
Pattern Spotting and Image Retrieval in Historical
Documents using Deep Hashing

Caio da S. Dias1, Alceu de Souza Britto Junior1,4, Jean P. Barddal1, Laurent Heutte3, Alessandro L. Koerich2

1Graduate Program in Informatics (PPGIa), Pontifı́cia Universidade Católica do Paraná (PUCPR), Curitiba (PR), Brazil
Email: {caio.dias, alceu, jean.barddal}@ppgia.pucpr.br

3Normandie Univ, UNIROUEN, UNIHAVRE, INSA Rouen, LITIS, Rouen, France
Email: laurent.heutte@univ-rouen.fr

2École de Technologie Supérieure (ÉTS), Université du Québec, Montréal (QC), Canada
Email: alessandro.koerich@etsmtl.ca

4State University of Ponta Grossa (UEPG), Ponta Grossa (PR), Brazil

Abstract—This paper presents a deep learning approach for
image retrieval and pattern spotting in digital collections of
historical documents. First, a region proposal algorithm detects
object candidates in the document page images. Next, deep
learning models are used for feature extraction, considering
two distinct variants, which provide either real-valued or binary
code representations. Finally, candidate images are ranked by
computing the feature similarity with a given input query. A
robust experimental protocol evaluates the proposed approach
considering each representation scheme (real-valued and binary
code) on the DocExplore image database. The experimental
results show that the proposed deep models compare favorably
to the state-of-the-art image retrieval approaches for images
of historical documents, outperforming other deep models by
2.56 percentage points using the same techniques for pattern
spotting. Besides, the proposed approach also reduces the search
time up to 200×, and the storage cost up to 6,000× when com-
pared to related works based on real-valued representations.

Index Terms—machine learning, convolutional neural net-
works, object recognition, hashing, pattern spotting

I. INTRODUCTION

Content-based image retrieval (CBIR), in particular the
tasks of image retrieval (IR) and pattern spotting (PS),
quickly evolved in recent years and has become essential
in computer vision. IR aims at retrieving a set of images
containing a given search image (query) in their content. A
search is performed in an image database for each new query,
returning the possible candidate images. The same occurs in
PS, yet, in this task, it is not enough to provide candidate
images but also the exact location of the query occurrences
(there may be more than one result per image). In the context
of historical documents, candidate images usually represent
images of the document pages.

The massive increase in image collections stored by art
museums, medical institutes, and environmental and gov-
ernmental agencies creates a problem related to informa-
tion access. Often, image indexing is done manually by
an individual who filters and inserts a set of keywords in
each image to find them easily later. This process is costly
and time-consuming, making indexing large image databases
cumbersome. An example of this indexing is the digitization
of collections of historical documents. This task helps ensure
that more people have access to its content and assists in

securing and preserving the original documents. However,
as most of these documents were written between the 10th
and 16th centuries, continued manipulation can be harmful
and even damage these manuscripts. Consequently, historians
use digitized documents to establish correlations between
documents or parts, whether in textual or graphic elements.

Current approaches for indexing rely on automatic search
software that increase the efficiency of analyzing large vol-
umes of documents. However, with advances in computer
vision and machine learning, it is possible to develop appli-
cations that find correlations within seconds.

Fig. 1. Example of how a single page of a historical document can contain
several figures and special characters to be analyzed.

Historical documents mainly contain handwritten texts but
can also have graphical objects [14], as shown in Fig. 1.
These graphic objects are special characters, text separators,
border details, stamps, coats of arms, and even paintings
of festive scenes. The main challenge for historians is to
establish correlations between different objects in different
document collections. Among the study topics that these
correlations can provide are the characterization of cultural
and temporal heritage through patterns of figures and paint-
ings, the categorization of documents by content, and the
variability of writing patterns [14].

There are several methods of recognizing objects in im-
ages, but almost all present two phases: offline and online.
An object detector processes the document image files in
the offline phase. The candidate regions divided into several
other files are returned, composing the database of candidate
images for the search. The processed images are indexed and
stored in a predefined structure, informing the image’s page,
position, and path. In the online phase, the similarity measure
between the search image and the images of the stored can-



didate regions is computed. These measurements are stored
and sorted in ascending order, thus ranking candidate images
for each requested search. From this similarity ranking, the
n smallest distances are selected to compose the result of
both IR and PS tasks.

