class ratios in terms of real-world datasets. Table 1
gives the datasets and their main characteristics.

Table 1: Real-world datasets used in experimentation.

Name|# of Instances|# of Attributes|# of Classes| IR

Bank Marketing [23, 24| 45,211 16 2 7.55
Forest Covertype [7] [8] [20] 581,012 54 7 103.13
CSDS-1 [3] 315,539 176 2 6.71

CSDS-2 [3] 50,401 37 2 47.51

CSDS-3 [3] 97,226 152 2 2.84

Kaggle’s Give me Loan 150,000 10 2 13.96
IntelLabSensors [9]| 2,313,153 5 58 21,898
IntelLabSensors-1vsAll [9] 2,313,153 5 2 52.74
IntelLabSensors-1to3vsAll [9] 2,313,153 5 2 15.93
IntelLabSensors-1to5vsAll [9] 2,313,153 5 2 11.82
IntelLabSensors-1t09vsAll [9] 2,313,153 5 2 5.84
KDD99 [1] [11]| 4,898,431 41 2 4.04

Algorithms. Our experimentation included Adaptive Random Forest (ARF),
Adaptive Random Forest with Resampling (ARFRE), Kappa Updated Ensemble
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(KUE), Leveraging Bagging, Cost-sensitive Adaptive Random Forest (CSARF),
OnlineAdaC2, and Online Under-overbagging (OnlineUOB). All ensembles were
set to use 100 Hoeffding Trees. The only exception was OnlineSIRUOS, in which
50 groups of Hoeffding Trees and Naive Bayes were used (thus totaling 100
ensemble members), and the meta-classifier {2 was set to Naive Bayes, given its
simplicity.

Evaluation metrics and hypothesis testing. Given the interest in assessing algo-
rithms in class-imbalanced scenarios, the assessment was conducted using the
Fl-score, the harmonic mean of precision and recall. Additionally, algorithms
were evaluated according to the processing time (in seconds) and memory con-
sumption (in GB-Hours). Finally, the results were organized and processed by the
combination of Friedman and Nemenyi tests following the protocol described at
[12] to identify whether significant differences amongst methods were observable.
The results are reported using Critical Distance (CD) charts.

Code availability. Finally, we highlight that the source code for our proposal im-
plementation and experimentation scripts are made available at <link omitted
due to blind-review policy>.

5.2 Discussion

In this section, we discuss the results obtained during experimentation. First,
we divide the discussion of the results according to the experiment conducted:
(i) considering all datasets and then focusing on (ii) synthetic experiments with
high class imbalance ratios, (iii) synthetic datasets with drifting class imbalance
ratios, and (iii) real-world datasets.

Analysis considering all experiments In this section, we analyze the results
obtained across all the experiments, i.e., considering synthetic data streams with
different class imbalance ratios, synthetic data streams in which the class im-
balance drifts, and real-world datasets. We summarize the results in Table 2,
in which we report the average macro F1-Score, CPU Time (in seconds), and
RAM-Hours (in GB-Hour) obtained across all experiments.

The results show that the proposed algorithm OnlineSIRUOS achieves the
highest average macro F1-Scores and is the best-ranked algorithm, followed by
Adaptive Random Forest with Resampling (ARFRE), Leveraging Bagging (Lev-
Bag), and CSARF. In particular, using Friedman + Nemenyi hypothesis tests
showed no statistical difference between these algorithms. In contrast, they sur-
pass the others, i.e., Kappa Updated Ensemble (KUE), Adaptive Random Forest
(ARF), OnlineUnderOverBagging (OUOBagging), and OnlineAdaC2.

Considering processing time, the fastest algorithm is OnlineUnderOverBag-
ging (OUOBagging), followed by our proposal (OnlineSIRUOS), Kappa Updated
Ensemble (KUE), and OnlineAdaC2. Similarly, as before, Friedman + Nemenyi
testing showed that these algorithms are statistically faster than Leveraging
Bagging (LevBag), ARFRE, ARF, and CSARF.
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Table 2: Average results obtained in all experiments. Results in bold depict the
best-ranked group of results per metric, i.e., Macro F1-Score, processing time,
and RAM-Hours.

