
Adaptive Interactive Process Drift Detection:
Detecting and Visualizing Process Drifts

Denise Maria Vecino Sato1[0000−0003−1117−7082], Sheila Cristiana de
Freitas1[0000−0003−3688−4066], Jefferson Koji Sato2[0009−0007−4297−6529], Jean

Paul Barddal2[0000−0001−9928−854X], and Edson Emilio
Scalabrin2[0000−0002−3918−1799]

1 Instituto Federal do Paraná Campus Curitiba, João Negrão, 1285, Curitiba, Brazil
{denise.sato,sheila.freitas}@ifpr.edu.br

2 Programa de Pós-Graduação em Informática (PPGIa) da Pontifícia Universidade
Católica do Paraná, Imaculada Conceição, 1155, Curitiba, Brazil
{jefferson.sato,jean.barddal,scalabrin}@ppgia.pucpr.br

Abstract. Process mining extracts insights about business processes
from information system data. However, traditional techniques often as-
sume static processes, which is unrealistic. Detecting process drifts is
crucial for accurate analysis, but existing methods lack consistent detec-
tion due to parameter sensitivity and a lack of a standard comparison
protocol. This paper introduces the Adaptive Interactive Process Drift
Detection (IPDD), which applies the ADWIN change detector to process
model quality metrics over time. Adaptive IPDD continuously assesses
fitness and precision metrics to detect drifts. Results show IPDD’s effec-
tiveness in synthetic datasets, comparable to Apromore in drift detection
and outperforming Apromore AWIN in Mean delay. We also highlight
that IPDD exhibits stable performance even with low window size val-
ues. We also evaluate a real-life event log representing an Italian com-
pany’s ticketing management process using Adaptive IPDD. The results
demonstrated that the drift analysis for real scenarios can be improved
by exploring the user interface of IPDD.

Keywords: Process Drift Detection · IPDD · Process Mining · ADWIN

1 Introduction

Process mining aims to obtain valuable knowledge from business processes based
on actual data collected from the information systems. The event data must con-
tain at least the performed activity (a step in the process), the case identifier
(to identify the process instance), and the timestamp, usually stored as an event
log. Each process execution for a specific case generates a trace in the event
log, representing the sequence of activities performed for the case in the ana-
lyzed business process. The most common tasks in process mining are discovery,
conformance, and enhancement. Using a discovery algorithm, we can obtain a
process model from the event log without any a priori information. In confor-
mance checking, we compare the event log with a process model (designed or

2 DMV. Sato et al.

discovered) to understand deviations in the behavior of the process executions.
Moreover, we can enhance the discovered model by including additional perspec-
tives from the event log, e.g., resources and performance [2].

A challenging trait of processes is their evolving nature, i.e., processes change
due to new regulations and dealing with urgent or other situations. Therefore,
detecting these changes in process behavior may raise relevant information for
the business analysts, e.g., when the process was changed, what differences are
in the distinct versions of the process, and what is the process’s current version.
The situation where the process changes while being analyzed is called concept
drift or process drift [2]. The authors in [5] define three challenges for dealing
with drifts: (i) change point detection – define the point in time where the change
occurred; (ii) change localization and characterization – localize a model change
and characterizing it, and; (iii) change process discovery – discover the changing
process by considering the previously identified information.

A process usually describes the control-flow perspective, i.e., the sequence
of activities allowed in the process. A process drift in this perspective might
represent a structural change in the model, e.g., adding or removing an activity
or changing two activities from a sequential to a parallel structure. Also, it may
represent a change in the behavior of the process, i.e., in the routing of cases [5].
For our approach, we only detected the structural changes in the process.

The changes in the processes can affect the current instances suddenly or
gradually, named as sudden or gradual drift in [5]. In a sudden drift, when a
new version of the process starts, it affects all the current instances; for example,
a pandemic situation will immediately change the healthcare protocols for all
patients. However, in a gradual drift, the new instances follow the new process,
and existing ones follow the former version, e.g., a new loan assessment rule
must be applied to the new customers. Furthermore, versions of the processes
can reappear, or the latest version can be implemented using small changes
over time, generating recurrent and incremental drifts as defined by [5]. The
process drifts may be analyzed in both offline and online fashions. An offline
analysis requires an event log as input and may use the drift information to
understand, design, or improve processes. On the other hand, online analyses
are more suitable when the changes need to be discovered in near real-time so
that such changes can also instigate online model adaptations.