Fig. 2. Searching for an image. The pattern spotting returns a list of non-
repeating positions ordered by the distance measure (d), as well as the
document page. These positions are subject to minimal overlap between
the query image and the processed images measured through the IoU.

In the IR task, the shortest ranking distances of the Top n
candidates are used to return the list of pages where the query
can be. However, in PS, in addition to returning the pages, the
image location within the document is also required. For such
an aim, the structure previously stored in the offline phase is
used, and it returns this location, as shown in Fig. 2 (green
rectangles). The relevance of a candidate region is related to
its overlap with the query, which is given by the intersection
over union (IoU) of the query area and the candidate region
area. For instance, for the analysis of possible candidates,
an IoU≥ 0.5 was considered in [1]. Precision and recall are
calculated, and finally, the mean average precision (mAP) is
computed to evaluate the result considering all queries.

This work describes new methods for image retrieval and
pattern spotting in historical documents via deep learning
techniques, focusing on improving the state-of-the-art con-
sidering (i) accuracy, (ii) processing time, and (iii) storage
cost. For this purpose, real-valued and binary representations
generated by various deep model architectures are proposed
and evaluated.

The main contribution of this paper is two-fold. First, the
filtering strategy applied to reduce the number of candidate
images (offline phase). Second, the binary representation
method proposed to reduce the space needed to store the
feature maps (offline phase) and the time required to search
for a given query (online phase) while improving accuracy
compared to related works.

The remainder of this paper is organized as follows.
Section 2 presents recent works related to IR and PS in
historical documents. Section 3 introduces the proposed
methods for IR and PS tasks, which employ convolutional
neural networks (CNN) and deep hashing. It also presents
the pre-processing steps and selective search (SS). Section 4
presents the database used to evaluate the proposed methods,
followed by the experimental protocol, experimental results,
and comparison of approaches. Finally, conclusions and
perspectives for future work are presented in the last section.

II. RELATED WORKS

Few approaches have been proposed to tackle the problem
of PS and IR in historical documents. En et al. [2] proposed
a complete system for searching images and locating small
graphic objects in medieval documents. Their system is based
on the extraction and indexing of regions of interest in the

image, representing these regions by handcrafted descriptors
and searching for the similarity between query and image
candidates using compression and approximation techniques.
While this system has shown good performance on [1]
medieval document images, it has several weaknesses that
make it unsuitable for other types of document images. For
instance, it is sensitive to variations in size, shape, color, and
patterns to be detected. This system also lacks scaling support
and requires post-processing to accurately locate objects in
regions of interest using traditional correlation methods.

Ubeda et al. [11] proposed an approach using CNNs based
on feature pyramid networks (FPN) as the system feature
extractor. FPN allows the extraction of descriptors from
localized regions of documents to be indexed in the query
at various scales with just one pass through the network.
In addition, pre-processing was also used before normaliza-
tion and FPN application. More specifically, pre-processing
regarded background removal from the images in [1] and
image centering on a canvas with a black background. The
memory requirements and processing time are also reduced
when compared to the system proposed in [2].

Another approach using CNN was proposed by Wiggers
et al. [13]. The approach is based on transfer learning and
fine-tuning of a pre-trained CNN. It also uses the selective
search (SS) algorithm proposed by Uijlings et al. [12], which
combines segmentation and exhaustive search methods. SS
was used in the pre-processing step to generate candidate
regions within the image dataset. The SS consisted of a
selective search that combines the strength of an exhaustive
search with image segmentation, where the image structure
is used to guide the sampling and recognition process. As
with an exhaustive search, the goal is to capture all possible
object locations within the image. SS also uses diversification
strategies to combine or differentiate the regions proposed
by image segmentation, i.e., color space (C), size (S), texture
(T), and fill (F). To collect all possible regions, the algorithm
performs the process described above at various scales in
image segmentation and multiple combinations of diversi-
fication to measure the similarity of regions (for instance,
CTSF, TSF, F, S). Therefore, objects of all sizes, shapes, and
colors within the image are detected. A relevant drawback of
this approach is the excessive number of candidate regions,
thus generating a longer pre-processing time of the dataset
images and the return of the search of a query.

