
Benchmarking Feature Extraction Techniques for
Textual Data Stream Classification

Bruno Siedekum Thuma, Pedro Silva de Vargas
Polytechnic School

Pontifı́cia Universidade Católica do Paraná (PUCPR)
Curitiba, Brazil

{bruno.thuma, pedro.vargas}@pucpr.edu.br

Cristiano Garcia, Alceu de Souza Britto Jr.,
Jean Paul Barddal

Graduate Program in Informatics (PPGIa)
Pontifı́cia Universidade Católica do Paraná (PUCPR)

Curitiba, Brazil
{cristiano.garcia, alceu, jean.barddal}@ppgia.pucpr.br

Abstract—Feature extraction regards transforming unstruc-
tured or semi-structured data into structured data that can
be used as input for classification and sentiment analysis
algorithms, among other applications. This task becomes even
more challenging and relevant when textual data becomes
available over time as a continuous data stream since the
lexicon and semantics can be ever-evolving. Data streams are,
by definition, potentially infinite sequences of data that may
have ephemeral characteristics, that is, where the data behavior
changes, it leads to a phenomenon named concept drift. Textual
data streams are specialized data streams, in which texts arrive
over time from a continual data source, such as social media,
raising challenges in which feature extractors are of great help.
In this paper, we benchmark different feature extraction algo-
rithms, i.e., Hashing Trick, Word2Vec, BERT, and Incremental
Word-Vectors; in textual data stream classification, considering
different stream lengths. The evaluation was performed over
a binary and a multiclass classification task, considering two
different datasets. Results show that pre-trained models, such
as BERT, achieve interesting results, while Hashing Trick
also performs competitively. We also observe that incremental
methods such as Word2Vec and Incremental Word-Vectors are
the most prepared for changing scenarios, yet, they are much
more computationally intensive compared to the former when
applied to larger streams.

Index Terms—Data stream mining, textual data, classifica-
tion, feature extraction.

I. INTRODUCTION

Machine learning has been increasingly studied in the last
years, with several usages in day-to-day technologies. Due
to the massive amounts of data generated at high speeds
on social media, much effort has been put into processing
and extracting useful knowledge from textual data streams.
A common source for textual data is Twitter, where data
can be easily accessed and analyzed, such as shown in [1],
[2], where the authors loaded data streams from Twitter
to continuously update sentiment lexicons automatically.
Textual data are usually represented by texts and phrases,
and thus, they require feature extraction techniques to be
applied so that a vector representation is obtained prior to
the application of learning algorithms.

In this work, we are particularly interested in scenarios in
which textual data is made available for a learning system
over time. In such scenarios, it is relevant to develop systems
that understand and interpret human phrases in which words
or sentences may exhibit drifting behavior over time due
to temporal or cultural factors. The machine learning area
that focuses on handling evolving data sequences is called
data stream mining [3], and the phenomenon in which data

behavior changes is called concept drift [4], [5]. Therefore,
it is relevant to assess whether different feature extraction
techniques are suitable for data stream classification. More
specifically, we target four approaches for feature extraction
from data streams: (i) Hashing Trick [6], which vectorizes
words into indices of a vector; (ii) Word2Vec [7], which
essentially consists in neural network methods for generating
high-quality word representation; (iii) BERT [8], a bidirec-
tional language representation model based on Transformers
[9] that learn word contexts from their surrounding (left
and right) words; and (iv) Incremental Word-Vectors [2], an
incremental method that maintains a co-occurrence matrix,
taking advantage of the positive point-wise mutual informa-
tion (PPMI) calculation to generate a representation vector.

The interest relies on determining whether more com-
plex techniques, such as Word2Vec and BERT, overcome
traditional Hashing Tricks, which encode word tokens with-
out contextual information, and Incremental Word-Vectors,
which encode words using a co-occurrence matrix, regarding
accuracy and processing speed.

This paper is divided as follows. Section II introduces data
stream classification and concept drift. Section III details ex-
isting feature extraction for text data in data stream scenarios.
Section IV brings forward the experimental protocol adopted
for the proposed benchmark. Section V discusses the results
obtained and the main findings. Finally, Section VI concludes
this work and states envisioned future works.

II. DATA STREAM CLASSIFICATION

Classification is one of the most popular data mining tasks.
In this task, there are the predictive information and their
respective labels (a target attribute, or class). The idea of
classification essentially regards mapping predictive infor-
mation into categorical labels [10]. Formally, in classifi-
cation, a predictive model is trained to map input data
x⃗ = (x1, x2, . . . , xd) into a set of classes y accurately.

In order to train classifiers in traditional machine learning
settings, it is necessary to create partitions over a dataset: one
for training, and a second for evaluation. However, streaming
environments have characteristics that hamper traditional
machine learning methods. For instance, (i) data is continu-
ously made available over time, (ii) is potentially unbounded,
and (iii) is potentially nonstationary [11], meaning that the
relationship between the features available and the classes
may drift over time. In other words, traditional machine
learning models cannot learn data one by one, and they

are unable to recognize different patterns from those known
during the training process, quickly becoming obsolete.

Therefore, the challenges for machine learning in stream-
ing settings include: (i) learning from the data stream one
by one or in small batches; (ii) using a limited amount of
storage and memory; and (iii) being capable of updating itself
in order to better reflect the data changes in the stream.

