
Information Fusion 89 (2023) 567–587

A
1

F

E
g
M
a

b

c

d

A

K
C
D
D

1

t
c
t
s
a
a
p
s
l
s
c
e

a
o
m
w
m
h
v
i
c

h
R

Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier.com/locate/inffus

ull length article

xploring diversity in data complexity and classifier decision spaces for pool
eneration
arcos Monteiro Jr a,∗, Alceu S. Britto Jr a,b, Jean P. Barddal a, Luiz S. Oliveira c, Robert Sabourin d

Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, PR, Brazil
State University of Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
Federal University of Paraná (UFPR), Curitiba, PR, Brazil
École de Technologie Supérieure (ÉTS), Université du Québec, Montréal, QC, Canada

R T I C L E I N F O

eywords:
lassifier pool generation
iversity
ata complexity measures

A B S T R A C T

This paper introduces a novel method for classifier pool generation in which a two-level strategy explores
diversity in both data complexity and classifier decision spaces. The rationale is to induce pool members
using data subsets representing subproblems with different difficulties while promoting diversity in classifiers’
decisions. Two possible variants of the proposed method with a focus on maximum dispersion and maximum
accuracy are presented. These differ in the property used to define the best pool of classifiers provided by an
optimization process. A robust experimental protocol encompassing 28 classification datasets shows that the
proposed pool generation provided the best accuracy on 327 over 336 experiments (97.3%) when compared to
well-known pool generation methods to provide multiple classifier systems with and without dynamic selection.
. Introduction

Multiple classifier systems (MCS) are often an alternative to avoid
he risk of choosing a single model to cover the entire feature space of
lassification problems showing high complexity in terms of difficulty
o separate classes. The creation of an MCS usually encompasses three
teps: (i) pool generation, (ii) classifier selection, and (iii) classifier
ggregation [1]. The first step, which is the focus of this paper, provides
pool of classifiers. The classifier selection step is optional, and can be
erformed during the MCS training or testing phases, characterizing a
tatic or dynamic selection, respectively. We can find in the literature a
arge number of selection alternatives for single classifier or ensemble
election using static or dynamic strategies [2]. The aggregation step
ombines the classifier’s decisions using the entire pool or a selected
nsemble.

Even though there is no clear correlation between diversity and
ccuracy [3], pool generation is usually done by exploring the idea
f creating diverse classifiers in the sense that they make different
istakes during predictions, expecting to be complementary. Some
ell-known methods in the literature explore diversity to create ho-
ogeneous ensembles given a base inducer. Such successful strategies
ave in common the manipulation of the problem data, horizontally,
ertically, or both. The former trains classifiers in distinct subsets of
nstances, e.g., Bagging [4] and Boosting [5], while the latter trains the
lassifiers on samples represented by just part of the original feature

∗ Corresponding author.
E-mail addresses: marcos@ppgia.pucpr.br (M. Monteiro Jr), alceu@ppgia.pucpr.br (A.S. Britto Jr), jean.barddal@ppgia.pucpr.br (J.P. Barddal).

space, e.g., Random Subspace [6]. It is also noteworthy approaches
like Random Forest [7], which combines these two strategies of data
manipulation, training trees on subsets of data that different feature
subspaces can represent.

In this paper, we go further in horizontal data manipulation by
considering classification complexity measures to drive data subsets
creation during the pool generation step. The rationale is to use a
sampling process to create data subsets with different levels of clas-
sification difficulty, which we can consider as subproblems of the
classification problem at hand. To this end, we propose a novel method
for pool generation that organizes subsets of data for training the
classifiers of a pool using a two-level strategy to promote diversity: (i)
the data complexity space and (ii) diversity in the decision space. The
first is related to the complexity or difficulty level of the data subset
used to train each pool member. As already mentioned, the idea is
to train the pool members in data subsets representing subproblems
with different difficulties. For this purpose, the sampling strategy uses
data complexity measures [8]. The second part of the strategy acts in
the output of the generated classifiers using a well-known diversity
measure [9]. The motivation for such a two-level diversity strategy is
to create classifiers that can adequately deal with specific subproblems
individually and, when combined, with the entire problem.

More specifically, this paper aims to describe a new two-step based
method for pool generation. The first step involves selecting the most
vailable online 6 September 2022
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appropriate data complexity measures given a classification problem.
We consider those metrics showing high dispersion computed among
training subsets generated from the original training data. The rationale
is to use such metrics later to drive the creation of training subsets in
an optimization process looking for diversity in the data complexity
space. In the second step, we train the pool of classifiers using subsets
(bags) of data optimized w.r.t. their diversities in the complexity space
employing the metrics selected in the first step and decision space
using the classifiers’ output. Such optimization is performed using a
multi-objective genetic algorithm, i.e., NSGA-II [10]

Unlike the work previously published in [11], we describe two
possible variants of the proposed method with a focus on maximum
dispersion or maximum accuracy. They differ in the property used to
define the best generation to output the pool of classifiers. The former
provides the pool related to the generation showing the highest diver-
sity in data complexity and classifier decisions. The latter provides the
pool connected to the generation with the highest accuracy. Besides,
we consider a more robust experimental protocol using different base
classifiers for pool generation and comparing with other classical pool
generators like Adaboost and RF, and a competitor also oriented by
data complexity measures.

In this scenario, we have two main research questions:

1. RQ1: Is the pool generation method oriented by a two-level
diversity that explores diversity in the data complexity space and
classifier decision spaces competitive against traditional pool
generation methods available in the literature?

2. RQ2: Can the pool of classifiers provided by the proposed
method contribute positively to the dynamic classifier/ensemble
selection methods?

To answer our research questions and evaluate the proposed
method, a robust experimental protocol with 28 classification datasets
was used to compare our proposal to other pool generation, dynamic
classifier selection (DCS), and dynamic ensemble selection (DES) meth-
ods. In general, the experimental results have shown that the proposed
pool generation provided the best accuracy in 97.3% of the performed
experiments that combine all the classifiers in the pool. Besides, the
classification pools created are highly competitive when a specific
member or a subset of classifiers is dynamically selected.

The contribution of this work is threefold, as follows: (i) A new
method for generation of homogeneous pools of classifiers that explore
the diversity in the data complexity and classifier decision spaces,
which the code is available at https://anonymous.4open.science/r/
_PGCDS-2C65/README.md; (ii) A sampling method based on data
complexity measures that allow the training of classifiers on subsets of
data showing different levels of difficulty; (iii) A positive impact on the
performance of methods based on the dynamic selection of classifiers
and ensembles.

This paper is organized as follows. Section 2 presents related works
considering pool generation and dynamic selection of classifier and
ensembles. Section 3 brings forward data complexity measures as they
are at the core of our proposal. Section 4 describes the proposed pool
generation method and its variants. Section 5 presents the experimental
protocol used and discusses the observed results. Finally, Section 6
concludes this work and delineates future works.

2. Literature review

Even though there is no clear correlation between diversity and
accuracy [12], it is clear that having multiple classifiers that cast
votes equally is not beneficial as a single learner would suffice. Thus,
some well-known methods in the literature explore diversity to cre-
ate homogeneous ensembles given a base inducer. Such successful
strategies have in common the manipulation of the problem data. For
instance, Bootstrap Aggregating (Bagging) [4] and Boosting [5], do it
568
horizontally since they train the pool members on different data subsets
that are sampled from the training dataset.

Bagging selects instances of the classification problem at random to
create training subsets via random sampling with replacement. It is a
framework that performs generation and classification. Data subsets are
built randomly in the generation phase, with the instances available in
the training set. Each data subset results in a classifier. In the classi-
fication phase, the trained classifiers are combined with the majority
voting rule [4].

Adaptive Boosting (AdaBoost) [5] is an algorithm that constructs
the classifiers in a logical sequence considering the mistake of the pre-
ceding ones. It is similar to Bagging, except that instances incorrectly
classified by the already generated classifiers will be more likely to
participate in the training of the next classifier at each iteration. For
this purpose, the sampling process considers a weight associated with
each training instance from the previous iteration. At each iteration, the
weight is incremented when classifiers from previous rounds misclassify
an instance and otherwise decremented. The weight is used in the
sampling process so that instances with higher weights are more likely
to be selected for training. Consequently, the method prioritizes the
most difficult instances to be used during the pool’s construction.

In opposition to Bagging and Boosting, Random Subspaces (RS) [6]
performs vertical data partitioning since each of the pool members is
trained with a randomly selected subset of features from the original
feature space. Finally, another interesting method for pool generation
is the well-known Random Forest (RF) [7]. RF combines horizontal and
vertical data manipulation, training trees on subsets of data while the
assessment of features in the creation of split nodes is also randomized.

Different studies [13–16] have shown how data complexity metrics
improve the creation of multiple classifier systems. For instance, the
authors in [14] use data complexity measures in a method to define
the competence regions for learning classifiers. The data complexity
metrics allow them to identify the area of competence of heterogeneous
classifiers, improving the performance of dynamic selection methods.
Closely related to our approach, the authors in [15,16] developed a
framework for dynamic selection of classifiers oriented by the difficulty
of the classification problem, named DSOC. Their idea was to select
classifiers based on the complexity of the classification problem. DSOC
describes the use of complexity measures to generate a pool of clas-
sifiers based on two specific metrics (F1 and N2) and an optimization
process using a single objective genetic algorithm. However, their focus
was on a new dynamic classifier selection strategy. The most promising
classifier for a given test instance is selected considering accuracy and
features based on complexity measures. Such meta-features provide the
similarity between the test instance neighborhood and the data subset
used to train each classifier in terms of difficulty level. The motivation
was to select a classifier trained on a data subset showing similar
difficulty observed in the test neighborhood.

The pool generation method proposed in this paper is inspired by
the framework described in [16]. Our method may represent a new
first stage in that framework, where the novelties are as follows: (a)
the strategy used to explore the data complexity space and also in
classifier’s decision space; (b) the definition of the complexity measures
to be used dependent on the classification problem at hand; (c) the
use of a multi-objective genetic algorithm to explore diversity in the
problem complexity (two measures) simultaneously and also in the
classifier decision space; (d) the strategies used to provide the final pool
that can prioritize maximum diversity or maximum accuracy; and (e)
the possibility of defining the inducer.

3. Data complexity measures

Data complexity measures estimate how difficult a dataset is to be
categorized [8]. There are several ways to measure the complexity of
classification problems. Authors in [17] categorized complexity mea-
sures into six families or groups: Overlapping, Linearity, Neighborhood,

https://anonymous.4open.science/r/_PGCDS-2C65/README.md
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https://anonymous.4open.science/r/_PGCDS-2C65/README.md
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Network, Dimensionality, and Class Balance. Within each family, there
are several approaches to quantify complexity.

The remaining of this section describes the overlapping and neigh-
borhood data complexity families. Our method uses only the measures
of these two families, and their choice is justified in Section 4.1.

3.1. Overlapping measures

Overlapping measures analyze the feature space of a problem,
i.e., how much the attributes of different classes are overlapping. The
acronyms that name this family’s metrics are: F1, F1v, F2, F3, and F4.
The measures in this family are described below, and all of them require
numeric attributes.

3.1.1. Maximum Fisher’s Discriminant Ratio (F1)
Maximum Fisher’s Discriminant Ratio (F1) is responsible for finding

the distance between the centroids of two distinct classes and is based
on the mean and standard deviation of each attribute [18].

Traditional F1 is applied to binary classification datasets. However,
the authors in [19] proposed an equation where it is possible to
calculate 𝑟𝑓𝑗 for datasets with multiple classes. Eq. (1) demonstrates
how to calculate 𝑟𝑓𝑗 , where 𝑛 is the number of examples in the class

𝑗 , 𝜇
𝑓𝑖
𝑦𝑗 denotes the average of the attribute 𝑓𝑖 over the examples of

he class 𝑦𝑗 , the 𝜇𝑓𝑖 is the average of each characteristic 𝑓𝑖 across all
lasses of the problem. Finally, 𝑥𝑗𝑙𝑖 represents the individual value (𝑙) of
he attribute 𝑓𝑖 for an example of the 𝑦𝑗 th class.

𝑓𝑖 =

∑𝑛
𝑗=1 𝑛𝑗 (𝜇

𝑓𝑖
𝑦𝑗 − 𝜇

𝑓𝑖 )2

∑𝑛
𝑗=1

∑𝑦𝑗
𝑙=1(𝑥

𝑗
𝑙𝑖
− 𝜇𝑓𝑖𝑦𝑗 )

2
(1)

.1.2. The directional-vector maximum Fisher’s Discriminant Ratio (F1v)
The F1v measure determines the projection vector that separates

wo classes according to the Fisher equation. Malina [20] analyzed
ifferent hyperplanes of binary and non-binary problems proposing
q. (2) to find the distance between the centroids of other classes.

1𝑣 = 𝑑𝑆𝐵𝑑
𝑑𝑆𝑊 𝑑

(2)

In Eq. (2), 𝑑 is a directional vector that stores data that is designed
to maximize the spread of classes, 𝑆 is a subproblem, 𝐵 is the matrix of
attributes between classes, and 𝑊 is an array of attributes in the label
itself.

3.1.3. Volume of overlap region (F2)
According to Ho and Basu [13], and Lorena et al. [17], F2 measures

the distance and checks how overlapping are the values of an attribute
between across classes. F2 accounts for the minimum and maximum of
each attribute of the same label. The overlapping interval is calculated
by normalizing the attributes of both classes and multiplying them.
The determination of F2 is obtained by Eq. (3) that is the division
of 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑓𝑗 ) and 𝑟𝑎𝑛𝑔𝑒(𝑓𝑗 ) components computed for each feature 𝑓𝑗
available in the dataset.

𝐹2 =
∏

𝑗

overlap(𝑓𝑗 )
range(𝑓𝑗 )

=
∏

𝑗

max
{

0,minmax(𝑓𝑗 ) − maxmin(𝑓𝑗 )
}

maxmax(𝑓𝑗 ) − minmin(𝑓𝑗 )
(3)

In the equation above, minmax(𝑓𝑗 ) = min(max(𝑓 𝑦1𝑗 ),max(𝑓 𝑦2𝑗 )),
maxmin(𝑓𝑗 ) = max(min(𝑓 𝑦1𝑗 ),min(𝑓 𝑦2𝑗 )), maxmax(𝑓𝑗 ) = max(max(𝑓 𝑦1𝑗 ),

𝑦2 𝑦1 𝑦2
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ax(𝑓𝑗 )), and minmin(𝑓𝑗 ) = min(min(𝑓𝑗 ),min(𝑓𝑗 )).
.1.4. Feature efficiency (F3)
F3 checks whether there is an overlap between different classes per

ttribute and not the entire feature set. If there is overlap, the targets
re considered ambiguous in this region. Thus, the percentage that each
haracteristic contributes to the separation of two classes results in the
3 measure. According to Orriols et al. [18], the calculation of F3 is
one following the heuristic: for each attribute, an overlap region is
onsidered (where the attribute value is the same or very close for
ifferent classes), the result of F3 will be the ratio of the number of
nstances in the set that are not in this region, over the total number
f examples. The maximum value found will be the value of F3.

.1.5. Collective feature efficiency (F4)
The F4 measure uses a more discriminating set of attributes of each

lass. F4’s heuristic consists of (i) separating all the examples that an
ttribute can distinguish; (ii) from the remaining examples, there is the
ttribute that most distinguishes the classes of the problem; (iii) the pre-
ious two steps are repeated until all the examples have been classified
r there are no more dataset attributes. Finally, F4 is the percentage of
xamples that were discriminated by the attributes [17,18].

.2. Neighborhood measures

Neighborhood measures define the distance between instances and
r attributes to determine the border regions of classes and the dif-
iculty in separating them. The measures of this family only accept
roblems with numerical attributes. This group includes N1, N2, N3,
4, T1, and LSCAvg measures.

.2.1. Fraction of borderline points (N1)
N1 defines the percentage of examples that are close to the bound-

ry line between different problem labels. N1 applies Minimum Span-
ing Tree (MST) [21]. This algorithm generates a graph connecting
ll the set elements so that the sum of the connections is as tiny as
ossible. The edges of this tree are connected in two different classes
epresenting the examples that are in the boundary line [13,17,22].