III. PROPOSED METHOD

The proposed method aims at addressing several short-
comings of previous methods for PS and IR in histori-
cal documents. For instance, prior methods require a high
computational effort and use a large amount of space to
store feature maps, which leads to longer times to search
for a query. Besides, the scalability of prior methods is
difficult to achieve. The proposed method detects object
candidates in the document images with selection search
algorithm and employs deep learning models for feature
extraction. Such models consider either real-valued or binary
code representations. Finally, candidate images are ranked by
computing the feature similarity with a given input query.



A. Object Detection with Selective Search (SS)

An algorithm based on SS [12] was used for the object
recognition task in the offline phase. However, this strategy
presents difficulties when applied to images of historical
documents. It generates several invalid regions, detecting
antiquity stains, page edges, ink smudges, and other charac-
teristics that do not represent objects of interest. Therefore,
to minimize this problem, the SS algorithm was applied with
only one scale variation using the Felzenszwalb and Hutten-
locher algorithm [3], and only with the CTSF combination to
measure the similarity of the regions. Despite considerably
reducing the number of candidate regions compared to the
method used in [13], several of the detected areas still
represent invalid images. Thus, it was necessary to implement
an algorithm that performs post-processing in the regions
returned by SS.

The objective of filtering invalid regions is to exclude
areas representing spots, background, page’s edges, and very
small or too large regions between the x and y axes. For
filtering based on the regions’ texture, a filter based on
Gaussian derivation was used to highlight the edges in the
image, which calculates the intensity of gradients in the
image and reduces the potential edges to 1-pixel curves by
removing non-maximum pixels from the gradient magnitude.
Finally, the edge pixels are kept or removed using hysteresis
thresholds on the magnitude of the gradient. As a result, we
obtain a binary image with the object edges highlighted.

Specific manipulations are performed on the binary im-
ages. First, the mean of the pixel values of the image is
computed. Then, a minimum average of α is established
as a parameter, so the image is immediately excluded if
the number of points is less than α. However, some in-
valid images may still be undetected only with the mean
threshold. Therefore, a second step handles this problem by
segmenting the image into eight sectors and averaging each
sector individually. Then, an image is also excluded if more
than 50% of the sectors had an average lower than α. The
pseudo-code of the invalid candidate region filter is shown
in Algorithm 1. Such a filter reduces up to 1/5 the number
of candidate regions returned by the SS without any training

Algorithm 1: Invalid candidate region filter
Input : A image Img of dimension h× w of the candidate

region and a threshold α
Output: Is the candidate region valid

binaryImage ← GetBinaryImage(Img[h,w]);

if Mean(binaryImage) < α then
return false; /* candidate region is invalid */

end
/* generate eight sections from binary image */
sectors ← GetSectors(binaryImage, 8);
sectorsInvalid ← 0;

for sector in sectors do
if Mean(sector) < α then

sectorsInvalid ← sectorsInvalid + 1;
end
if sectorsInvalid > 4 then

return false; /* candidate region is invalid */
end

end
return true; /* candidate region is valid */

Fig. 3. Examples of regions filtered out by the algorithm.

on the context images. Training was avoided so as not to
affect the generalization of the proposed method if used on
another image database. Fig. 3 shows some examples of
filtered invalid regions.

Finally, features are extracted from the valid candidate
regions and stored to be used in the online phase. As
described in the next section, two CNN architectures were
evaluated as base of the feature extractors.

B. Feature Extraction

A siamese neural network (SNN) is used to compute the
similarity between the query and image candidates. SNN is a
neural network architecture that combines two identical net-
works with the same configuration, parameters, and weights.
Two images are used as input to the network to calculate
their similarity. As a first approach, two CNN architectures
were evaluated as alternatives to composing our SNN. The
architectures used were the VGG19 [10] and ResNet50V2
[6]. We chose these two architectures for their tried-and-true
feature extraction abilities and their convenient availability in
the deep learning framework in which the experiments were
performed.

VGG19 [10] is a CNN with 19 layers. This CNN is
designed for applications in large-scale image classification
and consists of five convolutional blocks interleaved with five
max-pooling layers. Through some experiments in this work,
it was possible to see great potential in applying this network
as a feature extractor. Using the outputs of each block and
concatenating them into a feature vector, we observed that
some color and shape characteristics were well evidenced in
the final result. We also evaluated the combination of pairs
of blocks to find the best result.