This paper presents a new process drift detection tool for offline analysis
that addresses change point detection, localization, and change process discov-
ery for the sudden control-flow process drifts. The tool extends the Interactive
Process Drift Detection (IPDD) framework using an adaptive windowing ap-
proach named Adaptive IPDD. Besides the new approach, IPDD provides a web
interface fully available online for identifying and investigating drifts in event
logs3. IPDD’s source code and the synthetic datasets applied for validation are
also available, allowing massive drift analysis or more complex scenarios4.

3 https://visual-pro-drift.com.br/
4 https://github.com/denisesato/InteractiveProcessDriftDetectionFW - branch: up-

date_libraries

Adaptive IPDD: Detecting and Visualizing Process Drifts 3

2 Related Works

The survey in [16] described the current approaches for dealing with process
drifts, highlighting that most approaches focus on offline drift detection, usually
detecting the changing points for sudden drifts in the control-flow perspective.
However, drift detection still requires efforts towards different challenges, such
as the lack of a protocol for comparing results between tools and the impact of
the parameters on detection accuracy.

The Apromore ProDrift [10, 9, 13, 12] implements a statistically grounded
approach for detecting process drifts in event logs (runs approach) and streams
(events approach). Both approaches apply statistical hypothesis testing over the
distributions of runs or alpha relations (events approach) observed in adjacent
time windows. The plugin provides an adaptive approach for addressing the chal-
lenge of defining the window size and two methods for change characterization
and localization [12]. The main challenge in Apromore is to define a suitable ini-
tial window size. Furthermore, the user interface does not allow visualizing the
different versions of the process model and does not provide evaluation metrics.

The Visual Drift Detection (VDD) [17] detects sudden, gradual, recurring,
and incremental drifts and provides plots for visual analysis of the drift char-
acterization and localization. VDD applies a change point detection algorithm
(PELT) in a multivariate time series containing pre-defined measures calculated
over Declare constraints [1], derived from the event log. The user can combine
a clustering strategy to identify local behavior changes. The drift is indicated
as a constraint in the process map, and the user may have to determine the
change point by inspecting other visualizations, e.g., by checking each cluster’s
Drift Chart. VDD requires three parameters: window size, window step, and cut
threshold (for the clustering strategy). One drawback of this method is that the
detected change points are sensitive to the parameter configuration. When deal-
ing with synthetic datasets, neither Apromore ProDrift nor VDD reports the
evaluation metrics, e.g., F-score and Mean delay on the user interface.

The Fixed IPDD [14], based on the IPDD Framework, aims to overcome
the following issues: a not-so-user-friendly interface, the difficulty in comparing
results obtained by different parameter configurations, complex configuration,
and not commonly reporting the accuracy metrics. The Fixed IPDD applies a
fixed window approach that splits the event log based on the user-given window
parameter (w). Then, it mines a Directly-Follows Graph (DFG) for each window
and compares the adjacent DFGFs using two metrics: the similarity between the
nodes and edges. Whether one of the metrics reports a value less than one,
the drift is reported. The Fixed IPDD was validated using a public, synthetic
dataset containing 18 change patterns. The definition of the w parameter is still
challenging. However, the Fixed IPDD provides an interactive and easy user
interface, freeing the user to test different parameters quickly and helping the
process define the window parameter. The interface also provides the F-score
metric. Besides the contribution of the tool, their application in real scenarios
still faces challenges because of the dependency on the w parameter.

4 DMV. Sato et al.

The C2D2 [6] is a conformance-based approach for detecting sudden drifts
in the control-flow perspective. The authors analyze fitness and precision to
identify process model changes. The authors propose two new metrics with low
computational costs instead of using the fitness and precision metrics available in
process mining tools, e.g., PM4Py [3]. Based on the minimum window size, C2D2
adjusts a sliding window as input for discovering a model and calculating the
metrics. Then, it applies simple linear regression using the last n/2 conformance
measures and a statistical test over the regression slope: if the slope is 0, the
window is a drift candidate. Then, the algorithm checks if the reported drift
persists over time by analyzing the last traces.