Eq. (4) defines the sum of the edges that are in the boundary
egion, 𝑛 denotes the number of examples of the problem, 𝑥𝑖, and 𝑥𝑗
re instances of the problem, 𝑏 is an indicator of function, just like in
easure F3, it represents values between zero and one. The variables
𝑖 and 𝑦𝑗 determine the labels for each instance.

1 = 1
𝑛

𝑛
∑

𝑖=1
𝑏
(

(𝑥𝑖, 𝑥𝑗 ) ∈ MST ∧ 𝑦𝑖 ≠ 𝑦𝑗
)

(4)

3.2.2. Ratio of intra/extra class nearest neighbor distance (N2)
The N2 descriptor evaluates the intersection of two classes through

the distance between examples of different targets of the problem. N2
is summed up in the sum of the length of the nearest neighbor of an
instance of the same label by the sum of another neighbor, but with
another target [13,17,23]. These steps are performed for all instances
of the problem.

The Eq. (5) refers to N2, where 𝑥𝑖 represents the examples 𝑖,
𝑖𝑛𝑡𝑟𝑎𝐷𝑖𝑠𝑡 represents the distance from the neighbor of 𝑥𝑖 being of the
same class, and 𝑖𝑛𝑡𝑒𝑟𝐷𝑖𝑠𝑡 represents the distance from nearest neighbor
𝑥𝑖, where class is different. Finally, 𝑛 represents the total number of
problem instances and labels.

𝑁2 =
∑𝑛
𝑖=0 𝑖𝑛𝑡𝑟𝑎𝐷𝑖𝑠𝑡(𝑥𝑖)

∑𝑛
𝑖=0 𝑖𝑛𝑡𝑒𝑟𝐷𝑖𝑠𝑡(𝑥𝑖)

(5)

3.2.3. Error rate of the nearest neighbor classifier (N3)
The nearest neighbor classifier error rate refers to the 1NN clas-

sifier error rate estimated by leave-one-out, for a neighbor of the test
instance [17,19,34]. N3 is measured according to Eq. (6), where 𝑁𝑁
is the closest neighbor of the classifier prediction for example 𝑥𝑖 using
all training instances [17].

𝑁3 =
∑𝑛
𝑖=1 𝑏(𝑁𝑁(𝑥𝑖) ≠ 𝑦𝑖) (6)
𝑛
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Fig. 1. Method variants based on Maximum Accuracy and Maximum Dispersion. 𝐺𝑟 represents the pool generation.
Fig. 2. Crossover process starts with two bags (𝑆𝑖 and 𝑆𝑗 ) drawn in the population. The instances in 𝑆𝑖 are swapped with those in 𝑆𝑗 in the beginning and finish range.
Fig. 3. Mutation process starts with two bags (𝑆𝑖 and 𝑆𝑗 ) drawn from the population. 𝑆𝑖 has instance 𝑥7 replaced by 𝑥2 from 𝑆𝑗 .
Table 1
Methods from the literature and the parameters used.
Method Parameters Library/version Ref.

Perceptron max_iter=100, tol=1.0 scikit-learn 0.24.2 [24]
Decision tree All default scikit-learn 0.24.2 [24]
BaggingClassifier n_estimators=100, max_sample=0.5, random_state=86 scikit-learn 0.24.2 [24]
AdaBoostClassifier n_estimators=100, random_state=86 scikit-learn 0.24.2 [24]
RandomForestClassifier n_estimators=100, random_state=86 scikit-learn 0.24.2 [24]
DCS Methods All defaults DESlib 0.3 [25]
DES Methods All defaults DESlib 0.3 [25]
NSGA-II All defaults deap 1.3.1 [26]
Complexities measures All defaults ECoL 0.3.0 [17]
3.2.4. Non-linearity of the nearest neighbor classifier (N4)
Measure N4 returns the error rate of the KNN classifier. The N4

metric uses a synthetic problem created from a training set to create
a synthetic test subproblem. The artificial set is made through inter-
polation between randomly chosen pairs within the same class [13,
570
18]. Interpolation randomly pulls two examples from the training set
of the same category. After that, a synthetic example is created be-
tween the two instances. The process is repeated until all the examples
are combined. The KNN algorithm will classify the cases made by
interpolation.
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Fig. 4. Representation of Lithuanian Dataset.

Table 2
Datasets used in the experiment.

No. Datasets Instances Features Classes Source

01 Australian 690 14 2 UCI [27]
02 Banana 2000 2 2 PRTools [28]
03 Blood 748 4 2 UCI [27]
04 CTG 2126 21 3 UCI [27]
05 Diabetes 766 8 2 UCI [27]
06 Faults 1941 27 7 UCI [27]
07 German 1000 24 2 STATLOG [29]
08 Haberman 306 3 2 UCI [27]
09 Heart 270 10 2 STATLOG [29]
10 ILPD 583 34 2 UCI [27]
11 Ionosphere 351 16 2 UCI [27]
12 Laryngeal1 213 16 2 LKC [30]
13 Laryngeal3 353 2 3 LKC [30]
14 Lithuanian 2000 2 2 PRTools [28]
15 Liver 345 6 2 UCI [27]
16 Mammo 830 5 2 KEEL [31]
17 Monk 432 6 2 KEEL [31]
18 Phoneme 5404 5 2 ELENA [32]
19 P2 5000 2 2 [33]
20 Segmentation 2310 19 7 UCI [27]
21 Sonar 208 60 2 UCI [27]
22 Thyroid 692 16 2 LKC [30]
23 Vehicle 846 18 4 STATLOG [29]
24 Vertebral 300 6 2 UCI [27]
25 WBC 569 30 2 UCI [27]
26 WDVG 5000 21 3 UCI [27]
27 Weaning 302 17 2 LKC [30]
28 Wine 178 13 3 UCI [27]

Eq. (7) defines N4, where 𝐼𝑛𝑝 represents the number of interpola-
tions performed, 𝑏 the result of the function indicator, 𝑟𝑒𝑠𝐾𝑁𝑁 repre-
sents the prediction of the KNN algorithm for the synthetic instance 𝑥′𝑖
with label 𝑦′𝑖 [17].

𝑁4 = 1
𝐼𝑛𝑝

𝐼𝑛𝑝
∑

𝑖=1
𝑏(𝑟𝑒𝑠𝐾𝑁𝑁(𝑥′𝑖) ≠ 𝑦′𝑖) (7)

3.2.5. Fraction of hyper-spheres covering data (T1)
T1 consists of creating spheres, the center of which is in an instance

of a class. The selection of the initial instance is random. The spheres’
radius are increased until some instance of another class touches its
edge. The final T1 value is given by dividing the number of spheres
required to cover a class divided by the total number of instances in
the problem [8,13,17].

3.2.6. The local set average cardinality measure (LSCAvg)
According to Leyva, González, and Perez [35], the local set of an

instance is defined as its neighbors within a radius that is smaller than
571
the distance from this sample to a sample from a different class. The
cardinality of a local set (LS) indicates the proximity of an instance to
the decision boundary. Therefore, LS cardinality is lower for instances
separated from the other class. This metric represents the average LS
value obtained for all instances in a dataset.

4. Proposed method

Countless works in the literature seek to improve MCS performance
by generating diverse classifiers. The novelty in our approach is to drive
the pool training on subproblems of the original classification prob-
lem that are represented by subsets of data created using a sampling
mechanism based on complexity measures. More than contributing to
the entire pool performance, we expect that the classifiers trained in
that fashion increase the probability of dynamic selection algorithms
choosing the classifier(s) with more competence for an input instance.

The proposed method, hereafter referred to as Classifier Pool Gen-
eration based on Diversity in the Decision and Complexity Spaces, or
PGDCS, generates a homogeneous pool of classifiers. It has two main
steps: (i) selecting data complexity metrics and (ii) pool generation
using multi-objective genetic algorithms (MOGAs). More specifically,
the first step consists of selecting the complexity measures with the
higher variability among 𝑛 data subsets randomly created from a given
classification problem. The rationale is to choose complexity measures
that show an extensive variance range. After defining the most suitable
complexity measures for the given problem, in the second step of
the method, such metrics are used with a measure of diversity in
the classifiers’ decision space as fitness functions of a multi-objective
genetic algorithm (MOGA) to create data subsets (or subproblems) in
a two-level diversity strategy. Finally, we performed the experiments
using dynamic classifier selection methods. The MOGA provides subsets
that better cover the data complexity space while generating a diverse
pool in classifier decisions. The final pool of classifiers is obtained
according to the generation that presents the best performance (if the
accuracy variant is chosen) or the generation showing the highest
average distance between individuals (if the diversity variant is se-
lected). After performing the two steps of the proposed method, the
pool of classifiers generated can be used in multiple classifier systems
(MCS) with or without considering a classifier selection stage. In our
experimental protocol (Section 5), we have performed experiments by
combining all pool members and also by using DCS and DES methods.
We expect an important contribution when using the proposed pool
generator for DCS and DES methods since the literature shows that their
success usually depends on a pool of diverse and accurate classifiers.
Fig. 1 overviews the proposed method which is detailed in the next
sections.

4.1. Selecting data complexity metrics

Even though our proposal is generic, the complexity measures used
in the proposed method belong to the Overlapping and Neighborhood
families as their computational cost is smaller and yielded interesting
results in previous studies in multiple classifier systems [16]. We
have considered five overlapping-based metrics, named 𝜔1 = {𝐹1,
𝐹1𝑣, 𝐹2, 𝐹3, 𝐹4}, and six neighborhood-based ones, named 𝜔2 =
{𝑁1, 𝑁2, 𝑁3, 𝑁4, 𝑇 1, 𝐿𝑆𝐶}.

The original problem dataset is first divided into training, valida-
tion, and testing sets. Next, at each iteration 𝑡 < 𝑇 of the proposed
algorithm, we randomly generate 𝑛 data subsets (𝑆𝑡𝑛 = 𝑆𝑡1, 𝑆

𝑡
2,… , 𝑆𝑡𝑛)

from the training set with replacement such that each subset contains
𝑢 percent of the training instances available. Similar subsampling is
performed in the Bagging algorithm. The two families of measures (𝜔1
and 𝜔2) are then computed for each 𝑆𝑡𝑖 . The value of each metric (𝛼𝑡𝑖𝑗) is
normalized across the 𝑛 data subsets using the min–max normalization
as denoted in Eq. (8), where 𝛼𝑡 and 𝛼𝑡 represent the lowest and
𝑚𝑖𝑛,𝑗 𝑚𝑎𝑥,𝑗
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Fig. 5. Representation of the dispersion of individuals in the Lithuanian database during the execution of the MOGA. Fig. (a) demonstrates the dispersion in the first generation
of individuals and Fig. (b) represents the best generation of PGDCS.
Fig. 6. Win, Tie and Loss of the method variants (PGDCS_A, PGDCS_D) when compared to Bagging, AdaBoost, Random Forest (RF), and DSOC. Perceptron and Decision Tree as
base classifiers. aggregation based on MVR.
Table 3
Average dispersion (votes) in 10 interactions of the Lithuanian Problem.

# Family of measure

Iteration Overlapping Neighborhood

F1 F1v F2 F3 F4 N1 N2 N3 N4 T1 LSC

1 0.194 0.181 0.219 0.234 0.233 0.197 0.208 0.183 0.190 0.197 0.181
2 0.220 0.207 0.229 0.228 0.236 0.215 0.215 0.242 0.163 0.174 0.183
3 0.230 0.210 0.197 0.238 0.214 0.173 0.201 0.215 0.214 0.210 0.172
4 0.189 0.186 0.225 0.232 0.237 0.203 0.185 0.184 0.217 0.221 0.185
5 0.230 0.229 0.211 0.216 0.248 0.205 0.168 0.236 0.183 0.245 0.205
6 0.243 0.234 0.211 0.222 0.223 0.170 0.173 0.228 0.227 0.246 0.220
7 0.189 0.184 0.184 0.206 0.203 0.217 0.214 0.195 0.205 0.188 0.179
8 0.193 0.187 0.204 0.187 0.184 0.189 0.220 0.214 0.184 0.203 0.200
9 0.205 0.207 0.216 0.238 0.208 0.201 0.202 0.206 0.199 0.205 0.211
10 0.180 0.176 0.225 0.220 0.206 0.221 0.201 0.193 0.166 0.167 0.204

Votes 1 0 2 4 3 2 2 2 0 3 1
572
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Fig. 7. Nemenyi analysis: (PGDCS_A, PGDCS_D) compared to Bagging, AdaBoost, Random Forest (RF), and DSOC. Perceptron and Decision Tree as base classifiers. aggregation
based on MVR.
Fig. 8. PGDCS_A variant considering both base inducers (Perceptron and Decision Tree) compared to other pool generators when considering DCS methods.
highest value of the 𝑗th complexity measure during the 𝑡th iteration,
respectively.

𝛼𝑡𝑖𝑗 =
𝛼𝑡𝑖𝑗 − 𝛼

𝑡
𝑚𝑖𝑛,𝑗

𝛼𝑡𝑚𝑎𝑥,𝑗 − 𝛼
𝑡
𝑚𝑖𝑛,𝑗

(8)

After normalization, the algorithm computes the dispersion for each
complexity measure using Eq. (9), where 𝜇𝑡𝑗 represents the average of
the 𝑗𝑡ℎ complexity measure at iteration 𝑡, and 𝑛 is the number of data
subsets.

𝜎𝑡𝑗 =

√

∑𝑛
𝑖=1(𝛼

𝑡
𝑖,𝑗 − 𝜇

𝑡
𝑗 )2

𝑛
(9)

The complexity measure with the highest dispersion value inside of
each family (ind) is obtained as described in Eq. (10).

ind = argmax 𝜎𝑡𝑗 (10)
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𝑗∈𝜔𝑘
The rationale behind selecting the most disperse metric is to have
more flexibility in the second step when we target sub-problems with
different difficulty levels. In Eq. (11), the complexity measure showing
a large dispersion receives a vote at each iteration 𝑡.

votes𝜔𝑘ind = votes𝜔𝑘ind + 1 (11)

The metric most voted of each family (𝑐𝑚1 and 𝑐𝑚2) is selected
for the classification problem analyzed as denoted in Eq. (12). If a
tie occurs, the metric with the highest average dispersion across the
𝑇 iterations is selected. As a result of this process, the two selected
complexity metrics, one per family, are part of the objective functions
used during the next step of the proposed method.

cm𝑘 = argmax votes𝜔𝑘𝑗 (12)

𝑗∈𝜔𝑘
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Fig. 9. PGDCS_D variant considering both base inducers (Perceptron and Decision Tree) compared to other pool generators when considering DCS methods.
Fig. 10. Nemenyi analysis comparing PGDCS_A (PG_A) to other pool generation methods in different DCS approaches.
4.2. Pool generation based on multi-objective optimization

In the second stage, a multi-objective genetic algorithm (MOGA)
[10] uses the measures of complexity previously selected for the prob-
lem at hand and a diversity measure to generate a pool of classifiers.
The idea is to explore diversity in the data complexity and classifier
decision spaces simultaneously. To obtain the best pool, we evaluated
two strategies. The first outputs the pool related to the generation with
the best accuracy (maximum accuracy), named PGDCS_A. The second,
named PGDCS_D, outputs the pool of the generation with the most sig-
nificant average distance between individuals (maximum diversity). The
rationale behind this second strategy is to focus on variety, providing
a pool with members highly disperse in both input and output spaces.
With the proposed method, we expect to obtain a pool competitive in
terms of accuracy compared to traditional methods and improve MCS
based on dynamic selection.
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4.2.1. MOGA
Algorithm 1 presents the multi-objective genetic algorithm used.

