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Abstract. Deep learning models have demonstrated remarkable accu-
racy in distinguishing between empty and occupied parking spaces when
large amounts of annotated training data are available from the tar-
get environment. However, in real-world deployments, the major bottle-
neck lies in the labor-intensive annotation process required whenever a
new scenario arises, or retraining is needed due to changes in the cam-
era setup, often driven by maintenance, repositioning, or environmental
conditions. This paper addresses this challenge by proposing a generative
domain adaptation scheme designed to reduce annotation requirements
and accelerate deployment significantly. Instead of relying on extensive
labeled datasets and computationally expensive model retraining, our
method synthesizes new training samples based on a small subset of in-
stances from the target domain. In particular, by combining generative
augmentation with a lightweight convolutional network for inference, our
approach achieves a favorable balance between annotation cost, compu-
tational efficiency, and accuracy. These results highlight the method’s po-
tential as a cost-effective and rapidly deployable solution for real-world
parking lot monitoring. Under a cross-dataset evaluation protocol, we
highlight that our approach achieves competitive accuracy (close to 97%)
using as few as 256 labeled samples, thus substantially reducing human
annotation effort without sacrificing classification performance.

Keywords: Parking Lot Monitoring · Parking Space Classification · Do-
main Adaptation · Generative Models

1 Introduction

Camera-based parking lot monitoring systems are being integrated into smart
cities due to deep learning techniques achieving near-human performance [6],
with recent studies demonstrating over 99% accuracy in determining parking
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spot occupancy [1, 2, 4, 8]. However, this performance relies on extensive target-
annotated data, which is time-consuming and demands high computational costs
for model training, creating deployment bottlenecks. A fast deployment solution
is essential for real-world applications, as maintenance tasks like camera reposi-
tioning or short-term events impose time constraints.

Deep Convolutional Generative Adversarial Networks (DCGANs) have proven
effective in generating synthetic images for data-constrained scenarios such as
medical imaging, facial expression recognition, and edge applications [7]. An im-
portant aspect is that most works utilize as many available target-annotated
samples as possible to fine-tune the model, without considering the data col-
lection and annotation costs. On the other hand, their application in domain
adaptation, i.e., training a model in one domain and fine-tuning it in a similar
one, is still emerging [9]. In the context of parking lot monitoring systems, em-
ploying a generative model to reduce the need for annotated data represents a
promising yet underexplored approach [3, 11,12].

The main contribution of this paper is to evaluate what is the minimum num-
ber of target-annotated data required for effective domain-specific adaptation of
DCGANs in parking space classification, ensuring that synthetic data provides a
reliable representation for training classification models. This approach mitigates
the manual annotation time bottleneck, as model training can be automated on
cloud-based servers.

To answer this question in the context of parking lot monitoring, we propose
a few-shot generative domain adaptation pipeline that includes i) DCGANs to
minimize the amount of target annotated data - as much as possible - and ii) a
convolutional classification model. The generative and classification models will
be pre-trained on a public, robust, and fully annotated parking lot dataset and
then adapted to the target domain using the least amount of samples possible.

To guide our study, we introduced the following research questions:

– RQ1: What is the minimal number of labeled target samples needed for
effective domain adaptation of generative models in parking lot scenarios?

– RQ2: Can synthetic data, generated by the DCGANs, provide reliable rep-
resentations to adapt the classification models to the target parking lot?

– RQ3: How does the proposed framework compare to state-of-the-art super-
vised methods in balancing classification accuracy and annotation effort?

To address these questions, we conducted a two-way cross-dataset experiment
involving 12 different cameras, each camera simulating a new deployment en-
vironment. Our findings suggest that DCGANs achieve competitive accuracy
while significantly reducing the need for labeled data, making fast annotation
feasible. The computational overhead introduced by generative models into the
pipeline is discussed in Section 4.

The remainder of this work is structured as follows: Section 2 reviews state-of-
the-art parking lot approaches regarding cross-dataset scenarios. The proposed
approach is discussed in Section 3. Section 4 details the experimental protocol
and results. Finally, Section 5 summarizes the findings.
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2 Related Works

In this section we discuss related works on image-based parking lot classifica-
tion. Next, we bring forward existing works that rely on DCGANs to generate
synthetic data in various applications.