ResNet50V2 is a residual deep network and emerged
as a family of extremely deep architectures, having good
precision and convergence [5]. The base of ResNet50V2
is inspired by the philosophy of VGG [10] networks. The
convolutional layers use a 3×3 filter and follow these rules:
(i) for the same output feature map size; the layers have
the same number of filters; and (ii) if the feature map
size is reduced by half, the number of filters is doubled to
preserve the per-layer complexity. Thus, ResNet50V2 has 50
convolution layers, max-pooling and average-pooling layers.

To apply the transfer learning concept, both VGG19 and
ResNet50V2 were pre-trained in a supervised way on the
ImageNet dataset [9], with 1.28 million training samples
and 50 thousand validation samples organized into 1000
classes, containing images from different contexts and ob-
jects. Several models of SNNs were built to establish a
comparison between the two architectures and variations in
the architectures themselves.



Fig. 4. Example of data preparation for training set creation using the
Imagenet dataset.

Pairs of images generated from the ImageNet dataset
were used to train the SNNs. The images are resized to
224×224 pixels using bilinear interpolation, as shown in
Fig. 4. Overall, 250,000 pairs were generated, where 150,000
are negative pairs, and 100,000 are positive pairs, following
the ratio of 1.5× more negative pair images proposed by [8].

Fig. 5. Structure example of a Siamese Neural Network.

The two images were used as input of the SNNs of
the experiment. The Euclidean distance was calculated with
the resulting feature maps to find the similarity. After the
calculation, the distance measurement was normalized by a
dense layer using sigmoid activation, as shown in Fig. 5.
Finally, the loss function used to train the network was the
contrastive loss, proposed in [4].

For feature extraction with ResNet50V2, two variants
of the network model were built. The first uses the last
convolutional layer flatten, with 100,352 features, and the
second uses the global average pooling layer, with 2048
features. The model using the convolutional layer was called
ResNet Conv and the model using the global average
pooling layer was called ResNet GAPool.

Four variants of the network were built for the feature
extraction with the VGG19 architecture. As previously ex-
plained, the use of VGG19 block outputs is very sensitive
to color and texture variations, something beneficial for the
representation of features. To test which blocks have a better
extraction, models were made using the concatenation of

all blocks and the concatenation of pairs of these blocks.
The first one using all blocks was called VGG19 Blocks,
containing 1472 features. The second one using blocks
4 and 5 was called VGG19 Block4-5, with 1024 fea-
tures. The third one using blocks 2 and 3 was called
VGG19 Block2-3, with 384 features. Moreover, the last
one using blocks 2 and 5 was called VGG19 Block2-5,
containing 640 features.

With the creation of the models, they were used to
construct the SNNs and trained with the pairs of positive
and negative images. After training, the six models extracted
features from all candidate images and their values stored in
separate files. It is important to emphasize that the features
were represented by floating-point values with 32 bits until
that moment, representing a high storage cost.

To mitigate such a storage problem, deep hashing was also
applied. The primary purpose of deep hashing is to transform
the feature map with floating-point values into a more
compact feature map using a binary code representation.

C. Approach using Deep Hashing

Hashing is one of the most used methods due to its
efficiency in terms of computation and storage. It aims
to convert the original high-dimensional features into low-
dimensional hash codes so that the hash codes of similar
objects are as close as possible and the hash codes of
different objects are as diverse as possible. The purpose of
the hashing algorithm is to map the features of the original
space into a Hamming space, which leads us to compact
hash codes composed of 0 and 1 values. As a result, hash
encoding is very efficient in binary computation and storage,
such as depicted in [7].

The models previously built with deep learning were used
in our hashing solution, thus composing deep hashing. A
new layer was added at the end of each network. This
layer consisted of transforming floating-point values into
binary values, characterizing a discretization process. The
construction of this layer was done using a discretization
layer, which maps each element in a continuous interval.
This algorithm was used considering a margin of value 1.

With the inclusion of this layer in each of the extractors
of the SNNs, they were trained using the same process
based on pairs of negative and positive images. However,
the Hamming distance was the similarity calculation used for
the hash codes. After training, the six models with hashing
were used to extract the features of the candidate images,
thus completing the offline phase.