It receives as input the number of generations 𝜓 , the population size
𝜅, the number of new individuals after crossover and mutation 𝜃, the
training set 𝑇 𝑟, the validation set 𝑉 , the base estimator 𝐼 , and 𝑂𝑝 as
the method variant. At 𝑡 = 0, the first population of data subsets 𝑃 (𝑡)
is created with size 𝜅 in line 3. In line 4, 𝐹 (𝑡) receives the three fitness
values of each individual of the generation 𝑡, which are computed
using Algorithm 2. The loop in lines 5–30 depicts the iterations of the
genetic algorithm. Line 8 depicts the crossover and mutation steps,
which are followed by the offspring definition in line 10. Next, line
13 to 27, in case PGDCS_A variant, the global population accuracy 𝜐
on the validation dataset 𝑉 is computed using majority voting rule.
In contrast, the dispersion-guided variant (PGDCS_D) calculates the
average dispersion of the pool members using Eq. (13). To that end,
for each generation we keep a global descriptor 𝐹 which is composed
of three objective values: 𝛷𝑐𝑚1

, 𝛷𝑐𝑚2
, and 𝐷𝐷𝑉 [𝐶𝑖]. The best solution in

the PGDCS_D variant is defined considering the generation that has the
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Fig. 11. Nemenyi analysis comparing PGDCS_D (PG_D) to other pool generation methods in different DCS approaches.
Fig. 12. Win, tie and loss of the PGDCS_A variant against to other pool generators when considering DES methods.
highest dispersion considering the 𝐹 descriptor computed in Eq. (13),
where 𝐺𝑑𝑖𝑠𝑝(𝑡) is the global dispersion at generation 𝑡, 𝜅 is the number
of bags/classifiers or population size and 𝐹𝑛 is the number of objective
functions.

𝐺𝑑𝑖𝑠𝑝(𝑡) =

∑𝜅
𝑖,𝑗=1

√

∑𝐹𝑛
ℎ=1(𝐹 [𝑖, ℎ] − 𝐹 [𝑗, ℎ])

2

𝜅 − 1
(𝑖, 𝑗 = 1..𝜅)(𝑖 ≠ 𝑗) (13)

In such a variant, we hypothesize that the population with the
highest global dispersion 𝜚 yields data subsets that better cover the
problem complexity space and consequently a pool trained on such data
subsets has increased diversity in the decision (output) space.

It is worth noting that during the evolution of generations, the
MOGA uses the three described fitness and the Pareto front strategy. We
have computed the population average accuracy or diversity dispersion
for each generation to select the best one according to the method
variant used, PGDCS_A or PGDCS_D, respectively. It means that the best
pool is not always related to the last MOGA generation.

When comparing with well-known ensemble learning methods avail-
able in the literature, we can see that the proposed method is time
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consuming. However, even paying this price, the experimental results
have shown that exploring diversity in both spaces (data complexity
and classifier decision) can significantly improve accuracy for most
of the classification problems evaluated in Section 5. Remarkably,
this alternative for ensemble generation gave the dynamic selection
methods a greater precision according to our experiments.

4.2.2. Fitness function
The optimization process occurs based on three objectives. The first

two explore the data complexity space using the metrics selected in the
first phase of the method. The idea is to maximize the average distance
(dispersion) among the data subsets considering each complexity metric
computed in a pairwise manner. The third objective is to maximize the
diversity in the decision space by using the Double Fault (𝐷𝐹 ) metric
computed on the decisions of the classifiers trained on each data subset
also in a pairwise manner. The adoption of the double fault metric
follows the findings of [9], where superior results in majority vote
ensembles were obtained via 𝐷𝐹 optimization.
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Fig. 13. Win, tie and loss of the PGDCS_D variant against to other pool generators when considering DES methods.
Fig. 14. Nemenyi analysis comparing PGDCS_A (PG_A) to other pool generation methods in different DES approaches.
The objectives are computed considering each data subset 𝑆𝑖, as
follows:

• 𝛷𝑐𝑚1
[𝑆𝑖] and 𝛷𝑐𝑚2

[𝑆𝑖]: the dispersion values of the subset 𝑆𝑖
considering the 𝑐𝑚1 and 𝑐𝑚2 complexity measures selected in a
problem-specific fashion (see Section 4.1). To obtain the disper-
sion, the algorithm starts by computing 𝜑𝑐𝑚𝑗 [𝑆𝑖], which is the
value of the metric 𝑐𝑚𝑗 for each individual in the population,
a subset of data 𝑆𝑖. Next, in a pairwise manner, the difference
between 𝑆𝑖 and all other data subset complexity values 𝜑𝑐𝑚𝑗 [𝑆𝑘]
is computed as denoted in Eq. (14), where 𝜅 is the total number
of subsets in the population (population size). The dispersion
𝛷𝑐𝑚𝑗 [𝑆𝑖] stores the average distance of the subset 𝑆𝑖 with respect
to all other subsets in the complexity space regarding 𝑐𝑚𝑗 . The
idea is to maximize these dispersion values to better cover the
problem complexity space.

𝛷 [𝑆 ] =

∑𝜅
𝑘=1 𝑎𝑏𝑠(𝜑𝑐𝑚𝑗 [𝑆𝑖] − 𝜑𝑐𝑚𝑗 [𝑆𝑘]) (14)
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𝑐𝑚𝑗 𝑖 𝜅 − 1
• 𝐷𝐷𝑉 [𝐶𝑖] is the Decision-based Diversity Value of a classifier 𝐶𝑖
computed using the Double Fault diversity measure. The idea
is to maximize the diversity w.r.t. classifiers decisions. First, a
classifier (𝐶𝑖) is trained for each subset of data (𝑆𝑖) representing
a subproblem with a given complexity level. Next, the algo-
rithm calculates (𝐷𝐹 (𝐶𝑖, 𝐶𝑗 )), which is the Double Fault diversity
measure per classifier using the validation set. Finally, a final
diversity value is estimated for 𝑆𝑖 in a pairwise manner as denoted
in Eq. (15), where 𝜅, the population size, here represents the
number of classifiers (or data subsets). Besides, 𝐷𝐹 is a score in
the interval [0, 1] obtained as a fraction of the number of instances
that have been misclassified by both classifiers 𝐶𝑖 and 𝐶𝑗 , denoted
in Eq. (16) as 𝑒, by the total number of samples in a validation
set 𝑉 .

𝐷𝐷𝑉 (𝐶𝑖) =

∑𝜅
𝑗=1,𝑗!=𝑖𝐷𝐹 (𝐶𝑖, 𝐶𝑗 )

𝜅 − 1
(15)

𝐷𝐹 = 𝑒 (16)

|𝑉 |
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Fig. 15. Nemenyi analysis comparing PGDCS_D (PG_D) to other pool generation methods in different DES approaches.
Table 4
Voting results for measures with highest standard deviation.

Dataset F1 F1v F2 F3 F4 N1 N2 N3 N4 T1 LSC

Australian 4 3 1 2 0 0 0 2 5 1 2
Banana 0 2 3 4 1 1 0 3 0 4 2
Blood 2 0 5 3 0 3 1 1 2 1 2
CTG 4 3 2 1 0 1 3 2 1 2 1
Diabetes 1 1 2 5 1 1 3 1 0 1 4
Faults 0 10 0 0 0 1 1 4 1 1 2
German 0 0 9 1 0 3 1 0 4 1 1
Haberman 2 2 4 0 2 0 1 3 4 1 1
Heart 0 0 0 0 10 0 0 0 6 3 1
ILPD 1 3 0 5 1 4 2 2 1 0 1
Ionosphere 7 2 0 1 0 0 1 3 5 1 0
Laryngeal1 1 0 0 1 8 0 2 2 4 0 2
Laryngeal3 0 3 0 2 5 2 4 2 1 0 1
Lithuanian 1 0 2 4 3 2 2 2 0 3 1
Liver 1 5 2 0 2 2 1 3 2 2 0
Mammo 1 2 7 0 0 2 1 1 3 2 1
Monk 0 0 4 0 6 1 4 1 2 2 0
P2 2 5 3 0 0 1 2 4 2 0 1
Phoneme 1 4 1 2 2 1 3 4 1 0 1
Segmentation 0 10 0 0 0 0 2 4 1 2 1
Sonar 5 2 0 1 2 2 0 2 5 1 0
Thyroid 2 0 0 5 3 0 2 2 1 0 5
Vehicle 0 0 0 1 9 1 0 3 0 4 2
Vertebral 1 2 1 0 6 2 4 2 2 0 0
WBC 3 2 0 5 0 1 2 0 3 2 2
WDVG 5 0 0 2 3 3 1 2 0 4 0
Weaning 3 3 0 4 0 0 2 0 6 0 2
Wine 1 1 0 8 0 4 0 5 0 1 0

Average 1.7 2.3 1.6 2 2.3 1.4 1.6 2.1 2.2 1.4 1.3
Table 5
MOGA parameters used in our method.
Name Symbol Value

Number of generations 𝜓 20
Population size 𝜅 100
Number of children 𝜃 100
Offspring size 𝛾 100
Crossover rate (probability) – 0.9
Mutation rate (probability) – 0.1

Algorithm 2 describes the fitness function adopted in our method
where the inputs are: the population 𝑃 and the corresponding number
of individuals (𝜅). In the first loop (lines 2 to 6), the complexity
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values related to the selected metrics of overlapping and neighborhood
of each subset 𝑆𝑖 are computed and stored in 𝜑𝑐𝑚1

[𝑆𝑖] and 𝜑𝑐𝑚2
[𝑆𝑖],

respectively. Besides, a classifier is trained for each 𝑆𝑖 considering a
previously defined base classifier. In the second loop (lines 7 to 11), in
a pairwise manner, the algorithm computes for each 𝑆𝑖 the dispersion
𝛷𝑐𝑚1

and 𝛷𝑐𝑚2
related to the measures 𝑐𝑚1 and 𝑐𝑚2 using Eq. (14).

In addition, the Double Fault metric for each 𝑆𝑖 is computed using
Eq. (15).

4.2.3. Crossover
One of the essential elements of a multi-objective genetic algorithm

(MOGA) is the crossing operator, which is responsible for generating
new individuals and creating a new population. The crossing operator
used in our method randomly chooses two individuals within the
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Table 6
Average generation number round chosen in MOGA per dataset.

Dataset Perceptron Decision Tree

PGCDS_A PGCDS_D PGCDS_A PGCDS_D

Australian 7.6 (4.5) 12.5 (0.9) 10.5 (1.1) 14.6 (3.3)
Banana 2.9 (2.8) 6.6 (5.0) 8.0 (0.0) 7.8 (0.7)
Blood 3.5 (6.2) 9.0 (5.7) 6.5 (1.7) 11.8 (4.1)
CTG 19.1 (2.2) 10.1 (2.1) 9.2 (4.8) 11.0 (2.0)
Diabetes 11.4 (4.8) 17.5 (0.9) 12.5 (3.9) 12.0 (3.7)
Faults 6.3 (6.3) 10.6 (3.2) 9.5 (2.7) 13.6 (0.5)
German 9.9 (0.2) 16.1 (0.2) 10.6 (3.7) 12.8 (2.3)
Haberman 9.8 (1.7) 6.8 (4.1) 5.3 (0.7) 14.5 (2.2)
Heart 9.2 (2.5) 13.2 (4.9) 7.2 (3.2) 8.8 (1.6)
ILPD 13.9 (2.2) 12.8 (2.2) 13.4 (1.3) 17.4 (2.8)
Ionosphere 7.5 (2.2) 11.0 (3.9) 9.9 (3.3) 11.0 (3.9)
Laryngeal1 15.8 (2.2) 12.8 (1.3) 11.6 (4.5) 12.5 (5.0)
Laryngeal3 12.1 (1.8) 13.4 (6.7) 11.3 (3.5) 12.5 (2.3)
Lithuanian 12.8 (5.2) 15.0 (2.4) 7.5 (2.2) 11.9 (4.3)
Liver 18.6 (1.1) 6.5 (1.1) 11.4 (3.6) 11.1 (5.6)
Mammo 5.4 (4.3) 10.3 (3.1) 12.2 (1.9) 10.7 (4.0)
Monk 16.4 (0.8) 10.5 (1.5) 13.7 (0.7) 11.6 (4.4)
P2 2.0 (0.0) 11.8 (3.4) 9.0 (3.1) 10.9 (3.8)
Phoneme 8.7 (4.4) 15.5 (5.0) 11.1 (5.2) 10.9 (3.8)
Segmentation 17.1 (4.1) 7.1 (3.5) 7.0 (2.3) 12.0 (4.4)
Sonar 17.9 (3.3) 16.7 (2.2) 15.3 (4.9) 8.7 (3.1)
Thyroid 11.5 (7.0) 14.1 (0.9) 12.8 (0.9) 11.6 (1.1)
Vehicle 7.3 (4.7) 12.6 (4.3) 11.2 (3.2) 8.4 (4.1)
Vertebral 5.9 (4.2) 12.5 (1.7) 12.1 (3.1) 12.5 (1.7)
WBC 4.4 (0.5) 12.4 (1.5) 8.2 (2.6) 12.4 (1.5)
WDVG 9.2 (6.0) 11.3 (2.6) 11.6 (3.0) 11.3 (2.6)
Weaning 10.6 (1.6) 11.9 (1.6) 18.1 (4.8) 11.9 (1.6)
Wine 11.2 (0.9) 12.8 (1.9) 14.8 (5.6) 12.8 (1.9)

Average 10.3 (3) 11.9 (2.8) 10.7 (2.8) 11.9 (2.9)

population 𝑃 , named 𝑆𝑖 and 𝑆𝑗 . Each individual is a data subset
for which we have the corresponding difficulty computed using the
selected complexity measures. Thus, the crossing operator combines
the two selected parents’ genes to generate a child. In our method, the
crossing generates a new subset of data exchanging part of the instances
between the parents 𝑆𝑖 and 𝑆𝑗 . Algorithm 3 details the crossover
operation. Line 2 extracts all the problem classes. Next, the 𝐶𝑟𝑜𝑠𝑠𝑉 𝑎𝑙𝑖𝑑
variable is set as 𝑇 𝑟𝑢𝑒, meaning that we previously assumed that the
crossing is valid, i.e., the generated subset has instances of all problem
classes. In lines 5 and 6, two arbitrary subsets of data 𝑆𝑖 and 𝑆𝑗 are
chosen from the population 𝑃 , and the resulting (child) subset 𝑆𝑛𝑒𝑤 is
initialized as an empty structure (line 7). Then, the crossover points
beginning and finish are defined randomly (lines 8–9). They are
used to determine the interval over which instances are exchanged
between 𝑆𝑖 and 𝑆𝑗 (lines 10 to 17). Finally, the algorithm checks if
𝑆𝑛𝑒𝑤 has instances of all problem classes (lines 18–31).

Fig. 2 illustrates the crossover process between two data subsets (𝑆𝑖
nd 𝑆𝑗). The beginning and finish points are chosen at random and
etermine where the exchange of instances between the data subsets
ill take place. As we can see, the new data subset (𝑆𝑛𝑒𝑤) is created
sing instances from 𝑆𝑖 = 𝑥4, 𝑥15..., 𝑥𝑛 and 𝑆𝑗 = 𝑥5, 𝑥12, 𝑥14, as we

emphasize using the orange rectangle.

4.2.4. Mutation
During mutation in a genetic algorithm, a gene experiences a

change. The individual who suffers the modification has a new char-
acteristic that can contribute to the evolution of the population. In our
method, a subset of data is modified in an instance. To this end, two
subsets are chosen within the current population, one subset ‘‘donor’’
and one ‘‘receiver’’. The donor subset replaces an instance of the
receiving subset. The donated instance and the modified one are chosen
randomly within each subset, but both must have the same label.

