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Abstract: In this paper, we present an exploratory study conducted to evaluate the impact of temporal dependence 

modeling on time series forecasting with Data Stream Mining (DSM) techniques. DSM algorithms have been 

used successfully in many domains that exhibit continuous generation of non-stationary data. However, the 

use of DSM in time series is rare since they usually are univariate and exhibit strong temporal dependence. 

This is the main motivation for this work, such that this study mitigates such gap by presenting a univariate 

time series prediction method based on AdaGrad (a DSM algorithm), Auto.Arima (a statistical method) and 

features extracted from adjusted autocorrelation function (ACF) coefficients. The proposed method uses 

adjusted ACF features to convert the original series observations into multivariate data, executes the fitting 

process using the DSM and the statistical algorithm, and combines the AdaGrad's and Auto.Arima's forecasts 

to establish the final predictions. Experiments conducted with five datasets containing 141,558 time series 

resulted in up to 12.429% improvements in sMAPE (Symmetric Mean Average Percentage Error) error rates 

when compared to Auto.Arima. The results depict that combining DSM with ACF features and statistical time 

series methods is a suitable approach for univariate forecasting. 

1 INTRODUCTION 

To work with univariate time series, the information 

available for the prediction must be extracted from 

the series’ observations. A series can be summarized 

in a set of events observed in time at a constant 

frequency  (Makridakis,  1976). Statistical 

algorithms, such as regression algorithms, identify 

the temporal dependencies between the elements of a 

series. Yet, this is not a characteristic inherent to all 

data stream mining (DSM) algorithms that are 

multivariate in nature, i.e., to deal with univariate data 

they depend on attributes (artificial or not) to improve 

their learning mechanism.  

In time series, the temporal dependence between 

the series' observations can be identified by analyzing 

the correlation between the elements of the series, 

called autocorrelation. Autocorrelation expresses the 

correlation between an observation of the series and 
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its lagged values (Hyndman, 2014). This paper 

proposes the extraction of features from 

autocorrelation function (ACF) and the combination 

of DSM algorithms with univariate autoregressive 

models in multi-series scenarios. We show that using 

time dependency features improves AdaGrad's 

(Duchi et al., 2011) predictions, and their 

combination with Auto.Arima's (Box and Jenkins, 

1976) predictions yields lower error rates. 

The main motivation for this study is that the use 

of DSM algorithms in univariate time series 

prediction is rare, since time series usually present 

strong temporal dependence and they are constituted 

solely by their observed values. Although in a 

previous paper (Mochinski et al., 2020), DSM has 

been applied to time series forecasting, the impact of 

temporal dependency modeling in this context is 

unexplored so far. Thus, proposing a novel method 

focusing on this scenario is challenging.  In our 



approach, we opted for the use of adjusted ACF 

coefficients as new features for the univariate time 

series processing and we explore its applicability in 

an extensive experimentation process using series of 

different datasets. 

First, we discuss related works on time series 

forecasting and the use of temporal dependence in 

different scenarios. Next, we introduce our approach 

for the feature engineering process and the method 

used to evaluate it, which is later analyzed in the 

following section. Finally, we conclude this paper and 

list future works. 

2 RELATED WORK 

Authors in (Žliobaitė et al., 2015) cite that temporal 

dependence can also be called serial correlation or 

autocorrelation and explain that in data stream 

problems, an input set of multi-dimensional variables 

submitted to a DSM algorithm usually contains the 

information that makes it possible to process the data 

classification or prediction. They discuss that the past 

values of the target variable (usually the only 

information available for univariate data) are not 

enough for the predictive process. 

According to (Stojanova, 2012), there are four 

different types of autocorrelation: spatial, temporal, 

spatio-temporal and network (relational) 

autocorrelation. Stojanova explains that spatial 

autocorrelation is defined as the correlation among 

data values that considers their location proximity. 

Therefore, near observations are more correlated than 

distant ones. Temporal autocorrelation refers to the 

correlation of a time series with its own past and 

future values, and the author cites that it can be also 

called lagged correlation or serial correlation, as in 

(Žliobaitė et al., 2015). Spatio-temporal 

autocorrelation considers spatial and temporal 

correlation between observations, and network 

autocorrelation expresses the interdependence 

between values in different nodes of a network. 