D. Similarity Calculations

With the process of the offline phase completed, it is
possible to use the system in the online phase. The online
phase consists of extracting features from the query and
comparing them with the entire list of candidates built in
the offline phase. The features represented by floating-point
values were compared using the Euclidean distance, while for
the binary code features, the comparison was made with the
Hamming distance, which consists of the sum of the absolute
difference between each feature. However, when dealing with
binary values, or values of only one bit, it is also possible
to apply the XOR operation between the elements. In this



operation, when comparing equal values, it returns 1, and
with different values, it returns 0. The XOR operation can
be done faster on the processor since it is a native bitwise
operation. After comparing all the elements, a sum of all the
results is made, as denoted in Equation (1).

d =

n∑
i=1

(qi XOR pi) (1)

After the calculation, the results for each query were
ordered for both the Euclidean and Hamming distances.
Then, the lists of Top n candidates were generated to evaluate
the models.

IV. EXPERIMENTS

The Experiments section is organized as follows. Subsec-
tion A presents the database used for testing and evaluating
the proposed methods. Subsection B presents the results and
improvements of selective search. Subsection C presents how
the SNN models were trained and validated. Subsection D the
results for the Image Retrieval task. Subsection E the results
for the pattern spotting task. Finally, the processing time and
storage cost results are presented in the last subsection.

A. DocExplore

The database used to carry out the experiments was
DocExplore, proposed in [1] which consists of 1500 images
of historical documents dating from the 10th to the 16th
century. The original documents were extracted from the
DocExplore project and are in possession of the Municipal
Library of Rouen, France. All images were scanned at 600dpi
resolution, resulting in dimensions ranging from 3000 pixels
to 4000 pixels. Due to computational cost and storage, the
images were compressed with a maximum of 1024 pixels
in each dimension and 72dpi. The database provides 1447
unique queries, and their sizes range from 20×11 pixels to
1307×319 pixels.

B. Selective Search

The application of the SS algorithm in the DocExplore
database was done with the diversification strategies com-
bining the color element, texture, size, and fill, resulting
in 976,486 candidate regions of objects. Through some
experimentation, the value 0.06 was established for the α
parameter of the invalid region filter function. After applying
the invalid region filter, the number of candidate regions was
dropped to 786,718, representing a decrease of 19.4%.

The number of candidate regions found by the algorithm
used in Wiggers et al. [13] was 36,159,870, approximately
46 times bigger than the result found in our work. This high
number of candidate regions also represents a higher storage
cost and processing time since the query must be compared
with all the candidates.

C. Siamese Neural Network

For the training of the SNN models, the 250,000 pairs
of images generated from the ImageNet database were used
with a holdout of 70% for training and 30% for validation.
Thus, the training set had 105,000 negative pairs and 70,000
positive pairs. The validation set had 45,000 negative pairs
and 30,000 positive pairs. The training of all models were
done with 25 epochs.

D. Image Retrieval Task

Tab. I shows the experimental results for the IR problem
using the ResNet50V2 and VGG19 architectures applied to
the set of candidate images returned by SS. The AlexNet
network was also tested, the same architecture used by
Wiggers et al. [13]. AlexNet was trained following the same
steps described in Wiggers et al. [13] and applied to the
same set of candidate images as ResNet50V2 and VGG19.
The top 100, 300, 500, 700, and 1000 best results were
evaluated for the IR task. In this task, the best result was in
the top 1000 of VGG19 Block4-5 with an mAP of 53.21%,
surpassing by 10.4 percentage points the result of AlexNet
and by 14.6 percentage points the result of Wiggers et al.
[13], which used selective search with 36,159,870 candidate
images. These results depict that a filtered SS and returning
a smaller number of candidates can positively influence the
image retrieval result.

