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ABSTRACT
Vector-borne diseases (VBDs), such as Dengue or Malaria, are one
of the main concerns of public health agencies and governments.
These diseases are mainly spread by mosquitoes acting as vectors
by transmitting infected blood between humans. Machine learn-
ing can be used to design and improve control strategies of VBDs
by providing models able to recognize disease vector mosquitoes
and automatically capture or kill harmful species. The automatic
identification of disease vector mosquitoes was not yet addressed
concerning the hierarchical classification of data streams. Thus,
reliable information has not been used to improve learning models,
such as mosquitoes’ hierarchical taxonomy. In this study, we pro-
pose a framework for the automatic identification of disease vector
mosquitoes in the context of the hierarchical classification of data
streams area. To this end, we propose a hierarchical adaptation
of a disease vector mosquitoes’ dataset to include their taxonomy
and introduce kNC and Dribble, two novel classification methods
fitted to hierarchical data streams representing the mosquitoes. Re-
sults depicted that our framework, using summarization techniques,
achieves significantly better prediction and processing speed rates
when compared to existing state-of-the-art models.
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1 INTRODUCTION AND BACKGROUND
One of themost significant current challenges facing public health is
the prevention and control of Vector-borne diseases (VBDs), which
are diseases caused by living organisms, named vectors, that can
transmit infectious diseases between humans [21].

According to the World Health Organization, VBDs, such as
Dengue, yellow fever, chikungunya, Zika virus, and others, are
responsible for more than one million deaths every year around
the world [21].

Mosquitoes are the best-known disease vector. For instance, the
Aedes aegypti mosquito can transmit Dengue, yellow fever, chikun-
gunya, and Zika virus by carrying infected blood from one organism
to another during a meal [17].

Diverse public health interventions have been carried out to
reduce the spread of these disease vector mosquitoes and conse-
quently prevent possible disease outbreaks. The identification of
the mosquitoes is an essential step in the designing of vector control
strategies [5].

However, in several cases, public health technicians perform this
identification manually, which is not scalable without the commit-
ment of many qualified specialists in a time-consuming task [7, 21].
Consequently, machine learning methods have been proposed for
the automatic identification of disease vector mosquitoes or in the
forecasting of outbreaks of VBDs [7, 14].

In general, machine learning techniques benefit from their ability
in automating decision-making processes related to the control of
VBDs by, for instance, classifying the species and sex of mosquitoes
or capturing target mosquitoes using automatic traps with sensors
[7].

Still, a drawback regards the amount of data available for the
learningmodel, specially labeled data that allows the learningmodel
to associate the recognized patterns to the target outputs.

In this sense, the authors in [25] introduced a new dataset ob-
tained from mosquitoes’ traps using optical sensors comprising
nearly one million instances representing mosquito feature sets
belonging to 17 distinct species, including the ones of disease vector
mosquitoes, such as Aedes aegypti (Dengue, yellow fever, chikun-
gunya, Zika virus), Aedes albopictus (Chikungunya, Dengue, West
Nile virus) and Culex quinquefasciatus (Lymphatic filariasis) [21].

This dataset was proposed in the machine learning context as
a real-world stream dataset fitted to the data stream classification
task. Classification models often assume datasets to be static and
entirely available for a well-defined training step. However, these
assumptions no longer reflect many real-world scenarios, such as
the automatic identification of disease vector mosquitoes. Data
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collection from sensors, for example, results in huge amounts of
data being generated and processed over time.

Thus, data stream classification has been revisiting many aspects
related to the usual classification task in the last years [10], requiring
novel approaches that can be updated over time, use constrained
computational resources, and are able to detect and adapt to changes
in the data behavior, a phenomenon named concept drift [28].

In the automatic identification of disease vector mosquitoes,
for example, changes in the environmental conditions, such as
temperature, humidity, or air pressure, can alter the flying behavior
of the mosquitoes, resulting in concept drifts in the collected data
[25]. The dataset proposed in [25], hereafter referred to as “Insects
dataset”, was introduced as a flat dataset, even though the classes
associated with the instances represent species of disease vector
mosquitoes, which are naturally organized in an entomological
taxonomy.

In contrast to the aforementioned flat classification, in hierarchi-
cal classification, instances are not associated with an independent
label (class) but with a label path, where inner labels represent
hierarchical relationships with the outer labels, accurately as in the
taxonomic classification of species [24, 29].

In the work [24], the authors presented a comprehensive analysis
of how hierarchical classification models previously reported in
the literature performed when compared to non-hierarchical (flat)
approaches, considering datasets of classification problems with
pre-existing class hierarchies. As a result, more than 90% of the
studies reported a “better prediction performance” when using
hierarchical approaches.

Here, we are particularly interested in the intersection of hierar-
chical and data stream classification, instantiated by the automatic
identification of disease vector mosquitoes. Several challenges arise
from this intersection, as the constraints of both classification areas
must be concomitantly accounted for. In other words, our goal is
to bring forward machine learning models that are accurate when
a class hierarchy is available, are updatable as new training data
becomes available, and are computationally light-weighted in terms
of processing time and memory consumption [4, 10].