2.1 Image-based Parking Lot Classification

Several parking lot classification approaches are available in the state-of-the-art
literature, with a comprehensive review provided in [1]. While many of these
methods demonstrate promising results, only some tackle the challenge within
a domain adaptation protocol, mainly when limited or no samples are available
from the target scenario. Furthermore, we focus on approaches that utilize public
datasets, as this enables comparability and reproducibility.

In light of this, Almeida et al. [2] proposed the PKLot dataset, which contains
approximately 700,000 labeled samples collected from two parking lots and three
camera views. Using texture-based features and SVM models, they reported over
99% accuracy with extensive training samples from the target domain. However,
the authors also highlighted generalization issues, achieving about 90% accuracy
without domain-specific adaptation to the target parking lot.

Amato et al. [4] introduced the CNPark-EXT dataset, which includes nearly
160,000 annotated samples collected from 9 camera views in a single parking
lot. The camera shifts capture various lighting conditions, shadows, and partial
occlusions caused by obstacles. They reported an average accuracy of 88.5%
with no domain adaptation. In this vein, Nurullayev and Lee [14] proposed a
deep learning model incorporating dilated convolutions and skipping pixels in
the convolution kernel. This approach showed promising results, achieving an
average accuracy of 96.5% in a similar protocol.

In a recent study, Almeida et al. [1] demonstrated that state-of-the-art method-
ologies achieve an average accuracy of 92% when trained with no samples from
the target parking lot. The work of Hochuli et al. [12] further supports this
finding, using datasets including the PKLot and CNRPark-EXT datasets. Their
approach develops a global model capable of accurately classifying images from
new parking lots, achieving an average accuracy of 92.8%.

Regarding parking space annotation, state-of-the-art approaches typically
use rotated rectangles or polygons for precise demarcation. Hochuli et al. [11]
showed that by employing bounding boxes for annotation — though easier and
less precise — can yield promising results due to the contextual information
from neighboring areas. They also showed that reducing to 1,000 target-labeled
samples for domain-specific adaptation can achieve 97% accuracy with a custom
deep convolutional network. However, it is worth noting that their work was
limited to the PKLot dataset.

2.2 Synthesizing Data using DCGANs

DCGANs have been applied to address the lack of annotated data and class im-
balance across various computer vision tasks, including facial expression recog-
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nition [18] and medical image analysis [17]. A comprehensive review of these
techniques and their applications can be found in [7]. Traditionally, the use of
DCGANs involves training the model on a source domain to generate synthetic
samples, thereby enhancing the generalization of classifier that is trained using
both original and synthetically data.

An important aspect is that many generative strategies aim to enhance target
domain data representation, often without regard to the quantity of available
data. In contrast, we focus on minimizing the number of annotated samples
required to expedite and automate the deployment pipeline. With this in mind,
we explore using DCGANs for domain adaptation in parking lot scenarios with
minimal annotated data.

3 Proposed Method

This work postulates that annotation effort can be minimized by employing a
DCGAN to enhance target-domain representation. To address our research ques-
tions (RQs) outlined in Section 1, we propose a generative domain adaptation
framework depicted in Figure 1.

Fig. 1: The proposed deployment scheme involves performing domain adaptation
of robust generative and classifier models to: i) augment the limited annotated
data from the target domain and ii) adapt the classification model using a com-
bined set of synthetic and real samples.

Given a small set of target-labeled images, the approach utilizes domain
adaptation of two task-specific generative networks to synthesize images of empty
and occupied parking spaces, referred to as Gemp and Gocc, respectively. The real
and generated images are combined to adapt the classification model (C) to the
target domain. The decision to employ two generative models is based on the
fact that class-specific DCGANs require less annotated data than conditional
DCGANs (cGANs) or variational autoencoders (VAEs).
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It is important to remark that the generative networks Gemp and Gocc are
optimized only during the domain adaptation training time, providing a robust
dataset to fine-tune the classifier C. During inference, only the classifier C is
used. Next, Section 3.1 details the datasets utilized, while Section 3.2 presents
the model architectures.

3.1 Datasets

To the best of our knowledge, the most comprehensive parking lot datasets
available in the state-of-the-art are the PKLot [2] and CNRPark-EXT [4]. These
datasets include three different parking lot areas with diverse camera positions.