TABLE I
IMAGE RETRIEVAL RESULTS

mAP for Image Retrieval

Method Top n
100 300 500 700 1000

ResNet Conv 0.3956 0.4395 0.4567 0.4659 0.4723
ResNet GAPool 0.4058 0.4617 0.4797 0.4880 0.4928
VGG19 Blocks 0.3293 0.3934 0.4193 0.4279 0.4291
VGG19 Block4-5 0.4313 0.5058 0.5247 0.5307 0.5321
VGG19 Block2-3 0.3303 0.4060 0.4276 0.4346 0.4355
VGG19 Block2-5 0.4227 0.4939 0.5153 0.5217 0.5233
AlexNet 0.3168 0.3996 0.4220 0.4271 0.4282

For testing the models using deep hashing, the two best
networks of each of the ResNet50V2 and VGG19 archi-
tectures were chosen. The experimental protocol used was
the same, only changing the similarity calculation for the
Hamming distance. Tab. II shows the results for networks
using deep hashing (H).

TABLE II
IMAGE RETRIEVAL RESULTS WITH HASHING

mAP for Image Retrieval

Method Top n
100 300 500 700 1000

ResNet Conv H 0.0754 0.0854 0.1012 0.1169 0.1257
ResNet GAPool H 0.2945 0.3437 0.3632 0.3727 0.3784
VGG19 Block4-5 H 0.3952 0.4564 0.4744 0.4822 0.4862
VGG19 Block2-5 H 0.3302 0.3777 0.3939 0.4026 0.4090

Now comparing the experimental results against state-of-
the-art approaches, we observe that the method proposed by
En et al. [2] outperforms the VGG19 Block4-5 and VGG19
Block4-5 Hashing methods by 4.8 and 9.4 percentage points,
respectively. However, an advantage of the methods proposed
in this work is that at no time do they use information
from the DocExplore database to refine their results. In
Tab. III we can visualize the main results of state-of-the-art
in comparison with the best results of this work.

E. Pattern Spotting Task

For the PS task, the mAP was evaluated taking into
account an IoU ≥ 0.5 and with the 100, 300, 500, 700, and
1000 best similarity results.



TABLE III
COMPARISON OF THE METHODS WITH THE STATE-OF-THE-ART IR

Methods IR Top 1000
En et al. [2] 0.580
Ubeda et al. [11] ES 0.286
Ubeda et al. [11] PP 0.386
Wiggers et al. [13] PP 0.386
VGG19 Block4-5 0.532
VGG19 Block4-5 H 0.486

Tab. IV shows the experimental results for the PS problem.
As in the image retrieval, the two best networks of each of
the ResNet50V2 and VGG19 architectures were chosen for
testing the models using deep hashing.

TABLE IV
PATTERN SPOTTING RESULTS

mAP for Pattern Spotting

Method Top n
100 300 500 700 1000

ResNet Conv 0.1447 0.1705 0.1738 0.1751 0.1761
ResNet GAPool 0.1225 0.1478 0.1524 0.1542 0.1557
VGG19 Blocks 0.0724 0.0848 0.0876 0.0888 0.0898
VGG19 Block4-5 0.0997 0.1196 0.1237 0.1254 0.1268
VGG19 Block2-3 0.0643 0.0761 0.0795 0.0811 0.0825
VGG19 Block2-5 0.1118 0.1339 0.1386 0.1407 0.1425
AlexNet 0.0610 0.0674 0.0689 0.0697 0.0703

Tab. V shows the results for networks using deep hashing
(H). Contrary to some expectations, the network using the
VGG19 Block4-5 performed better in binary code than in
floating-point values.

TABLE V
PATTERN SPOTTING RESULTS WITH HASHING

mAP for Pattern Spotting

Method Top n
100 300 500 700 1000

ResNet Conv H 0.0303 0.0311 0.0313 0.0314 0.0315
ResNet GAPool H 0.0911 0.1040 0.1061 0.1070 0.1077
VGG19 Block4-5 H 0.1094 0.1341 0.1388 0.1409 0.1426
VGG19 Block2-5 H 0.0935 0.1129 0.1163 0.1176 0.1186

With En et al. [2] and Wiggers et al. [13], it was observed
that multiple candidate images often contained only part of
the query or overlapped with other candidate images, thus re-
ducing system performance. To alleviate the aforementioned
problem, a post-processing step was proposed to use a union
of these retained candidate images to discover rectangular
regions as a way to improve the performance of the Pattern
Spotting task. Thus, the first 3000 candidates were selected,
and the union step was applied, assuming an IoU of 0.85.
If two images had an IoU measurement greater than 0.85,
the image with the smallest distance was kept, and the other
was excluded. After the union, the first 100, 300, 500, 700,
and 1000 were considered to feed the evaluation system. For
all results, an improvement in mAP was observed after post-
processing (PP).