The authors in [22] presented a similar approach by introducing
a method for the classification of hierarchical data streams applied
in an entomology-related dataset. However, the method is based
on computationally intensive distance computations and, thus, is
not suitable for real-world stream datasets, as the Insects dataset
described above.

In this paper, we propose a framework for the automatic identifi-
cation of disease vector mosquitoes in the context of the Hierarchi-
cal classification of data streams task. To this end, we adapt a dataset
of disease vector mosquitoes to include the mosquitoes’ entomolog-
ical taxonomy and propose two novel methods for the classification
of the hierarchical data streams representing the mosquitoes.

More specifically, first, we adapt the disease vector mosquitoes
dataset proposed in [25] to include hierarchical label paths describ-
ing the taxonomy of mosquitoes. Then, we propose a framework
for classifying disease vector mosquitoes in the Hierarchical clas-
sification of data streams context. To that, we adapt and apply
summarization techniques, i.e., incremental centroids [26], and
cluster feature vectors [30], as part of a hierarchical data stream

classification process, and, at the core of the framework, we pro-
pose k-Nearest Centroids and Dribble, two novel methods for the
hierarchical classification of data streams.

The remainder of this paper is organized as follows. Section
2 describes the problem of disease vector mosquitoes from the
perspective of the hierarchical classification of data streams, while
Section 3 brings forward related works. Section 4 describes the
proposed framework for the automatic identification of disease
vector mosquitoes in the context of the Hierarchical classification
of data streams. Section 5 comprises the experiments used to test
the framework and the comparisons performed with related works.
Finally, Section 6 concludes this paper and states envisioned future
works.

2 PROBLEM STATEMENT
In this section, we describe the problem of disease vectormosquitoes
as an instance of a problem regarding the hierarchical classification
of data streams.

Hierarchical data stream classification lies at the intersection
of hierarchical classification and data streams. Therefore, it dif-
fers from traditional classification in two fundamental aspects.
First, regarding hierarchical classification, instances (representing
mosquitoes) are associated with not one independent label (class)
but with a label path that belongs to a hierarchically structured set
of classes representing the taxonomy of the mosquitoes. Second,
regarding data stream classification, the entire dataset comprising
instances for training is not available; instead, the instances (rep-
resenting the mosquitoes) are presented sequentially, one by one,
over time to the model [27].

More formally, we denote ℎ𝐷𝑆 = [( ®𝑥𝑡 , ®𝑦𝑡 )]∞
𝑡=0 to be a hierarchi-

cal data stream providing instances ( ®𝑥𝑡 , ®𝑦𝑡 ), each of which arriving
at a timestamp 𝑡 , where ®𝑥𝑡 is a 𝑑-dimensional features set and its
values, and ®𝑦𝑡 is the corresponding ground-truth label path (hierar-
chically structured classes) for the given instance ®𝑥𝑡 [27].

The class labels are organized under a regular concept hierarchy
that is structured on a partially ordered set (𝑌, ≻), where 𝑌 is a
finite set containing all concepts representing the problem and
the relationship ≻ is defined as an asymmetric, anti-reflexive, and
transitive subsumption relation [24].

Next, the hierarchical classification of data streams is formalized
as 𝑓 𝑡 : ®𝑥𝑡 ↦→ ®𝑦𝑡 , such that an hypothesis 𝑓 𝑡 is continuously updated
by mapping features ®𝑥 to the corresponding labels 𝑦𝑡 accurately
[10, 27]. Thus, regarding the problem of disease vector mosquitoes,
a learning model 𝑓 𝑡 : ®𝑥𝑡 ↦→ ®𝑦𝑡 receives the mapping features ®𝑥
representing the mosquitoes’ features (e.g, wing-beat frequency)
and predicts ®𝑦𝑡 , i.e., the mosquitoes’ taxonomy from the highest to
the lowest level of the taxonomic hierarchy.

Besides, the time component is inherent in data streams, and
thus, data streams are expected to be ephemeral, i.e., the underlying
data distribution is expected to change, resulting in concept drifts
[12, 28].

A concept (𝐶) is defined as set of prior probabilities of the classes
and class-conditional probability density function given by 𝐶 =⋃

𝑦∈𝑌 {(𝑃 [𝑦], 𝑃 [®𝑥 |𝑦])} [3]. A concept drift occurs if, at between two
timestamps 𝑡𝑖 and 𝑡 𝑗 = 𝑡𝑖 + Δ with Δ > 1, 𝐶𝑡𝑖 ≠ 𝐶𝑡 𝑗 holds [3, 28].
Consequently, 𝑓 𝑡 should capture the data dynamics accordingly.
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As stated before, in the automatic identification of disease vector
mosquitoes, environmental conditions can affect the wing-beat
frequency of themosquitoes andmislead stationary learningmodels
[25].

Also related to the time component of data streams, algorithms
must work within bounded computational resources, analyzing
each instance only once according to their arrival [4]. The process-
ing time of an arriving instance must not surpass the ratio in which
new instances become available. Otherwise, the model will need to
discard new instances or it will not adapt swiftly enough to handle
concept drifts [3].