PKLot. The PKLot [2] dataset includes images captured over approximately
three months, with a time interval of 5 minutes between each image, resulting
in a total of 12,417 images and about 700,000 annotated samples divided into
three deployment scenarios: UFPR04, UFPR05, and PUCPR. Image examples
extracted from the PKLot dataset are provided in Figure 2.

(a) UFPR04 (b) UFPR05 (c) PUCPR

Fig. 2: The three deployment scenarios from PKLot.

CNRPark-EXT. The CNRPark-EXT [4] contains approximately 160,000
annotated parking spaces collected from nine cameras across a single parking
lot. This dataset presents specific challenges, including solar light reflections,
raindrops on the camera lens, and partially occluded parking spaces due to trees
or lamp posts. An example of these challenges is depicted in Figure 3.

(a) Camera 1 (b) Camera 4 (c) Camera 9

Fig. 3: Three out of nine scenarios from the CNRPark-EXT.

Table 1 briefly summarizes the properties of the datasets. For a thorough
description of the datasets and their applications, refer to [1, 2, 4].
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Table 1: Summary parking lots datasets used in this work
Dataset Images Spots Days Cameras Park. Lots
PKLot 12,417 695,851 99 3 2

CNRPark-EXT 4,278 157,549 23 9 1

Although using only two datasets might seem limited, we address this by
combining them to simulate real-world deployment scenarios through a cross-
dataset protocol. This strategy is widely recognized as a benchmark in the liter-
ature [1, 4, 11, 12, 14], ensuring a fair comparison with state-of-the-art methods.
Details on the experimental protocol adopted are given in Section 4.

3.2 Model Archictectures

The generative models Gemp and Gocc, along with the classifier C shown in Fig-
ure 1, are convolutional-based networks with an input-layer of shape [128,128,3].
The classification model, C, comprises the well-known MobileNetV3-Large [13]
architecture to perform feature extraction, followed by average pooling to re-
duce the feature map dimensions to a flattened shape of size 2048. As in [12],
to perform classification, we incorporate dense layers with 512, 256, 128, and 64
neurons along a softmax activation function, as shown in Figure 4. During the
training of the classifier C, the convolutional backbone is initialized with the
ImageNet weights [16]. We kept all convolutional weights frozen except for the
last convolutional layer. This transfer-learning strategy preserves the knowledge
encoded in the pre-trained weights while allowing adjustment to the specific
features of the target dataset [19].

Fig. 4: The classifier model C architecture, consisting of a MobileNet backbone
followed by four trainable dense layers

The decision to adopt MobileNetV3-Large as the backbone is supported by
Hochuli et al. [12], which demonstrated that this architecture achieves a balance
between generalization and computational costs in classifying parking spots in
a cross-dataset scenario.

The generative models Gemp and Gocc use a discriminator with four convolu-
tional layers to estimate the prior probabilities of real versus synthetic samples,
reducing array dimensions by half at each layer. Conversely, the generator net-
work consists of four deconvolutional layers, progressively upscaling the input
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random noise from [8,8,1024] to an output image of [128,128,3]. The architectural
design was initially based in [15] and refined based on insights from [7], using
the Frechet Inception Distance (FID) [10] to model selection. Figure 5 illustrates
the final architecture.

Fig. 5: The DCGAN architecture (G) includes a generator and a discriminator,
each with four convolutional layers. The generator synthesizes samples, while
the discriminator estimates the posterior probability.

The Adam optimizer with backpropagation was used to train all networks
using mini-batches of 32 instances. The learning rate is set to 10−3 to expe-
dite convergence and then reduced over time to refine the weights. Finally, the
cross-entropy was used as a loss function, and early stopping was employed for
regularization.1

4 Experiments

In this section, we assess our proposed approach considering a series of experi-
ments following well-established protocols in the state-of-the-art [1,4,11,12,14],
utilizing the datasets discussed in Section 3.1.

First, we detail the training protocol for the base models in Section 4.1.
Subsequently, in Section 4.2, we outline the deployment protocol. Finally, Section
4.3 presents the results, offering insights into the strengths and limitations of the
proposed approach.