Fig. 3 represents the mutation process, where line 1 shows the
subset 𝑆𝑖 that was chosen randomly from the population to be the
578

receptor. In the same way, the subset 𝑆𝑗 was chosen to be the donor. a
Algorithm 1: Genetic Algorithm
Input : 𝜓 as maximum number of generations,

𝜅 as the population size,
𝜃 as the number of new individuals after crossover

and mutation,
𝑇𝑟 as training set,
𝑉 as validation set,
𝐼 as base inducer,
𝑂𝑝 as method variant

Output : 𝜚 ensemble of classifiers.
1 Function GA(𝜓 , 𝜅, 𝜃, 𝑇𝑟, 𝑉 , 𝐼 , 𝑂𝑝):
2 𝑡 ← 0
3 𝑃 (𝑡) ← initialize(𝑇𝑟, 𝜅)
4 𝐹 (𝑡), 𝐸(𝑡) ← fitness_evaluate(𝑃 (𝑡), 𝜅, 𝐼)
5 while 𝑡 ≠ 𝜓 do
6 𝛾 ← 0
7 𝑃 ′(𝑡) ← ∅
8 while 𝛾 ≠ 𝜃 do
9 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟← randomly_select(crossover, mutation)
10 𝑃 ′(𝑡) ← 𝑃 ′(𝑡)∪ operator(𝑃 (𝑡))
11 𝛾 + +
12 end
13 𝐹 (𝑡), 𝐸(𝑡) ← fitness_evaluate(𝑃 ′(𝑡), 𝜅, 𝐼, 𝑉 )
14 𝑃 (𝑡 + 1), 𝐹 (𝑡 + 1), 𝐸(𝑡 + 1) ←

NSGAII(𝑃 ′(𝑡), 𝑃 (𝑡), 𝐹 (𝑡), 𝐸(𝑡), 𝜅) // see [10]
15 if 𝑂𝑝 = PGDCS_A then
16 𝜐← 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐸(𝑡 + 1), 𝑉 ) // using Majority

Voting Rule
17 end
18 else if 𝑂𝑝=PGDCS_D then
19 𝜐← 𝐺𝑑𝑖𝑠𝑝(𝐹 (𝑡 + 1)) // using Eq. (13)
20 end
21 𝜚 ← 𝐸(𝑡 + 1)
22 if 𝑡 = 0 then
23 𝑡𝑒𝑚𝑝← 𝜐
24 else if 𝑡𝑒𝑚𝑝 < 𝜐 then

// keeping the best generation
25 𝑡𝑒𝑚𝑝← 𝜐
26 end
27 𝑃 (𝑡) ← 𝑃 (𝑡 + 1)
28 𝑡← 𝑡 + 1
29 end
30 return 𝜚

The instance 𝑥2 of the subset 𝑆3 replaces the 𝑥7 example of the 𝑆𝑖
ubset, thus modifying the subset 𝑆𝑖 and keeping the subset 𝑆𝑗 (line
) unchanged.

.3. A note on complexity analysis

Assuming a dataset with 𝑛 instances, 𝑓 features, and 𝑦 classes, the
irst part of proposed method is run 𝑟 times. In each run, a number
f bags 𝑁 is created with random sampling of the original dataset.
ext, the complexity metrics are computed along with their standard
eviation, and their aggregated complexity is 𝑂(𝑓 3𝑦2) (proof in [36]).
onsequently, the complexity of the first step is 𝑂(𝑟𝑛(𝑓 3𝑦2 +𝑁)). The
econd step regards the genetic algorithm optimization process, in
hich NSGA-II [10] was applied. This process is repeated 𝑟′ times,

uch that each run encompasses 𝑔 generations. For each generation
, NSGA-II has a time complexity of 𝑂(𝜇 log𝜇𝐹𝑛−2), where 𝐹𝑛 is the
umber of objectives being optimized. Nonetheless, the computation
f the objectives depend on complexity metrics, which as depicted

3 2
bove, have an 𝑂(𝑓 𝑦 ) cost. Therefore, the time complexity of the
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Table 7
Average Oracle of each pool of classifiers over 20 iterations.

Dataset Perceptron Decision Tree

PGDCS_A PGDCS_D Bagg. AdaB. RF DSOC PGDCS_A PGDCS_D Bagg. AdaB. RF DSOC

Australian 99 99 99 100 100 99 99 99 99 81 100 99
Banana 99 100 99 99 99 99 99 99 99 95 99 99
Blood 99 99 99 100 97 97 97 98 98 100 97 97
CTG 99 99 99 98 100 99 99 100 99 95 100 99
Diabetes 99 99 100 100 100 99 100 100 99 90 100 99
Faults 99 98 99 99 99 99 99 99 99 98 99 99
German 99 99 99 100 100 99 100 99 99 93 100 99
Haberman 100 100 100 100 99 98 99 100 99 92 99 98
Heart 99 99 99 100 100 99 100 100 99 84 100 99
ILPD 99 99 99 100 99 99 100 100 99 78 99 99
Ionosphere 100 99 99 99 100 99 99 99 99 87 100 99
Laryngeal1 100 100 99 100 99 99 100 100 99 87 99 99
Laryngeal3 99 99 99 100 100 99 99 99 99 74 100 99
Lithuanian 99 100 100 100 99 99 99 99 99 95 99 99
Liver 100 100 99 100 100 100 100 100 100 80 100 100
Mammo 100 99 99 100 97 97 98 98 97 100 97 97
Monk 100 100 100 100 100 100 100 100 100 100 100 100
P2 100 100 100 100 100 99 100 100 100 91 100 99
Phoneme 100 100 100 100 99 99 99 99 99 84 99 99
Segmentation 99 99 99 99 100 99 100 99 99 95 100 99
Sonar 100 99 100 100 100 100 100 100 100 89 100 100
Thyroid 99 99 100 100 99 99 99 99 99 95 99 99
Vehicle 99 100 99 99 100 100 100 100 100 88 100 100
Vertebral 99 99 99 100 100 99 99 100 99 83 100 99
WBC 100 99 99 99 99 99 100 99 99 92 99 99
WDVG 99 99 99 100 100 99 100 100 100 84 100 99
Weaning 99 99 100 100 100 99 100 100 99 97 100 99
Wine 100 100 100 97 100 100 100 100 100 90 100 100

Average 99 99 99 99 99 99 99 99 99 90 99 99
A
𝑂

Table 8
Experiments on Time Consuming. Number of times the proposed method is slower
than Bagging (Bag), AdaBoost (Ada) and Random Forest (RF). For each problem: Name
(#samples, #classes, #features).

Classification Problem PGDCS/Bag PGDCS/Ada PGDCS/RF

Wine (178, 3, 13) 9 20 21
WDVG (5,000, 3, 30) 20 98 112
Lithuanian (2000, 2, 2) 51 117 120
Faults (1941, 7, 27) 15 66 73

Algorithm 2: Fitness_evaluate
Input : 𝑃 as the population,

𝜅 as the population size,
𝐼 as base inducer
𝑉 as validation set

Output: 𝐹 as a structure with three fitness values for each
individual,
𝐸 as the ensemble of classifiers

1 Function fitness_evaluate(𝑃 , 𝜅, 𝐼 , 𝑉 ):
2 for each 𝑆𝑖 in 𝑃 do
3 Compute metric 𝑐𝑚1 as 𝜑𝑐𝑚1

[𝑆𝑖]
4 Compute metric 𝑐𝑚2 as 𝜑𝑐𝑚2

[𝑆𝑖]
5 𝐶𝑖 ← Training the base inducer 𝐼𝑖 on 𝑆𝑖
6 end
7 𝐸 ← ∅
8 for i in [1..𝜅] do
9 Compute 𝐹 [𝑖][0] as 𝛷𝑐𝑚1

[𝑆𝑖] (Eq. (14))
10 Compute 𝐹 [𝑖][1] as 𝛷𝑐𝑚2

[𝑆𝑖] (Eq. (14))
11 Compute 𝐹 [𝑖][2] as 𝐷𝐷𝑉 (𝐶𝑖) using 𝑉 (Eq. (15))
12 𝐸 ← 𝐸 ∪ 𝐶𝑖
13 end
14 return 𝐹 ,𝐸
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second step of the proposed method is of 𝑂(𝑔 × 𝑟′ × (𝜇 log𝜇𝐹𝑛−2𝑓 3𝑦2)).
s a result, the overall time complexity of the proposed method is
(𝑟𝑛(𝑓 3𝑦2 +𝑁) + 𝑔 × 𝑟′ × (𝜇 log𝜇𝐹𝑛−2𝑓 3𝑦2)).

5. Experimental results and analysis

A robust experimental protocol is used to evaluate the two variants
of the proposed method, PGDCS_A (Maximum Accuracy), and PGDCS_D
(Maximum Dispersion). We used 28 datasets available in the UCI [27],
KEEL [31], PRTools [28], STATLOG [29], LKC [30] and ELENA [32]
repositories and P2 Dataset [33]. Table 2 presents the datasets with
their main characteristics and respective repositories.

We compare the proposed method with traditional methods of pool
generation, Bagging [4], AdaBoost [5], Random Forest [7] and the first
part of the DSOC framework that regards pool generation [16]. Besides,
we evaluate the impact of using the proposed method as pool generator
for well-known DCS methods like LCA, OLA, and Rank [37], and DES
methods like KNORA-E, KNORA-U [38], and META-DES [39,40]. The
DCS and DES methods are publicly available as part of the deslib
library [25]. Table 1 presents the parameters of each method used in
our experiments.

As base inducer for homogeneous pool generation, we consid-
ered Perceptron and Decision tree. Perceptron was selected given the
promising results when used in dynamic selection methods in [41],
while the decision tree is an unstable inducer that results in higher
pool diversity.

5.1. Selection of data complexity metrics

We first use the Lithuanian Problem (Fig. 4) to explain how we
found the most promising pair of complexity measures for a given
classification problem. The motivation for this classification problem
is its simplicity. Next, we run the same procedure for the entire set of
classification problems used in our experiments.

The Lithuanian dataset is divided into training, validation, and
testing, with a proportion of 50%, 25%, 25%, respectively. With the
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Table A.9
Results of combining classifiers by majority vote using Perceptron as base classifier (accuracy and Std. Dev.).

Data MVR - Perceptron

PGDCS_A PGDCS_D Bagging AdaBoost R.F. DSOC

Australian 87.8 (2.2) 88.1 (2.3) 86.9 (2.1) 86.9 (2.2) 87.7 (2.0) 85.8(2.0)
Banana 84.7 (1.3) 83.5 (2.0) 84.6 (1.4) 83.9 (1.5) 97.2 (0.8) 83.5(1.9)
Blood 77.1 (3.3) 76.7 (1.9) 77.6 (2.0) 77.5 (1.3) 74.9 (2.8) 74.1(3.9)
CTG 88.9 (1.7) 84.7 (17.7) 81.1 (24.3) 81.1 (23.4) 93.5 (1.0) 80.8(24.2)
Diabetes 76.9 (3.0) 76.4 (2.7) 76.8 (2.8) 76.6 (2.7) 75.7 (3.3) 74.7(3.1)
Faults 70.7 (2.1) 70.5 (1.4) 69.4 (1.7) 69.5 (1.3) 75.9 (1.6) 67.6(2.2)
German 77.0 (2.4) 76.5 (3.0) 75.9 (2.3) 75.8 (2.6) 74.8 (2.5) 74.2(3.0)
Haberman 76.8 (3.3) 76.8 (2.7) 75.0 (2.3) 74.7 (2.0) 69.7 (3.7) 74.3(2.8)
Heart 85.9 (3.9) 85.4 (3.6) 82.5 (3.7) 81.5 (4.6) 80.0 (4.8) 82.3(2.7)
ILPD 70.6 (3.7) 72.7 (3.3) 71.4 (2.7) 71.2 (3.2) 70.4 (2.8) 69.4(3.1)
Ionosphere 89.9 (2.7) 91.4 (3.8) 89.2 (2.9) 87.0 (4.9) 93.4 (2.9) 88.5(3.4)
Laryngeal1 86.0 (5.1) 84.2 (3.7) 83.5 (3.7) 81.9 (4.8) 83.2 (3.9) 83.5(5.0)
Laryngeal3 76.3 (3.2) 74.8 (2.7) 72.7 (2.3) 68.7 (7.7) 72.3 (2.8) 71.9(3.4)
Lithuanian 81.6 (2.1) 82.9 (1.7) 82.8 (1.7) 82.4 (1.8) 97.0 (0.6) 82.0(1.8)
Liver 70.5 (3.3) 68.4 (3.8) 68.7 (4.2) 68.0 (3.9) 68.4 (4.0) 64.9(5.8)
Mammo 84.0 (2.3) 83.8 (2.5) 82.9 (2.1) 81.9 (2.4) 78.7 (2.0) 82.1(2.6)
Monk 85.7 (2.3) 83.4 (2.6) 78.9 (3.2) 78.0 (3.5) 98.8 (1.6) 80.0(3.7)
Phoneme 54.6 (4.1) 76.1 (1.4) 75.6 (1.1) 75.9 (0.7) 89.1 (0.8) 74.6(2.6)
P2 77.6 (1.1) 56.7 (4.4) 56.5 (4.6) 51.9 (3.9) 93.7 (1.0) 53.3(3.4)
Segmentation 90.8 (1.0) 91.0 (1.4) 91.0 (1.2) 91.5 (1.1) 97.0 (1.0) 90.4(1.0)
Sonar 84.4 (6.2) 81.7 (6.5) 77.7 (3.4) 72.3 (7.2) 78.1 (3.9) 75.9(3.5)
Thyroid 97.1 (1.0) 97.3 (0.9) 96.6 (1.2) 96.8 (1.3) 96.0 (0.8) 96.2(1.6)
Vehicle 75.5 (2.6) 77.5 (2.4) 75.2 (2.0) 75.4 (2.0) 74.5 (2.1) 73.6(2.4)
Vertebral 89.1 (3.8) 87.9 (3.6) 87.1 (3.4) 86.5 (3.3) 85.7 (3.2) 86.1(3.4)
WBC 98.0 (0.8) 98.2 (1.0) 97.1 (1.1) 95.1 (3.9) 95.5 (1.5) 96.9(1.0)
WDVG 86.8 (1.0) 86.8 (0.9) 86.5 (0.8) 86.7 (0.9) 85.0 (0.7) 85.6(0.9)
Weaning 85.3 (3.6) 84.9 (3.6) 82.5 (3.8) 81.8 (4.0) 89.5 (2.8) 81.7(3.8)
Wine 98.4 (1.9) 98.0 (2.3) 97.5 (2.3) 97.2 (2.6) 97.3 (2.8) 97.3(1.7)

Average 82.4 82.0 80.8 79.9 84.8 79.7
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training set and considering 𝑛 = 100, and 𝑢 = 0.4, we randomly sampled
100 data subsets considering each a maximum of 50% of the original
training size. For each data subset 𝑆𝑖, the two families of complexity

easures are computed. By defining 𝑇 = 10, this procedure is repeated
en times, producing 1000 data subsets.

Table 3 shows the average dispersion of the Overlapping and Neigh-
orhood measures at each iteration for the Lithuanian dataset. The
esults show that the metrics with the most votes are F3 and T1, with
and 3 votes, respectively.

Table 4 summarizes the results, showing the complexity measures
nd corresponding votes computed by the first step of the proposed
ethod. As we can see, selecting the best metric is problem-dependent

ince we did not observe any tendency.

.2. Pool generation using MOGA

After choosing the most promising metrics for each classification
roblem, our method starts generating the pool of classifiers. We used
he NSGA-II [10] multi-objective genetic algorithm (implemented in
EAP 1.0 [26]) and the Double Fault diversity measure in that second
tep.

Table 5 shows the MOGA configuration used in our method. As
lready mentioned, we have evaluated Perceptron and Decision Tree
lassifiers as base inducers. Finally, we have performed 20 replications,
roviding the average accuracy and corresponding standard deviation
s final results.

The first generation of our MOGA consists of data subsets with
ust 50% of the training dataset size. Table 6 presents on average the
eneration number that provided the maximum accuracy and maxi-
um diversity within the 20 iterations for each classification problem,

onsidering both inducers, Perceptron, and Decision Tree.
Using the PGDCS_D variant, the Banana dataset reached its maxi-

um dispersion (using the Perceptron classifier) after eight generations
n all replications. Similarly, when using PGDCS_A, the P2 classification
roblem gets the utmost accuracy in two generations. We can see that
580

s

20 generations seem to be enough since, in most cases, the average is
less than 15.