As mosquitoes’ traps selectively capture species of disease vector
mosquitoes and free other harmless species, any instability of the
learning model could result in not capturing harmful species [25].

3 RELATEDWORK
In this section, we focus on studies concerning the hierarchical
classification of data streams. Note that studies related exclusively
to the automatic classification of disease vector mosquitoes but
regarding other research areas are outside the scope of this study.
Despite effort spent in these related areas, several studies do not
match problem constraints from the hierarchical classification of
data streams area (cf. described in Section 2), by, for example, using
stationary or small-sized datasets.

The literature has addressed hierarchical and data stream clas-
sification tasks individually, thus resulting in several works and
comprehensive reviews of such studies. For instance, reviews on
hierarchical classification [16, 24] and data stream classification
[4, 11, 23] depict the recentness of approaches in both areas and
indicate the lack of works lying at their intersection.

Recently, specific works focused on this intersection; however,
the proposals do not consider all the constraints required from both
fields simultaneously. For instance, the authors in [13] proposed
a method that received a data stream as input but processed it
in batches and overlooked concept drifts. Also, the authors in [6]
proposed a hierarchical model learning scheme for non-hierarchical
data streams [27].

Finally, in contrast to the aforementioned works, we highlight
the instance-based hierarchical data stream classifier proposed in
[22]. More specifically, the authors proposed an incremental method
based on the traditional k-Nearest Neighbors (kNN) technique [2]
representing the data hierarchically and using a memory buffer on
nodes of the hierarchy to forget instances.

Nonetheless, this proposal has drawbacks w.r.t. data streaming
requirements as the k-Nearest Neighbors technique requires com-
putationally intensive distance computations. Therefore, it is of
interest to adapt this method to summarize data adequately so that
the number of distance computations is lessened [19, 26].

In this sense, in the non-hierarchical On-Demand classification
method proposed in [1], the model stores representations of the
data (statistical summaries) and performs the comparison of a new
instance with the statistical summaries instead of the instances
themselves, reducing the required number of comparisons and
maintaining constant the memory used to store samples. These
statistics summaries are, in fact, cluster feature vectors (𝐶𝐹𝑠), de-
scribed first in [30].

Similar proposals can be found in the data stream clustering
algorithms StreamLS, and Stream k-Means [20], where the data
stream is processed in chunks using centroids in each chunk, and
in the CluStream method, which uses cluster feature vectors to
construct actual clusters in an offline step [4].

4 THE PROPOSED FRAMEWORK
In this section, we propose a framework for the automatic identifi-
cation of disease vector mosquitoes as a hierarchical classification
of data streams task. This framework comprises k-Nearest Cen-
troids (kNC) and Dribble, two novel methods for the classification
of hierarchical data streams.

Figure 1 illustrates the main steps comprising the proposed
framework. First, we process data to include the hierarchical tax-
onomy of mosquitoes and represent it in a data structure. Then,
we apply a summarization technique to store/obtain a summary
description of data. After that, models predict themosquitoes’ taxon-
omy from the highest to the lowest level of the taxonomic hierarchy
using a top-down approach across the hierarchy. Finally, the model
may update itself using incoming instances and forget older data
to adapt to changes in data distribution. This process is repeated in
a cycle for each incoming instance. All the above steps are detailed
below.

The Insects dataset was introduced in [25] as a flat data stream.
In this study, we incorporate the hierarchy naturally present in the
classes of the dataset, i.e., the biological taxonomy of themosquitoes.
Figure 2 illustrates the resulting class hierarchy from the first com-
mon taxonomic rank (class Insecta, omitted) to the mosquitoes’
species. Among the 17 species represented, the six marked with an
asterisk represent species with sex distinction in the dataset, thus
resulting in 24 hierarchical labels.

Note that even though some instances do not have all taxonomic
levels described (n/a), it does not result in a partial depth problem

Retrieval of summary description 

Data preprocessing

Representation of the taxonomic hierarchy

Summarization strategy

Prediction

Summary updating

Forgetting strategy

kNC/Dribble
Application

Figure 1: General view of the proposed framework.
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Diptera

Hymenoptera

Lepidoptera

Neuroptera

Chironomidae

Culicidae

Drosophilidae

Muscidae

Psilidae

Apidae

Braconidae

Crambidae

Noctuidae

Chrysopidae

Chironomus

Aedes

Anopheles

Culex

Drosophila

Musca

n/a

Apis

Scaptotrigona

Tetragonisca

Cotesia

Diatraea

Spodoptera

Chrysoperla

n/a

Aedes aegypti*
Aedes albopictus*

n/a*

Culex tarsalis*
Culex quinquefasciatus*

Drosophila melonogaster
Drosophila suzukii*

Musca domestica

n/a

Apis mellifera

Scaptotrigona bipunctata

Tetragonisca angustula

n/a

Diatraea saccharalis*

Spodoptera frugiperda

Chrysoperla externa

Figure 2: Representation of the class hierarchy on Insects
dataset.

[24]. The lack of specific labels only denotes a failure in the data
annotation process since the insects represented by the instances
have a known taxonomy not described in the dataset.