Adaptive IPDD differs from C2D2 because it applies the ADWIN detec-
tor [4] to identify the drifts. Also, the experimental protocol applies only one
configuration for each compared tool. We propose an experimental protocol for
evaluating drift detection methods, including new synthetic datasets, setting up
experiments using a range of configuration parameters, selecting evaluation met-
rics, and reporting results. This protocol allows researchers to compare methods
more efficiently and ensure that comparisons are consistent and fair.

The Adaptive IPDD detects sudden drifts in the control-flow perspective by
evaluating the fitness and precision metrics over time and applying the ADWIN
detector [4]. We compare it to the Apromore ProDrift [10, 9, 13, 12], VDD [17]
and Fixed IPDD [14]. Furthermore, IPDD calculates and reports two evaluation
metrics (F-score and Mean delay) and provides a web interface for localizing and
visualizing the changing process over time. We plan to include more recent tools,
e.g., C2D2 [6] in the experimental protocol as future work.

3 Adaptive IPDD for Control-Flow Drifts

A discovered process model represents the behavior of the process obtained from
the event log. The quality of the model is characterized by four dimensions: fit-
ness, precision, generalization, and simplicity [2]. The fitness dimension measures
how much of the behavior in the log is allowed by the model. As the event log
represents a snapshot of the complete process, the generalization dimension in-
dicates that the model should generalize these sampled behaviors. However, the
model should not allow behavior utterly unrelated to the one observed in the
log, measured by the precision dimension. Finally, the simplicity dimension in-
dicates that the model should be as simple as possible. The available discovery
algorithms pursue a trade-off between these four quality dimensions [2].

After collecting a minimal number of traces, it is possible to apply a discovery
algorithm to obtain a process model and then evaluate some quality metrics,
e.g., fitness and precision. In a steady-state situation, i.e., the process does not
change, we can re-evaluate the same quality metrics after collecting more traces,
and they should stay stable. However, the traces represent a different behavior
after the change point in a process drift situation. Therefore, the values for the
same quality metrics evaluated using the previously discovered process model
and the new traces (after the drift) will change. Adaptive IPDD identifies when

Adaptive IPDD: Detecting and Visualizing Process Drifts 5

Detection phase

detection result

precision
fitnessprecision

fitness

Setup phase

Event logRead w traces

trace

Fitness or
precision
changed?

Save change point
and reset detectors

Yes
No

Start

w traces

drift detection
result

Discover
process model

Read next trace

return to setup phase
initial trace = change point

Process Model

ADWIN
Detectors

Input new metrics
and check for drifts

initial trace

Calculate fitness
and precision

w traces
model

precision
fitness

Calculate fitness
and precision

Fig. 1. Adaptive windowing strategy using conformance metrics and ADWIN.

the process changes by applying a change detector algorithm to the calculated
fitness and precision metrics.
The Adaptive IPDD extends the IPDD Framework architecture [14] for detect-
ing process drifts in the control-flow perspective using adaptive windows. The
motivation is to minimize the impact of the parameters on the detection accu-
racy by adapting the generated window sizes. We implemented a new approach
in the Windowing strategy module, described in Fig. 1, which cuts the windows
on the detected fitness or precision changes reported by the ADWIN change
detector [4]. We apply the ADWIN change detector because it has an upper
on false positives and negatives and is parameter assumption-free. We use the
implementation of the ADWIN change detector from the River library [11].

To execute the Adaptive IPDD, the user must set the window size w, which
indicates the number of traces the method should consider to discover the process
models (step Discover process model in Fig.1). We assume the quality metrics
stay stable if the process model does not change over time. Based on this as-
sumption, the new Windowing strategy contains two phases: setup and detection.
In the setup phase, the method discovers an initial process model, using the w
initial traces and the Inductive Miner implementation from PM4Py [3], a com-
monly used algorithm that discovers a sound, fitting, block-structured model
from event logs in a finite time [8]. Then, it calculates the fitness and precision
metrics5 for the w initial traces and provides the calculated values to the AD-
WIN detectors - one for each metric. The method reads the following trace in
the detection phase and calculates the fitness and precision metrics using the
initial model discovered (mined during the setup phase). Next, it updates the
ADWIN detectors with the new values and checks for a change. If a drift is
detected for any metric, the Adaptive IPDD saves the change point and returns
5 Calculated using token-replay (PM4Py) because they are less computationally ex-

pensive than the alignments-based metrics. Both metrics are multiplied by 100.