With the Lithuanian dataset again, we have plotted in Fig. 5 the
distribution of the data subsets over the space formed by the two
selected complexity measures (F3 and T1) and the diversity measure
(Double Fault). Fig. 5(a) presents the distribution of the first MOGA
generation. In contrast, Fig. 5(b) shows the distribution of the best
generation (iteration 15, generation 18) using PGDCS_D variant and
Decision Tree as base inducer. Each point in this plot is a data subset
generated by the proposed method, 𝛷𝐹3 is the average pairwise dis-
tance of the overlapping complexity measure 𝐹3, 𝛷𝑇 1 is the average
airwise distance of the neighborhood complexity measure 𝑇 1. At the
ame time, 𝐷𝐷𝑉 represents the diversity (Double Fault) computed for
he classifier trained on each subset in a pairwise manner. As we can
ee, the individuals (subsets of data) of the best generation better cover
he problem complexity space even considering an additional objective
unction devoted to diversity in the decision space.

Similar behavior was observed for the other classification prob-
ems. This can contribute to validate our hypothesis that the proposed
ampling oriented by data complexity measures generates data subsets
hat better cover the data complexity space. However, we cannot say
hether such behavior may contribute to the pool’s performance. Such
n investigation is the subject of the next section.

.2.1. Combining the pool members using majority vote rule (MVR)
To answer our first research question (RQ1), we need to show

hether the proposed method oriented by a two-level diversity strategy
s able or not to compete with traditional pool generation methods. To
his end, we compared the results obtained by the two variants of the
GDCS method with some traditional methods (Bagging, AdaBoost, RF)
nd DSOC that is also oriented by complexity measures. The Majority
ote Rule (MVR) was used to combine the pool members.

In Appendix, Tables A.9 and A.10 present the results of the two
GDCS variants (PGDCS_A, PGDCS_D) for all datasets using Perceptron
nd Decision Trees as base classifiers, respectively. Such results repre-
ent the average and standard deviation of 20 iterations. To facilitate
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Algorithm 3: Crossover
Input : 𝑃 as the population
Output: 𝑆𝑛𝑒𝑤 as a new individual (data subset)

1 Function Crossover(𝑃):
2 𝑌 ← 𝑔𝑒𝑡𝐶𝑙𝑎𝑠𝑠(𝑆𝑖) // returns the classes present in 𝑆𝑖
3 𝑉 𝑎𝑙𝑖𝑑𝐶𝑟𝑜𝑠𝑠← 𝐹𝑎𝑙𝑠𝑒
4 while 𝑉 𝑎𝑙𝑖𝑑𝐶𝑟𝑜𝑠𝑠 ≠ 𝑇 𝑟𝑢𝑒 do
5 𝑆𝑖 ← select randomly an individual from 𝑃
6 𝑆𝑗 ← select randomly an individual from 𝑃 ⧵ {𝑆𝑖}
7 𝑆𝑛𝑒𝑤 ← ∅
8 beginning← select randomly an index in the range

[0, |𝑆𝑖| − 1]
9 finish← select randomly an index in the range

[beginning , |𝑆𝑖| − 1]
10 for 𝑘 to max

(

|𝑆𝑖|, |𝑆𝑗 |
)

do
11 if 𝑘 ≤ beginning or 𝑘 ≥ finish then
12 𝑆𝑛𝑒𝑤 ← 𝑆𝑖(𝑥𝑘, 𝑦𝑘)
13 end
14 else
15 𝑆𝑛𝑒𝑤 ← 𝑆𝑗 (𝑥𝑘, 𝑦𝑘)
16 end
17 end
18 foreach 𝑐𝑙𝑎𝑠𝑠 in 𝑌 do
19 𝑐𝑜𝑢𝑛𝑡_𝑠𝑎𝑚𝑝𝑙𝑒𝑠← 0
20 foreach 𝑠𝑎𝑚𝑝𝑙𝑒 in 𝑆𝑛𝑒𝑤 do
21 if 𝑙𝑎𝑏𝑒𝑙(𝑠𝑎𝑚𝑝𝑙𝑒) = 𝑐𝑙𝑎𝑠𝑠 then
22 𝑐𝑜𝑢𝑛𝑡_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 + +
23 end
24 if 𝑐𝑜𝑢𝑛𝑡_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 >= 2 then
25 𝑉 𝑎𝑙𝑖𝑑𝐶𝑟𝑜𝑠𝑠← 𝑇 𝑟𝑢𝑒
26 else
27 𝑉 𝑎𝑙𝑖𝑑𝐶𝑟𝑜𝑠𝑠← 𝐹𝑎𝑙𝑠𝑒
28 end
29 end
30 end
31 end
32 return 𝑆𝑛𝑒𝑤

the visualization and analysis, Fig. 6 shows the results in a win/tie/loss
perspective. The win–tie–loss analysis allow us to compute a critical
level (𝑁𝑐). It represents the number of wins plus half the number of
ties and must be greater than 𝑁𝑐 (Eq. (17)), where 𝑁𝑒𝑥𝑝 = 28 (number
of experiments), 𝑍𝑐 = 2.57 for the significant level 0.01, then𝑁𝑐 = 20.8.

𝑁𝑐 =
𝑁𝑒𝑥𝑝

2
+𝑍𝑐

√

𝑁𝑒𝑥𝑝

2
(17)

As we can see, considering the 28 classification problems and the
Perceptron as base inducer, when compared to Bagging, AdaBoost, and
RF, the PGDCS_A achieved 90 wins (80.3%), two ties, and 20 losses
over a total of 112 comparisons. The results are still more promising
when we used Decision Tree as base classifier. In this case, the PGDCS_A
achieved 109 wins (97.3%), two ties, and one loss. As one may also
see in Fig. 6, the performance of the PGDCS_D was a little inferior. The
PGDCS_D with Perceptron achieved 91 wins (81.2%), three ties, and 18
losses over a total of 112 comparisons. Similarly, the results are more
promising when we used Decision Tree as a base classifier. In this case,
the PGDCS_D achieved 108 wins (96.4%) and four losses.

A statistical analysis based on the Friedman and Nemenyi tests [42]
with a 𝑝-value = 0.01 confirmed a significant difference between the
compared methods. Fig. 7 presents the rankings produced by means of
the Nemenyi post-hoc test.

In general, we observed that the proposed method is a promising
strategy to generate a pool of complementary classifiers. The idea of
training the classifiers on data subsets representing sub-problems with
different levels of difficulty has contributed to improving the pool
accuracy. Besides, a more unstable base inducer significantly improved
the results of both variants of the proposed method.
581
5.2.2. Results of dynamic selection methods
As already mentioned, we expect that the pool generated can con-

tribute to improving the performance of MCS based on dynamic selec-
tion methods. With this in mind, we have evaluated our method in the
context of dynamic classifier selection (DCS) and dynamic ensemble
selection (DES). Table 7 presents the performance (accuracy) of the
oracle considering each pool generator evaluated in our experiments. It
is essential to mention that the concept of oracle in dynamic selection
methods is the upper limit in performance that a given pool can reach.
According to Kuncheva [3], Oracle is an abstract concept of fusion. In
this model, if at least one of the classifiers produces the correct class
label, the pool can also make it. As we can see, except for Adaboost,
most of the time, the oracle is at least 99%.

Given the generated pools, to answer our second research question
(RQ2), we first applied three dynamic classifier selection methods,
considering an experimental protocol with 20 replications. The average
results considering Perceptron and Decision Tree as base inducers are
presented in Appendix, Tables A.11 and A.12, respectively.

We have summarized the results related to DCS methods in Figs. 8
and 9. These plots show the performance of the two variants of the
proposed method in terms of win/tie/loss when using Perceptron and
Decision tree as base inducers. As expected, the use of a Decision tree
is a better option. Besides, the PGDCS_A has again shown a better per-
formance. This means that diversity alone is not enough to contribute
to the performance of DCS methods. In summary, we have done 336
experiments considering DCS methods for each proposed variant. In
general, considering the best inducer (Decision Tree), the proposed
PGDCS_A (Fig. 8) achieved 315 wins (93.7%), three ties, and 18 losses,
while the best results with PGDCS_D (Fig. 9) was 314 wins (93.4%),
three ties, and 19 losses. In all experiments, the DCS methods were
executed using the default parameters as shown in Table 1 (pool size =
100, and neighborhood size = 7), but using a different pool generated
by Bagging, AdaBoost, RF, PGDCS_A, or PGDCS_D.

A statistical analysis based on the Friedman and Nemenyi tests [42]
with a 𝑝-value = 0.01 confirmed a significant difference between the
compared methods. Figs. 10 and 11 present the rankings produced by
means of the Nemenyi post-hoc test.

The most significant impact was observed in the approaches that
considers the overall accuracy of the classifiers to perform the dy-
namic selection. The OLA and Rank methods for which both variants
(PGDCS_A and PGDCS_D) had 109 (97.3%) wins, one tie, and two
losses.

In another set of experiments we have evaluated the impact of the
proposed method in MCS based on DES. The average results consid-
ering Perceptron and Decision Tree as base inducers were provided
in Appendix, Tables A.13 and A.14, respectively.

We have summarized the results related to DES methods in Figs. 12
and 13. These plots show the performance of the two variants of the
proposed method in terms of win/tie/loss when using Perceptron and
Decision tree as base inducers. The DES methods were executed using
the same parameters (poll size = 100, and neighborhood size = 7),
but different pools generated by Bagging, AdaBoost, RF, PGDCS_A, or
PGDCS_D. Finally, PGDCS_A using a Decision tree is again the best
option.

A statistical analysis based on the Friedman and Nemenyi tests [42]
with a 𝑝-value = 0.01 confirmed a significant difference between the
compared methods. Figs. 14 and 15 present the rankings produced by
means of the Nemenyi post-hoc test.

We can see a significant impact of the variant PGDCS_A on all
DES methods evaluated. The most important was the one observed on
KNORA-U, where 109 (97.3%) wins, two ties, and one loss over 112
experiments were observed.

The proposed method using the Decision Tree as the base classifier
generated pools that were superior to all the competitors. The best
results were achieved with the PGDCS_A approach.
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Table A.10
Results for combining classifiers by majority vote using Decision tree as base classifier (accuracy and Std. Dev.).

Data MVR - Decision Tree

PGDCS_A PGDCS_D Bagging AdaBoost R.F. DSOC

Australian 93.0(2.3) 91.3(2.8) 87.6(1.6) 82.3(2.6) 87.7(2.0) 86.6(1.9)
Banana 97.8(0.7) 97.6(0.7) 97.0(0.8) 95.8(0.8) 97.2(0.8) 96.8(1.0)
Blood 83.6(2.4) 81.7(2.9) 77.4(3.2) 74.4(2.5) 74.9(2.7) 75.4(3.8)
CTG 95.8(1.0) 95.5(1.0) 93.1(1.1) 92.0(1.5) 93.5(1.0) 92.8(0.9)
Diabetes 85.2(2.8) 81.8(4.6) 75.8(2.8) 69.0(3.8) 75.7(3.3) 75.3(3.5)
Faults 83.6(5.0) 84.6(2.9) 75.4(1.7) 69.4(2.7) 75.9(1.6) 73.8(2.2)
German 85.9(5.1) 82.5(5.2) 74.9(2.7) 68.3(3.1) 74.8(2.5) 73.5(3.2)
Haberman 80.5(6.1) 79.5(5.2) 70.4(4.1) 71.4(4.5) 69.7(3.7) 71.6(4.2)
Heart 90.1(4.1) 88.4(5.2) 80.4(4.5) 73.5(5.1) 80.0(4.8) 79.3(6.0)
ILPD 81.6(5.6) 81.7(4.8) 69.9(3.2) 65.8(3.9) 70.4(2.8) 69.6(4.4)
Ionosphere 96.2(1.5) 95.9(1.9) 92.4(2.7) 87.4(4.5) 93.4(2.9) 91.8(3.0)
Laryngeal1 91.5(4.6) 88.4(5.1) 83.1(4.7) 77.8(4.7) 83.2(3.9) 82.0(5.1)
Laryngeal3 81.0(5.5) 81.1(4.9) 73.3(3.1) 63.2(4.6) 72.3(2.8) 71.6(2.9)
Lithuanian 98.0(0.8) 97.8(0.5) 97.0(0.6) 95.6(0.8) 97.0(0.6) 96.7(0.6)
Liver 85.1(3.2) 79.7(7.5) 69.4(3.7) 60.2(4.1) 68.4(4.0) 66.9(3.4)
Mammo 85.4(4.1) 84.4(3.9) 81.5(1.8) 55.9(4.5) 78.7(2.0) 79.7(1.8)
Monk 100.0(0.0) 99.9(0.4) 100.0(0.2) 100.0(0.0) 98.8(1.6) 99.6(1.3)
Phoneme 96.8(1.2) 95.5(1.2) 93.1(1.0) 91.7(1.7) 93.7(1.0) 87.1(0.9)
P2 91.9(2.6) 91.7(2.2) 88.0(0.9) 84.8(1.1) 89.1(0.8) 92.4(1.3)
Segmentation 98.1(0.9) 97.9(0.8) 96.3(0.9) 95.3(1.1) 97.0(1.0) 95.8(0.9)
Sonar 84.7(5.5) 85.5(6.6) 74.3(5.4) 69.4(6.8) 78.1(3.9) 72.6(6.1)
Thyroid 97.7(1.2) 97.8(0.9) 95.9(1.0) 95.1(0.9) 96.0(0.8) 95.7(1.0)
Vehicle 86.1(3.4) 85.2(5.1) 72.9(1.8) 68.3(2.5) 74.5(2.1) 72.3(3.0)
Vertebral 92.1(4.1) 92.5(4.0) 85.7(3.3) 83.4(3.3) 85.7(3.2) 84.1(3.7)
WBC 97.0(1.7) 96.6(1.9) 94.7(1.8) 92.3(1.9) 95.5(1.5) 94.4(2.0)
WDVG 90.5(2.5) 89.5(3.0) 84.3(0.9) 74.6(1.1) 85.0(0.7) 83.1(0.9)
Weaning 93.7(3.4) 90.1(3.0) 85.7(4.0) 77.1(5.5) 89.5(2.8) 83.6(3.9)
Wine 99.3(1.0) 96.4(2.2) 95.2(4.4) 89.4(5.9) 97.3(2.8) 94.2(4.2)

Average 90.8 89.6 84.4 79.4 84.7 83.5
5.3. Time consumption evaluation

We have performed experiments concerning the time-consuming.
When considering the 28 classification problems of our experimental
protocol, the PGDCS method consumes, on average, 30, 75, and 80
times more processing time than Bagging, Adaboost, and Random
Forest, respectively. Table 8 shows a comparison considering four of
our classification problems. They were selected considering the number
of samples and classes. Wine has a small number of samples (178),
while WDVG is the biggest one with 5,000 samples. The Lithuanian is a
binary problem (2 classes), while the Faults problem has seven classes.

As we can see, the time consuming depends on the classification
problem and the complexity measures selected for the second-stage of
the proposed method. This is why datasets showing a similar number
of samples have an important difference in time consumption. Finally,
it is important to notice that this time is related to the pool generation
process (first and second steps), performed only during the construction
of the classification method.

6. Conclusion

In this paper, we proposed a novel classifier pool generation method
and its variants: maximum dispersion (PGDCS_D) and maximum ac-
curacy (PGDCS_A). In both cases, a sampling process organizes data
subsets for training the classifiers using a two-level strategy to promote
diversity. Such a sampling strategy considers diversity in both data
complexity and classifiers’ decision spaces.

A robust experimental protocol based on 28 classification problems
showed that the proposed method overcomes traditional methods like
Bagging, Adaptive Boosting, and Random Forest, especially when dy-
namic selection of classifiers and ensembles is applied. The best results
of the proposed method were obtained with the variant PGDCS_A using
Decision Tree as base inducer. However, PGDCS_D also provided com-
petitive results when used to provide the pool for MCS with dynamic
selection (DS). In summary, we have done 336 experiments. In general,
the best PGDCS_A achieved 327 wins (97.3%), seven ties, and two
582
losses, while the best PGDCS_D achieved 324 wins (96.4%), seven ties,
and five losses.