In particular, data changes are called concept drifts [4],
[5], [12], and such drifts may render classification models
obsolete. Consequently, it is of the utmost importance for
classification models to be updated over time. In the textual
data stream context, it is relevant to verify whether adaptive
learning algorithms depend on techniques that incrementally
update data representation based on the application context or
not. This research question is relevant to determine whether
more effort should be put into researching new learning or
data representation algorithms.

III. FEATURE EXTRACTION FROM TEXTUAL DATA
STREAMS

Data stream mining and natural language processing have
grown in importance and acknowledgment over the last few
years. Yet, the number of works that tackle their intersection
is relatively small compared to the number of proposals
brought forward to each area individually. In this work,
we focus on techniques for feature extraction from textual
data streams, i.e., Hashing Trick, Word2Vec, Bidirectional
Encoder Representations from Transformers (BERT), and
Incremental Word-Vector (IWV); and the application of
such features in the classification task. These techniques
were chosen due to their incremental capabilities, i.e., the
ability to handle new word tokens as they appear in textual
data streams, even though such methods were not initially
developed for such scenarios.

A. Hashing Trick

Hashing Trick [6] uses hash functions for sentence vec-
torization. In practice, Hashing Trick applies arithmetic op-
erations or sequences of them to compute term frequencies
while reducing the data representation dimensionality into
a fixed length n. As a result, these operations return non-
reversible tabulated values, i.e., they cannot be translated
back into the original expression. Furthermore, one of the
hashing consequences is the incidence of collisions, i.e.,
when different words are translated into the same value in
[0;n − 1]. Such approaches are widely applied for classifi-
cation problems in tools such as Vowpal Wabbit1 [13].

A popular application of Hashing Trick in online learning
systems is spam filtering [6], in which authors developed
dynamic spam filters where large amounts of e-mail contents
were vectorized using Hashing Trick and later applied to an
incremental classifier. Hashing Trick was a suitable choice in
this application since no previous knowledge of the lexeme
was required. Furthermore, the hashing function handles new
words by embedding them into one of the slots available
in the n-sized vector. Nonetheless, this technique does not
account for context information, and collisions may occur
with others with different (or even contrasting) meanings.

1Vowpal Wabbit is available at https://vowpalwabbit.org

B. Word2Vec

Unlike Hashing Trick, which uses mathematical func-
tions to map words into a predefined number of features,
Word2Vec [7] is built upon neural networks that allow
contextual analysis by associating words to one another
and also to the contexts it is associated with. Word2Vec
creates and selects numerical vectors for each word in its
lexeme, so that related terms have similar representation
when assuming dissimilarity metrics. Since Word2Vec relies
on neural networks, it is relevant to highlight that (i) the
training of these models is preferably performed on top of
large datasets and (ii) they allow incremental learning as
new words can be added to the representation as new data
becomes available, yet, at the expense of elevated training
times

C. Bidirectional Encoder Representations from Transformers
(BERT)

Bidirectional Encoder Representations from Transformers
(BERT) is a deep learning approach for textual data represen-
tation learning proposed in [8]. BERT’s goal is to provide
a generic solution that requires minimal customization for
specific tasks before its potential application with predictive
algorithms. BERT’s structure relies on Transformers, which
are deep learning-based techniques that analyze sentences
both from the beginning to the end and vice-versa, thus
giving rise the the ‘bidirectional’ term in its name.

Similarly to Word2Vec, BERT allows incremental learning
as new data becomes available since it relies on neural
networks. However, BERT depends on fine-tuning to keep
internal structures updated, which requires more significant
training times. In this paper, we used a pre-trained Sentence-
BERT (SBERT), a BERT siamese-network-based architec-
ture for sentence representation [14], without any update
mechanism (e.g. without fine-tuning). We used the flavor
‘paraphrase-MiniLM-L6-v2’2, which encodes sentences into
384-dimension vectors.

D. Incremental Word-Vectors

Incremental Word-Vector [2] is a technique for vector rep-
resentation generation that relies on a co-occurrence matrix.
A co-occurrence matrix is a |V | × |C| matrix, in which |V |
is vocabulary size, while |C| is the context size. Considering
a window w and a target word t, the context of t are the
w words previous to t, and the w words after t. Between
t and each of the context words, the positive point-wise
mutual information (PPMI) is calculated. PPMI is computed
as follows:

PPMI(t, c) = max

(
0, log2

(
count(t, c)×D

count(t)× count(c)

))
,

(1)
where t is the target (central) word, c is a word belonging
to the context of t, D is the number of words in the text
stream until the moment it is calculated, count(·) is the
number of appearances of a specific word until the moment
it is calculated. The idea behind PPMI is that it measures

2https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2

TABLE I
SAMPLES FROM THE SENTIMENT140 DATASET, CONTAINING THE

FEATURES INDEX, TARGET, AND TEXT.

index target text
0 0 “@switchfoot http://twitpic.com/2y1zl - Awww,

that’s a bummer. You shoulda got David Carr of
Third Day to do it. ;D”

1 0 “is upset that he can’t update his Facebook by
texting it... and might cry as a result School today
also. Blah!”

1599997 4 “Are you ready for your MoJo Makeover? Ask
me for details”

1599998 4 “Happy 38th Birthday to my boo of alll time!!!
Tupac Amaru Shakur”

the degree of relationship between words. A negative value
reveals that two words co-occur less than by chance [2].

Finally, in opposition to the previous approaches, Incre-
mental Word-Vector allows the context to be interpreted,
since its dimensions correspond to real words.