In comparison with the results against state-of-the-art
methods, we have that the ResNet Conv PP method surpasses
the one proposed by Wiggers et al. [13] PP at 2.56

TABLE VI
PATTERN SPOTTING RESULTS WITH PP

mAP for Pattern Spotting

Method Top n
100 300 500 700 1000

ResNet Conv PP 0.1716 0.1946 0.1974 0.1986 0.1996
ResNet Conv H PP 0.0332 0.0340 0.0342 0.0344 0.0345
ResNet GAPool PP 0.1432 0.1674 0.1712 0.1729 0.1743
ResNet GAPool H PP 0.1059 0.1173 0.1192 0.1200 0.1207
VGG19 Blocks PP 0.0861 0.0975 0.1000 0.1011 0.1021
VGG19 Block4-5 PP 0.1181 0.1364 0.1401 0.1417 0.1429
VGG19 Block4-5 H PP 0.1302 0.1531 0.1572 0.1593 0.1610
VGG19 Block2-3 PP 0.0755 0.0867 0.0899 0.0915 0.0927
VGG19 Block2-5 PP 0.1331 0.1535 0.1577 0.1598 0.1615
VGG19 Block2-5 H PP 0.1119 0.1294 0.1322 0.1335 0.1345
AlexNet PP 0.0691 0.0753 0.0768 0.0775 0.0781

percentage points. In Tab. VII we can visualize the main
results of state of art compared to the models presented in
this paper.

TABLE VII
COMPARISON OF THE METHODS WITH THE STATE-OF-THE-ART PS

Method PS Top 1000
En et al. [2] 0.1570
Ubeda et al. [11] ES 0.1390
Ubeda et al. [11] PP 0.1730
Wiggers et al. [13] PP 0.1740
ResNet Conv PP 0.1996
VGG19 Block4-5 H PP 0.1610

Fig. 6 shows the qualitative results of the images returned
for the search of five queries using the VGG19 Block4-5
Hashing feature map, with 1024 dimensions. These results
are promising, considering that most of the Top 5 images are
similar to those used in the searches and the feature extractor
used was based on deep hashing.

Fig. 6. Qualitative results of the search of some queries in the DocExplore
database. The figure shows the image used in the query and its first five
results returned by the VGG19 Block4-5 Hashing PP method.

F. Search Time and Storage Cost
Tab. VIII shows the average time required for query search

and the amount of storage needed to save the feature maps
of all candidates in the offline phase. Time is averaged
over 50 different queries. The storage space considers only
the feature map’s size, without any additional structure to
facilitate indexing and storage.



TABLE VIII
RESULTS FOR PROCESSING TIME AND STORAGE

Method Features Time (s) Storage (GB)
FP Binary FP Binary

ResNet Conv 100 352 44.59 20.75 294.11 9.19
ResNet GAPool 2 048 4.54 3.07 6.00 0.19
VGG19 Blocks 1 472 4.19 — 4.31 —
VGG19 Block4-5 1 024 4.10 2.94 3.00 0.09
VGG19 Block2-3 384 3.91 — 1.13 —
VGG19 Block2-5 640 3.94 2.85 1.88 0.06
AlexNet 4 096 12.81 — 12.00 —
Wiggers et al. [13] 4 096 588.65 — 551.76 —
FP: Floating-point.

G. Discussion

The results show that the models using the VGG19 ar-
chitecture were better in the Image Retrieval task, where
it is necessary to find only the first best occurrence of the
query on the page. However, for the Pattern Spotting task,
where it is required to compose a list of similar images and
locate them on the page, the models using the ResNet50V2
architecture achieved a better result.

The significant improvement presented in this work was
reducing the computational effort applied to solve the prob-
lem. While in [13], the candidate regions were more than 36
million, the proposed method achieved approximately 780
thousand candidate regions. Consequently, it was possible
to optimize the results and the processing time both in the
IR task and in the PS task, as observed in Tables VII, III
and VIII. While the method proposed by Wiggers et al. [13]
needed more than 580 seconds to search for a query, the
proposed method performs the same search in a maximum
of 45 seconds while achieving superior results.