The PGDCS proved to be an interesting ensemble learning method
mainly when employed with dynamic classifier selection. However, the
method has unbalanced datasets as a limitation, as some complexity
measures require at least two examples of different labels for each bag.
As PGDCS uses random sampling in both steps, such a criterion may
not be satisfied.

As future works, we propose integrating the first and second steps
of the proposed method in a singular optimization process in which
we could consider different complexity metrics over the generations.
In such a direction, we plan to investigate a cascading evolutionary
algorithm, so at the end of each generation, the complexity measures
are verified to check whether they still have the same influence on the
bags’ evolution.
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Table A.11
Comparison of DCS methods using different pools of classifiers with Perceptron as base inducer (accuracy and Std. Dev.).
Data LCA OLA Rank

PGDCS_A PGDCS_D Bagging AdaB. R.F. DSOC PGDCS_A PGDCS_D Bagging AdaB. R.F. DSOC PGDCS_A PGDCS_D Bagging AdaB. R.F. DSOC

01 84.6(3.4) 84.0(2.8) 82.9(2.7) 83.1(2.7) 82.3(3.0) 81.3(2.6) 83.0(2.2) 83.3(2.5) 82.9(1.9) 82.8(2.0) 79.0(1.9) 83.3(3.2) 81.1(2.9) 81.5(2.8) 81.4(2.7) 81.3(2.6) 79.0(2.1) 81.9(3.8)
02 95.7(1.0) 95.7(1.0) 95.7(0.9) 95.7(1.0) 97.1(0.7) 95.6(1.0) 97.4(0.7) 97.4(0.6) 97.4(0.6) 97.4(0.7) 96.5(0.6) 97.0(0.7) 96.9(0.8) 96.9(0.7) 96.9(0.8) 96.9(0.8) 96.5(0.7) 96.5(0.9)
03 68.9(3.9) 72.9(5.3) 70.4(5.3) 72.6(3.6) 74.6(2.4) 69.7(5.3) 75.2(3.3) 75.7(3.0) 74.8(2.5) 74.5(2.7) 72.1(3.8) 75.1(3.7) 70.0(4.2) 70.3(3.6) 69.8(3.7) 69.5(2.8) 71.3(3.5) 70.2(5.1)
04 86.8(1.8) 86.7(1.7) 86.2(1.9) 86.7(2.2) 89.4(1.2) 86.5(2.1) 89.3(1.2) 89.2(1.3) 89.0(1.4) 88.8(1.7) 90.2(1.5) 88.8(1.4) 89.3(1.4) 89.3(1.3) 88.9(1.6) 88.6(2.7) 90.2(1.5) 88.7(2.0)
05 69.9(3.3) 69.8(3.2) 70.7(3.1) 69.8(3.1) 68.1(2.6) 69.1(3.0) 73.3(3.3) 73.1(3.1) 72.4(2.6) 72.0(2.9) 68.6(2.3) 71.9(2.2) 71.8(2.6) 71.5(3.3) 71.5(2.6) 70.8(3.0) 68.5(3.0) 70.5(2.9)
06 64.5(1.9) 65.0(2.4) 62.8(2.4) 63.8(1.6) 64.8(1.9) 63.0(2.4) 67.4(1.5) 68.7(1.5) 67.7(1.9) 67.9(1.4) 66.4(1.8) 67.6(1.8) 67.2(1.8) 68.1(1.6) 67.4(2.1) 67.7(1.4) 66.2(2.4) 67.4(2.1)
07 70.1(2.6) 69.1(3.1) 69.1(2.2) 68.5(3.1) 67.3(2.6) 68.2(2.5) 70.4(2.1) 71.3(2.6) 71.2(2.3) 69.8(1.9) 67.0(3.0) 71.0(2.0) 69.4(1.9) 70.1(2.5) 71.0(2.7) 69.1(2.2) 66.6(3.1) 70.1(2.6)
08 62.0(7.4) 72.8(3.7) 69.0(7.8) 67.2(10.3) 70.7(4.1) 66.7(8.4) 69.5(4.4) 68.4(4.9) 69.7(4.5) 69.0(5.9) 66.2(5.2) 69.8(5.2) 66.0(5.1) 64.7(6.2) 65.7(5.2) 65.4(5.6) 65.8(5.3) 66.5(5.9)
09 80.1(5.5) 80.6(5.2) 75.7(7.1) 79.6(6.0) 72.5(5.9) 79.2(5.3) 78.5(4.6) 78.4(5.7) 77.5(4.5) 76.0(4.0) 71.9(5.2) 78.4(5.4) 77.5(4.1) 76.9(5.0) 77.1(4.5) 74.8(4.5) 72.0(5.0) 77.2(6.2)
10 69.7(2.1) 66.9(3.2) 66.8(4.8) 66.2(4.5) 67.9(4.2) 64.6(4.4) 69.3(3.0) 69.1(3.3) 69.0(3.5) 68.8(3.1) 67.3(3.7) 69.1(2.4) 67.7(3.8) 67.8(3.4) 68.0(2.8) 68.2(3.0) 67.5(3.7) 67.1(3.7)
11 87.1(2.5) 86.1(3.6) 85.4(3.9) 85.2(3.0) 84.7(4.0) 84.9(4.1) 88.8(2.8) 88.4(3.0) 85.9(2.7) 87.6(3.4) 87.1(3.5) 86.4(4.0) 88.8(2.9) 88.3(3.2) 86.0(2.8) 87.0(3.5) 87.2(3.5) 86.5(4.1)
12 82.5(3.6) 75.1(5.2) 77.6(6.8) 78.1(7.0) 79.8(4.6) 77.9(5.5) 81.3(3.8) 81.4(4.7) 80.6(3.7) 80.0(3.8) 77.3(4.9) 79.4(4.7) 81.3(3.9) 81.4(3.8) 78.6(3.5) 79.0(4.3) 76.3(4.6) 79.3(4.7)
13 67.6(4.4) 70.5(4.9) 68.1(4.4) 70.3(4.0) 67.8(4.7) 67.7(4.9) 67.3(4.2) 67.9(3.8) 68.0(4.8) 69.2(4.1) 63.7(4.9) 67.4(4.9) 64.3(5.2) 66.6(4.3) 64.1(5.8) 64.0(5.8) 63.4(5.1) 65.3(5.7)
14 93.4(1.2) 92.8(1.1) 92.7(1.0) 93.0(1.2) 96.2(0.8) 92.8(1.4) 96.4(0.6) 96.6(0.8) 96.7(0.7) 96.5(0.8) 95.8(0.9) 96.4(0.7) 95.7(0.7) 95.9(0.8) 95.9(0.9) 95.7(0.9) 95.7(0.9) 95.7(0.7)
15 57.9(5.5) 58.0(4.6) 55.3(5.3) 57.2(5.0) 55.0(5.6) 55.6(5.6) 66.6(5.0) 65.5(5.4) 68.2(3.9) 65.8(4.0) 63.1(4.6) 67.6(3.4) 66.2(4.3) 65.6(5.5) 66.4(4.1) 63.8(4.9) 61.7(4.4) 65.9(3.7)
16 74.1(5.4) 80.4(2.8) 79.7(3.6) 77.4(4.6) 79.5(2.3) 78.0(5.6) 81.1(2.2) 80.8(2.5) 80.8(2.6) 80.5(2.7) 78.4(2.9) 80.8(3.3) 77.1(2.7) 76.8(3.2) 77.4(2.4) 76.2(2.8) 78.0(2.8) 77.7(3.0)
17 72.8(2.9) 73.8(4.7) 72.8(4.3) 71.6(5.4) 93.0(3.5) 79.5(1.8) 87.6(3.2) 87.8(3.1) 85.7(3.6) 84.9(2.7) 97.5(2.2) 85.7(3.9) 87.8(3.4) 87.6(3.7) 85.5(3.8) 85.2(2.9) 97.5(2.2) 85.6(3.4)
18 78.8(1.6) 76.2(1.9) 75.7(2.4) 75.5(1.7) 82.8(1.1) 70.2(4.8) 89.9(1.4) 83.0(0.9) 82.8(0.6) 82.5(0.7) 85.0(0.9) 82.8(0.6) 91.0(1.3) 83.3(0.9) 83.0(0.8) 83.0(0.7) 85.0(0.8) 83.3(1.0)
19 76.5(2.4) 74.0(2.7) 73.4(3.0) 79.0(2.3) 88.4(1.8) 75.5(1.5) 82.4(0.8) 88.0(2.2) 88.1(1.7) 89.7(1.6) 91.2(1.3) 90.5(1.3) 82.8(0.8) 89.8(2.3) 90.1(1.7) 91.0(1.5) 91.2(1.3) 91.8(1.2)
20 88.5(1.4) 88.8(1.2) 88.7(1.2) 89.4(1.7) 92.4(1.2) 88.4(1.5) 92.6(1.2) 92.7(1.2) 92.8(1.4) 93.4(1.3) 93.8(1.4) 92.1(1.4) 92.8(1.3) 93.0(1.2) 93.0(1.1) 93.5(1.1) 93.9(1.4) 92.5(1.3)
21 73.2(6.9) 73.3(7.4) 66.9(6.8) 66.6(7.8) 63.7(7.1) 70.4(5.7) 77.7(6.5) 78.6(6.9) 75.1(6.2) 75.2(5.2) 70.6(7.0) 76.5(5.3) 77.5(7.2) 79.6(6.1) 74.8(5.5) 76.2(4.4) 70.8(7.0) 76.8(5.5)
22 94.4(1.4) 95.5(1.6) 95.0(1.9) 95.4(1.6) 94.6(1.2) 94.4(1.9) 96.1(1.3) 96.0(1.5) 95.7(1.7) 96.2(1.6) 94.5(1.4) 95.8(1.4) 95.6(1.6) 95.7(1.8) 95.1(1.7) 95.5(1.7) 94.4(1.5) 95.5(1.7)
23 68.1(2.3) 69.1(3.0) 67.1(2.5) 68.8(3.1) 64.3(3.6) 67.5(2.4) 74.0(2.0) 74.0(2.7) 73.1(2.0) 74.5(3.1) 67.5(2.0) 73.4(3.0) 74.5(2.6) 74.1(3.1) 73.0(2.0) 74.0(2.6) 67.4(1.8) 73.7(2.8)
24 81.5(4.2) 82.7(3.4) 81.7(4.6) 83.3(4.2) 78.2(4.6) 79.3(6.4) 85.1(4.0) 83.8(3.9) 83.8(4.3) 83.5(4.0) 81.1(4.0) 84.9(4.7) 84.6(4.0) 83.6(3.6) 84.3(5.0) 83.0(4.2) 81.3(4.2) 84.1(4.8)
25 95.5(1.4) 95.3(1.8) 95.0(1.4) 95.4(1.5) 91.3(2.3) 94.5(1.4) 96.3(1.1) 96.6(1.3) 96.0(1.3) 96.0(1.2) 92.5(2.2) 96.0(1.4) 96.2(1.1) 96.7(1.3) 95.9(1.3) 95.8(1.4) 92.4(2.2) 96.1(1.3)
26 80.3(1.6) 78.9(1.8) 79.2(2.1) 79.9(2.0) 74.1(1.2) 79.1(2.2) 83.0(1.1) 82.9(0.9) 82.4(1.2) 82.6(1.0) 73.0(1.2) 82.8(1.0) 82.4(1.4) 82.3(0.9) 82.0(0.9) 82.2(1.0) 72.9(1.2) 82.2(1.0)
27 78.7(4.9) 77.3(4.4) 75.4(5.0) 76.9(5.0) 74.7(7.5) 76.3(5.1) 81.4(4.1) 80.3(5.2) 79.7(4.5) 79.3(4.2) 77.8(3.4) 79.2(4.8) 81.3(4.7) 80.1(4.9) 79.9(4.7) 77.2(4.7) 78.0(3.0) 79.4(5.4)
28 97.0(1.9) 96.1(2.4) 94.2(4.3) 97.0(2.7) 90.6(5.2) 94.3(3.6) 97.3(2.0) 95.6(2.7) 95.0(2.2) 97.0(2.7) 89.9(4.8) 95.7(3.0) 97.3(2.0) 95.6(2.7) 95.0(2.2) 97.0(2.7) 89.9(4.8) 95.7(3.0)

Aver. 78.6 78.8 77.6 78.3 78.8 77.5 82.1 81.9 81.5 81.5 79.5 81.6 81.2 81.2 80.6 80.4 79.3 80.8
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Table A.12
Comparison of DCS methods using different pools of classifiers with Decision Tree as base inducer (accuracy and Std. Dev.).
Data LCA OLA Rank

PGDCS_A PGDCS_D Bagging AdaB. R.F. DSOC PGDCS_A PGDCS_D Bagging AdaB. R.F. DSOC PGDCS_A PGDCS_D Bagging AdaB. R.F. DSOC