6 DMV. Sato et al.

to the setup phase, discovering a new model with the following w traces. If no
drift is detected, the method continues on the detection phase by reading the
following trace in the event log. The detected change points are used to split the
event log in windows, which are reported to the next step of the framework.

The Process discovery and Model-to-Model comparison steps stay with the
exact implementation as described in [14, 15]. In the Process discovery, IPDD
applies the DFG miner discovering process maps from the traces inside the pro-
vided windows using the PM4Py [3]. The adjacent derived process maps are
compared in the Model-to-Model comparison module using the Nodes (NS) and
Edges similarity (ES) metrics described in [14]. So, even if the ADWIN detector
identifies the change in the quality metrics, Adaptive IPDD verifies if the DFGs
of the adjacent derived windows are different in terms of nodes or edges. The user
can also configure it if he is only interested in changes related to the activities
of the process, for instance, by selecting only the node’s similarity metric.

We enhanced the Evaluation module proposed in [14], reviewing the F-score
and including the Mean delay metric. The F-score is the harmonic mean between
precision and recall, which relies on true positives (TP), false positives (FP), and
false negatives (FN). A TP is a detected drift related to a real drift (only the first
detected drift after a real one6); an FP is a detected drift unrelated to a real drift,
and an FN is a real drift not detected. The F-score results in a value between 0
and 1, measuring the accuracy of the drift detection. However, the F-score does
not measure if the reported change point is “close” to the actual change point.
The Mean delay complements the analysis by measuring the distance between
the detected and real change points.

Fig.2 shows a possible detection scenario using a synthetic log. In the x-
axis, we can see the traces ordered by timestamp (t1, t2, . . . , tn). The event log
contains three real drifts at t3, t6, and t20. The method also detects 3 drifts at
t12, t24, and t37. The F-score will consider a TP a drift detected after a real drift
and before the following known drift – t12 and t24. The distance (d) between the
detected drift (CPd) and the real one (CPr) is the number of traces between
them. In Fig.2, TP = 2, FP = 1, FN = 1, resulting in a F-score=0.67 and Mean
delay = 5, c.f. Equations 1 and 2.

Drift

t1 t2 t3 ... t5 t6

TP Drift

t20 ...

TP

t24t12...

Drift FP

t37...

FN

t7

dist = 6 dist= 4

time......

Fig. 2. Possible synthetic scenario with three real and three detected drifts.

6 The C2D2 paper [6] considered a TP a detected drift in a neighborhood of the actual
drift, even when the detected drift is before the actual one, which is different from
our proposal.

Adaptive IPDD: Detecting and Visualizing Process Drifts 7

F-score =
TP

TP + 1
2 (FP + FN)

(1)

Mean delay =

∑TP
i=0 d(CPd, CPr)

TP
(2)

The user visualizes the evolution of the process by checking the model for each
window. After selecting a window, the user can localize the change by checking
the similarity metrics information in the web interface7 [14, 15]. If the user exe-
cutes Adaptive IPDD via the command line or the massive interface8, they can
check the similarity information provided by the outputted files.

4 Experimental Setup

We validated Adaptive IPDD using two synthetic datasets (dataset 1 and dataset
2), respectively containing 68 and 52 event logs. Dataset 1 was adapted from the
publicly available dataset [10]9 - converted to the XES format. However, some
of the logs in the original dataset do not follow the specifications described in
the referenced paper, i.e., the total of traces. We simulated new event logs using
the same process models for these cases. The experiments do not include the
“fr” change pattern because it does not represent a structural change. The Petri
nets used for the simulator, the simulator source code, and the two datasets are
publicly available10. For each of the 17 change patterns, dataset 1 included 4
log sizes (2,500, 5,000, 7,500, and 10,000 traces). Each log contains nine drifts
injected after 10% of the size (250, 500, 750, and 10,000 traces), changing from
the base model to the altered model and vice-versa, simulating nine sudden
drifts. All the logs start from the base model and change to the modified.