Table 1 details the 11 hierarchically labeled datasets resulting
from our hierarchical adaptation of the Insects Datasets proposed
in [25]. Note that the “Insects-o-o-c” represents the main dataset,
while other ones represent datasets built with different sampling
strategies to simulate natural effects in insects’ behavior.

Our hierarchical adaptation of the Insects dataset and its specifi-
cation are freely available for download1.

Besides the data preprocessing step, kNC or Dribble perform the
other steps in the proposed framework. Both methods are inter-
changeable across the framework, and their suitability depends on
the specific characteristics of a dataset/problem.

First, both methods organize class labels in a hierarchically
structured class taxonomy using a tree data structure, with the

1http://www.ppgia.pucpr.br/~jean.barddal/datasets/local_knc_dribble.zip

Table 1: Hierarchically-labeled Insects dataset variants.

Dataset Instances Features Classes Labels per level

Insects-a-b 52,848 33 6 1, 1, 2, 6
Insects-a-i 355,275 33 6 1, 1, 2, 6
Insects-i-a-r-b 79,986 33 6 1, 1, 2, 6
Insects-i-a-r-i 452,044 33 6 1, 1, 2, 6
Insects-i-b 57,018 33 6 1, 1, 2, 6
Insects-i-g-b 24,15 33 6 1, 1, 2, 6
Insects-i-g-i 143,323 33 6 1, 1, 2, 6
Insects-i-i 452,044 33 6 1, 1, 2, 6
Insects-i-r-b 79,986 33 6 1, 1, 2, 6
Insects-i-r-i 452,044 33 6 1, 1, 2, 6
Insects-o-o-c 905,145 33 24 4, 10, 14, 24

paths from the root node to the leaf nodes representing label paths
(classes) of instances/mosquitoes.

kNC and Dribble follow different data representations compared
to traditional kNN-based methods. While in the kNN instance sub-
sets are buffered with their class labels, kNC and Dribble use sum-
marization strategies and discard the instances, thus resulting in
smaller memory consumption and fewer distance computations.

kNC summarizes data using centroids, consequently resulting in
a smaller number of distance computations when handling larger
data volumes. A centroid is defined as a mean of the instances that
are clustered together according to some criteria [26].

The incremental centroids are built by storing the incremental
mean of instance attributes. The incremental mean 𝜇𝑡 with the
arrival of 𝑡 values is computed as depicted in Equation 1, where
𝑥𝑡−1 represents the current average, 𝑡 the number of instances
observed thus far, and 𝑥𝑡 the arriving value to be incorporated.

𝜇𝑡 =
𝑥𝑡−1 (𝑡 − 1) + 𝑥𝑡

𝑡
(1)

Comparably, the Dribble method also summarizes instances but
using Cluster Feature vectors (𝐶𝐹𝑠) [30]. 𝐶𝐹𝑠 enable summariz-
ing data in hyperspherical regions and have been used in both
data stream clustering and classification techniques [1]. A 𝐶𝐹 is
a triplet in the 𝐶𝐹 = (𝑁, 𝐿𝑆, 𝑆𝑆) format, where 𝑁 is the number
of instances of the cluster summary, and 𝐿𝑆 and 𝑆𝑆 are the linear
and square sum of the instances, respectively. Thus, 𝐿𝑆 and 𝑆𝑆 are
𝑁 -dimensional vectors, such that the dimensions match the orig-
inal features available in instances [30]. From these components,
the summary centroid (mean, 𝜇) and its radius (𝑟 ) are computed
according to Equations 2 and 3, respectively, where 𝑑 is the number
of features available.

𝜇 (CF𝑖 ) =
𝐿𝑆𝑖

𝑁𝑖
(2)

𝑟 (CF𝑖 ) =
1
𝑑

𝑑∑
𝑖=1

√√
𝑁𝑖 (𝑆𝑆𝑖 ) − 2(𝐿𝑆2

𝑖
) + 𝑁𝑖 (𝐿𝑆𝑖 )

𝑁 2
𝑖

(3)

In addition to their potential to summarize data, 𝐶𝐹𝑠 also have
an additive property, i.e., two feature vectors 𝐶𝐹𝑖 and 𝐶𝐹 𝑗 can be
merged by summing their components according to Equation 4
[30]:

𝐶𝐹𝑘 = 𝐶𝐹𝑖 +𝐶𝐹 𝑗 = (𝑁𝑖 + 𝑁 𝑗 , 𝐿𝑆𝑖 + 𝐿𝑆 𝑗 , 𝑆𝑆𝑖 + 𝑆𝑆 𝑗 ) (4)
In both kNC and Dribble methods, instances are incorporated

into the model by composing a set of 𝑛 incremental centroids (kNC)
or 𝐶𝐹𝑠 (Dribble) in the respective class node, where 𝑛 is a user-
defined hyper-parameter.

To retrieve summary descriptions and build sub-datasets for the
prediction step, we perform a top-down traverse in the hierarchy
obtaining all centroids/𝐶𝐹𝑠 stored at the leaf nodes of the tree using
the siblings’ policy to consider positive instances from the target
node and its descendants [24].