In this paper we focus on temporal 

autocorrelation. Authors in (Stojanova, 2012) explain 

that temporal autocorrelation is the simplest form of 

autocorrelation as it focuses on a single dimension, 

i.e., time. Many fields study autocorrelation. Authors 

in (Nielsen et al., 2018) use autocorrelation to predict 

the wave-induced motion of a marine’s vessel by 

combining values of autocorrelation function and 

previous measurements. Despite the fact that the 

autocorrelation can express a stationary condition, the 

authors use a sample of an ACF (autocorrelation 

function) obtained at a recent time window to help in 

the prediction of a dynamic system, considering that 

the values are valid as they have not changed 

significantly. The authors cite in (Nielsen et al., 2018) 

that the ACF function can be seen as a direct 

measurement of the memory effect of a physical 

process.  

Authors in (Rodrigues and Gama, 2009) use 

autocorrelation coefficients in an electricity-load 

streams prediction study. They identify the 

correlation of historical inputs and use the most 

correlated values as input to a Kalman filter system 

used in combination with a multi-layered perceptron 

neural network to create new predictions across 

different horizons, i.e., one hour, one day, and one 

week ahead load forecasts.   

Authors in (Duong et al., 2018) used temporal 

dependencies to detect changes in streaming data. 

The authors introduce a model named Candidate 

Change Point Detector (CCPD), used to model high-

order temporal dependencies and compute the 

probabilities of finding change points in the stream 

using time dependency information from different 

points of the stream.  

According to (Hyndman, 2014), autocorrelation 

measures the linear relationship between lagged 

values of a time series. Figure 1 presents the original 

data for a time series and its ACF (autocorrelation) 

function plot. The authors in (Hyndman, 2014) 

explain that, in an ACF plot, the relationship rk 

expressed between two events yt and yt-k can be 

written as follows (1):  

 

 

(1) 

 

where T represents the length of the time series in 

analysis, and ȳ the mean of its observations. Authors 

also inform that trend and seasonality can also be 

evaluated from the analysis of the ACF plot: trend 

data tend to have positive values that slowly decrease 

as the lags increase; seasonal data, on the other hand, 

will present larger values for the autocorrelation 

coefficients at multiples of the seasonal frequency. 

According to (Werner and Ribeiro, 2003), ACF 

functions evaluate the stationarity of a series. In 

general, when analysing an ACF plot, it is important 

to observe the coefficients that present most 

significant values (statistically different from zero). 

As described previously in this paper, a time 

series is defined as a set of events observed in time at 

a constant frequency (Makridakis, 1976). In (Esling 

and Agon, 2012), authors complement that a time 

series can be defined as a set of contiguous instants of 



time, and that a series can be univariate or 

multivariate (when several series simultaneously 

cover several dimensions in the same time interval). 

In general, it can be said that a univariate series is one 

whose observations refer to a single variable, and a 

multivariate series is one that contains information 

relating to more than one variable. In this work, we 

present a prediction approach for multi-series 

scenarios where a set of univariate time series is 

available, regardless of whether these are inter-

correlated or not. Our approach is multivariate 

because, at first, it converts original univariate series 

observations into multivariate data using adjusted 

ACF coefficients as their additional features. 

Despite the exciting results of classical statistical 

methods for time series forecasting, it is increasingly 

common to find machine learning alternatives, or 

even their combination. Modern techniques like data 

stream mining (DSM) algorithms deal with big data 

scenarios or situations in which it is inconceivable, or 

at least difficult, to have access to the entire dataset at 

once. The authors in (Bontempi et al., 2013) say that, 

in the last two decades, machine learning models have 

established themselves as serious competitors to 

classical statistical models. This study, in turn, 

proposes the combined use of a classical statistical 

method and a DSM algorithm to benefit from their 

characteristics. 

The authors in (Bifet et al., 2018) enumerate, 

among other characteristics, that a data stream mining 

algorithm must process one instance at a time using a 

limited amount of memory and time for processing, 

and that it must be able to give a response at any time, 

detecting and adapting a model to temporal changes. 

Modern applications demand faster responses and 

innovative techniques that adapt to the increasingly 

overloaded world of information in which we live. 

According to (Gama et al., 2014), learning should 

take place in an incremental and adaptive fashion, 

thus allowing the reaction to variations in data 

behaviour (concept drifts) and the data prediction in 

an increasingly precise way. It is essential that the 

algorithms used in time series analysis can identify 

variations of data behaviour with greater accuracy so 

that the forecasting process is more precise. Thus, it 

is justifiable to seek to apply data stream mining 

algorithms, which allow gradual, incremental 

processing of the observations, and which are highly 

adaptive in time series forecasting. In this work, 

statistical and DSM algorithms forecasts are 

combined to improve their individual results. 