4.1 Base Models Training Protocol

To train the classification model C on the source domain dataset, we allocated
50% of the days for training, 20% for validation, and 30% for testing. Training
and validation were balanced using random undersampling of the majority class.
This day-based holdout approach, discussed in [2], reduces training bias by pre-
venting subsequent camera shots with minimal changes from appearing in both
the training and testing sets, as illustrated in Figure 6.
1 The trained models will be made available upon request
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(a) Shot 1 (b) Shot 2 (c) Shot 3 (d) Shot 4 (e) Shot 5

Fig. 6: Sequential camera shots with minimal changes

To train the generative base models Gemp and Gocc, we randomly selected
9,000 class samples from the source domain: 3,000 samples per camera in the
PKLOT dataset and 1,000 samples per camera in the CNRPark-EXT dataset.
This ensures a balanced representation across source scenarios, preventing model
bias towards a specific camera in the source domain.

Figure 7 depicts the resulting synthetic samples on source scenarios. Although
it exhibits marginal deformations, the rationale here is to provide diverse shapes
and textures for representation learning [5] as the classification is unassociated
with the object itself, i.e., car model. The impact of generated images on the
recognition rate is discussed in Section 4.3.

(a) PKLot (b) CNRPark-EXT

Fig. 7: Qualitative comparison between real samples (top row) and synthetic
samples (bottom row) produced by the generative base models trained on a)
PKLot and b) CNRPark-EXT datasets.

4.2 Cross-Dataset Deployment Protocol

We implement the cross-dataset protocol utilized in state-of-the-art approaches
[1, 4, 11, 12, 14], in which one dataset is used entirely as the source domain to
construct the generative and classification models, referred to as the base models
(Section 4.1). In contrast, each camera from the other dataset represents a unique
target scenario where the proposed scheme should adapt the base models.

This strategy mimics twelve deployment scenarios, encompassing challenges
such as perspective shifts, varying car positions, shadows, raindrops and sunlight
reflections in the camera lens, partial occlusions, and diverse weather conditions.
Figure 8 illustrates individual parking spots across several camera views to high-
light this diversity.

To address RQ1, which investigates the minimum number of annotated real
samples (R) required for adapting generative models to the target domain, we
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Fig. 8: Examples individual parking spots across the camera views in the PKLot
and CNRPark-EXT datasets.

conducted experiments using R = 64, 128, 256, 512, 1024 labeled target samples
to fine-tune the base generative models Gemp and Gocc. The samples were col-
lected chronologically, beginning with the first day of the target camera until the
desired amount was reached. The days selected for annotation were excluded
from the testing set. The domain-specific generative models, Gemp and Gocc,
were then used to augment the target data up to 5,000 samples. The combined
real and synthetic samples were used to fine-tune the classifier C.

The rationale of using the above quantities of data is based on the findings of
[11], which suggest that a classifier fine-tuned with up to 1,000 human-annotated
samples achieves performance levels of 97% on the target dataset, with optimal
performance attained at 5,000 annotated samples.

4.3 Analysis

The results for the proposed scheme across twelve deployment scenarios, involv-
ing cross-evaluation of the CNRPark-EXT and PKLot datasets, are summarized
in Table 2, with reported accuracies representing the average of five runs ini-
tialized with different seeds to avoid biased comparisons. The Baseline column
reports the isolated performance of classifier C on the target scenario with-
out fine-tuning. Subsequent columns present performance metrics with varying
amounts of annotated data from the target domain, comparing two approaches:
i) using only real data (denoted as “Real”), and ii) using a combination of real
and synthetic samples that sum up to 5000 samples, referred to as “w/Gen.”.
For example, the column “64/4936 - w/Gen.” represents the scenario in which
64 real and 4936 generated synthetic images have been used for training.

Domain Adaptation Using Only Real Data. In this experiment, we aim
to evaluate the impact of using only real data, as this is the standard approach
in the state of the art. In this case, the generative models are not incorporated
into the pipeline, which means that the classifier C does not include synthetic
samples for the representation learning.

Considering this, 64 target-annotated samples boosted the overall accuracy
from 95.1% to 96.2%, on average. It is worth mentioning the UFPR05 deploy-
ment scenario from PKLot, where the accuracy improves from 91.3% to 95.0%.
However, doubling the annotated data does not yield proportional accuracy
gains. With 128 real samples, the average accuracy reaches 96.8%. Beyond this
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Table 2: The average accuracy over five runs for the proposed domain adaptation
approach across different target scenarios.