The retrieval is straightforward in kNC since the model stores
centroids representing a mean instance of the data stream. Mean-
while, in Dribble, we need an additional step to calculate themean of
the 𝐶𝐹𝑠 (cf. Equation 2). Additionally, to avoid noise incorporation
due to the intrinsic characteristic of small𝐶𝐹𝑠 , Dribble implements

http://www.ppgia.pucpr.br/~jean.barddal/datasets/local_knc_dribble.zip
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an outlier control by retrieving only reasonably populated 𝐶𝐹𝑠

(user-defined, by default, one-third of 𝐶𝐹 size).
At any moment, the model can perform a prediction by compar-

ing an unseen instance to the centroids/𝐶𝐹𝑠 stored at the nodes
of the tree. The class prediction is performed by calculating the
Euclidean distance between a new instance and the centroids/mean
of 𝐶𝐹𝑠 represented in the hierarchy nodes, returning the most fre-
quent label between the selected 𝑘-nearest neighbors.

Both methods perform single path and mandatory leaf-node
prediction, using a local classifier per node (LCPN) approach [24].
Thus, in the prediction step, we apply one multi-class classifier per
class to predict between its child nodes. The resulting predicted label
is appended to the final label path, representing the full hierarchical
taxonomy predicted to a given instance.

After the prediction step, we update the summary descriptions.
kNC and Dribble differ in the way the data is summarized. However,
both methods work with a limited size𝑚 on centroids/𝐶𝐹𝑠 , where
𝑚 is a user-defined hyper-parameter.

On kNC, we incorporate the new (training) instance into the
stored centroid by incrementing its average (cf. Equation 1). If the
centroid is already full (i.e., if the number of summarized instances
equals𝑚), we instantiate a new centroid to the corresponding class
node. As a consequence, if a node reaches the stipulated maximum
number𝑛 of centroids, we perform a forgetting strategy by applying
a sliding window and discarding the oldest centroid.

On Dribble, when a new (training) instance is received, we check
if the instance is encompassed by any of the hyperspheres repre-
sented in the correct class of the instance (i.e., whether the instance
is between the𝐶𝐹 mean and its radius or not). If so, we add the new
instance to the respective 𝐶𝐹 . When the number of summarized
instances surpasses 𝑚, we perform a forgetting strategy by sub-
tracting from the 𝐶𝐹 a statistical description (one mean instance)
representing the oldest instance. Otherwise, if the instance is not
encompassed by any of the hyperspheres, it starts a new hyper-
sphere (at that moment, yet a single point). If the maximum number
(𝑛) of hyperspheres (or points) in a class is reached, the two closest
hyperspheres are merged using the additive property of the 𝐶𝐹𝑠 .

Algorithm 1 shows the pseudocode for the implementation of
the proposed framework for the automatic identification of disease
vector mosquitoes in the context of the hierarchical classification
of data streams task.

The algorithm receives a hierarchical data stream ℎ𝐷𝑆 providing
instances ( ®𝑥, ®𝑦) and the aforementioned hyper-parameters 𝑛,𝑚 and
𝑘 , and outputs a predicted label path for each incoming instance
representing an entomological taxonomy.

The representation of the taxonomic hierarchy is performed on
the first line, and the loop started in line 2 applies the described
LCPN approach to retrieve the summary descriptions stored at the
tree nodes. The implementation fits both kNC or Dribble methods,
except by the data structure retrieved specified in the code as the
data from a node. On kNC, data refers to the stored centroids, while
on Dribble it refers to the means of the 𝐶𝐹𝑠 .

The prediction step is performed equally for both methods and
it is depicted from lines 11 to 15 on the algorithm.

Both methods differ on summary updating and forgetting strate-
gies, represented in the algorithm by line 18. The processes per-
formed in this step on each method separately are described below.

Algorithm 1: Proposed framework for the automatic iden-
tification of disease vector mosquitoes.
input :ℎ𝐷𝑆 – a hierarchical data stream providing instances ( ®𝑥, ®𝑦)

𝑛 – maximum number of centroids
𝑚 – maximum number of instances to be summarized on a centroid
𝑘 – number of nearest centroids

output : ®̂𝑦𝑖 – a predicted label path for the input instance
1 Tree← classTaxonomy(ℎ𝐷𝑆) ;
2 foreach ( ®𝑥 ∈ ℎ𝐷𝑆) do
3 predictedNode← Tree.root;
4 while ¬(predictedNode.isLeaf) do
5 foreach (childNode ∈ predictedNode.children) do
6 targets← targets ∪ {(childNode.label, childNode.data) };
7 foreach (descendantNode ∈ childNode.descendants) do
8 targets← targets ∪ {(childNode.label, childNode.data) };
9 end

10 end
11 foreach (target ∈ targets) do
12 target← target ∪ {euclideanDistance(®𝑥 ,target.data)};
13 end
14 targets = (targets)1..𝑘 ;
15 predictedNode← argmax(targets);
16 ®̂𝑦𝑖 ← ®̂𝑦𝑖 ∪ {predictedNode.label};
17 end
18 UpdateSummaryDescription( ®𝑦𝑖 );
19 end

On kNC, the method incorporates the new instance into the
stored centroid by incrementing its average or it creates a new
centroid if the newest centroid is already full. After that, the method
tests whether the number of centroids (𝑛) in the ground-truth node
exceeds the stipulated maximum number allowed. If so, it applies a
sliding window strategy by forgetting the oldest centroid.