IV. EXPERIMENTAL PROTOCOL

In this section, we bring forward aspects related to the
experimental protocol, detailing datasets, pre-processing, and
evaluation methods.

A. Datasets

In this experimentation, two datasets were chosen to evaluate
the feature extractors in a streaming fashion: Sentiment140
[15]3 and Yelp [16]. Both datasets contain texts in the English
language. The datasets are described as follows.

1) Sentiment140 Dataset: Sentiment140 Dataset contains
1.6 million rows (tweets) and six features, namely: (i) target,
(ii) tweet id, (iii) date of posting, (iv) flag, (v) username,
and (vi) text (post content). A sample (first and last two
instances) of this dataset is displayed in Table I, in which
only index, target, and text columns are displayed. In this
experiment, only the text content and target columns were
used. It is also worth mentioning that the polarity feature
(target) is evenly distributed, i.e., the classes were balanced.

2) Yelp Dataset: Yelp Dataset4 consists of data (reviews,
pictures, and so on) collected from over 150 thousand
businesses. We selected the dataset related to reviews, having
as features the reviews’ texts and associated ratings (stars).
The dataset version utilized in this work contains 5,261,670
reviews distributed in an imbalanced manner among five
rating values from 1 to 5. The data distribution is given in
Figure 1.

Table II shows two selected reviews from Yelp Dataset.
Comparing the contents of Table II against those of Table
I, we notice that reviews usually contain more words than
regular tweets. Calculating the average word count per row
in each dataset, Sentiment140 has 14.4 ± 7.1 words, while
Yelp has 114.1 ± 106.9 words.

B. Pre-processing and Implementation

Regarding data pre-processing, we transformed all texts into
lowercase and removed special characters. The implementa-
tions used in this work were Gensim [17] and SentenceTrans-
formers [14], for Word2Vec and BERT, respectively. For

3https://www.kaggle.com/datasets/kazanova/sentiment140
4https://www.yelp.com/dataset

Fig. 1. Count plot and respective percentages of reviews by rating (stars)
in Yelp Dataset

Hashing Trick and Incremental Word-Vectors, the implemen-
tation was coded by the authors following instructions from
[6] and [2]. Gensim’s Word2Vec allows incremental training,
so we trained using common texts (a toy in-library dataset)
and updated on-the-fly. For BERT, we used a pre-trained
model, namely paraphrase-MiniLM-L6-v2. Due to
BERT’s incremental updating time (in a fine-tuning fashion),
it was unfeasible to use it incrementally. Therefore, we
experimented with BERT with 384-dimension representa-
tions, while Hashing Trick, Incremental Word-Vectors, and
Word2Vec used 100, 384, and 500 dimensions for both.
Henceforth, these approaches are referred to as BERT, Hash-
ing Trick (100), Hashing Trick (384), Hashing Trick (500),
Incremental Word-Vectors (100), Incremental Word-Vectors
(384), Incremental Word-Vectors (500), Word2Vec (100),
Word2Vec (384), and Word2Vec (500).

To make the experiment reproducible, we describe the
parameters of each approach in this work: (i) BERT: no
parameter needed ; (ii) Hashing Tricks: hashing function used
was the modulo operation (rest of a division); (iii) Word2Vec:
window=5, min count=1 (defines the least word frequency
to take it into account); and (iv) Incremental Word-Vectors:
vocabulary size=10000; window size=7.

The window size (for both Word2Vec and Incremen-
tal Word-Vectors) impacts directly the time for learn-
ing/updating vector representations. Also, according to [2],
the window length is commonly “between 3 and 17”. Yet,
“whereas shorter windows are likely to capture syntactic
information, longer windows are more useful for representing
meaning” [2], [18]. Thus, for Word2Vec, we chose win-
dow=5 since it is the default value, while for Incremental
Word-Vectors, window size=7 would capture slightly more
information on the words’ semantics.

TABLE II
SAMPLE REVIEWS FROM YELP DATASET.

index stars text
0 5.0 “Super simple place but amazing nonetheless.

It’s been around since the 30’s and they still
serve the same thing they started with: a
bologna and salami sandwich with mustard.
\n\nStaff was very helpful and friendly”

9 3.0 “Not bad!! Love that there is a gluten-
free, vegan version of the cheese curds and
gravy!!\n\nHaven’t done the poutine taste test
yet with smoke’s but Im excited to see which
is better. However poutini’s might win as they
are vegan and gluten-free”

The source code was written in Python 3, and the ex-
periments were run on the Google Collaborate platform,
which provides 25GB of RAM and 225.98GB of storage.
The source codes will be made available after peer reviewing.

C. Evaluation Methods

To assess the feature extractors, evaluation can be either
intrinsic or extrinsic, following the assessments performed in
[19]. Intrinsic evaluation regards the comparison among the
methods in terms of representation quality. Since different
methods generate different embeddings in different positions
of the vector space, it does not mean that one is necessarily
better than the other. Since we target classification tasks, we
conducted an extrinsic evaluation in which the downstream
classification task assessed the feature extractors.

To evaluate the feature extraction methods in an extrinsic
manner, we used the Updatable Naive Bayes as the classifi-
cation algorithm. The metric used to assess the classification
was accuracy. Both Naive Bayes and accuracy metric are
available in RiverML library [20] for online (incremental)
use. Accuracy was chosen since it is a regular metric for
models’ performance in classification tasks. Naive Bayes
was selected due to its simplicity and constant complexity
regarding attributes and instances.