Dataset 2 has the same change patterns as Dataset 1 and alternates between
the base and the modified model. However, it contains 3 log sizes, and the interval
between the drifts varies to avoid the bias of a fixed interval between drifts: 3,000
traces with 4 drifts (250; 750; 1,500; and 2,500), 4,500 traces with 7 drifts (250;
750; 1,500; 2,500; 3,250; 3,750; and 4000), and 8,000 traces with 13 drifts (250;
750; 1,500; 2,500; 3,250; 3,750; 4,000; 4,500; 5,250; 6,250; 7,000; 7,500; and 7,750).

For the Adaptive IPDD, we set the ADWIN’s δ = 0.002, the default value of
ADWIN implementation. We vary the window size (w) for all compared tools11
between 25 to 300 with a step of 25 traces. In the Apromore ProDrift AWIN, the
w value is applied to the initial window size. In VDD, we defined the window
step as w / 2 (integer division) and set the clustering option. As VDD does not
inform the trace of the drift in the Drift Map, we calculated the trace based on
the output information from the console and the w parameter.
7 https://visual-pro-drift.com.br/
8 https://github.com/denisesato/InteractiveProcessDriftDetectionFW
9 https://data.4tu.nl/datasets/0a003285-69d0-4957-9d9f-70f0820066d8

10 https://github.com/denisesato/SimulateLogsWithDrifts/
11 We do not include the results using a w = 25 because VDD takes too much time to

execute (e.g., more than 10 hours for the lo cb10k in an I5-9500 with 8GB RAM).

8 DMV. Sato et al.

5 Results and Discussion

5.1 Impact of the w Parameter on the Detection Accuracy

In Fig.3, we plot the average F-score for the 17 change patterns and the four
sizes for dataset 1 (2,500; 5,000; 7,500; 10,000 traces). We can observe that the
F-score drops after w = 200 for the logs containing 2,500 traces (2.5k). This
behavior is expected because these event logs contain drifts with an interval of
250 traces, and when setting w > 200, the window is too large to detect the
change. However, the accuracy of the approach is not affected by smaller w
values. For the other log sizes, containing drifts with intervals of 500, 750, and
1,000 traces, the F-score values maintain above 0.8 for all values of w.

Fig.3 also shows the Mean delay, which complements the F-score analysis by
indicating how “close” to the actual change point Adaptive IPDD detects the
drifts. We can observe in Fig.4 that for the event logs 5k, 7.5k, and 10k, the
Mean delay is below 60 traces. In log 2.5k, the Mean delay increases after the
w of 200, following the decrease of the F-score, i.e., as the detection accuracy
decreases, IPDD also reports drifts more distant than the actual change point.

25 75 125 175 225 275
Window size

0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

2.5k
5k
7.5k
10k

25 75 125 175 225 275
Window size

0

10

20

30

40

50

60

70

M
ea

n
de

la
y

2.5k
5k
7.5k
10k

Fig. 3. Dataset 1: Impact of the w parameter on metrics

In Dataset 2, all the logs include an interval between drifts of 250 traces, which
explains the drop of the F-score after a w value of 225 - Fig.4. The Mean delay
stays stable (close to 40 traces) before w 225, showing that the reported change
points are close to the real ones.