Domain Adaptation from PKLot to CNRPark-EXT Target Scenarios

Scen. Baseline 64 / 4936 128 / 4872 256 / 4744 512 / 4488 1024 / 3976
No Train Real w/Gen. Real w/Gen. Real w/Gen. Real w/Gen. Real w/Gen.

Cam-1 92.3 92.3 94.1 94.2 94.3 94.1 94.6 95.0 95.8 94.9 96.5
±1.3 ±1.3 ±0.1 ±0.6 ±0.2 ±0.7 ±0.1 ±0.6 ±0.2 ±1.0 ±0.2

Cam-2 96.5 97.9 97.3 97.8 98.3 98.1 98.6 98.4 98.8 98.7 99.1
±1.2 ±0.5 ±0.9 ±0.4 ±0.2 ±0.2 ±0.3 ±0.3 ±0.2 ±0.3 ±0.2

Cam-3 96.6 97.1 97.5 97.6 97.8 97.6 98.2 97.8 98.4 98.3 98.7
±0.7 ±0.5 ±0.4 ±0.3 ±0.2 ±0.4 ±0.2 ±0.4 ±0.1 ±0.4 ±0.2

Cam-4 97.5 97.7 97.7 97.6 97.9 97.7 98.1 98.0 98.2 98.0 98.5
±0.1 ±0.2 ±0.2 ±0.2 ±0.2 ±0.3 ±0.1 ±0.1 ±0.1 ±0.5 ±0.1

Cam-5 96.3 97.1 97.2 97.1 97.5 97.2 97.7 97.6 97.9 97.6 98.1
±0.4 ±0.4 ±0.1 ±0.5 ±0.1 ±0.4 ±0.1 ±0.4 ±0.1 ±0.2 ±0.1

Cam-6 95.2 95.8 95.3 96.2 96.2 96.8 96.6 96.7 97.0 97.0 97.4
±0.3 ±0.9 ±0.3 ±0.4 ±0.2 ±0.3 ±0.2 ±0.4 ±0.1 ±0.7 ±0.2

Cam-7 96.4 96.7 96.6 97.0 97.2 97.0 97.4 97.2 97.7 97.4 97.9
±0.4 ±0.4 ±0.3 ±0.3 ±0.2 ±0.3 ±0.1 ±0.2 ±0.1 ±0.1 ±0.1

Cam-8 95.1 96.4 96.0 96.7 96.7 97.0 97.1 96.9 97.7 97.6 98.1
±0.3 ±0.2 ±0.2 ±0.3 ±0.2 ±0.4 ±0.2 ±0.4 ±0.2 ±0.3 ±0.3

Cam-9 94.8 95.5 96.2 95.7 96.8 96.1 97.2 96.5 97.5 97.1 97.9
±0.6 ±0.6 ±0.3 ±0.4 ±0.4 ±0.4 ±0.2 ±0.3 ±0.1 ±0.4 ±0.1

Average 95.6 96.3 96.4 96.7 97.0 96.7 97.3 97.1 97.7 97.4 98.0
±1.5 ±1.7 ±1.2 ±1.2 ±1.2 ±1.2 ±1.2 ±1.0 ±0.9 ±1.1 ±0.8

Domain Adaptation from CNRPark-EXT to PKLoT Target Scenarios

Scen. Baseline 64 / 4936 128 / 4872 256 / 4744 512 / 4488 1024 / 3976
No Train Real w/Gen. Real w/Gen. Real w/Gen. Real w/Gen. Real w/Gen.