AdaGrad (Duchi et al., 2011) is an example of an 

adaptive data stream mining algorithm, capable of 

dealing with very sparse and non-sparse data.  

 
Figure 1: M1 series (M4 dataset). Original data and ACF 

plot. Dotted lines in the ACF plot indicate the confidence 

interval. We may consider the values inside this interval 

as not statistically significant. 

 

According to the authors in (Duchi et al., 2011), 

AdaGrad generalizes the online learning paradigm of 

specializing an algorithm to fit a particular dataset, 

and automatically adjusts the learning rates for online 

learning and stochastic gradient descent on a per-

feature basis. 

Regarding statistical algorithms for time series 

forecasting, this work focuses on the use of 

Auto.Arima (Hyndman and Khandakar, 2008; 

Hyndman et al., 2019), an automated implementation 

of ARIMA (Box and Jenkins, 1976), a classic 

statistical algorithm also known as a Box-Jenkins 

model. In a problem with multiple time series, to 

avoid demanding an individual analysis of each 

series, a solution that automates the selection of the 

best ARIMA parameters can certainly be of great help 

in the process. Therefore, we seek to predict multiple 

time series without the need for a meticulous analysis 

of each series, thus rendering the process user-

independent. 

The combined use of different algorithms is not a 

novelty in time series forecasting. In competitions 

like M4 (Makridakis et al., 2018a), from the 17 most 

accurate results, 12 used combinations and one used 

a hybrid approach integrating statistical and machine 

learning methods.  

Authors in (Mochinski et al., 2020) also explore 

using a hybrid approach combining DSM and 

statistical algorithms in univariate time series 

prediction. The proposed method executes the fitting 



process using a DSM algorithm and Auto.Arima, and 

selects the best algorithm for the series' forecasting 

based on the calculated fitting error. We think that 

using a different technique can improve the feature 

engineering process used by that study. Based on this 

assumption, we decided to extend it by using the 

temporal dependence information present on each 

series for the feature engineering. For this, we 

decided to explore the Temporally Augmented 

concept (presented in (Žliobaitė et al., 2015) for 

classification problems) and the use of ACF 

coefficients as the basic information for the creation 

of additional features for time series processing. To 

validate our proposal, we applied it to a more diverse 

set of time series, resulting in more extensive 

experimentation than that observed in (Mochinski et 

al., 2020). For data stream mining algorithms, an 

additional issue being considered is their dependence 

on multivariate input vectors capable of helping their 

learning process. This is handled in our proposal by 

introducing time dependence features as their input. 

3 THE AA-ACF METHOD FOR 

TIME SERIES FORECASTING 

In this section, we describe the Auto.Arima and 

AdaGrad Autocorrelation Coefficient Function (AA-

ACF) method, which is the result from an exploratory 

study conducted to evaluate the combined use of 

statistical and DSM methods for improved univariate 

time series forecasting.  

The proposed method includes the following 

phases: pre-processing, training, algorithm selection 

and forecasting. In the pre-processing phase, the time 

series data is loaded, and the feature engineering 

process is done. In the training phase, Auto.Arima 

and AdaGrad are trained and assessed w.r.t. training 

error. The algorithm selection phase picks the 

algorithm that presented the lowest training error, and 

finally, in the forecasting phase the predictions for the 

time series are calculated using the algorithm selected 

to each series. Our implementation was created using 

the R language, which also controls the execution of 

the MOA framework (Bifet et al., 2010), where 

AdaGrad training and forecasting are done. Details 

about each step of the proposal are given below. 

 

3.1 Pre-processing 

 

1  The use of 288 observations (W288) and 18 lags are explained in detail in 

the "AA-ACF hyperparameters" subsection.  

To introduce the concept of temporal dependence on 

the series attributes, coefficients obtained with the 

autocorrelation function (ACF) are extracted from the 

series and used in the creation of new features. 

Considering the nature of DSM algorithms, which 

do not analyze all data in batch mode since they work 

with the most recent instances of the series, the 

concept of a sliding window was used. Also, the use 

of this technique allows for the adjustment of the 

autocorrelation coefficients during the entire feature 

engineering process, adapting them to the most recent 

aspect of the series events. 

In the feature engineering process, the additional 

attributes associated with each observation in the 

series are created based on previous events (values 

from previous observations in the series), using 

sliding windows of up to 288 observations (referred 

in this study as W288). The window data is used to 

calculate ACF coefficients that express the 

relationship between an observation and the events 

that precede it.  

