
Improving Data Stream Classification using
Incremental Yeo-Johnson Power Transformation

Eduardo Tieppo, Jean Paul Barddal, Júlio Cesar Nievola
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Curitiba, Brazil
{eduardo.tieppo, jean.barddal, nievola}@ppgia.pucpr.br

Abstract—Data transformation plays an essential role as a
preprocessing step in learning models. Several classification
techniques have premises about the underlying data distribu-
tion, such as normal distribution assumed in Bayesians clas-
sifiers. However, applying data transformation in a streaming
setting requires processing an infinite and continuous flow of
data. In this paper, we propose the Incremental Yeo-Johnson
Power Transformation, a variant of the well-known batch Yeo-
Johnson transformation that is tailored for streaming settings,
i.e., it supports streaming data via statistical sampling and
hypothesis testing. Experimental results show that our proposal
achieves the same data normality as its batch counterpart.
In addition, it improves the prediction performance of a data
stream classifier based on Bayesian statistical models. Overall,
learning models obtained 3 percentage points improvement.

Index Terms—Data stream classification, Incremental power
transformation, Incremental Yeo-Johnson

I. INTRODUCTION

In data stream classification, data are continuously made
available as an unbounded sequence. Thus, learning models
need to process one instance at a time and adapt themselves
on-the-fly to process the latest data and support unbounded
streams [1].

Data stream classification problems are tackled with learn-
ing models based on a learning paradigm, such as symbolic,
instance-based, or statistical, with distinct ideas of data
representation and predictions strategies [2]. These prediction
strategies are often based on data distribution assumptions.
For instance, Bayesian models assume that data follow a
normal distribution, and inferences are made with probability
calculations using the Bayes Theorem [2].

Several studies have used data transformations to make
input data more fitted to a given distribution and, conse-
quently, to a learning model that uses this same distribution
as a premise. There are examples from Engineering [3] to
Medicine [4], and even general research in the machine learn-
ing field about how data transformation techniques affect the
learning models’ performance [5]. However, applying data
transformation in streaming settings is not straightforward.
As data streams are potentially unbounded, there is no full
dataset to be transformed and supplied to the learning model.
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In this study, we propose an incremental adaptation of
the well-known Yeo-Johnson Power Transformation [6] for
streaming settings. Traditionally, the Yeo-Johnson Power
Transformation is applied considering a batch setup as it is
applied to a fully known dataset, which is transformed into a
more gaussian-like distributed dataset. More specifically, our
proposal is to apply the Yeo-Johnson Power Transformation
incrementally, one instance at a time, without prior knowl-
edge about data, and adaptively along the data stream. Our
proposal can be attached to a data stream learning model
that uses a Gaussian (normal) data distribution as a premise,
such as the well-known Naive Bayes method, to improve the
prediction performance of this classifier when applied in a
data stream scenario [2]. Therefore, the contributions of this
study are as follows:

• We propose the incremental Yeo-Johnson Power Trans-
formation, an incremental adaptation of the well-known
Yeo-Johnson Power Transformation that does not re-
quire the entire dataset in advance, it is performed on
an instance-basis, and it is adaptive along the stream.

• We apply the incremental Yeo-Johnson Power Transfor-
mation to two case studies on flat and hierarchical data
stream classification and demonstrate the improvements
from its application on predictive performance.

Furthermore, as a by-product, we publicize the source code
and datasets used in experimentation for reproducibility.

The remainder of this paper is organized as follows.
Section II describes studies related to data transformation
in classification tasks and outlines related works. Section
III describes the proposed incremental Yeo-Johnson Power
Transformation. Section IV comprises the analysis performed
to test our proposal, including its application in several
streaming classification scenarios. Finally, Section V con-
cludes this study and states envisioned future works.

II. RELATED WORK

Data transformation is a common step in traditional machine
learning models to improve the input adherence to an as-
sumption, like data-normality [5]. Different usages of data
transformation can be observed in theoretical aspects in [5],
[7] and applied scenarios in [4], [8]. However, studies that
use methods and algorithms for data transformation have
been developed considering stationary data or assuming that



the whole dataset could be accessed at least once. Data
stream classification requires an additional concern related
to computational resources usage [1]. Nevertheless, current
data transformation techniques that limit resources’ usage
focus only on data representation and prediction efficiency.