UFPR04 93.6 96.5 96.9 97.9 97.8 98.2 98.2 98.4 98.8 98.5 99.1
±2.1 ±2.6 ±0.6 ±0.7 ±0.2 ±0.6 ±0.2 ±0.3 ±0.1 ±0.2 ±0.1

UFPR05 91.3 95.0 97.1 97.2 98.3 97.6 98.7 98.2 99.0 98.9 99.3
±2.1 ±2.6 ±0.6 ±0.7 ±0.2 ±0.6 ±0.2 ±0.3 ±0.1 ±0.2 ±0.1

PUCPR 95.9 96.5 97.1 96.9 97.4 97.4 97.8 97.5 98.0 97.8 98.1
±1.1 ±0.9 ±0.3 ±0.8 ±0.2 ±0.2 ±0.1 ±0.4 ±0.1 ±0.2 ±0.1

Average 93.6 96.0 93.6 96.0 97.0 97.3 97.9 97.7 98.2 98.0 98.6
±2.3 ±0.9 ±2.3 ±0.9 ±0.1 ±0.5 ±0.5 ±0.4 ±0.4 ±0.5 ±0.5

Overall 95.1 96.2 96.8 96.8 97.0 97.1 97.3 97.4 97.7 97.6 97.9
±1.9 ±1.5 ±1.2 ±1.5 ±1.3 ±1.5 ±1.2 ±1.0 ±0.9 ±1.0 ±1.0

point, a plateau emerges, improving accuracy by only about 1 percentage points
from 128 to 1024 annotated samples.
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A minor improvement is observed in Cam-4 from CNRPark-EXT, with a
performance gain of only 0.5% over the baseline. This limited improvement is
due to the similarity in environmental setup between Cam-4 (Figure 3b) and
the PKLot dataset scenarios, which means the base model generalization leaves
little room for accuracy enhancement in this target scenario. In contrast, Cam-
1 (Figure 3a) faces significant challenges due to its unique perspective, which
is impacted by drastic angle differences and solar reflections, resulting in the
poorest classification performance regardless of the amount of real data used.

This analysis offers a fair comparison of the approach proposed by Hochuli
et al. [12], which employs MobileNetV3 within a target-free training framework,
reporting a 92% accuracy on the same deployment protocol, closely aligning with
our baseline rates.

Generative Domain Adaptation Scheme (RQ1/RQ2). Extending the
analysis to evaluate the utilization of synthetic samples in the proposed scheme
reveals that higher accuracies can be achieved with fewer annotated samples com-
pared to scenarios where only real samples are used. For example, the UFPR05
camera achieved 97% accuracy by synthesizing data from just 64 real samples,
marking a 2 percentage points improvement over using only real data and a
notable 5.8 percentage points increase compared to the baseline. A similar be-
havior is observed in Cam-1 from CNRPark-EXT, with a gain of approximately
1.8 percentage points.

Fig. 9: The generated samples from the fine-tuned DCGAN, trained on target
datasets ranging from 64 to 1,024 real images. The top rows display synthetic
samples from Camera 2 (CNRPark-EXT dataset), while the bottom two rows
feature samples from UFPR05 of the PKLot dataset.

On average, including the synthetic samples for the classification model do-
main adaptation always resulted in better accuracies when compared with the
model adapted using only real images, considering all amounts of annotated sam-
ples tested. These findings are supported by qualitative observations in Figure
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9, which show that the generative models yield reliable synthetic images for all
numbers of real images used for its domain adaptation.

Another perspective is illustrated in Figure 10. As observed, with a quarter
the amount of annotated samples, i.e., 256, the proposed approach can reach
competitive results compared with a system adapted using 1,024 real samples.
This trend is consistent across different amounts of real data, demonstrating
that synthetic data is feasible to learn representation, thus supporting fasting
annotation to swift deployment.

Fig. 10: Performance comparison between real images and the proposed real and
generated approach using: a) PKLot as test set, b) CNRPark-EXT as test set,
and c) the average across both datasets.

State-of-Art Comparison (RQ3). Table 3 compares our approach with
other state-of-the-art methods, considering the use of a cross-dataset protocol,
adaptation to the target scenario, and whether the amount of annotated target
data was limited or extensive.

Table 3: State-of-the-Art Comparison

Author Approach Cross
Dataset

Limited Target
Annot. Data

Target
Training Accuracy

Almeida et al. [2] LBP + SVM No No Yes ∼99%
Hochuli et al. [11] Custom CNN No 1000 Yes ∼97%

Nurullayev et al. [14] Custom CNN Yes No Yes ∼96%
Almeida et al. [1] Survey Yes No No ∼92%
Hochuli et al. [12] MobileNetV3 Yes No No ∼92%
Amato et al. [4] Custom CNN Yes No Yes ∼88%

Ours Custom GANs
and MobileNetV3 Yes 256

1024 Yes ∼97%
∼98%

Considering overall results, by using 256 annotated samples, our proposed
approach lags only by two percentage points compared to the traditional method
proposed by Almeida et al. [2], which relies on a substantial annotated dataset
(>100K samples per target). Compared to Hochuli et al. [11], the proposed
approach reached the same accuracy using only a quarter of the annotated data.
Additionally, when annotating 1,024 samples is feasible, accuracy improved from
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97% to 98%, which is a notable enhancement given the upper limit of 99%
achieved in Almeida et al. [2] with an impractical number of annotated samples.