Further, we randomly selected shuffled subsets of differ-
ent sizes from Sentiment140 and Yelp Datasets, hereafter
indicated as stream length. The stream lengths are 10,000;
20,000; 30,000; 50,000; 100,000, and 200,000. These lengths
are referred to in this paper as 10k, 20k, 30k, 50k, 100k, and
200k, respectively. Since the data was shuffled to avoid bias,
each experiment was executed ten times in a streaming fash-
ion, thus obtaining average accuracy and standard deviation
as results.

It is well-known that, in streaming environments, data
arrives continuously and at high speeds. Therefore we con-
sidered the run time a critical aspect to be monitored. Hence,
in the analysis section, we also compare the run times for the
feature extractors in the aforementioned extrinsic experiment.

V. ANALYSIS

The results obtained for the Sentiment140 dataset are
available in Table III. In all the proposed scenarios, BERT
reached the best accuracy values. It is also possible to state
that BERT provides stable results ranging the stream lengths
from 10k to 200k. Besides, we can notice that Word2Vec,
using 100 and 384 dimensions, reached roughly 54% for 10k
but only approximated this value when feeding the model
with 200k rows. One hypothesis for this decay between
10k and 50k is that Word2Vec may take longer to stabilize
new words representation. Also, it is relevant to notice that
Hashing Trick overcame Word2Vec in the classifier accuracy
in all settings.

For Incremental Word-Vectors, all the variants performed
similarly. However, using 100 dimensions led to a slightly
smaller accuracy among the variants.

Comparing the approaches, simple vector representations
provided by Hashing Trick, although with no learning mech-
anism, can better help the model, even without accounting
for contextual data. Only BERT could provide better repre-
sentations than Hashing Trick in this scenario. It is plausible

Fig. 2. Accuracy rates (%) over stream lengths per extractor in Senti-
ment140.

since we used a pre-trained BERT model, which previously
has learned representations from several texts.

However, Incremental Word-Vectors overcame Word2Vec,
while performing poorly compared to BERT and compet-
itively compared to Hashing Tricks. Figure 2 depicts the
accuracy rates per feature extractor across the stream lengths.
We see that Word2Vec had roughly the same behavior across
all the settings, regardless of the dimensionality.

Also, Table IV describes the run times of each experiment,
considering both total run times and run times per row.
For the sake of readability, consider “Hash. T” as Hashing
Trick, “IWV” as Incremental Word-Vectors, and “W2V” as
Word2Vec. It is straightforward to notice that both BERT,
Incremental Word-Vectors, and Hashing Trick (in all con-
figurations) performed steadily, although BERT showed a
slight increase in the setting with 200k of stream length,
considering the total time. We also see that Word2Vec almost
doubled the time spent per row from one setting to another.
A reason for that is Word2Vec’s complexity, which increases
with the number of words and vocabulary size (i.e., roughly
N × D + N × D × log2(V)). Since N and V increase
over time, it is expected to have a growing processing time
accompanying processed rows. Figure 3 shows the time
spent per row. It is possible to confirm the steadiness of
both BERT, Incremental Word-Vectors, and Hashing Trick
in all configurations, and also the increase of Word2Vec’s
processing time as the stream length increases.

For Yelp Dataset, we also calculated accuracy, total run
times, and run times per row for each setting in the down-
stream task. The accuracy rates obtained are shown in Table
V. We notice that Hashing Trick obtained competitive results
compared to BERT for all stream lengths. Furthermore, it is
interesting to notice that, for this dataset, Word2Vec provided
poor word representation (for streams of length 10k and 20k).
We can affirm that because the performance rates obtained
for these settings are comparable to a random classifier.
However, as the number of rows used in the stream increased,
Word2Vec generated better representations which helped
Naive Bayes achieve higher accuracy rates. All the variations
of Incremental Word-Vectors achieved approximately 30% of
accuracy. The lower accuracy obtained by this approach may
have happened due to the small dimension sizes. According

TABLE III
ACCURACY RATES (%) PER FEATURE EXTRACTOR AND DIFFERENT STREAM LENGTHS FOR SENTIMENT140.

Extractor / Stream length 10k 20k 30k 50k 100k 200k
BERT 73.59 ± 0.30 73.83 ± 0.30 73.87 ± 0.25 73.93 ± 0.12 73.95 ± 0.14 74.04 ± 0.10
Hashing Trick (100) 59.85 ± 0.75 60.42 ± 0.42 60.86 ± 0.37 61.04 ± 0.37 61.36 ± 0.28 61.50 ± 0.14
Hashing Trick (384) 60.74 ± 1.03 62.32 ± 0.81 62.88 ± 0.63 63.22 ± 0.31 63.91 ± 0.24 64.13 ± 0.32
Hashing Trick (500) 61.35 ± 0.78 61.46 ± 1.95 62.84 ± 1.32 63.80 ± 0.75 64.48 ± 0.47 64.21 ± 0.43
Incremental Word-Vectors (100) 57.92 ± 0.96 56.98 ± 2.77 57.54 ± 0.86 56.89 ± 0.65 56.79 ± 1.07 56.96 ± 0.99
Incremental Word-Vectors (384) 58.61 ± 2.86 59.66 ± 0.74 59.85 ± 0.83 59.04 ± 1.50 59.10 ± 1.19 58.27 ± 1.07
Incremental Word-Vectors (500) 58.71 ± 3.11 59.60 ± 0.76 59.91 ± 0.90 58.43 ± 3.10 58.99 ± 1.20 58.32 ± 0.51
Word2Vec (100) 54.33 ± 0.82 52.15 ± 0.52 51.75 ± 0.35 51.62 ± 0.82 53.37 ± 0.34 54.49 ± 0.28
Word2Vec (384) 54.31 ± 0.70 52.41 ± 0.56 51.39 ± 0.35 51.55 ± 0.41 53.34 ± 0.43 54.21 ± 0.25
Word2Vec (500) 54.42 ± 0.78 52.05 ± 0.45 51.24 ± 0.40 51.40 ± 0.52 53.14 ± 0.42 54.01 ± 0.28

TABLE IV
RUN TIME (s) PER FEATURE EXTRACTOR AND DIFFERENT STREAM LENGTHS FOR SENTIMENT140.