The coefficients generated for the first 18 lags1  

are considered as the most relevant for the purpose of 

this approach in spite of their values, i.e., positive and 

negative values are considered. The rationale behind 

using time dependency attributes in the feature 

engineering process was based on the study of 

(Žliobaitė et al., 2015), which proposed the use of 

temporal autocorrelation in data stream classification 

problems. For classification, it suggests two 

approaches: the Temporal Correction classifier in 

which the predictive model is adapted to support the 

concept, and the Temporally Augmented classifier, 

which proposes the feature engineering process with 

the advantage of not requiring modifications to the 

classifier structure and, thus, allowing the use of any 

algorithm, without the need to recode it.  

In this paper, the Temporally Augmented concept 

is adapted for regression problems of univariate 

series. The goal is to create features that represent the 

dependency between the input features and past 

observations of each series, using them as input for 

the DSM algorithms predictions. Figure 2 presents 

the approach used in this study to create features 

based on ACF coefficients values. The diagram 

presents the creation of features for a specific time 

series, and Algorithm 1 explains the process in more 

detail. First, the events are read using a sliding 

window of up to 288 registers (W288). Second, ACF 

coefficients are calculated considering the events 

selected in W288.  



 
Figure 2: Feature Engineering approach diagram, based 

on ACF Coefficients. 

 

Next, the first 18 ACF coefficients are normalized 

for the interval from 1 to 2 (to avoid negative or zero 

values) and then multiplied for the last 18 events from 

the sliding window (the most recent ones) resulting in 

the ACF features (or adjusted autocorrelation 

coefficients) that are added to the series. Additionally, 

a feature is created based on a linear regression model 

considering the W288 events. This last attribute was 

created to help DSM algorithms in one-step-ahead 

forecasts. It was considered necessary because of the 

characteristics of the test-then-train model used by 

DSM algorithms. Therefore, suggesting a more 

assertive value for the next Events attribute would 

help to keep DSM model calibrated, with lower error 

on the prequential process. 

Algorithm 1:  The Feature Engineering Approach. 

1:  for each series in the dataset do 

2:       S ← series observations  

          // loop through each observation in the series S 

          // to compute its new additional features  

3:      for N = 1 to length(S) do 

             // sliding-window data (time series data type): 

             // select up to 288 previous events for the current   

             //N record in S  

4:        W288 ← S[N-288-1 .. N-1] 

             // calculate ACF coefficients for the sliding window  

5:        ACF_W288 ← forecast::Acf(W288, plot=FALSE) 

             // normalize the first 18 ACF coefficients (lags 1 to 18)  

             // for the range 1 to 2 to avoid negative or zero values  

6:        ACF_W288_norm ←  

                       BBmisc::normalize(ACF_W288$acf[1:18],  

                                         method="range", range = c(1,2)) 

             // select the last 18 sliding window data in reverse order  

7:        W288_18r ← reverse(tail(W288,18)) 

             // multiplies normalized ACF by the last 18 values from  

             // the sliding window to compute the new 18 additional  

             // features based on ACF coefficients 

8:        ACF_Lag ← ACF_W288_norm * W288_18r 

             // create additional feature based on a linear regression  

             // one-step-ahead forecast considering trend and  

             // seasonality 

9:         fit ← forecast::tslm(W288 ~ trend + season) 

10:       fcTSLM_h1 ← forecast(fit, h=1)$mean 

             // new ACF_Lag1 to ACF_Lag18 and fcTSLM_h1  

             // features are ready to be aggregated to the original  

             // series data 

11:       S[N] ← bind(S[N], ACF_Lag1..ACF_Lag18,  

                                   fcTSLM_h1)  

12:    end for 

          // series S and its new features are stored in ARFF file 

13:    write series S to ARFF       

14:end for 

 
 

The feature engineering process creates ARFF 

(Attribute-Relation File Format) files with the 

following structure:  

• Events (target, numeric): series observation 

value. 

• ACF_Lag1 to ACF_Lag18 (numeric): 

features calculated based on ACF 

coefficients for W288 window data, 

normalized for 1 to 2 range, multiplied by 

the last 18 values from the sliding window.   

• fcTSLM_h1 (numeric): one-step-ahead 

forecast calculated by a regression model for 

W288 window (function forecast::tslm 

(Hyndman et al., 2019) available for the R 

language).  