Algorithm|Macro F1-Score (%) |Processing Time (s)|RAM-Hours (GB-Hour)

ARF 77.91 2533.74 1.46 x 10°

LevBag 79.85 917.02 1.70 x 1071
ARFRE 79.55 1160.28 3.55 x 107!

KUE 80.27 477.29 4.00 x 1072

OUOBagging 72.90 142.50 1.57 x 1072
CSARF 80.22 2571.95 1.48 x 10°
OnlineAdaC2 56.04 896.30 1.55 x 1071

OnlineSTRUOS 80.92 254.04 8.19 x 10~3

Focusing on memory consumption rates, we observe that OnlineUnderOverBag-
ging (OUOBagging) is the least consuming algorithm, followed by OnlineSIRUOS
and Kappa Updated Ensemble (KUE). In particular, the hypothesis test showed
that amongst all algorithms, OUOBagging and OnlineSIRUOS are significantly
less memory-consuming than KUE, ARFRE, OnlineAdaC2, LevBag, ARF, and
CSARF.

Considering all evaluation metrics, OnlineSIRUOS is a fierce competitor,
ranked amongst the best-performing algorithms in all traits. Even though this
analysis provides an interesting overview of the results obtained and highlights
the efficiency of the proposed method against the state-of-the-art, we further
delve into the results on scenarios with synthetic data with high imbalance ratios,
synthetic data with drifting imbalance ratios, and real-world datasets.

Analysis considering synthetic datasets and high imbalance ratios
Since our proposal has been tailored to focus on imbalanced data streams, a
specific analysis of such scenarios must be included. Therefore, in this section,
we narrow our analysis towards synthetic experiments with high-class imbalance
ratios, i.e., 90%-10%, 95%-05%, 99%-01%, and 99.5%-0.5% to check how our
proposal compares to existing works in the literature. The results for such sce-
narios are given in Table 3, where average macro F1-scores, processing time, and
memory consumption rates are given.

These results depict that our proposal, OnlineSTRUOS, figures again as the
best-performing algorithm in Macro F1-Score, a significant result considering
the challenging aspects of highly imbalanced data streams. Considering the re-
sult of hypothesis testing, we observe that CSARF, KUE, and LevBag follow
OnlineSIRUOS and that these algorithms outperform others significantly. The
processing time and memory consumption results do not differ significantly from
those observed earlier, i.e., OnlineSTRUOS achieves competitive results, losing
to OUOBagging, yet with no statistically significant differences.

Analysis considering synthetic datasets with drifting class imbalance
ratios In this section, we assess the behavior of the proposed method and its
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Table 3: Average results obtained in highly imbalanced synthetic data streams.
Results in bold depict the best-ranked group of results per metric, i.e., Macro
F1-Score, processing time, and RAM-Hours.

Algorithm|Macro F1-Score|Processing time (s)| RAM-Hours (GB-Hour)
ARF 66.21 2171.39 877 x 1071
LevBag 71.59 936.49 1.33 x 107!
ARFRE 70.87 606.77 9.04 x 1072
KUE 74.68 594.44 4.65 x 1072
OUOBagging 58.97 143.88 1.84 x 10~3
CSARF 74.46 2213.22 8.59 x 107"
OnlineAdaC2 65.48 622.11 6.43 x 1072
OnlineSIRUOS 75.93 185.65 4.10 x 1073

counterparts from the literature in scenarios where the class imbalance ratio
drifts over time. The results obtained are reported in Table 4, in which we observe
that ARF achieves the highest macro Fl-scores, followed by ARFRE, KUE, and
OnlineSTRUOS and that there is no significant statistical difference amongst
them. We highlight that in opposition to what has been observed in the previous
scenarios, ARF and ARFRE were ranked as the best-performing algorithms,
mainly due to their ability to detect and adapt to concept drifts using background
learning, i.e., a strategy in which background trees are learned preemptively and
swapped when a drift is flagged. This is a relevant trait that is not observed in its
contenders. Focusing on processing time and memory consumption, we observe
again OUOBagging and OnlineSIRUOS leading the ranks when compared to
their counterparts.