Research has been conducted on similar scenarios related
to data stream mining and big data. For example, the au-
thors in [9] applied the Box-Cox [10] transformation with
automatic estimation of the power parameter but did not
consider data stream classification scenarios. Also, authors
in [5] proposed a Box-Cox information array to compute
model parameters based on limited data but still process the
whole dataset once. Therefore, these studies did not consider
on-the-fly constraints imposed by streaming settings where
data is potentially unbounded and, thus, instances need to be
analyzed and discarded right after its processing [11].

Regarding learning systems, Bayesian statistical models
stand out among the well-known techniques that can benefit
from data transformations as their inductive process is based
on Bayes’ Theorem to calculate the probability of an instance
belonging to a given class given the a priori probability of
occurrence of the class considering the instance features.
That is, Bayesian classifiers assume that data is normally
distributed [2]. In addition, a Bayesian classifier, such as the
well-known Naive Bayes [12], handles data stream classifica-
tion problems since the learning model only needs to update
summaries of data along with the data stream and compute
the probabilities for each incoming instance [13], [14].

In data stream classification, incremental adaptations of
Bayesian classifiers have been widely studied and applied in
state-of-the-art algorithms [14], [15]; thus, it is of interest to
provide a way to address data transformations also incremen-
tally. For instance, an Incremental Gaussian Naive Bayes was
proposed in [14] observing the data streaming constraints,
and it demonstrated the advantages of using the Yeo-Johnson
data transformation in the predictive performance of the
classifier. However, the data transformation was performed
considering a hypothetical complete view of the data streams,
and thus, we tackle this limitation by applying the pro-
posed incremental Yeo-Johnson Power Transformation on an
instance-basis, and without prior data knowledge.

III. INCREMENTAL YEO-JOHNSON POWER
TRANSFORMATION

This section proposes the Incremental Yeo-Johnson Power
Transformation fitted to work with data stream learning mod-
els. First, we describe the traditional Yeo-Johnson technique
[6] and later discuss the adaptations needed to make the
technique incremental. The traditional Yeo-Johnson Power
transformation ψ(λ, x) is defined as follows, where x stands
for the input data and λ is the power parameter.

ψ(λ, x) =


{
(x+ 1)λ − 1

}
/λ (x ⩾ 0, λ ̸= 0)

log(x+ 1) (x ⩾ 0, λ = 0)

−
{
(−x+ 1)2−λ − 1

}
/(2− λ) (x < 0, λ ̸= 2)

− log(−x+ 1) (x < 0, λ = 2)

(1)

Algorithm 1: Traditional application of Yeo-Johnson
Power transformation.

input : D: a dataset with instances x⃗
L: a set of candidate λ

output: D̂ – a dataset with transformed instances ̂⃗x
1 λ̂← arg max

λ∈L
ℓ(λ);

2 foreach (x⃗ ∈ D) do
3 ̂⃗x← ψ(λ, x⃗) ; // Equation 1

4 D̂ ← D̂ ∪ ̂⃗x;

The Yeo-Johnson Power transformation is based on Box-
Cox transformation [10], [16] and was proposed to handle
negative values. If x is positive, the Yeo-Johnson transforma-
tion converges to Box-Cox with (x+1). If negative, it is the
Box-Cox of (−x+1) with power (2−λ). Algorithm 1 shows
the pseudocode for the application of Yeo-Johnson Power
transformation [6]. Note that the estimated/optimal λ (λ̂)
can be obtained by maximizing the log-likelihood function
ℓ of the transformation power parameter λ via Maximum
Likelihood Estimation (MLE) using all data D. Also, if λ̂
is known (or chosen) a priori, the arguments of the maxima
(line 1) for ℓ can be omitted and the transformation can be
performed per x using Equation 1.

To extend the traditional Yeo-Johnson Power transforma-
tion to handle unbounded data streams, the main concern
regards the estimation of the optimal λ̂ on the fly and the
use of a strategy to ensure that this estimation will remain
accurate over time. The proposed Incremental Yeo-Johnson
Power transformation tackles these issues by applying sample
size determination and hypothesis testing to (i) find the
optimal λ̂ based on a sample set, and (ii) check if two sample
sets obtained from the data stream at different timestamps
significantly differ, thus requiring a new λ̂ estimation.