On Dribble, the method finds the nearest 𝐶𝐹 to: update the 𝐶𝐹
using its additive property if the new 𝐶𝐹 is encompassed by the
nearest 𝐶𝐹 , or create a new 𝐶𝐹 if it is not encompassed by the
nearest 𝐶𝐹 . Then, the method checks if the number of instances
represented in the 𝐶𝐹𝑠 stored at the ground-truth node exceeds
the stipulated maximum number𝑚 allowed. In such a case, a 𝐶𝐹
mean is subtracted from the 𝐶𝐹 to forget a representation of the
oldest instance. Finally, the method checks if the number of 𝐶𝐹𝑠
stored at the ground-truth node exceeds the stipulated maximum
number allowed. If so, it merges the two closest 𝐶𝐹𝑠 to return to
the maximum number 𝑛 of 𝐶𝐹𝑠 allowed on that node. To this end,
a Euclidean distance calculation is performed between all 𝐶𝐹𝑠 at
the node.

5 ANALYSIS
This section reports the experimental analysis conducted to com-
pare our proposed framework against existing works in hierarchical
data stream classification. First, we provide the experimental proto-
col adopted. Next, we discuss the results obtained by the framework
in terms of prediction and performance.

5.1 Experimental Protocol
In our experiments, we used the 11 hierarchically labeled datasets
previously described in Section 4, Table 1.

We compared our proposed framework, instantiated with kNC
and Dribble as core methods, to the hierarchical kNN described in
Section 3 proposed in [22], hereafter referred to as kNN.
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We set up all methods with 𝑛 ∈ {1, 5, 10, 15, 20},𝑚 ∈ {5, 10, 30}
and 𝑘 ∈ {1, 3, 5}. The 𝑛 parameter reflects the buffer size in the
kNN method, the number of centroids in the kNC method, and the
number of 𝐶𝐹𝑠 in the Dribble method. In addition,𝑚 parameter
represents the upper bound for the number of instances summarized
in a centroid in the kNC and a 𝐶𝐹 in Dribble. Note that kNN does
not use the𝑚 parameter.

During the experiments, classifiers were assessed in terms of hier-
archical F-measure (ℎ𝐹 ) [15]. Like traditional classification metrics,
the hierarchical F-Measure is the harmonic mean of its hierarchical
precision (ℎ𝑃 ) and hierarchical recall (ℎ𝑅) components. The ℎ𝑃 met-
ric computes the number of labels in a predicted label path that are
also components of the ground-truth label path for a given instance.
On the other hand, ℎ𝑅 quantifies the number of ground-truth labels
comprehended by the predicted label path for a given instance. Note
that label paths represent the mosquitoes’ entomological taxonomy
from the highest (class Insecta) to the lowest level (mosquitoes’
species) of the taxonomic hierarchy.

We report the ℎ𝐹 metric using the prequential (test-then-train)
assessing method, where each instance is used to test the model
before it is used for training and updating [4, 11].

Furthermore, we measured the time performance of a model by
calculating the number of instances (mosquitoes) that the model
can classify per second.

An implementation of the proposed framework comprising both
kNC and Dribble methods, as well as an implementation of the
tested kNN, are publicly available for reproducibility2.

Finally, the results obtained by the different models tested were
assessed using Friedman [9] and Nemenyi [18] hypothesis tests
with a 95% confidence level following the protocol provided in [8].

5.2 Results
In this section, we analyze the results obtained during experimen-
tation. This analysis is divided into three parts: (i) predictive per-
formance assessment, (ii) processing speed comparison, and (iii)
statistical validations about the overall behavior of the methods.

5.2.1 Hierarchical F-Measure. Table 2 depicts the hierarchical F-
measure (ℎ𝐹 ) obtained by the models tested, where the highest
values per dataset are highlighted in bold. These results represent
the best ℎ𝐹 rates and the mean ℎ𝐹 rates by dataset obtained across
the different parameters experimented for each configuration.

Overall, we observe that kNC and Dribble outperform kNN
across all datasets. kNC showed an average best ℎ𝐹 rate of 82.44%
and Dribble of 81.80%. The difference from kNC to kNN was 4.87%,
and from Dribble to kNN of 3.73%. Concerning the mean ℎ𝐹 rates,
kNC achieved an average rate of 81.26% and Dribble of 79.71%. The
difference from kNC to kNN was 5.80%, and from Dribble to kNN
of 4.25%.

Besides, kNC and Dribble showed similar ℎ𝐹 rates in all experi-
ments with small differences favoring kNC (0.64% on the average
ℎ𝐹 and 1.55% on the mean ℎ𝐹 ).

Concerning the best ℎ𝐹 obtained, kNC achieved higher rates in
10 out of the 11 datasets. Regarding mean ℎ𝐹 rates, kNC obtained
higher rates in all datasets.

2http://www.ppgia.pucpr.br/~jean.barddal/datasets/local_knc_dribble.zip

Table 2: ℎ𝐹 (%) obtained during experiments.