 



 

AA-ACF hyperparameters: 

 

To establish the use of 18 lagged values and 

coefficients as well as to define the size of the 288-

event sliding window, previous experiments were 

done using windows from 72 to 288 events, and 

selecting 2, 4, 6, 12, 18, 24, 36, 48 and 60 ACF 

coefficients. The final values were selected based on 

the combination that presented best results, i.e., lower 

sMAPE (Armstrong, 1985) values in forecasting 

tests. Experiments were done using time series from 

M4 dataset, selecting up to 200 series from each 

periodicity (daily, hourly, monthly, quarterly, 

weekly, and yearly) of that dataset, evaluating the 

parameters in up to 1200 distinct series. The trend line 

presented in Figure 3 shows that as the number of 

ACF coefficients increases, lower sMAPE values are 

reached considering 18 coefficients.  

In Figure 4 the trend line shows that lower 

sMAPE values were reached using 288-observation 

sliding windows.  

Naturally, the hyperparameters were set 

according to the results obtained from a sample of a 

specific dataset, and thus, we further analyse the 

impact of this choice in a larger testbed containing 

more datasets in Section 5 Results. 

3.2 Training 

In this step, the Auto.Arima training is done using the 

function forecast::auto.arima (Hyndman and 

Khandakar, 2008; Hyndman et al., 2019). For model 

fitting with Auto.Arima, no additional features are 

required, since only the original time series are used. 

Next, the training error is calculated according to 

sMAPE, depicted in (2) (cf. Section 4.3 Evaluation 

Protocol). AA-ACF calculates the fitting error based 

on the last n series observations (or n records, NRecs) 

as depicted in Figure 5. The parameter n coincides 

with the prediction horizon (h) established for the 

series, based on its periodicity.  

For the experiments with AA-ACF the following 

prediction horizons were established: daily series, 

h=14; hourly series, h=48; monthly series, h=18; 

quarterly series, h=8; weekly series, h=13; annual 

series, h=6. 

Next, ARFF files prepared with ACF features (see 

Algorithm 1) are processed with AdaGrad using the 

prequential mode in MOA, and the training error 

(sMAPE) is calculated based on the last n records of 

the series. 

3.3 Algorithm Selection 

 
Figure 3: Results of the experiments to select the number 

of ACF coefficients for the AA-ACF method. Trend line 

shows lower average sMAPE value for 18 ACF 

coefficients. 
 

 
Figure 4: Results of the experiments to select the size of 

the sliding-window for the AA-ACF method. Trend line 

shows lower average sMAPE value for a 288-

observation sliding-window. 
 

Algorithm selection is performed based on the 

training error (sMAPE) obtained for each algorithm 

(Auto.Arima and AdaGrad) in the training phase. The 

algorithm that presented the smallest error is selected 

for each series forecasting. 

3.4 Forecasting 

AA-ACF implements three strategies to forecast a 

series according to the option selected by the user. 

The first strategy is called SelectionNRecs (or simply 

NRecs) and consists of selecting the algorithm based 

on the training error computed on the last n records of 

the series and calculating the series forecasts using 

the algorithm that presented smallest training error.  

The second strategy (default) is called 

SelectionAndFusion (or Fusion), which also consists 

of selecting the algorithm given the error calculated 

during the training phase. Next, if the algorithm 

selected for the series is Auto.Arima, forecasting 

values are calculated using this algorithm. Else, if the 

selected algorithm is AdaGrad, the forecasts 

calculated using AdaGrad will be combined with the  



 
Figure 5: Original data from the N1738 time series (M3 

dataset) and values obtained in the training and 

forecasting by AdaGrad and Auto.Arima (h=forecasting 

horizon). “40%” and “n” indicate portions considered in 

the fitting error calculation. 
 

Auto.Arima forecasts using a fusion process based on 

the average of the forecasts of both methods.  

The third strategy is called Selection40p (or 40p). 

It is similar to the NRecs strategy, however, instead 

of calculating the training error based on the last n 

records of the series, the last 40% of the records are 

considered. 

For the Auto.Arima forecasting, the function 

forecast::auto.arima is used to establish the fitting 

model, and the function forecast::forecast to calculate 

the h forecasts (h=prediction horizon) for the series 

being analysed. For AdaGrad forecasting, ARFF files 

prepared with ACF features (see Algorithm 1) are 

used. A program in R is used to control the iterative 

process of the execution of the streamer and get its 

one-step-ahead forecasts. After obtaining the forecast 

for one horizon, the ACF feature engineering process 

is considered to prepare a file for the next prediction, 

until the forecasting horizon (h) is reached. The 

process is repeated from 6 to 48 times for each series 

according to its periodicity. 