Another advantage was the application of deep hashing.
Even transforming the characteristics to binary values, the
result was not so harmed when we take into account that in
the method proposed by Wiggers et al. [13], the search for
a query could take 200 times longer than Hashing methods.
In addition to the search time, the cost in terms of storage
was also significantly reduced. In the method proposed by
Wiggers et al. [13], more than 550 GB would be needed,
while in the approach using VGG19 with Hashing, this
number is no more than 0.09 GB.

It was possible to notice that in some cases, the trans-
formation of the characteristics to the binary domain can
increase the result, as observed in the VGG19 Block4-5
model where we had an improvement of almost 2 percentage
points. Regarding query search time, converting to binary
code reduced the time by approximately 30% for methods
using VGG19. In terms of storage, we migrated from a
structure of floating-point values with 32 bits and started to
use only 1 bit, reducing the overall storage cost by 32 times.

V. CONCLUSION

This paper presented two approaches for the IR and PS
tasks for images of a historical document collection. The
first approach improved an existing method reducing the
number of candidate images returned by the selective search
and improving the mAP, processing time, and storage cost.
However, we could observe that although the IR task is part

of the PS task, they will not necessarily present the same
performance gains over different CNN architectures.

The second approach reduced both storage cost and pro-
cessing time by deep hashing techniques. Nevertheless, the
significant contribution of this investigation was to observe
that in some cases, the conversion to the binary domain can
also increase the result achieved with real-valued features.
In cases where this does not happen, the performance loss is
mitigated by reducing computational resources usage.

Future work will focus on fine-tuning the CNNs used as
feature extractors images of historical documents since such
CNNs were only trained on the ImageNet dataset. We believe
that the mAP could be improved if such CNNs were fine-
tuned on images of a similar context. Besides, replacing the
selective search with a dynamic search strategy may also
improve retrieval performance.

REFERENCES

[1] S. En, S. Nicolas, C. Petitjean, F. Jurie, and L. Heutte, “New public
dataset for spotting patterns in medieval document images,” Journal
of Electronic Imaging, vol. 26, p. 011010, 11 2016.

[2] S. En, C. Petitjean, S. Nicolas, and L. Heutte, “A scalable pattern
spotting system for historical documents,” Pattern Recognition,
vol. 54, pp. 149–161, Jun. 2016. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-02116648

[3] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based im-
age segmentation,” International Journal of Computer Vision, vol. 59,
no. 2, pp. 167–181, 2004.

[4] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction
by learning an invariant mapping,” in 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06),
vol. 2, 2006, pp. 1735–1742.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770–778.

[6] ——, “Identity mappings in deep residual networks,” in Computer
Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling,
Eds. Cham: Springer International Publishing, 2016, pp. 630–645.

[7] X. Luo, D. Wu, C. Chen, M. Deng, J. Huang, and X.-S. Hua, “A
survey on deep hashing methods,” 2021.

[8] I. Melekhov, J. Kannala, and E. Rahtu, “Siamese network features
for image matching,” 2016 23rd International Conference on Pattern
Recognition (ICPR), pp. 378–383, 2016.

[9] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[11] I. Úbeda, J. M. Saavedra, S. Nicolas, C. Petitjean, and L. Heutte,
“Pattern spotting in historical documents using convolutional models,”
in Proceedings of the 5th International Workshop on Historical
Document Imaging and Processing, ser. HIP ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 60–65.
[Online]. Available: https://doi.org/10.1145/3352631.3352645

[12] J. Uijlings, K. Sande, T. Gevers, and A. Smeulders, “Selective search
for object recognition,” International Journal of Computer Vision, vol.
104, pp. 154–171, 09 2013.

[13] K. L. Wiggers, A. de Souza Britto Junior, A. L. Koerich, L. Heutte,
and L. E. S. de Oliveira, “Deep learning approaches for image retrieval
and pattern spotting in ancient documents,” 2019.

[14] P. Yarlagadda, A. Monroy, B. Carque, and B. Ommer, “Recognition
and analysis of objects in medieval images,” in Proceedins of the Aian
Conference on Computer Vision, Workshop on e-Heritage, Springer.
Springer, 2010, pp. 296–305.