5.2 Investigating Detection Accuracy per Change Pattern

We investigate the accuracy per change pattern (Fig.5) to understand better why
the average F-score does not reach the value of one even in the “best” considered
parameter configuration. Adaptive IPDD never detects the pattern cd. This
pattern includes a control dependency in the baseline model by synchronizing
the Assess loan risk with two activities: Check credit history and Appraise
property. The fitness metric does not detect the change to the cd model because

Adaptive IPDD: Detecting and Visualizing Process Drifts 9

25 75 125 175 225 275
Window size

0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

3k
4.5k
8k

25 75 125 175 225 275
Window size

0

20

40

60

80

100

120

M
ea

n
de

la
y

3k
4.5k
8k

Fig. 4. Dataset 2: Impact of the w parameter on metrics

all possible traces in the cd process are also allowed by the base model, i.e., the
base model is more generic than cd. In this case, we expect the precision metric
to detect the change. However, because we evaluate precision using only the last
read trace, the decrease in the precision value is not enough to report the change.

cb cd cf cm cp IO
R

IR
O lp

OI
R

OR
I pl pm re RI

O

RO
I rp sw

Change pattern

0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

Adaptive IPDD Trace by Trace
F-score by change pattern - window 100 - adwin_delta0.002

(a) Dataset 1

cb cd cf cm cp IO
R

IR
O lp

OI
R

OR
I pl pm re RI

O

RO
I rp sw

Change pattern

0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

Adaptive IPDD Trace by Trace
F-score by change pattern - window 100 - adwin_delta0.002

(b) Dataset 2

Fig. 5. Investigating the average F-score per change pattern.

In the case of the cb pattern, the changed model includes a silent transition
to allow the process instances to skip the sequence of activities Prepare ac-
ceptance pack and Check if home insurance quote is requested. The
precision metric evaluates how much behavior the model allows and is not ob-
served in the log. However, when using one trace as the event log, the precision
value only changes if the new model is more complex, which is not valid for the
cb model. A drop in the fitness metric detects the first drift because traces with-
out the two activities decrease the metric’s value. However, the precision metric
cannot detect when the skip behavior is included. We believe the reason for not
detecting drifts in the cb and cd is related to the precision metric calculation,
which considers only the last trace read.

10 DMV. Sato et al.

5.3 Comparing Adaptive IPDD with Other Tools

Fig.6 reports the average F-score and Mean delay calculated over the different log
sizes. We observe that VDD performed the lowest F-score rates considering both
datasets. Adaptive IPDD and Apromore ProDrift achieve higher F-score results;
however, the visual analysis does not define if the differences are significant.
VDD reports the highest values for the Mean delay, indicating that VDD also
reports change points far from the real ones. Also, we observe that the Adaptive
IPDD performed a better Mean delay than Apromore ProDrift. The Fixed IPDD
reaches F-score 1 but is more sensitive to the w values.

25 75 125 175 225 275
Window size

0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

or
e

Adaptive IPDD
Fixed IPDD
ProDrift AWIN
ProDrift FWIN
VDD

25 75 125 175 225 275
Window size

0

50

100

150

200

250

300

350

M
ea

n
de

la
y

Adaptive IPDD
Fixed IPDD
ProDrift AWIN
ProDrift FWIN
VDD

Fig. 6. Metrics for both datasets.

We applied the Autorank library [7] with (α = 0.05) to verify whether the ob-
served differences are significant. We excluded w = 25 from the analysis because
of VDD’s results. The Friedmann test rejects the null hypothesis, indicating sig-
nificant differences between the F-score values and Mean delay. The Nemenyi
posthoc test analysis provides the differences between the tools (Fig.7).

12345

VDD
Fixed IPDD

Adaptive IPDD
ProDrift AWIN
ProDrift FWIN

CD

(a) F-score

12345

VDD
ProDrift AWIN
ProDrift FWIN

Fixed IPDD
Adaptive IPDD

CD

(b) Mean delay

Fig. 7. Nemenyi post-hoc analysis.

We can observe that VDD F-score results are significantly lower than Apro-
more ProDrift and Adaptive IPDD when considering both datasets. However,
Adaptive IPDD and Apromore ProDrift produced statistically similar results in
terms of accuracy, observed by the F-score analysis. Adaptive IPDD and Apro-
more ProDrift FWIN presented significantly better results in Mean delay than
Apromore ProDrift AWIN and VDD. Also, considering the Mean delay, Adaptive
IPDD performance is more stable with the different w configurations (Fig. 6).