Best 𝒉𝑭 (%) Mean 𝒉𝑭 (%)

Datasets kNN kNC Dribble kNN kNC Dribble

Insects-a-b 80.95 84.37 83.95 78.97 83.62 82.07
Insects-a-i 79.14 83.02 82.55 76.32 81.71 80.98

Insects-i-a-r-b 79.73 84.30 83.76 78.03 83.50 82.43
Insects-i-a-r-i 78.52 82.83 82.16 75.88 81.60 80.83

Insects-i-b 80.05 84.08 83.91 78.00 83.17 82.69
Insects-i-g-b 84.09 88.02 86.75 81.41 87.12 85.60
Insects-i-g-i 78.94 83.09 83.11 76.42 81.86 81.81
Insects-i-i 78.63 83.29 83.08 75.91 81.70 81.64

Insects-i-r-b 80.87 84.50 84.09 78.78 83.81 82.04
Insects-i-r-i 78.60 83.00 82.71 75.95 81.64 81.33

Insects-o-o-c 59.25 66.32 63.72 54.34 64.18 55.37

Avg. 𝒉𝑭 78.07 82.44 81.80 75.46 81.26 79.71

Avg. Ranking 3.00 1.09 1.91 3.00 1.00 2.00

Furthermore, we appended to Table 2 the average ranking for the
best and mean ℎ𝐹 performances of the methods. One can observe
that kNC presents the best results with average rankings of 1.09
and 1.00 in both best and mean ℎ𝐹 rates. Also, Dribble and kNN
have achieved, respectively, the second and third places in both
analyses.

Moreover, we evaluate the behavior of the methods over varia-
tions of 𝑛. Figure 3 compares the average ℎ𝐹 (%) rates obtained by
methods on each variation of 𝑛 parameter.

The kNN method obtained its better ℎ𝐹 rates with higher values
of 𝑛 in all datasets. Similarly, kNC also performs better with more
stored data (higher 𝑛). Meanwhile, Dribble obtained its best mean
results with smaller values in 𝑛 (i.e., 𝑛 ∈ {1, 5}).

We highlight the ℎ𝐹 rates obtained by Dribble with smaller 𝑛
values (𝑛 ∈ {1, 5}, for instance). These results depict that Dribble
benefits from smaller numbers of 𝐶𝐹𝑠 (𝑛), thus achieving competi-
tive ℎ𝐹 rates even using less stored data.

The rationale behind the decrease of ℎ𝐹 rates with the increase
of 𝑛 on Dribble is related to noise incorporation, as several 𝐶𝐹𝑠
are potentially created to represent a few instances, and thus, are
not as representative as those that incorporate most of the data.
On the other hand, the performance of Dribble with small data
representations is noticeable, as it with 𝑛 = 1 manages to obtain
similar or better ℎ𝐹 rates than the other methods with 𝑛 = 20.
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Figure 3: Average ℎ𝐹 (%) rates obtained by methods when
varying the 𝑛 parameter.
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5.2.2 Number of instances processed. Another relevant aspect of
the assessment of data streaming approaches regards computational
resources. Table 3 reports the number of instances (mosquitoes)
classified per second by the methods during the experiments.

The best number of mosquitoes classified per second was ob-
tained by all methods with 𝑛 = 1 since less stored data results also
in fewer distance computations needed. The kNN method obtained
the higher average number of mosquitoes classified per second
considering these best rates (497.09). kNC and Dribble obtained
lower rates (496.28 and 487.65) since both methods need to perform
extra steps in their learning processes related to the summarization
strategies, specifically the creation of centroids in kNC and the cre-
ation and merging of 𝐶𝐹𝑠 in Dribble. Still, with 𝑛 = 1, the number
of mosquitoes classified per second is similar between all methods.

Averaging all configurations results, the kNC method shows a
higher rate than kNN, with a difference of about eight mosquitoes
(8.20) favoring the kNC method. Dribble shows an even larger
advantage, with a positive difference of about 77.55 mosquitoes to
kNC and 85.75 to kNN.

Similar to the analysis conducted in the Hierarchical F-Measure
subsection, we appended to Table 3 the average ranking for the
number of mosquitoes classified per second of each method. Re-
garding best rates, kNN obtained first place (1.55) with higher rates
in 7 out the 11 datasets, followed by kNC in second place (1.82) and
Dribble in third (2.64). However, regarding mean rates, the results
are the opposite, since Dribble and kNC achieved the first and sec-
ond places, respectively, with Dribble obtaining higher mean rates
in all datasets.

We also evaluate the processing speed of the methods over vari-
ations of 𝑛. Figure 4 compares the average number of mosquitoes
classified by methods on each variation of 𝑛 parameter.

We observe that the number of mosquitoes that methods can
classify per second decreases according to higher 𝑛 values. On
average, when increasing 𝑛 ∈ {1, 5, 10, 15, 20}, we observe that the
number of mosquitoes classified drops by roughly 23% in each step
(around 25% for kNN and kNC and around 17% for Dribble). This
behavior is expected since larger 𝑛 values induce larger numbers
of distance computations between query instances and stored data.