Extractor / Stream length 10k 20k 30k 50k 100k 200k

BERT Total 213.42 ± 4.88 422.77 ± 14.25 660.95 ± 14.98 1125.47 ± 35.66 2217.88 ± 26.56 4932.79 ± 310.93
Per row 0.0213 0.0211 0.022 0.0225 0.0222 0.0247

Hash. T. (100) Total 6.29 ± 0.35 12.7 ± 0.89 18.96 ± 1.03 31.92 ± 1.78 63.74 ± 4.24 127.42 ± 7.82
Per row 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006

Hash. T. (384) Total 21.52 ± 1.96 42.89 ± 3.48 63.93 ± 4.93 106.39 ± 8.5 216.58 ± 12.81 434.85 ± 26.45
Per row 0.0022 0.0021 0.0021 0.0021 0.0022 0.0022

Hash. T. (500) Total 26.63 ± 0.4 53.07 ± 0.62 79.81 ± 0.95 133.45 ± 2.75 269.08 ± 2.23 533.36 ± 8.35
Per row 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027

IWV (100) Total 710.73 ± 11.5 1729.4 ± 20.09 2420.92 ± 66.48 4858.93 ± 185.66 7348.09 ± 892.67 16692.16 ± 913.44
Per row 0.0711 0.0865 0.0807 0.0972 0.0735 0.0835

IWV (384) Total 668.11 ± 14.48 1659.94 ± 80.21 2501.69 ± 105.04 4325.03 ± 441.52 8708.62 ± 789.87 18060.92 ± 1836.85
Per row 0.0668 0.083 0.0834 0.0865 0.0871 0.0903

IWV (500) Total 687.3 ± 14.88 1635.75 ± 22.61 2488.11 ± 227.41 3866.61 ± 282.6 8489.01 ± 600.57 17351.82 ± 1557.98
Per row 0.0687 0.0818 0.0829 0.0773 0.0849 0.0868

W2V (100) Total 225.36 ± 16.05 689.46 ± 35.05 1338.48 ± 120.98 2909.53 ± 324.99 10411.76 ± 422.12 36200.74 ± 1073.09
Per row 0.0225 0.0345 0.0446 0.0582 0.1041 0.1810

W2V (384) Total 360.79 ± 12.28 944.37 ± 119.06 1994.55 ± 81.9 3936.69 ± 724.47 14234.94 ± 737.3 44669.56 ± 4544.43
Per row 0.0361 0.0472 0.0665 0.0787 0.1423 0.2233

W2V (500) Total 401.74 ± 27.64 1005.27 ± 131.53 2128.81 ± 176.66 4744.57 ± 418.95 15465.48 ± 1910.43 48492.94 ± 4163.78
Per row 0.0402 0.0503 0.071 0.0949 0.1547 0.2425

Fig. 3. Time spent per row (s) over stream lengths per extractor using
Sentiment140 Dataset

to [2], once the contexts (limited by the dimension size) are
defined in Incremental Word-Vectors structure, they do not
change along the stream. It means that, although Incremental
Word-Vectors is an incremental approach, its contexts are
fixed and may become obsolete. Yet, a short context size
can lead to poor vector representations. The experiments
provided in [2] corroborates with this statement due to the
smallest context size used in the aforementioned work was
500, but a context size of 10,000 led to the best accuracy.
Thus, as mentioned before, since the average number of
words per instance in Yelp dataset is higher than in Sen-
timent140 dataset, the contexts may become obsolete within

a shorter time.
Figure 4 shows the performance of the extractors over

the stream lengths. As aforementioned, we can see that
Word2Vec starts with poor representations, improving them
as the stream length increases. Also, in the 200k setting,
Word2Vec (100) achieved competitive accuracy rates com-
pared to BERT and Hashing Trick, which reached the best
results among the approaches compared in this work. Also,
Word2Vec (384) and Word2Vec (500) had more difficulty to
provide good word representations compared to Word2Vec
(100), meaning that representations with higher dimensions
take longer to stabilize. Incremental Word-Vectors performed
slightly better than a random classifier in all the dimension
sizes tested in this work. We can also notice that the
accuracy trend for this approach is decaying, suggesting the
obsolescence of the contexts once internally defined by the
approach.

It is worth noticing that Word2Vec, considering all the
scenarios with both datasets, had completely different be-
haviors. A cause for that is the average number of words in
the sentences in Sentiment140’s tweets and Yelp’s reviews.
The input data (sentence representation) is calculated using
the average of all words representations of the sentences.
It means that, with more words, the sentence representation
may not represent well the sentence itself, specially in scenar-
ios with less data. Also, in scenarios with bigger sentences,
more unknown words have their representations initialized
at the same time. In general, the initial representations are
poor and evolve over time, as the represented words appear

TABLE V
ACCURACY RATES (%) PER FEATURE EXTRACTOR AND DIFFERENT STREAM LENGTHS FOR YELP.