01 85.4(2.1) 86.1(2.8) 84.5(1.9) 82.3(2.6) 82.3(3.0) 83.6(2.6) 85.2(2.7) 84.6(3.4) 82.4(3.1) 82.3(2.6) 79.0(1.9) 82.1(2.4) 85.2(3.0) 84.7(3.3) 82.1(2.7) 82.3(2.6) 79.0(2.1) 81.7(2.4)
02 97.0(0.8) 97.1(0.6) 96.9(0.7) 95.8(0.8) 97.1(0.7) 96.7(0.8) 96.9(0.6) 96.7(0.7) 96.5(0.8) 95.8(0.8) 96.5(0.6) 96.3(1.1) 96.9(0.6) 96.6(0.7) 96.4(0.8) 95.8(0.8) 96.5(0.7) 96.1(1.1)
03 77.4(2.8) 74.4(3.7) 74.5(2.4) 73.1(3.8) 74.6(2.4) 73.6(2.7) 76.0(3.0) 73.8(3.6) 72.6(2.8) 71.8(3.2) 72.1(3.8) 72.9(3.3) 75.0(3.1) 72.4(4.3) 70.3(3.9) 68.9(3.5) 71.3(3.5) 71.8(3.4)
04 91.5(1.2) 91.3(1.5) 89.6(1.7) 90.9(1.2) 89.4(1.2) 89.5(1.5) 92.3(0.6) 92.1(1.1) 91.2(1.2) 91.3(1.0) 90.2(1.5) 91.2(1.4) 92.2(0.7) 92.0(1.1) 91.1(1.1) 91.4(1.0) 90.2(1.5) 91.1(1.3)
05 74.5(3.2) 73.6(3.2) 69.8(3.8) 69.0(3.8) 68.1(2.6) 69.6(3.4) 75.3(3.1) 74.7(3.5) 69.5(2.9) 69.0(3.8) 68.6(2.3) 69.9(3.0) 75.0(3.2) 74.2(3.9) 69.4(2.5) 69.0(3.8) 68.5(3.0) 69.4(2.7)
06 69.4(2.9) 69.9(2.1) 65.3(2.5) 69.4(2.7) 64.8(1.9) 65.1(1.7) 72.8(3.1) 73.6(2.9) 67.9(2.2) 69.4(2.7) 66.4(1.8) 68.0(2.1) 72.6(3.5) 73.3(2.8) 67.5(1.8) 69.4(2.7) 66.2(2.4) 67.5(1.9)
07 71.2(3.3) 71.9(4.4) 67.5(2.6) 68.3(3.1) 67.3(2.6) 67.6(2.9) 74.1(4.0) 73.4(3.9) 67.7(2.6) 68.3(3.1) 67.0(3.0) 68.2(2.0) 73.9(3.9) 73.2(3.9) 67.5(2.6) 68.3(3.1) 66.6(3.1) 67.8(2.1)
08 69.8(5.6) 72.1(3.6) 71.1(4.8) 70.2(5.0) 70.7(4.1) 71.8(4.4) 70.7(4.9) 68.9(5.5) 65.5(5.5) 67.3(4.9) 66.2(5.2) 67.2(5.0) 69.4(4.5) 68.0(5.4) 64.5(4.7) 66.8(5.3) 65.8(5.3) 65.9(6.2)
09 74.3(3.8) 79.9(6.1) 73.8(4.0) 73.5(5.1) 72.5(5.9) 74.8(5.6) 78.1(3.8) 79.3(5.9) 75.5(3.7) 73.5(5.1) 71.9(5.2) 74.3(5.6) 77.6(3.8) 78.5(5.5) 74.7(3.9) 73.5(5.1) 72.0(5.0) 73.8(5.6)
10 69.4(4.3) 69.9(3.9) 66.8(4.3) 65.8(3.9) 67.9(4.2) 65.4(4.1) 70.5(4.6) 72.1(3.7) 65.8(3.7) 65.8(3.9) 67.3(3.7) 65.2(3.4) 69.6(4.5) 72.1(4.0) 65.5(3.1) 65.8(3.9) 67.5(3.7) 65.4(3.1)
11 86.5(3.2) 85.7(2.9) 84.3(2.8) 87.4(4.5) 84.7(4.0) 84.8(4.0) 89.9(2.3) 90.0(1.9) 87.9(3.0) 87.4(4.5) 87.1(3.5) 86.9(2.9) 89.9(2.4) 90.0(1.9) 88.3(3.1) 87.4(4.5) 87.2(3.5) 86.6(2.7)
12 81.9(5.5) 80.3(4.4) 80.1(4.8) 77.8(4.7) 79.8(4.6) 77.4(6.1) 82.1(5.4) 80.4(4.7) 77.3(5.4) 77.8(4.7) 77.3(4.9) 76.3(6.1) 82.6(5.6) 80.5(4.6) 77.5(6.2) 77.8(4.7) 76.3(4.6) 76.7(6.2)
13 72.0(4.1) 72.2(4.8) 66.0(4.1) 63.2(4.6) 67.8(4.7) 68.5(4.5) 69.3(5.8) 72.4(4.2) 63.4(5.6) 63.2(4.6) 63.7(4.9) 64.9(3.9) 69.0(6.1) 72.0(4.8) 62.0(5.6) 63.2(4.6) 63.4(5.1) 64.0(4.6)
14 95.9(1.0) 96.6(0.9) 96.1(0.8) 95.6(0.8) 96.2(0.8) 95.8(1.0) 96.1(0.8) 96.5(0.8) 96.3(0.9) 95.6(0.8) 95.8(0.9) 96.0(0.7) 95.9(0.8) 96.4(0.8) 96.1(0.9) 95.6(0.8) 95.7(0.9) 95.8(0.5)
15 63.0(3.9) 60.3(7.8) 55.6(5.7) 60.2(4.1) 55.0(5.6) 55.5(4.0) 70.2(4.1) 68.4(5.2) 61.3(4.3) 60.2(4.1) 63.1(4.6) 62.6(4.6) 69.7(4.5) 68.1(5.5) 60.8(4.9) 60.2(4.1) 61.7(4.4) 62.8(4.3)
16 82.0(2.9) 81.0(2.7) 80.0(2.3) 74.6(3.7) 79.5(2.3) 79.2(3.6) 81.0(3.6) 80.2(3.7) 77.2(3.4) 77.6(2.7) 78.4(2.9) 78.2(2.6) 80.3(3.2) 79.2(3.7) 76.0(3.4) 74.5(2.9) 78.0(2.8) 77.8(2.1)
17 99.9(0.4) 99.0(1.5) 98.2(2.4) 100.0(0) 93.0(3.5) 97.5(3.4) 100.0(0) 99.5(0.7) 99.2(1.4) 100.0(0) 97.5(2.2) 99.5(1.0) 100.0(0) 99.5(0.7) 99.2(1.4) 100.0(0) 97.5(2.2) 99.5(1.0)
18 90.3(1.5) 89.6(1.1) 88.2(1.3) 91.7(1.7) 88.4(1.8) 81.5(1.0) 93.3(0.9) 92.7(1.1) 91.5(1.0) 91.7(1.7) 91.2(1.3) 84.5(1.1) 93.2(0.9) 92.8(1.1) 91.6(1.0) 91.7(1.7) 91.2(1.3) 84.6(1.1)
19 84.2(2.0) 84.4(1.7) 81.9(1.1) 84.8(1.1) 82.8(1.1) 87.8(1.5) 86.6(1.5) 86.9(1.5) 84.6(0.9) 84.8(1.1) 85.0(0.9) 92.0(1.2) 86.6(1.5) 86.9(1.4) 84.8(0.9) 84.8(1.1) 85.0(0.8) 92.1(1.2)
20 94.7(1.2) 94.5(1.0) 93.4(0.9) 95.3(1.1) 92.4(1.2) 93.6(1.0) 95.6(1.0) 95.6(0.9) 95.2(1.2) 95.3(1.1) 93.8(1.4) 94.9(1.2) 95.6(1.0) 95.6(0.9) 95.1(1.2) 95.3(1.1) 93.9(1.4) 94.9(1.2)
21 70.0(7.4) 70.8(6.4) 64.9(8.4) 69.4(6.8) 63.7(7.1) 61.7(7.5) 74.7(7.2) 75.8(5.0) 71.1(6.3) 69.4(6.8) 70.6(7.0) 72.0(5.4) 74.5(6.8) 75.7(5.0) 71.4(6.3) 69.4(6.8) 70.8(7.0) 72.4(4.4)
22 95.6(1.6) 94.1(1.7) 95.3(1.2) 95.1(0.9) 94.6(1.2) 94.5(1.4) 95.4(1.3) 95.8(1.8) 94.8(1.6) 95.1(0.9) 94.5(1.4) 94.5(1.4) 95.3(1.3) 95.8(1.7) 94.8(1.6) 95.1(0.9) 94.4(1.5) 94.3(1.4)
23 70.9(2.8) 68.1(3.8) 64.2(3.9) 68.3(2.5) 64.3(3.6) 65.4(3.7) 74.7(3.6) 73.5(3.2) 68.4(2.4) 68.3(2.5) 67.5(2.0) 70.0(4.3) 75.0(3.2) 73.0(3.2) 68.5(3.5) 68.3(2.5) 67.4(1.8) 70.2(4.3)
24 83.6(3.4) 82.4(4.2) 79.8(4.4) 83.4(3.3) 78.2(4.6) 79.9(4.0) 85.5(3.1) 84.5(4.0) 82.8(3.3) 83.4(3.3) 81.1(4.0) 83.5(3.6) 86.1(2.6) 84.4(4.0) 82.1(4.0) 83.4(3.3) 81.3(4.2) 82.9(3.1)
25 94.4(1.9) 92.2(1.7) 92.1(1.9) 92.3(1.9) 91.3(2.3) 92.0(2.2) 94.5(2.4) 94.6(1.5) 93.0(2.0) 92.3(1.9) 92.5(2.2) 92.2(2.4) 94.6(2.4) 94.6(1.6) 93.0(2.1) 92.3(1.9) 92.4(2.2) 92.3(2.3)
26 79.3(1.8) 78.0(2.2) 74.9(1.3) 74.6(1.1) 74.1(1.2) 75.2(1.1) 78.8(1.7) 77.8(2.7) 74.4(1.3) 74.6(1.1) 73.0(1.2) 73.9(0.9) 78.7(1.8) 77.7(2.7) 74.4(1.2) 74.6(1.1) 72.9(1.2) 73.7(1.0)
27 78.9(6.2) 79.8(5.7) 73.4(6.3) 77.1(5.5) 74.7(7.5) 74.9(6.7) 82.9(4.7) 82.8(4.0) 77.9(4.6) 77.1(5.5) 77.8(3.4) 78.1(4.2) 82.7(4.4) 82.9(3.8) 78.0(4.6) 77.1(5.5) 78.0(3.0) 76.7(4.7)
28 94.2(3.6) 93.4(3.5) 91.7(4.7) 89.4(5.9) 90.6(5.2) 90.1(5.1) 93.6(4.0) 92.4(3.2) 91.5(4.5) 89.4(5.9) 89.9(4.8) 91.2(4.6) 93.6(4.0) 92.4(3.2) 91.5(4.5) 89.4(5.9) 89.9(4.8) 91.2(4.6)

Aver. 82.0 81.7 79.3 79.9 78.8 79.0 83.4 83.2 80.1 79.9 79.5 80.2 83.2 82.9 79.8 79.7 79.3 80.0
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Table A.13
Comparison of DES methods using different pools of classifiers with Perceptron as base inducer (accuracy and Std. Dev.).
Data Knora-E Knora-U Meta-Des

PGDCS_A PGDCS_D Bagging AdaB. R.F. DSOC PGDCS_A PGDCS_D Bagging AdaB. R.F. DSOC PGDCS_A PGDCS_D Bagging AdaB. R.F. DSOC

01 82.3(3.1) 82.3(2.8) 82.2(3.1) 82.4(3.2) 84.0(2.3) 82.8(3.6) 87.5(2.3) 88.1(2.0) 86.9(2.3) 86.8(1.9) 88.0(2.0) 85.9(1.9) 86.2(2.7) 86.0(2.6) 86.2(2.5) 84.0(3.3) 88.0(2.5) 84.7(2.2)
02 96.9(0.8) 96.9(0.6) 96.9(0.7) 97.0(0.8) 97.1(0.8) 96.6(0.9) 96.1(1.0) 96.2(0.9) 96.2(1.0) 96.2(1.0) 97.3(0.8) 95.6(0.8) 94.4(1.1) 94.9(1.4) 93.3(1.2) 93.7(1.6) 97.2(0.8) 92.7(2.0)
03 70.3(4.1) 70.1(3.3) 70.2(3.8) 69.9(3.5) 72.1(3.4) 70.7(4.5) 78.3(2.4) 78.0(1.7) 78.7(1.6) 78.5(1.6) 75.1(2.1) 76.8(2.4) 76.0(1.1) 76.2(1.1) 76.0(0.9) 76.1(0.9) 75.8(1.4) 76.0(0.9)
04 89.8(1.5) 90.2(1.3) 89.5(1.6) 89.1(2.1) 93.5(0.9) 89.4(1.8) 89.5(1.0) 89.7(1.2) 89.0(2.1) 88.7(3.0) 93.7(1.0) 89.0(1.9) 89.4(1.2) 89.6(1.2) 88.8(1.1) 88.4(1.3) 93.9(1.0) 88.7(1.3)
05 73.1(2.4) 72.3(2.5) 72.5(2.7) 71.8(2.9) 71.7(3.0) 71.6(2.7) 77.0(2.7) 77.0(2.8) 76.9(2.7) 76.2(2.8) 75.8(2.8) 76.0(3.0) 74.5(3.3) 74.4(2.6) 73.7(2.5) 73.1(2.4) 74.8(3.0) 74.1(2.0)
06 68.6(2.0) 69.9(1.4) 68.9(1.7) 69.1(1.7) 69.8(1.8) 68.9(1.6) 72.3(1.6) 72.4(1.3) 71.7(1.5) 72.1(1.3) 76.3(1.7) 69.6(1.7) 70.8(1.3) 70.8(1.9) 70.3(1.4) 70.1(1.5) 76.5(1.9) 69.2(2.0)
07 71.0(1.5) 71.5(2.2) 72.4(2.3) 70.3(2.0) 71.1(1.8) 71.0(2.9) 76.9(2.4) 76.7(2.3) 76.1(2.4) 75.2(1.8) 75.3(2.4) 74.8(2.7) 73.0(2.0) 73.8(1.8) 72.9(1.7) 71.6(1.4) 72.9(1.8) 72.4(1.6)
08 67.2(4.8) 66.4(5.6) 65.6(6.1) 66.1(4.5) 68.2(4.7) 67.2(5.8) 76.4(3.3) 75.7(2.2) 75.1(2.1) 74.9(2.0) 70.5(3.7) 75.0(2.7) 73.4(1.6) 73.5(1.7) 74.0(1.5) 73.7(1.6) 72.0(2.6) 73.8(2.1)
09 80.9(4.6) 78.9(4.3) 79.4(4.2) 76.3(5.0) 76.0(5.3) 79.0(4.4) 85.5(4.2) 85.1(3.4) 82.8(3.8) 83.0(4.6) 80.1(5.3) 82.6(2.6) 84.6(3.6) 83.1(3.9) 82.9(4.0) 79.3(3.9) 79.9(3.9) 81.9(3.5)
10 67.9(3.0) 68.8(2.8) 68.9(2.3) 68.7(3.1) 69.6(3.5) 68.0(3.2) 70.9(2.4) 72.4(2.1) 71.0(2.4) 70.3(2.7) 71.0(3.2) 69.8(2.6) 70.7(2.2) 70.1(2.1) 70.7(1.6) 70.7(1.5) 70.8(1.9) 70.7(1.9)
11 88.8(3.7) 90.0(3.3) 88.4(3.6) 85.9(3.3) 91.9(3.4) 88.5(3.6) 90.7(3.1) 91.5(3.8) 89.2(2.8) 88.2(3.5) 93.4(2.7) 89.0(3.2) 90.3(2.7) 89.8(3.2) 88.8(3.0) 87.1(3.3) 93.4(2.9) 88.9(2.9)
12 82.5(3.9) 82.5(4.4) 79.9(3.7) 78.7(5.2) 79.7(4.4) 82.4(4.3) 85.6(4.9) 84.1(3.7) 83.0(3.9) 83.6(4.5) 82.8(4.5) 84.1(4.9) 84.5(4.4) 84.3(5.6) 83.0(5.5) 80.9(5.2) 83.1(4.4) 82.8(4.7)
13 66.5(4.6) 68.5(4.5) 66.7(4.0) 66.3(5.4) 67.7(5.2) 67.0(4.8) 75.1(3.0) 75.9(2.6) 73.5(2.1) 72.7(2.8) 73.0(2.8) 73.0(3.6) 71.2(3.0) 72.1(3.2) 71.1(2.8) 70.9(3.4) 70.2(4.1) 70.1(2.2)
14 95.8(0.7) 96.0(0.7) 96.0(0.7) 95.9(0.9) 96.7(0.8) 95.8(0.8) 95.0(1.2) 94.8(1.1) 95.1(1.1) 95.2(0.9) 97.0(0.6) 94.4(1.4) 93.9(1.4) 94.1(1.0) 94.2(1.1) 94.5(1.1) 97.0(0.6) 93.6(1.3)
15 65.6(4.9) 66.2(4.6) 67.0(4.1) 63.6(4.9) 63.3(4.0) 67.0(4.2) 72.1(3.8) 70.1(5.2) 70.1(3.5) 68.1(4.4) 69.0(4.6) 67.6(4.6) 67.7(4.8) 68.2(4.1) 67.2(4.7) 64.7(4.9) 68.0(4.4) 66.5(4.4)
16 77.4(2.8) 77.6(2.9) 77.2(2.7) 76.9(2.7) 79.1(2.6) 78.0(2.8) 83.3(2.3) 83.3(2.3) 82.9(1.9) 82.1(2.3) 79.3(2.0) 82.5(2.4) 79.9(3.3) 79.6(3.3) 79.7(3.0) 79.1(3.1) 79.2(2.3) 80.1(3.5)
17 89.4(3.1) 89.5(2.9) 88.9(3.1) 87.1(3.4) 99.6(0.8) 88.1(2.6) 87.3(1.9) 84.6(2.7) 81.8(3.5) 82.9(3.4) 99.0(1.4) 82.0(3.5) 94.4(3.2) 94.1(2.9) 91.5(4.5) 89.9(3.5) 99.6(0.9) 90.2(3.0)
18 91.1(1.3) 83.5(0.8) 83.5(0.9) 83.4(0.7) 88.3(0.8) 83.7(0.8) 89.5(1.3) 81.9(0.9) 81.8(1.0) 81.6(0.9) 89.5(0.7) 80.9(1.1) 88.7(2.2) 82.4(0.9) 82.5(0.9) 82.5(0.9) 90.2(0.8) 82.0(0.8)
19 83.1(0.8) 89.5(2.2) 90.5(1.6) 90.8(1.6) 93.7(0.8) 91.8(1.1) 81.7(0.9) 85.8(2.3) 87.2(2.8) 90.3(1.2) 94.0(0.9) 89.0(1.6) 82.4(1.0) 86.8(2.6) 86.8(2.5) 88.7(2.1) 94.6(0.9) 88.9(2.5)
20 94.0(1.1) 94.2(1.0) 94.2(1.0) 94.5(0.9) 97.5(0.8) 93.8(1.1) 91.9(1.0) 92.4(1.4) 92.3(1.0) 92.9(1.2) 97.1(1.0) 91.8(1.0) 94.0(1.0) 94.3(0.9) 94.0(1.1) 94.3(0.9) 97.6(0.8) 93.8(1.0)
21 83.2(6.3) 82.2(4.5) 78.5(3.5) 77.3(5.5) 77.9(5.0) 78.7(5.2) 84.8(6.3) 82.1(6.4) 78.1(3.0) 74.8(4.1) 78.7(4.0) 76.5(3.6) 84.9(5.3) 82.7(6.0) 79.7(3.7) 76.6(5.7) 80.2(3.9) 78.8(3.8)
22 96.2(1.6) 96.3(1.5) 95.9(1.8) 95.6(1.5) 96.2(0.8) 96.0(1.5) 97.2(1.0) 97.4(0.9) 97.0(1.0) 97.0(1.1) 96.1(0.8) 96.6(1.3) 97.0(0.9) 96.7(0.8) 96.4(0.9) 96.4(1.0) 95.5(1.3) 96.4(0.9)
23 75.5(2.5) 75.8(2.6) 75.8(2.2) 74.8(2.2) 71.0(2.1) 74.8(2.4) 76.5(2.9) 77.7(2.1) 76.0(2.1) 76.8(2.6) 74.0(2.2) 75.1(2.4) 76.2(1.9) 76.6(2.4) 75.9(2.3) 75.9(2.7) 74.5(1.6) 74.9(2.7)
24 85.2(3.9) 85.1(3.5) 84.8(4.3) 83.1(4.4) 84.1(4.1) 84.9(3.8) 88.0(4.2) 87.1(3.5) 86.5(4.0) 86.0(3.5) 85.8(3.0) 86.1(4.1) 88.0(3.0) 87.3(3.0) 86.7(3.8) 86.1(3.3) 85.1(4.3) 86.7(3.6)
25 97.4(1.0) 97.7(1.2) 97.1(0.9) 96.3(1.3) 95.4(1.6) 97.1(1.1) 98.1(0.7) 98.2(1.0) 97.1(1.2) 96.7(1.3) 95.5(1.5) 97.0(1.0) 97.2(1.2) 97.5(1.6) 96.9(1.3) 96.0(1.3) 95.7(1.4) 96.7(1.4)
26 83.7(1.0) 83.8(1.0) 83.4(0.8) 83.6(1.0) 80.3(0.8) 83.3(1.2) 86.8(0.9) 86.8(1.0) 86.4(0.8) 86.6(0.8) 85.1(0.8) 85.8(0.9) 86.1(0.9) 85.9(0.9) 85.9(0.8) 85.8(0.7) 84.8(0.9) 85.6(0.8)
27 82.9(3.8) 81.9(4.7) 82.1(4.6) 75.9(5.5) 84.9(3.2) 80.5(4.5) 85.2(3.8) 85.5(3.7) 83.2(3.6) 82.5(4.5) 89.7(2.7) 81.8(3.6) 85.3(3.4) 84.4(4.1) 82.7(3.4) 81.1(4.8) 89.1(3.6) 80.8(4.4)
28 98.4(1.9) 97.3(2.4) 97.5(2.0) 97.2(2.6) 96.6(2.8) 97.2(1.6) 98.5(1.8) 98.0(2.3) 97.5(2.1) 97.2(2.6) 97.2(3.0) 97.4(1.7) 98.4(1.9) 98.2(2.2) 98.0(2.0) 97.3(2.2) 97.2(2.7) 97.2(2.0)