Adaptive IPDD: Detecting and Visualizing Process Drifts 11

6 Evaluation of Adaptive IPDD on Real-Life Event Log

We further evaluated Adaptive IPDD on a public real-life event log representing
an Italian company’s ticketing management process12. The event log contains
4,580 cases and 14 activities from January 2010 to January 2014. The same log
was evaluated by [17, 12]. We applied the Adaptive IPDD using a w = 100 and
δ = 0.002, the best setting obtained in the previous experiments and the same
w = 100 applied in [17]. Table 1 reports all the detected drifts with the trace
index, showing a comparison with VDD and Apromore ProDrift. Based on this
comparison, we assume IPDD correctly identified the same two drifts (2 and 4).

Table 1. Comparison between detected drifts in real-life event log

Drift IPDD VDD ProDrift Considerations

1 1,055 1,000 - Considered outlier in [17]
2 1,695 1,750 1,716 Detected by all tools
3 2,207 - - Only IPDD identify this drift
4 3,903 3,750 3754 Detected by all tools

In a real-life situation, we do not know the ground truth. However, the Adaptive
IPDD characterizes each drift by showing the differences between the process
models. Based on the provided similarity information, we can verify the char-
acterization of the detected drifts 1 and 3, indicating differences between the
derived process models.

Drift 1 - trace 1,055
Nodes similarity: 0.875
Added Nodes: Resolve SW anomaly
Removed Nodes: Schedule intervention

Edges similarity: 0.813
Added Edges: Create SW anomaly → Create SW anomaly, Schedule interven-

tion → Resolve ticket, Take in charge ticket → Schedule intervention, Wait
→ Resolve ticket

Removed Edges - Assign seriousness → Wait, Closed → Closed

Drift 3 - trace 2,207
Nodes similarity: 0.769
Added Nodes - None
Removed Nodes - Create SW anomaly, Insert ticket, Resolve SW anomaly

Edges similarity: 0.759
Added Edges - Resolve ticket → Wait
Removed Edges - Closed → Closed, Create SW anomaly → Resolve SW anomaly,

Insert ticket → Assign seriousness, Resolve SW anomaly → Resolve ticket,
Take in charge ticket → Create SW anomaly, Take in charge ticket → Take
in charge ticket

12 Original CSV file was converted to XES using the Disco software

12 DMV. Sato et al.

Analyzing drift detection tools in real-life logs raises the challenge of evaluating
the results, as we do not know the ground truth. Sometimes, subtle changes
may be relevant to the process; other times, they can be considered outlier
behavior. Knowing the process and its context, the business analyst may use the
information provided to analyze the drifts. We believe that the versions of the
process offered by IPDD could help them investigate and validate the results.

7 Conclusion

We presented the Adaptive IPDD, a process drift detection tool. We extensively
evaluated IPDD using two synthetic datasets with 17 change patterns and dif-
ferent sizes and intervals between drifts. The datasets and the source code are
publicly available. The results are evaluated using F-score and Mean delay met-
rics, the former measuring the detections’ accuracy and the latter assessing if
the reported change points are near the real change points.

Adaptive IPDD overcomes VDD and Fixed IPDD considering F-score. We
conclude that the accuracy of the Adaptive IPDD approach is affected if the w set
is larger than the interval between drifts. Another promising result is that IPDD
overcomes VDD’s Mean delay in both datasets. Furthermore, Adaptive IPDD
provided a similar accuracy to Apromore ProDrift with a better Mean delay than
Apromore AWIN. Another important aspect is to reduce the detection sensitivity
related to the parameters. Adaptive IPDD is more robust to small w values,
decreasing accuracy with w larger than 200 traces. However, the Adaptive IPDD
cannot accurately detect patterns that apply a subtle change in the process (cb
and cd). To overcome this limitation, we plan to calculate the precision metric
for future work using a sliding window containing the last traces read.

A relevant trait of the experimental protocol is that Adaptive IPDD was val-
idated using synthetic datasets containing sudden drift in the control-flow per-
spective. Therefore, we plan to investigate Adaptive IPDD further with gradual
drifts. The application of Adaptive IPDD in the real-live event log demonstrated
that the visualization of the change can enhance the validation and investigation
of the drifts in real scenarios. We explored the different process versions to show
the detected drifts and their impact on the model. Finally, the two synthetic
datasets and the source code of Adaptive IPDD are publicly available.