Extractor / Stream length 10k 20k 30k 50k 100k 200k
BERT 45.01 ± 0.73 44.81 ± 0.72 45.07 ± 0.34 45.05 ± 0.32 45.04 ± 0.30 45.00 ± 0.16
Hashing Trick (100) 41.43 ± 0.37 41.77 ± 0.24 41.97 ± 0.31 41.89 ± 0.20 42.00 ± 0.15 42.08 ± 0.13
Hashing Trick (384) 43.32 ± 0.38 43.32 ± 0.36 43.58 ± 0.30 43.69 ± 0.20 43.75 ± 0.20 43.87 ± 0.08
Hashing Trick (500) 43.44 ± 0.53 43.71 ± 0.39 43.88 ± 0.31 43.98 ± 0.23 44.05 ± 0.15 44.17 ± 0.15
Incremental Word-Vectors (100) 30.34 ± 5.01 31.60 ± 3.55 30.43 ± 5.47 32.67 ± 6.26 29.14 ± 5.02 31.66 ± 2.81
Incremental Word-Vectors (384) 31.07 ± 1.68 33.22 ± 3.50 31.24 ± 2.21 32.69 ± 3.80 31.92 ± 4.37 30.07 ± 2.10
Incremental Word-Vectors (500) 30.84 ± 1.86 31.35 ± 4.11 30.36 ± 2.33 32.83 ± 3.8 29.37 ± 2.12 28.92 ± 1.71
Word2Vec (100) 25.57 ± 5.18 28.38 ± 3.83 31.06 ± 1.93 35.35 ± 1.49 39.71 ± 0.60 41.81 ± 1.15
Word2Vec (384) 15.12 ± 3.66 24.24 ± 3.87 28.14 ± 1.70 32.54 ± 1.73 37.81 ± 1.21 39.82 ± 1.24
Word2Vec (500) 18.28 ± 5.18 25.31 ± 2.80 29.04 ± 2.17 32.42 ± 1.72 37.70 ± 0.86 39.26 ± 0.72

Fig. 4. Accuracy rates (%) across stream lengths per extractor using Yelp
dataset.

in the stream. Therefore, using Yelp dataset, it takes longer
for Word2Vec to reach an acceptable accuracy.

Regarding run times, we can see that, at the most chal-
lenging scenario (i.e. 200k), Word2Vec (500) took about
five times longer than BERT to process the stream. Hashing
Trick (100) processed the inputs in 3% of the time BERT
needed. It is expected since Hashing Trick use simpler math-
ematical operations. Using more dimensions, Hashing Trick
(384) and Hashing Trick (500) were still faster than BERT.
They approximately needed 10% and 14%, respectively. Still
comparing to BERT, on the other hand, Word2Vec, using 100
dimensions, took almost four times more to run. In the setting
with 500 dimensions, Word2Vec spent five times more than
BERT to run. Incremental Word-Vectors performed steadily
across all stream lengths. Incremental Word-Vectors (500)
took almost six times more than BERT to run, and about
16% more than Word2Vec (500).

We also calculated the time spent per row for Yelp Dataset.
These results can be seen in Table VI. Again, for the sake
of readability, consider “Hash. T” as Hashing Trick, “IWV”
as Incremental Word-Vectors, and “W2V” as Word2Vec.
We can realize that BERT, Incremental Word-Vectors, and
Hashing Trick perform steadily over all scenarios. Also,
Word2Vec has similar increase compared to its performance
on Sentiment140 dataset. Since text streams have the poten-
tial to be infinite [3], Word2Vec may become unfeasible with
larger streams, and may not be the best choice.

Figure 5 shows the measured times per row. We can
see that BERT took almost twice the time per row than in
Sentiment140 dataset setting. It is caused by the increase of

Fig. 5. Time spent per row (s) over stream lengths per extractor using Yelp
dataset.

words per sentence implied by Yelp dataset. Word2Vec also
increased the time spent across the stream lengths. Hashing
Trick in all settings could keep a very low time consump-
tion per row, which is a good characteristic in streaming
environments. However, Hashing Trick is not prepared to
react to concept-drifting scenarios, since there is no inner
representation learning mechanism.

We statistically compared the approaches in the most
challenging scenario (i.e. 200k) for each dataset by using
Friedman test and Nemenyi test, according to the procedures
described in [21], in terms of accuracy and run times,
separately. The null hypothesis (H0) suggests that there is
no significant difference among the observed accuracy rates,
and among the run times. The alternative hypothesis (Ha)
states that there is indeed a statistically significant difference
among the accuracy values and among the run times. The
value chosen for α (significance) is 0.05. Friedman test was
the choice due to the impossibility to check data normality
considering 10 runs.

Thus, considering the accuracy in Sentiment140 dataset,
the value of p obtained from Friedman test was 4.88e-
15, which is lower than 0.05 and thus, we rejected H0.
Therefore, to find out where the difference lies, Nemenyi test
was applied. The critical distance (CD) calculated resulted
in 4.28, considering k = 10 (i.e. classifiers) and N = 10
(i.e. runs per feature extractor, under the same conditions).
These values repeated for every test we performed. Figure 6
shows the average rank and the critical distance (horizontal
bars). The approaches comprised by a horizontal bar are
statistically similar. For example, BERT, HT (500), HT (384),

TABLE VI
RUN TIME PER ROW (s) OF EACH FEATURE EXTRACTOR, CONSIDERING DIFFERENT STREAM LENGTHS FOR YELP DATASET.