4 EXPERIMENT 

The experiment carried out in this study aimed at 

validating the hypothesis that a DSM algorithm used 

in combination with a statistical method presents 

competitive results with those obtained by a classic 

statistical method. Besides the combined use of 

algorithms, the evaluated method proposes the use of 

additional features that are able to represent temporal 

dependency characteristics, capable of expressing or 

translating the temporal profile of the series as input 

to the learning process. 

It is important to say that this study is part of an 

extensive work that evaluated in previous phases the 

use of different DSM algorithms available in MOA, 

and selected AdaGrad based on its results. Regarding 

statistical algorithms, ARIMA was chosen as a 

classical method applicable to a wide range of series 

prediction problems, and selected among other 

statistical methods based on its results in earlier 

studies for the feature engineering process that 

evaluated its use and other statistical methods 

available as functions of the forecast package 

(Hyndman et al., 2019) available for R. 

The forecast::auto.arima function was selected as 

the statistical algorithm used in this study given its 

ability to automatically select its parameters and 

because of its use in metalearning methods like those 

proposed in (Montero-Manso et al., 2018a; Montero-

Manso et al., 2018b), that use Auto.Arima combined 

with a set of different algorithms. 

This section is organized with the following 

subsections: Algorithms and Tools, Datasets, and 

Evaluation Protocol. 

4.1 Algorithms and Tools 

To perform the experiment, the following algorithms 

and tools were mainly considered: 

 

1) Statistical algorithm: forecast::auto.arima 

(Hyndman and Khandakar, 2008).  

2)      Data stream mining algorithm: AdaGrad (Duchi 

et al., 2011).  Hyperparameters: learningRate=0.01, 

epsilon=1e-8, lambdaRegularization=0, 

lossFunction=HINGE. 

3) Tools: 

a) MOA (Massive Online Analysis): a 

framework for data stream mining (Bifet et al., 2010).   

b) R language (R Core Team, 2018) and RStudio 

(RStudio Team, 2020): programming language R and 

IDE for R programming. 

c) Main R packages: Metrics (Hamner and 

Frasco, 2018), forecast (Hyndman and Khandakar, 

2008), and BBmisc (Bischl et al., 2017). 

 

4.2 Datasets 

The experiments were performed using 141,558 

univariate time series available in 5 different datasets 

described as follows: 

Dataset 1 (M3 competition, 3003 time series): 

The M3 dataset is composed of 3003 time series from 

the M3 competition (Makridakis and Hibon, 2000). 

The dataset includes series with monthly, yearly, 

quarterly, and other periodicities, with data extracted 

from different domains, like Macroeconomics, 



Microeconomics, Demographic data among others. 

In this dataset the series are relatively short, with 

lengths ranging from 14 to 126 events. Therefore, it 

is a dataset that can help to evaluate the behaviour of 

the AA-ACF method in short series. 

Dataset 2 (M4 competition, 100,000 time 

series): The M4 dataset has a set of 100,000 

differently ranged time series (13 to 9,919 

observations) used in the M4 competition 

(Makridakis et al., 2018a).  In the M4 dataset, the 

series represent information from different domains 

such as Microeconomic, Macroeconomic, 

Demography data, among others, making it possible 

to verify the applicability of the proposed method for 

data of different domains, with different profiles, 

some showing a higher level of data variation, while 

others may have a linear trend, without major 

variations in terms of seasonality and trend.  

Dataset 3 (M5 competition, 30,490 time series): 

The M5 dataset contains time series data from 

product sales of a large supermarket chain 

(Makridakis et al., 2020). In the M5 competition, 

product sales data per store, in a total of 30,490 time 

series, are consolidated hierarchically, grouping the 

predictions by product, category, store, and state, 

until completing the total of 42,840 series originally 

established for the competition. Thus, for this study, 

the 30,490 series that refer to the lowest level of the 

hierarchy and that represent the total sales of a 

product aggregated for a given store were considered. 

Regarding the series, for each product/store up to 

1941 observations regarding the registered sales were 

available. For each series, the 14 final records were 

reserved for testing, resulting in 1927 observations 

for training. Although the original data includes 

information about the stores, sales prices, promotions, 

calendar and special dates, only basic information, 

like date and observations of the series were 

considered. The dataset includes daily series. 

Additionally, intermittent data can be found in the 

series due to absence of product sales in specific 

dates.  