Acknowledgments. Support and funding by CAPES Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 (grant
numbers 88887.509840/2020-00 and 88887.321450/2019-00).

Disclosure of Interests. The authors have no competing interests to declare relevant
to this article’s content.

References
1. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balanc-

ing between flexibility and support. Computer Science - Research and Development
23, 99–113 (2009)

Adaptive IPDD: Detecting and Visualizing Process Drifts 13

2. van der Aalst, W.M.P.: Process mining: Data science in action. Springer Berlin
Heidelberg (1 2016)

3. Berti, A., van Zelst, S., Schuster, D.: Pm4py: A process mining library for python.
Software Impacts 17, 100556 (2023)

4. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing.
In: Proceedings of the Seventh SIAM International Conference on Data Mining,
April 26-28, 2007, Minneapolis, Minnesota, USA. pp. 443–448. SIAM (2007)

5. Bose, R.P.J.C., van der Aalst, W.M.P., Zliobaite, I., Pechenizkiy, M.: Dealing
with concept drifts in process mining. IEEE Transactions on Neural Networks
and Learning Systems 25, 154–171 (1 2014)

6. Gallego-Fontenla, V., Vidal, J.C., Lama, M.: A conformance checking-based ap-
proach for sudden drift detection in business processes. IEEE Transactions on
Services Computing 16(01), 13–26 (jan 2023)

7. Herbold, S.: Autorank: A python package for automated ranking of classifiers.
Journal of Open Source Software 5(48), 2173 (2020)

8. Leemans, S.J., Fahland, D., Aalst, W.M.V.D.: Discovering block-structured process
models from event logs - a constructive approach. Lecture Notes in Computer
Science 7927 LNCS, 311–329 (2013)

9. Maaradji, A., Dumas, M., Rosa, M.L., Ostovar, A.: Detecting sudden and gradual
drifts in business processes from execution traces. IEEE Transactions on Knowledge
and Data Engineering 29, 2140–2154 (2017)

10. Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Fast and accurate business
process drift detection. In: Business Process Management. pp. 406–422. Springer
International Publishing, Cham (2015)

11. Montiel, J., Halford, M., Mastelini, S.M., Bolmier, G., Sourty, R., Vaysse, R.,
Zouitine, A., Gomes, H.M., Read, J., Abdessalem, T., Bifet, A.: River: machine
learning for streaming data in python. J. Mach. Learn. Res. 22(1) (jan 2021)

12. Ostovar, A., Leemans, S.J.J., Rosa, M.L.: Robust drift characterization from event
streams of business processes. ACM Transactions on Knowledge Discovery from
Data 14, 1–57 (3 2020)

13. Ostovar, A., Maaradji, A., La Rosa, M., ter Hofstede, A.H.M., van Dongen, B.F.V.:
Detecting drift from event streams of unpredictable business processes. In: Comyn-
Wattiau, I., Tanaka, K., Song, I.Y., Yamamoto, S., Saeki, M. (eds.) Conceptual
Modeling. pp. 330–346. Springer International Publishing, Cham (2016)

14. Sato, D.M.V., Barddal, J.P., Scalabrin, E.E.: Interactive process drift detec-
tion framework. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W.,
Tadeusiewicz, R., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing.
pp. 192–204. Springer International Publishing, Cham (2021)

15. Sato, D.M.V., Fontana, R.M., Barddal, J.P., Scalabrin, E.E.: Interactive process
drift detection: A framework for visual analysis of process drifts (extended ab-
stract). In: Proceedings of the ICPM Doctoral Consortium and Demo Track 2021
- 10th International Conference on Process Mining (ICPM 2021). pp. 41–42 (2021)

16. Sato, D.M.V., Freitas, S.C.D., Barddal, J.P., Scalabrin, E.E.: A survey on concept
drift in process mining. ACM Computing Surveys 54, 1–38 (2022)

17. Yeshchenko, A., Ciccio, C.D., Mendling, J., Polyvyanyy, A.: Visual drift detection
for sequence data analysis of business processes. IEEE Transactions on Visualiza-
tion and Computer Graphics p. 1 (2021)