Extractor / Stream length 10k 20k 30k 50k 100k 200k

BERT Total 457.59 ± 15.84 891.79 ± 26.41 1472.35 ± 80.17 2759.62 ± 202.64 4802.82 ± 269.52 9455.51 ± 796.55
Per row 0.0458 0.0446 0.0491 0.0552 0.0480 0.0473

Hash. T. (100) Total 12.36 ± 1.71 22.25 ± 2.35 39.8 ± 3.33 71.31 ± 9.73 128.98 ± 6.08 281.91 ± 15.93
Per row 0.0012 0.0011 0.0013 0.0014 0.0013 0.0014

Hash. T. (384) Total 41.56 ± 5.82 85.55 ± 13.35 130.56 ± 23.91 233.95 ± 28.93 468.39 ± 60.74 1024.36 ± 47.93
Per row 0.0042 0.0043 0.0044 0.0047 0.0047 0.0051

Hash. T. (500) Total 53.76 ± 8.23 94.11 ± 6.12 193.25 ± 20.83 314.37 ± 41.71 643.09 ± 74.36 1352.68 ± 170.68
Per row 0.0054 0.0047 0.0064 0.0063 0.0064 0.0068

IWV (100) Total 2606.1 ± 376.33 5401.17 ± 627.06 8613.28 ± 775.04 14994.74 ± 1560.28 28765.25 ± 1841.39 57363.06 ± 4912.19
Per row 0.2606 0.2701 0.2871 0.2999 0.2877 0.2868

IWV (384) Total 2856.34 ± 68.31 5784.05 ± 219.52 8480.43 ± 394.3 15540.24 ± 2697.07 28364.13 ± 2840.33 56342.19 ± 6753.83
Per row 0.2856 0.2892 0.2827 0.3108 0.2836 0.2817

IWV (500) Total 3084.02 ± 109.61 6055.89 ± 215.65 8413.2 ± 583.8 13820.59 ± 1254.9 27543.86 ± 2971.54 57168.65 ± 4459.68
Per row 0.3084 0.3028 0.2804 0.2764 0.2754 0.2858

W2V (100) Total 449.46 ± 20.19 1250.88 ± 53.61 2293.47 ± 153.13 4802.98 ± 410.2 13500.21 ± 1607.22 37476.41 ± 3766.92
Per row 0.0449 0.0625 0.0764 0.0961 0.135 0.1874

W2V (384) Total 768.18 ± 45.21 1944.72 ± 130.91 3311.66 ± 266.42 6915.53 ± 350.01 16952.47 ± 2259.14 42417.82 ± 6594.94
Per row 0.0768 0.0972 0.1104 0.1383 0.1695 0.2121

W2V (500) Total 865.15 ± 33.36 2239.88 ± 43.22 3581.79 ± 559.01 7487.44 ± 572.58 20194.69 ± 2532.98 48901.26 ± 8709.55
Per row 0.0865 0.112 0.1194 0.1497 0.2019 0.2445

Fig. 6. Average ranking of approaches for Sentiment140 dataset and 10
runs, considering accuracy and stream lengths of 200k

Fig. 7. Average ranking of approaches for Sentiment140 dataset and 10
independent runs, considering run times and stream length of 200k

and HT (100) are statistically similar, taking into account the
configurations of the experiments.

For Sentiment140 dataset, now considering the run times,
the value obtained for p from Friedman test is 5.29×10−15.
Figure 7 shows the average rankings throughout 10 runs.
We can clearly see that Hashing Tricks in all configurations
appeared among the highest ranks, being statistically similar
to BERT. On the other hand, Word2Vec featured in the last
ranks, ordered by the dimension number.

For Yelp dataset in the most challenging scenario, the
value obtained for p in Friedman test was 9.76×10−15. The
Figure 8 shows the average rank and the critical distance
(horizontal bars) for this specific scenario. It is possible to
notice that, for the best ranks, it followed the same pattern
as for Sentiment140. However, Word2Vec inverted positions
with Incremental Word-Vectors, which featured in the last
ranks in this scenario.

Considering the run times, the p obtained from Friedman
test was 3.97e-14, lower than 0.05. Thus, we rejected H0.

Fig. 8. Average ranking of approaches for Yelp dataset and 10 runs,
considering accuracy and stream length of 200k

Fig. 9. Average ranking of approaches for Yelp dataset and 10 runs,
considering run times and stream length of 200k

The graph of average rank is shown in Figure 9. Again, we
notice an inversion of positions between Incremental Word-
Vectors and Word2Vec. Hashing Tricks and BERT remained
in the same average ranks as in Sentiment140.

Thus, it is possible to notice that BERT ranked first in
all the experiments considering accuracy, for both datasets.
However, considering the number of runs, it is not possible
to say BERT is the best. It is also possible to check that
Word2Vec and Incremental Word-Vectors are not as good
in both datasets as the other approaches. It happens, for
Word2Vec, due to the well-known necessity of a huge amount
of data to train neural networks. For Incremental Word-
Vectors, the obsolescence of the context may negatively
impact its accuracy along the stream.