It is also noteworthy that, while both Almeida et al. [2], and Hochuli et al. [11]
evaluate their methods only within the PKLot scenarios, our approach is more
realistic once it spans twelve different deployment scenarios using a cross-dataset
protocol well-established in the literature, as discussed in Section 4.2.

Computational Cost. One might argue that introducing Generative Adver-
sarial Networks (GANs) could significantly increase computational costs. While
this is partially true, using only 256 samples significantly reduces the training
burden. Moreover, the fine-tuning process can be automated and executed on an
AI server infrastructure, minimizing demands on edge devices, which perform
only the inference. Additionally, the training overhead is easier to handle than
annotating thousands of target samples, which is a contribution of this work in
enabling a fast deployment pipeline, requiring only a quarter of the annotated
data compared to the method outlined in [11,12].

Another key aspect is that inference requires no augmentation, meaning it is
performed solely by the classifier C, as shown in Figure 1. Consequently, no ad-
ditional computational overhead are introduced during inference time, keeping
costs comparable to state-of-the-art methods. The number of computed param-
eters for each forward pass during training and inference is provided in Table 4.
While the training process incurs an overhead of 35.4 million parameters due to
the inclusion of two generative models (Gocc and Gemp) for data augmentation
and domain adaptation, the inference stage retains only 3.6 million parameters,
which is consistent with the original MobileNet architecture. The result is a
lightweight model considering modern deep learning approaches.

Table 4: Training and Inference Costs Based on Computed Parameters

Model Gocc Gemp
Classifier C

(MobileNet + FCs) Total

Training Params 17.7 M 17.7 M 3.6 M 39 M
Inference Params - - 3.6 M

5 Conclusion

This work evaluated a deployment framework utilizing DCGANs to alleviate
the data annotation burden in parking management systems. We assessed the
framework through an established cross-dataset protocol in the literature that
simulates twelve real-world deployment scenarios.

The results presented in Section 4 offer significant insights. Our scheme’s
use of synthetic samples yields performance competitive with using real samples
only. Our approach achieves a 75% reduction in the manual annotation effort
compared to a state-of-the-art method [11], which represents a significant de-
crease in potential annotation costs. This contribution addresses our research
questions RQ1 and RQ2, demonstrating that synthetic data is a feasible so-
lution for adapting models to a target-domain parking lot and contributes to
time-efficient deployment.
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The computational cost associated with adapting GANs is alleviated by the
significant reduction to 256 annotated samples, being faster than annotating
a thousand samples to train large models. Conversely, the inference pipeline
does not incur additional computational costs, maintaining a comparable cost
to state-of-the-art methods.

On the other hand, in scenarios where manual effort and deployment time
are not constraints, traditional approaches (RQ3) trained on large datasets still
achieve better accuracy, reaching nearly 99%, which is a 1% improvement over
our proposed method when trained with 1,024 annotated samples. Even though
our proposal does not overcome the state-of-the-art accuracy rates, we highlight
that the amount of annotated data largely decreases, a significant aspect for
real-world Parking Lot Monitoring systems.

A critical question arises from the performance plateau observed despite in-
creasing the number of real samples from 64 to 1,024, as shown in Tables 3 and 4.
Figure 11 highlights that occlusions caused by traffic signs, trees, lighting posts,
or neighboring parked cars can lead to misclassifications when these conditions
are underrepresented in the training set. Future work should incorporate these
challenging cases into the target sample selection to improve sample diversity.

(a) (b) (c) (d) (e) (f)

Fig. 11: Misclassification: (a), (b), and (c) are empty spots misclassified as occu-
pied; (d), (e), and (f) are occupied spots misclassified as empty.
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