Dataset 4 (COVID-19 data subset, 7,465 daily 

univariate time series): The COVID-19 Data 

Repository by the Center for Systems Science and 

Engineering (CSSE) at Johns Hopkins University 

(Dong et al., 2020) (available at 

https://github.com/CSSEGISandData/COVID-19) is 

an up-to-date information on the novel coronavirus 

global spread. In the following experiments, the data 

available regarding confirmed cases, deaths and 

recovered cases in multiple cities around the globe 

were considered. The files were retrieved on 

September 16th, 2020, with daily accumulated data 

for the period from January 22nd, 2020 to September 

15th, 2020, with information regarding spanning 224 

observations on 3,261 US and 266 non-US locations.  

Dataset 5 (TSDL, Time Series Data Library, 

subset with 600 time series): The TSDL dataset 

(Hyndman and Yang, 2020) is composed by 648 time 

series with different frequencies and information 

collected from different domains like Agriculture, 

Crime, Demography, Finance, Health, Industry, 

Labor market, Macroeconomic, Meteorology, 

Microeconomic, Production, Sales, Transport, among 

other areas. For this experiment, univariate series 

with the frequencies 1, 4 and 12 were selected, 

considering only the 600 series with more than 20 

observations. 

4.3 Evaluation Protocol 

sMAPE, the acronym for Symmetric Mean Average 

Percentage Error, also known as symmetric MAPE, is 

the primary metric used in this work and it was 

earliest presented in (Armstrong, 1985). It was also 

used by M4 and M3 competitions among other 

metrics, so this influenced our choice for the use of it 

in our experiments.  

Equation (2) depicts the sMAPE computation 

(Makridakis et al., 2018b), where k  is the forecasting 

horizon, Yt   the actual values, and Ŷt  the forecasts for 

a specific time t. 

 

 

(2) 

 

As baseline, the prediction error (sMAPE) values 

calculated by Auto.Arima were used. 

5 RESULTS 

Table 1 presents the results obtained using the 

proposed featuring engineering method and the 

algorithms in the prediction of the series of each 

dataset (1 to 5).  

The gain ratio values, GR (%), presented in the 

results are calculated as expressed in (3), where 

sMAPEDSM is the forecast error calculated for the AA-

ACF strategy used, and sMAPEauto.arima means the 

forecast error calculated for the baseline algorithm.  

 

 

(3) 

 

 



Table 1: Gain (%) obtained by AA-ACF strategies in 

comparison to Auto.Arima (baseline). 
Dataset h auto.arima 

sMAPE 

AdaGrad 

Gain (%) 

NRecs 40p Fusion 

M3 Monthly 18 0.149 -4.476% 3.339% 3.397% 3.875% 

M3 Yearly 6 0.171 -87.949% -0.991% -0.732% -0.309% 

M3 Quarterly 8 0.100 -56.349% -0.437% 0.397% 0.380% 

M3 Other 8 0.045 -20.850% 2.711% -0.091% 2.078% 

M4 Daily 14 0.032 -27.518% -0.449% 0.116% 1.288% 

M4 Hourly 48 0.141 -93.932% -2.803% -0.931% -1.083% 

M4 Monthly 18 0.135 -9.602% -0.438% 0.146% 0.499% 

M4 Quarterly 8 0.104 -18.872% -1.179% -0.151% 0.384% 

M4 Weekly 13 0.086 -33.158% -10.734% -0.357% -3.462% 

M4 Yearly 6 0.152 -41.241% -0.730% -0.101% 0.449% 

M5 Daily 14 1.369 10.164% 11.874% 11.212% -0.461% 

COVID-19 

Confirmed 

US 

14 0.059 -36.991% 5.206% 4.959% -0.088% 

COVID-19 

Deaths US 

14 0.112 -13.173% 6.419% 5.780% 0.079% 

COVID-19 

Confirmed 

Global 

14 0.028 -142.914% 0.107% -1.908% 0.147% 

COVID-19 

Deaths 

Global 

14 0.037 -78.619% -0.900% 0.425% -0.101% 

COVID-19 

Recovered 

Global 

14 0.046 -80.198% 2.479% 7.736% 1.363% 

TSDL Freq 1 6 0.341 -7.706% 1.077% 2.313% 5.528% 

TSDL Freq 4 8 0.220 -26.330% -3.892% -3.268% 12.429% 

TSDL Freq 

12 

18 0.440 -3.195% 5.823% 6.095% 8.307% 

Average Gain: -40.68% 0.87% 1.84% 1.65% 

 

Positive gain ratio values (%) highlighted in Table  

1 indicate that the method reached a better prediction 

than the baseline algorithm (Auto.Arima) 

individually. It is possible to notice that the 

combination of Auto.Arima and AdaGrad improves 

the individual results of Auto.Arima in different 

scenarios suggesting the importance of future studies 

to improve the combined technique. For the three of 

AA-ACF strategies presented in Table 1,  Fusion was 

capable of presenting positive gain in most of the 

subsets analysed.  