Figure 1 illustrates the incremental Yeo-Johnson Power
Transformation in a streaming scenario. Let DS be a data
stream supplying instances over time, Ni a user-given size for
a chunk of DS with i ∈ {1, . . . ,∞}, and SS a sample size
estimated based on Ni. In practice, Ni represents the number
of instances observed prior to sample size determination
(SSNi

) and new incoming instances of Ni + 1 trigger new
statistical validations resulting in SSNi+1, and so forth. The
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Fig. 1. Overview of the incremental Yeo-Johnson Power Transformation
setup in a data stream scenario.



process initially assumes λ̂ = l, where l = 1 is a user-
defined parameter (note that λ = 1 results in equivalent input
and transformed data). The method buffers and uses SSNi

instances to perform a Maximum Likelihood Estimation
of λ̂. The sample size determination follows Equation 2,
where Ni stands for the population estimated size, z is the
standard normal distribution, p and q are the complementary
proportions for population, and d the error component of
interval estimate.

SSNi =
Niz

2pq

d2(Ni − 1) + z2pq
(2)

The sample size determination considers population pro-
portions and also a finite population correction; despite being
parameterizable, p and q are always applied in this study with
equal (0.5) proportions [17].

The Maximum Likelihood Estimation of λ̂ is performed
via Brent’s algorithm [18] by minimizing the negative log-
likelihood function of the transformation power parameter λ
for the input data buffered (SSNi

), resulting in an optimal
λSSNi

, which is used for the ongoing data transformation.
Once the data stream DS has provided Ni instances, we
reach the statistical warranty boundary for the estimated
population Ni. In other words, the sample set buffered in
SSNi

may not be representative anymore for DS. Thus, we
restart the process by buffering the newest SSNi+1 instances
to compare both sample sets SSNi and SSNi+1.

When SSNi+1 is reached, a Wilcoxon’s hypothesis test
[19] verifies significant differences between SSNi

and
SSNi+1 sample sets. The Wilcoxon’s test is applied with a
user-defined significance level α (default = 0.05), according
to the protocol provided in [20]. Thus, the new value of λ̂ is
assigned as follows according to the p-value returned from
Wilcoxon’s test. If both sample sets are significantly differ-
ent, the optimal λ̂ is recomputed for the newest input data
buffered (SSNi+1

); otherwise, the transformation continues
with the λSSNi

computed on the previously MLE.
Algorithm 2 shows the pseudocode for the proposed

Incremental Yeo-Johnson Power Transformation fitted for
data stream classification. Note that, oppositely to traditional
application of the Yeo-Johnson Power Transformation (cf.
Algorithm 1), the algorithm receives a data stream (DS) pro-
viding instances x⃗t over time instead of a complete dataset.
In addition, the algorithm receives the parameters needed to
perform the sample size determination (see Equation 2) and
also an initial lambda set l⃗ (default = 1).

The loop started on line 3, and the transformation per-
formed on line 24 are equivalent to the ones on the traditional
algorithm. The difference between both algorithms lies in
how the λ̂ estimate is performed. In the traditional algorithm,
the estimation considers the entire dataset (cf. Algorithm 1,
line 1), whereas, in the incremental strategy, this process is
made along the data stream (lines 4-23).

First, the algorithm determines the sample size (line 1) and
assigns the initial lambda to λ̂. Note that λ̂ is d-dimensional
as the x⃗t, with possibly distinct values for each d. Inside the

Algorithm 2: Incremental Yeo-Johnson Power Trans-
formation for Data Stream Classification

input : DS: a data stream providing instances x⃗t over time
t ∈ N
L: a set of candidate λ
N , d, p, q = p− 1: sampling parameters
α: significance level
l⃗: initial lambda set

output: D̂S: an incrementally transformed data stream

1 SS ← (Nz2pq)/(d2(N − 1) + z2pq);
2 λ̂← l⃗;
3 foreach (x⃗t ∈ DS) do
4 if (|SSNi

| < SS) then
5 SSNi

← SSNi
∪ x⃗t;

6 else
7 if ¬(estimated) then
8 λ̂← arg max

λ∈L
ℓ(SSNi

);

9 Model← Ø;
10 estimated← ⊤;
11 else
12 if (t mod N = 0) then
13 tested← ⊥;
14 if (|SSNi+1

| < SS) then
15 SSNi+1

← SSNi+1
∪ x⃗t;