Table 4: Average results obtained in synthetic experiments with drifting imbal-
ance ratios. Results in bold depict the best-ranked group of results per metric,
i.e., Macro F1-Score, processing time, and memory consumption.

Algorithm|Macro F1-Score|Processing time (s)| RAM-Hours (GB-Hour)

ARF 90.41 3576.24 1.67 x 10°

LevBag 87.38 1331.61 2.53 x 1071
ARFRE 88.93 2186.98 6.99 x 1071

KUE 88.76 592.22 4.86 x 102

OUOBagging 83.86 120.28 8.87 x 10~4
CSARF 85.26 3577.41 1.65 x 10°
OnlineAdaC2 61.74 1443.84 2.63 x 1072

OnlineSIRUOS 88.40 313.47 1.52 x 102

Analysis considering real-world datasets Focusing on real-world datasets,
we summarize the results obtained in Table 5, in which the average results for
Macro F1-Score, (b) processing time, and (¢) RAM-Hours are given with the
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respective standard deviations. Here, we observe that the best-ranked algorithm
in terms of macro Fl-scores is ARFRE, closely followed by the proposed al-
gorithm OnlineSTIROUS. Considering Friedman + Nemenyi’s statistical tests,
we concluded that there are no statistical differences between ARFRE, Online-
SIRUOS, and CSARF. Concerning processing time, we observe that OnlineUn-
derOverBagging (OUOBagging) is the fastest algorithm, followed by Kappa Up-
dated Ensemble (KUE), Leveraging Bagging (LevBag) and the OnlineSIRUOS.
Considering the hypothesis tests, we see no differences between OnlineSIRUOS,
OUOBagging, and ARFRE. Finally, the results for memory consumption depict
the proposed algorithm (OnlineSIRUOS) as the best-ranked algorithm, followed
by OnlineUnderOverBagging (OUOBagging) and ARFRE, and no statistically
significant differences are observed among them.

Table 5: Average results obtained in real-world datasets. Results in bold depict
the best-ranked group of results per metric, i.e., Macro F1-score, processing time,
and RAM-Hours.

Algorithm|Macro F1-Score|Processing time (s)|RAM-Hours (GB-Hour)
ARF 74.66 322.62 3.75 x 1072
LevBag 74.33 220.89 1.48 x 1072
ARFRE 74.91 259.87 7.67 x 1073
KUE 72.33 148.79 1.15 x 1072
OUOBagging 73.23 150.37 1.73 x 1073
CSARF 74.25 357.82 6.83 x 1072
OnlineAdaC2 35.76 254.05 4.40 x 1073
OnlineSTRUOS 73.20 234.36 4.40 x 1073

6 Conclusion

Class imbalance is a significant challenge for data stream mining. There are
several gaps to be filled due to the varied and complex behavior of data streams
when there are unequal examples from different classes. In this paper, inspired by
the batch SIRUS algorithm, we introduced OnlineSIRUOS, a novel algorithm for
data stream classification that relies on (i) ensemble learning, (ii) inverse random
under and oversampling, and (iii) meta-learning.

We experimented with our proposal against existing works using synthetic
and real-world data. Considering the Fl-score, our proposal, OnlineSIRUOS,
achieves significant results across all scenarios. Still, such a conclusion becomes
even more evident in highly imbalanced scenarios, i.e., when the minority class
is represented by 10% or less of the instances. Our proposal is also well-ranked
regarding computational resources, losing only to Online UnderOverBagging,
which has significantly lower F1-score rates. One of the gaps observed concerned
drifting class imbalance scenarios, i.e., scenarios in which the class ratios evolve
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over time, in which OnlineSIRUOS achieved good results; however, they are still
below ARF and ARFRE. This is a relevant aspect since ARF and ARFRE use
background learning, a technique in which learners are preemptively trained and
swapped when a drift is flagged. This process speeds up drift recovery and could
be beneficial to our proposal in the future.
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