In additional analyses, considering the Fusion 

strategy, calculating the gain values for prediction 

horizons equal 1 and 6 forecasts (h=1 and h=6) for 

each series in the datasets, the method AA-ACF also 

presented positive gains (Table 2). 

6 DISCUSSION 

Considering the gain values obtained by AA-ACF 

method (Table 1), it is possible to note that the 

combined use of AdaGrad and Auto.Arima 

algorithms can reach positive gain compared to the 

baseline (Auto.Arima) in most of the datasets/subsets  

Table 2: Positive Gain (%) values obtained obtained by the 

AA-ACF Method (using the Fusion strategy). 
h (prediction horizon) #Subsets with 

positive gain 

Min.  Max.  Average 

h=Original (6 to 48) 13 0.079% 12.429% 1.650% 

h=6 13 0.120% 15.110% 1.880% 

h=1 13 0.214% 32.726% 2.081% 

 

used in the experiment. The Fusion strategy could 

reach positive gains in 13 of the 19 subsets evaluated. 

AdaGrad used individually only presented 

positive gains in one dataset (M5 daily) suggesting 

that, in this case, it was possible to reach better 

forecasting results than the ones calculated by 

Auto.Arima. Despite the individual AdaGrad results, 

we must highlight that this DSM algorithm when 

combined with Auto.Arima improved the results and 

helped to reach positive gains for all the 3 evaluated 

AA-ACF strategies. This can be explained by the fact 

that the Selection process was capable of 

recommending the best algorithm to each series in 

quantity enough to get positive gains that surpassed 

the results presented by Auto.Arima. And this could 

only be achieved because AdaGrad used individually 

was also capable of getting better forecast results than 

Auto.Arima in an expressive amount of series. This 

suggests that the adaptive behavior of the gradient-

descent-based algorithm AdaGrad benefits from the 

features created based on time series’ dependencies.  

Comparing the results from the AA-ACF fusion 

strategy (Table 2), it is possible to note that the 

average gain is positive for all the evaluated horizons. 

The original predictions were calculated for the 

horizons from 6 to 48 forecasts, according to the 

periodicity of each dataset/subset. Moreover, positive 

results are observed even for short-term forecasts 

(h=6 and h=1). Considering the original horizon 

forecasts, despite the existence of negative gains in 

some subsets, the positive gain equals 12.429% for 

the TSDL Frequency 4 subset deserves to be 

highlighted.  

The results suggest that there is a potential to be 

explored in the feature engineering process based on 

ACF coefficients as it denotes a capability of 

translating temporal dependency information to the 

DSM algorithm used in the experiment. 

7 CONCLUSION 

In this paper, we demonstrated that the use of adjusted 

autocorrelation (ACF) values helps DSM learners in 

the prediction process. Most of the works based on 

ACF coefficients use these values as the basis to 



select lagged values that are most correlated to recent 

events in a time series. In this study, however, ACF 

coefficients were used to introduce time dependency 

characteristics as input vectors of AdaGrad in our 

method AA-ACF that combines Auto.Arima and 

AdaGrad in the time series forecasting.  

The results obtained using the method suggest that 

positive gains can be observed in different datasets, 

and for different forecasting horizons. For the 19 

subsets evaluated, the average gain varied from 

1.65% (for 6 to 48 forecasts) to 2.081% (when 

considered forecasting horizon equals 1). The gain 

values calculated for TSDL datasets (5.528% for 

frequency 1 series, 12.429% for frequency 4 series, 

and 8.307% for frequency 12 series) were expressive. 

Besides that, the results obtained by the processing of 

the 1428 series of M3 monthly dataset (3.875%) also 

can be noted. 

The combined use of different methods is not a 

novelty. However, a combination of a statistical 

algorithm and DSM methods is not evident in the 

literature, especially for the prediction of series 

relatively short in length.  

Finally, we highlight that the experiments were 

performed using time series with fixed length and 

using a batch mode processing. Therefore, the support 

to data streams is envisioned in future versions, as 

well as tests with intermittent time series data, helping 

to assess the method's applicability in other scenarios. 

Additional studies regarding the algorithm selection 

strategy shall be evaluated, as the analysis of the 

oracle established that the best overall forecast results 

can be obtained designating AdaGrad for 55,912 

(39.5%) from the 141,558 analysed series. Thus, 

improvements in the selection criteria having the 

oracle as a goal may lead to better overall results. 
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