16 else
17 if ¬(tested) then
18 p-value←Wilcoxon(SSNi

, SSNi+1
);

19 if (p-value ≤ α) then
20 λ̂← arg max

λ∈L
ℓ(SSNi+1

);

21 Model← Ø;
22 SSNi

← SSNi+1
;

23 tested← ⊤;
24 ̂⃗xt ← ψ(λ, x⃗t) ; // Equation 1

25 D̂S ← D̂S ∪ ̂⃗xt;

loop, the algorithm buffers |SSNi
| instances (line 5) until the

computed sample size and uses them to perform the first λ̂
estimation (line 8). Note that, if provided, MLE considers a
set L of candidate λ values. However, this is not critical when
using Brent’s algorithm, and the final estimation may not be
a member of L [18]. When a new λ̂ estimation is performed,
it is necessary to clear or update any current learning model
(line 9) since any new instance x⃗t is transformed into ̂⃗xt
using a different power parameter λ. The algorithm controls
when the theoretical population size is reached (line 12) and
starts to populate a new sample set with |SSNi+1

| instances
(line 15). When SSNi+1

is full, the algorithm tests both initial
SSNi

and current SSNi+1
sample sets with the Wilcoxon’s

Test (line 18). If both sets are significantly different, the λ̂ is
re-estimated using SSNi+1

(line 20), and the current sample
set is defined as the reference sample set.

Observe that a learning model can be appended by replac-
ing line 25, and works with each single ̂⃗xt over time without
requiring changes in the learning method as the proposed
method works as a preprocessing step.

Finally, we highlight two key aspects related to the ap-
plication of the described Incremental Yeo-Johnson Power
Transformation in the data stream classification scenario.
First, every λ̂ estimation requires a new learning model that,
at least, is more concerned with the newest data since subsets



of transformed data with different λ present distinct distri-
butions and may mislead the classifier. Also, note that this
aspect justifies the use of Wilcoxon’s test instead of promptly
recomputing the optimal lambda with the newest buffer to
try to avoid a change in λ̂ and keep more representative data.

Second, depending on the error component of interval
estimate (d), few instances can theoretically represent un-
bounded data. For example, assuming a confidence level of
95% and a margin of error of 2%, the sample size is bounded
on 2,401 samples regardless of N size. Naturally, this is
not the case in a data stream classification problem. Thus,
we understand that λ recomputing can act as a response to
concept drifts [21] on the underlying distribution of the data
stream. In other words, the DS size (N ) can represent a
user-defined boundary to renew the statistical warranty about
the sample set with a trade-off between responsiveness to
concept drifts and maintaining historical data.

IV. ANALYSIS

In this section, we describe the experiments performed to
analyze our proposal. It comprises the experimental setup and
two case studies concerning the application of our proposal
in both flat and hierarchical data stream scenarios, including
an analysis focused on the data stream transformations and
their impact on the performance of the classifiers.

A. Experimental setup

We divided our experiments into data normality and pre-
diction performance analysis, detailed below. Data normality
was measured using the Shapiro–Wilk test of normality [22].
The test was performed on all data streams considering the
original data, the transformed data with access to the com-
plete data stream (known DS), and the data incrementally
transformed with the proposed transformation. The predic-
tion performance was measured on two distinct scenarios:
a traditional data stream classification scenario, including
well-known data stream sets, and a hierarchical data stream
classification scenario, following the same protocol provided
in [14] as a testbed.

In the traditional case study (hereafter referred to as “flat”
data stream scenario), we used the well-known incremen-
tal Naive Bayes technique for data streams [2], [23] and
measured the prediction performance of the classifier using
the F-score [24]. In the hierarchical case study, we used
the classifier proposed in [14], an incremental Gaussian
Naive Bayes (GNB-hDS) fitted to work with hierarchical data
streams and measured the prediction performance using the
hierarchical F-Score (hF ) [25].

In both case studies, the classifiers were applied to sce-
narios with the original data stream, the transformed data
with access to the complete data stream (known DS), and
the incrementally transformed data. All the experiments were
performed using N = 1.0× 107, d = (0.95, 0.02), p = 0.5,
α = 0.05 and l⃗ = 1. Note that the population estimated
size N was set up with the first power of ten that reaches
the upper bound (2,401) of sample size determination (cf.

Equation 2) and simulates a population estimated size always
bigger than the known DS. Furthermore, the pair of values
provided in d represent, respectively, the confidence level and
the margin of error.