Table 3: Number of mosquitoes classified per second.

Best number/sec Mean number/sec

Datasets kNN kNC Dribble kNN kNC Dribble

Insects-a-b 502 523 515 286 297 377
Insects-a-i 526 521 512 289 297 380

Insects-i-a-r-b 524 517 512 285 297 373
Insects-i-a-r-i 526 518 510 290 296 380

Insects-i-b 511 537 503 290 288 365
Insects-i-g-b 511 496 510 286 304 376
Insects-i-g-i 528 518 513 287 300 378
Insects-i-i 525 528 505 292 294 378

Insects-i-r-b 525 521 510 289 298 373
Insects-i-r-i 527 517 507 290 296 379

Insects-o-o-c 263 263 268 144 150 211

Avg. number 497.09 496.28 487.65 275.27 283.47 361.02

Avg. Ranking 1.55 1.82 2.64 2.91 2.09 1.00
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Figure 4: Average number of mosquitoes classified per sec-
ond by methods when varying the 𝑛 parameter.

Also, it is expected that this increase affects Dribble less since it
uses an outlier control (cf. Section 4) and thus do not perform the
same amount of distance computations as kNN or kNC.

5.2.3 Statistical validation. We have conducted a statistical analy-
sis to determine whether the difference between kNN, kNC, and
Dribble is significant or not. To that, we applied Friedman and Ne-
menyi statistical tests. We used as statistical sample sets all the ℎ𝐹
and mosquitoes classified per second rates obtained by methods in
two separate analyses.

First, the Friedman test showed a significant difference between
the methods in both ℎ𝐹 (𝑝-𝑣𝑎𝑙𝑢𝑒 = 2.82 × 10−44) and mosquitoes
classified per second rates (𝑝-𝑣𝑎𝑙𝑢𝑒 = 1.55 × 10−11). After that, we
applied the Nemenyi test to perform pairwise comparisons.

Figure 5 shows the resulting two critical difference charts for the
ℎ𝐹 rates (a) and the number of mosquitoes classified per second (b)
obtained by kNN, kNC, and Dribble methods. The Nemenyi tests
showed statistical differences between all methods in both analyses.

These results depict that kNC can obtain significantly better ℎ𝐹
rates than the other methods, and Dribble can also obtain signifi-
cantly better ℎ𝐹 rates than kNN. Furthermore, when considering
scenarios where data changes are less severe, and the entire data
stream contains relevant information, the kNN method requires a
memory buffer big enough to consider all concepts together in the

(b)
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CD = 0.4469

Dribble

kNC

kNN

1 2 3

Dribble

kNC kNN
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Figure 5: Critical differences chart for (a) ℎ𝐹 rates and (b)
mosquitoes classified per second rates.
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sampled instances. However, this strategy may become infeasible
due to computational resource constraints of specific scenarios. The
same cannot be said for kNC and Dribble, which are capable of
summarizing the entire data stream via centroids and 𝐶𝐹𝑠 , thus
enabling a representation of the data using all training instances
and not putting computational performance in jeopardy.

Regarding speed comparison, Dribble is significantly faster than
the other methods, and kNC is yet significantly faster than kNN.
Here, it is important to highlight that both kNC and Dribble meth-
ods use additional steps in their learning processes in order to apply
data summarization strategies. At first glance, this might indicate
that both methods could be slower compared to the kNN method.
However, the summarization property itself reverses this difference
by summarizing data inside a centroid or a 𝐶𝐹 . Note that even
using equal values in 𝑛, kNC and Dribble methods manage to per-
form fewer distance computations within their data representations
through the summarization obtained by the parameter𝑚 while the
centroid or the 𝐶𝐹 is not full.

Combining the analysis of prediction quality and computational
resources, we observe that kNC and Dribble methods have the
advantage of summarizing information with different granularity
levels depending on the problem, making them more versatile than
the traditional hierarchical kNN method. Also, considering the bet-
ter results obtained by kNC in terms of ℎ𝐹 and by Dribble regarding
processing time, the best setup depends on specific data distribution
characteristics and available resources.

6 CONCLUSION
In this study, we proposed a framework for the automatic identifica-
tion of disease vector mosquitoes in the context of the Hierarchical
classification of data streams area as a helping tool to the control
of Vector-borne diseases.

At the framework core, we introduced k-Nearest Centroids and
Dribble, two novel methods for the hierarchical classification of
data streams fitted to hierarchical data streams representing disease
vectormosquitoes and their entomological taxonomy. Both schemes
rely on summarization techniques to represent data and work with
constrained memory usage and time, being a valuable option to act
as a base method for vector disease mosquitoes’ classification in
traps based on machine learning.

We also provide an adapted hierarchical version of a disease vec-
tor mosquitoes dataset, including hierarchical label paths describing
the taxonomy of mosquitoes.

Our framework could classify more mosquitoes per second and
also with better prediction rates when compared to existing state-
of-the-art kNN-based techniques.

A resulting implementation of the proposed framework and the
adapted hierarchical dataset are publicly available for download
to be used as a baseline to further research on the topic, such as
computational resources analysis, concept drift detection, and other
data summarizing approaches.
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