Considering run times, Hashing Trick was also the fastest,
appearing among the first three positions. The fewer the
dimensions of representations, the fastest, considering only

the Hashing Trick. Also, the number of dimensions of
Word2Vec makes it slower and harder to learn from the
data. For Incremental Word-Vectors, the dimension size also
impacts directly the time for learning representations.

VI. CONCLUSION

In this paper, we described the use of different feature
extractors (i.e. BERT, Hashing Trick, Incremental Word-
Vectors, and Word2Vec) in a data stream classification set-
ting, using two different datasets: Sentiment140 and Yelp.
The results obtained show that pre-trained models such as
BERT can be of great utility. Also, Hashing Trick was
competitive, although it has no internal learning method.
Word2Vec, on the other hand, achieved competitive results
only in the most challenging scenario using Yelp. The
Incremental Word-Vectors obtained slightly above-average
results for both datasets. In spite of the fact that Word2Vec
and Incremental Word-Vectors could not greatly perform in
some settings in this work, they are the only ones that have
incremental learning and therefore, they can update internal
word representations and learn new ones.

In addition to the measurement of accuracy, we also
measured total time and time per row in each setting,
per approach. The values obtained show that BERT and
Hashing Trick (in all settings) performed steadily, having
minor increases across stream lengths. On the other hand,
Word2Vec and Incremental Word-Vectors, since they have
internal representation learning mechanism and they are
updated on-the-fly, they take longer to perform actions. In
spite of that, both Word2Vec and Incremental Word-Vectors
are the only approaches among the compared in this work
that are really capable of incrementally adapting themselves
for changes in words representations.

Many of the datasets undoubtedly containing short-time
concept drift in texts used in literature were collected by
the authors and are not available online. Also, short-time
drifting data mostly emerges during events such as elections,
pandemics outbreaks and war. As future works, we intend
to collect drifting text data, assess it and apply it to other
feature extractor methods, such as Incremental Skip Gram
with Negative Sampling [19], in order to propose even more
challenging comparisons.

REFERENCES

[1] A. Bifet and E. Frank, “Sentiment Knowledge Discovery in Twitter
Streaming Data,” in International Conference on Discovery Science.
Springer, 2010, pp. 1–15.

[2] F. Bravo-Marquez, A. Khanchandani, and B. Pfahringer, “Incremen-
tal Word Vectors for Time-Evolving Sentiment Lexicon Induction,”
Cognitive Comput., pp. 1–17, 2021.

[3] A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer, T. Jansen,
and T. Seidl, “MOA: Massive Online Analysis, a Framework for
Stream Classification and Clustering,” in Proceedings of the First
Workshop on Appl. of Pattern Analysis, 2010, pp. 44–50.

[4] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
“A Survey on Concept Drift Adaptation,” ACM Comput. Surv., vol. 46,
no. 4, pp. 1–37, 2014.

[5] H. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck,
B. Pfharinger, G. Holmes, and T. Abdessalem, “Adaptive Random
Forests for Evolving Data Stream Classification,” Machine Learning,
vol. 106, no. 9, pp. 1469–1495, 2017.

[6] J. Attenberg, K. Weinberger, A. Dasgupta, A. Smola, and M. Zinke-
vich, “Collaborative Email-Spam Filtering with the Hashing Trick,”
in Proceedings of the Sixth Conference on Email and Anti-Spam.
Citeseer, 2009.

[7] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Dis-
tributed Representations of Words and Phrases and their Composi-
tionality,” Adv. Neural Inf. Process. Syst., vol. 26, 2013.

[8] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is All You Need,” Adv. Neural
Inf. Process. Syst., vol. 30, 2017.

[10] R. Goldschmidt, E. Passos, and E. Bezerra, Data Mining. Elsevier
Brasil, 2015.

[11] J. Gama, Knowledge Discovery from Data Streams. CRC Press, 2010.
[12] D. Leite, I. Škrjanc, and F. Gomide, “An Overview on Evolving

Systems and Learning from Stream Data,” Evol. Syst., vol. 11, no. 2,
pp. 181–198, 2020.

[13] Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and
S. Vishwanathan, “Hash Kernels for Structured Data,” J. Mach.
Learn. Res., vol. 10, pp. 2615–2637, 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1577069.1755873

[14] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks,” in Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11 2019. [Online].
Available: https://arxiv.org/abs/1908.10084

[15] A. Go, R. Bhayani, and L. Huang, “Twitter Sentiment Classification
using Distant Supervision,” CS224N Project Report, Stanford, vol. 1,
no. 12, p. 2009, 2009.

[16] N. Asghar, “Yelp Dataset Challenge: Review Rating Prediction,” arXiv
preprint arXiv:1605.05362, 2016.

[17] R. Rehurek and P. Sojka, “Gensim–Python Framework for Vector
Space Modelling,” NLP Centre, Faculty of Informatics, Masaryk
University, Brno, Czech Republic, vol. 3, no. 2, 2011.

[18] J. H. Martin, Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech
Recognition. Pearson/Prentice Hall, 2009.

[19] N. Kaji and H. Kobayashi, “Incremental skip-gram model with nega-
tive sampling,” arXiv preprint arXiv:1704.03956, 2017.

[20] J. Montiel, M. Halford, S. M. Mastelini, G. Bolmier, R. Sourty,
R. Vaysse, A. Zouitine, H. M. Gomes, J. Read, T. Abdessalem, and
A. Bifet, “River: Machine Learning for Streaming Data in Python,”
2020.

[21] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” The Journal of Machine Learning Research, vol. 7, pp. 1–30,
2006.