Aver. 82.3 82.3 81.9 81.0 82.8 81.9 84.9 84.6 83.7 83.5 85.0 83.1 84.0 83.8 83.2 82.4 84.9 82.8
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Table A.14
Comparison of DES methods using different pools of classifiers with Decision Tree as base inducer (accuracy and Std. Dev.).
Data Knora-E Knora-U Meta-Des

PGDCS_A PGDCS_D Bagging AdaB. R.F. DSOC PGDCS_A PGDCS_D Bagging AdaB. R.F. DSOC PGDCS_A PGDCS_D Bagging AdaB. R.F. DSOC

01 88.6(2.7) 88.1(2.9) 84.9(3.0) 82.3(2.6) 84.0(2.3) 84.2(2.2) 92.4(2.5) 91.1(3.0) 87.6(2.1) 82.3(2.6) 88.0(2.0) 86.8(1.9) 91.7(2.4) 90.4(2.5) 86.6(2.8) 82.3(2.6) 87.9(2.5) 85.8(2.0)
02 97.6(0.7) 97.5(0.6) 97.2(0.7) 95.8(0.8) 97.1(0.8) 96.9(0.7) 97.9(0.7) 97.7(0.7) 97.1(0.9) 95.8(0.8) 97.3(0.8) 97.0(0.9) 97.9(0.7) 97.6(0.7) 97.1(0.8) 95.8(0.8) 97.2(0.8) 96.9(0.9)
03 75.8(3.4) 75.0(4.1) 71.8(4.4) 69.8(3.7) 72.1(3.4) 72.8(3.5) 82.7(2.1) 80.8(2.7) 77.4(2.6) 76.1(2.2) 75.1(2.1) 76.3(3.5) 79.1(1.8) 78.8(2.1) 75.6(1.1) 76.0(1.0) 75.8(1.4) 75.7(1.3)
04 94.7(1.2) 94.6(1.1) 93.0(0.9) 91.9(1.4) 93.5(0.9) 92.9(0.9) 95.7(1.0) 95.4(1.0) 93.3(1.0) 92.0(1.5) 93.7(1.0) 92.9(0.8) 95.6(0.9) 95.3(0.8) 93.4(1.0) 92.0(1.5) 93.9(1.0) 93.1(0.9)
05 79.0(2.7) 77.0(4.1) 71.7(2.9) 69.0(3.8) 71.7(3.0) 72.0(3.0) 85.0(2.8) 82.1(4.5) 76.5(2.6) 69.0(3.8) 75.8(2.8) 75.6(3.2) 84.8(2.8) 81.5(5.1) 75.0(2.4) 69.0(3.8) 74.8(3.0) 74.3(3.0)
06 76.6(3.6) 77.2(2.8) 71.0(1.8) 69.4(2.7) 69.8(1.8) 69.9(1.7) 83.6(4.8) 84.5(2.6) 75.9(1.6) 69.4(2.7) 76.3(1.7) 74.5(2.0) 84.0(4.2) 84.6(2.9) 76.2(1.7) 69.4(2.7) 76.5(1.9) 74.6(1.8)
07 79.5(3.7) 77.8(4.4) 70.8(2.1) 68.3(3.1) 71.1(1.8) 71.0(2.3) 85.5(5.1) 81.8(5.3) 75.3(2.5) 68.3(3.1) 75.3(2.4) 74.0(3.2) 85.1(4.7) 81.0(5.2) 73.1(2.8) 69.7(1.7) 72.9(1.8) 72.4(2.3)
08 73.2(5.0) 71.6(4.8) 66.9(4.5) 69.4(4.9) 68.2(4.7) 68.0(5.3) 80.3(5.9) 79.9(4.9) 71.5(3.5) 71.8(4.3) 70.5(3.7) 71.6(4.5) 78.4(5.3) 77.4(4.8) 72.0(3.6) 73.2(1.3) 72.0(2.6) 71.8(2.8)
09 82.2(4.5) 80.2(4.1) 78.3(4.6) 73.5(5.1) 76.0(5.3) 75.6(4.7) 89.8(3.8) 87.8(4.7) 80.5(4.6) 73.5(5.1) 80.1(5.3) 79.7(5.7) 88.2(4.1) 85.1(4.5) 79.4(3.7) 73.5(5.1) 79.9(3.9) 78.3(5.7)
10 73.1(4.6) 76.1(4.0) 67.7(3.1) 65.8(3.9) 69.6(3.5) 67.4(3.5) 81.4(5.1) 81.7(4.9) 70.5(3.1) 65.8(3.9) 71.0(3.2) 69.7(3.3) 78.8(4.6) 80.5(4.1) 70.8(1.6) 71.2(0) 70.8(1.9) 70.3(2.1)
11 95.7(2.0) 94.9(2.5) 91.1(3.5) 87.4(4.5) 91.9(3.4) 90.4(3.3) 96.2(1.5) 96.0(2.0) 92.6(2.7) 87.4(4.5) 93.4(2.7) 92.0(2.9) 96.4(1.6) 96.0(1.9) 92.7(3.0) 87.4(4.5) 93.4(2.9) 92.2(2.2)
12 85.5(5.5) 84.1(3.8) 80.9(5.2) 77.8(4.7) 79.7(4.4) 79.5(6.1) 91.0(4.9) 88.1(5.8) 82.9(4.3) 77.8(4.7) 82.8(4.5) 82.7(4.8) 90.7(5.3) 87.7(5.3) 82.2(4.6) 77.8(4.7) 83.1(4.4) 81.8(5.7)
13 72.6(5.3) 74.5(5.7) 66.5(4.5) 63.2(4.6) 67.7(5.2) 66.6(4.0) 80.5(5.2) 81.1(4.3) 73.2(3.4) 63.2(4.6) 73.0(2.8) 71.1(3.2) 78.5(6.2) 79.0(5.9) 70.2(4.4) 67.9(3.9) 70.2(4.1) 69.0(3.8)
14 97.1(0.6) 97.1(0.7) 96.6(0.7) 95.6(0.8) 96.7(0.8) 96.5(0.8) 97.9(0.7) 97.7(0.5) 97.2(0.6) 95.6(0.8) 97.0(0.6) 96.8(0.6) 97.7(0.7) 97.5(0.6) 97.0(0.7) 95.6(0.8) 97.0(0.6) 96.8(0.6)
15 73.7(4.5) 70.7(5.5) 63.4(3.9) 60.2(4.1) 63.3(4.0) 64.8(5.0) 84.5(3.5) 79.1(7.1) 70.1(4.0) 60.2(4.1) 69.0(4.6) 68.3(3.7) 83.7(4.1) 78.7(6.1) 67.9(4.6) 59.8(4.1) 68.0(4.4) 66.4(5.2)
16 81.7(3.0) 80.1(2.9) 78.9(2.8) 76.4(3.3) 79.1(2.6) 79.6(2.6) 85.1(4.0) 84.3(3.4) 81.5(2.1) 74.5(4.5) 79.3(2.0) 80.3(2.0) 83.2(2.9) 82.2(3.2) 80.4(2.8) 79.3(2.1) 79.2(2.3) 79.9(2.9)
17 100.0(0) 100.0(0) 100.0(0) 100.0(0) 99.6(0.8) 93.5(1.3) 100.0(0) 100.0(0) 100.0(0) 100.0(0) 99.0(1.4) 99.6(1.1) 100.0(0) 100.0(0) 100.0(0) 100.0(0) 99.6(0.9) 100.0(0)
18 95.3(1.1) 95.0(1.0) 93.4(1.0) 91.7(1.7) 93.7(0.8) 99.8(0.8) 96.9(1.3) 95.9(1.1) 93.6(1.0) 91.7(1.7) 94.0(0.9) 93.0(1.2) 96.5(1.1) 96.0(1.0) 94.5(1.0) 91.7(1.7) 94.6(0.9) 88.7(0.8)
19 90.2(2.1) 90.2(1.5) 87.4(0.8) 84.8(1.1) 88.3(0.8) 86.8(0.7) 92.1(2.5) 92.0(1.9) 88.5(0.9) 84.8(1.1) 89.5(0.7) 87.5(0.8) 92.3(2.1) 92.6(1.5) 89.7(0.7) 84.8(1.1) 90.2(0.8) 94.0(1.2)
20 98.0(1.0) 97.9(0.8) 96.8(0.8) 95.3(1.1) 97.5(0.8) 96.4(0.9) 98.1(0.9) 97.9(0.9) 96.4(0.9) 95.3(1.1) 97.1(1.0) 96.0(1.0) 98.3(1.1) 98.2(0.8) 97.0(0.7) 95.3(1.1) 97.6(0.8) 96.6(1.0)
21 80.3(4.8) 81.9(4.9) 75.7(4.9) 69.4(6.8) 77.9(5.0) 75.2(4.6) 84.3(5.2) 85.8(6.6) 75.7(5.6) 69.4(6.8) 78.7(4.0) 73.2(5.8) 83.8(5.4) 85.5(6.6) 78.3(3.7) 69.4(6.8) 80.2(3.9) 76.1(4.5)
22 96.7(1.4) 97.1(1.1) 95.6(1.1) 95.1(0.9) 96.2(0.8) 95.4(1.3) 97.6(1.3) 97.8(1.0) 95.9(1.1) 95.1(0.9) 96.1(0.8) 95.8(1.0) 97.6(1.4) 97.9(1.2) 95.4(1.0) 94.7(1.4) 95.5(1.3) 95.5(0.9)
23 79.5(3.4) 77.5(3.9) 70.9(3.0) 68.3(2.5) 71.0(2.1) 72.1(3.8) 85.6(3.1) 84.9(5.1) 73.3(1.8) 68.3(2.5) 74.0(2.2) 73.2(3.2) 84.7(3.0) 83.7(6.0) 73.9(2.2) 68.3(2.5) 74.5(1.6) 73.4(3.0)
24 88.0(3.7) 87.1(2.7) 83.2(4.3) 83.4(3.3) 84.1(4.1) 83.7(3.1) 92.1(3.9) 92.3(4.1) 85.8(3.3) 83.4(3.3) 85.8(3.0) 84.5(3.5) 92.1(4.4) 91.8(4.1) 84.9(3.2) 83.4(3.3) 85.1(4.3) 84.1(3.8)
25 97.0(1.2) 96.2(1.4) 94.8(1.3) 92.3(1.9) 95.4(1.6) 94.8(1.2) 97.4(1.8) 96.6(1.7) 95.0(1.7) 92.3(1.9) 95.5(1.5) 94.5(2.0) 97.4(1.7) 96.8(1.2) 95.0(1.5) 92.3(1.9) 95.7(1.4) 94.5(1.7)
26 86.3(2.2) 85.2(3.1) 80.0(1.1) 74.6(1.1) 80.3(0.8) 78.7(1.0) 90.5(2.5) 89.6(2.9) 84.4(0.8) 74.6(1.1) 85.1(0.8) 83.3(0.9) 90.3(2.6) 89.5(2.9) 83.9(0.8) 74.6(1.1) 84.8(0.9) 82.9(0.8)
27 88.9(4.2) 86.9(4.3) 82.0(4.3) 77.1(5.5) 84.9(3.2) 79.3(3.8) 93.5(3.3) 90.3(3.1) 86.5(4.0) 77.1(5.5) 89.7(2.7) 83.7(3.5) 93.3(3.1) 92.3(3.5) 86.6(3.6) 77.1(5.5) 89.1(3.6) 84.1(4.1)
28 98.6(2.0) 96.4(2.7) 96.2(2.8) 89.4(5.9) 96.6(2.8) 95.5(3.4) 99.4(1.0) 96.5(2.5) 95.7(4.1) 89.4(5.9) 97.2(3.0) 94.9(3.8) 99.1(1.3) 96.2(2.7) 96.0(4.2) 89.4(5.9) 97.2(2.7) 94.7(4.0)

Aver. 86.6 86.0 82.4 79.9 82.8 82.1 90.6 89.6 84.8 80.1 85.0 83.9 90.0 89.1 84.5 80.7 84.9 83.7
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Appendix. Detailed results

This section contains the detailed results of the two PGDCS vari-
ants (PGDCS_A, PGDCS_D) for all datasets using Perceptron and Deci-
sion Trees as base classifiers. Such results represent the average and
standard deviation of 20 iterations.

Tables A.9 and A.10 show the results when all the classifiers in the
pool were combined using Majority Voting Rule (MVR). Tables A.11
and A.12 present the results related to the use of Dynamic Classifier
Selection (DCS). Finally, Tables A.13 and A.14 show the results related
to the use of Dynamic Ensemble Selection.
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