We report both F-score and hF metrics using the prequen-
tial test-then-train validation method, where each instance
is used to test the model before it is used for training
and updating [1]. The results obtained with the original
data, the transformed data with access to the complete data
stream (known DS), and the incrementally transformed data
were compared using the Friedman test [26] to perform
multiple comparisons in non-parametric data assuming a null
hypothesis that there is no significant difference between
the results. After the Friedman test and in case of the null
hypothesis is rejected, we applied the Nemenyi post-hoc test
[27] to identify significant differences between two specific
sets. All significance tests considered a 95% confidence level
according to the protocol provided in [20].

The experiments in this paper were performed using
the Massive Online Analysis (MOA) Framework (2021.07)
[23] (flat scenario) and Python 3.7 (hierarchical scenario).
The scripts containing the implementations of all ex-
periments are available at http://www.ppgia.pucpr.br/∼jean.
barddal/datasets/GNB-hDS-incYJ.zip.

B. Case study: Data Stream Classification

Table I describes the eight data stream sets used in
our experiment concerning data stream classification, listing
their number of instances, features, and classes. These data
streams contain different features and domains, thus allowing
the assessment of how our proposal works in different
scenarios. Also, note that the Airlines, Asset Negotiation,
Forest Covertype, and RTG data streams have categorical
features. However, naturally, these features are not included
in the transformations and do not interfere with the results
obtained in all experiments.

Table II depicts the Shapiro-Wilk W Statistic for original,
transformed, and incrementally transformed data streams.
The W statistic is bounded by 1, and closer values to this
upper bound represent data more fitted to a normal distri-
bution. The average W Statistic obtained with the original
data is 0.8132. In contrast, the averages obtained with both
transformations (known DS and incremental) surpass the
former by 4.44%. Note that the transformations less affected

TABLE I
FLAT DATA STREAMS USED IN THE EXPERIMENT.

Data stream Instances Features Classes

Agrawal [28] 500,000 9 2
Airlines [29] 539,383 7 2
Asset Negotiation [30] 500,000 5 2
Forest Covertype [31] 581,012 54 7
Credit card [32] 284,807 30 2
Electricity [33] 45,312 8 2
Kaggle’s GMSC [34] 150,000 10 2
RTG [35] 500,000 10 2



TABLE II
SHAPIRO-WILK W STATISTIC FOR ORIGINAL, TRANSFORMED, AND

INCREMENTALLY TRANSFORMED FLAT DATA STREAMS.

Data stream Original Transformed
(known DS)

Incrementally
transformed

Agrawal 0.8186 0.8967 0.8963
Airlines 0.9169 0.9691 0.9441

Asset Negotiation 0.9321 0.9321 0.9321
Forest Covertype 0.9298 0.9803 0.9795

Credit card 0.8069 0.8564 0.7935
Electricity 0.7688 0.9345 0.7391

Kaggle’s GMSC 0.3776 0.6211 0.6210
RTG 0.9551 0.9553 0.9553

Average 0.8132 0.8932 0.8576

Fig. 2. Critical difference chart for Shapiro-Wilk W on flat streams.

the data streams containing categorical features. For instance,
Asset Negotiation has only one continuous feature against
four categorical ones. The same can be observed on Airlines,
Forest Covertype, or RTG data streams, where at least half
of the features are categorical.

We also highlight the lowest rate between both trans-
formations (known DS and incremental) in the Electricity
data stream. This data stream comprises 45,312 instances, of
which the first 17,424 instances (38.45%) originally did not
have values for three continuous attributes, being filled up
later with the average values from the other instances. Thus,
the data sampling can not obtain representative information
since the beginning of the stream provides only repeated
values. Nevertheless, the W statistic is similar across all data
stream sets, with Yeo-Johnson being applied with the data
known a priori and incrementally with our proposal.

Figure 2 shows the critical difference (CD) chart for the
Shapiro-Wilk W Statistic obtained with original data and
both transformations on the flat data streams. Both transfor-
mations obtained significantly higher W statistics than those
obtained with the original data streams, yet, no statistical
difference is observed.

Regarding prediction performance, as aforementioned, we
applied the incremental Naive Bayes classifier with the
original data stream, the transformed data with access to the
complete data stream (known DS), and the incrementally
transformed data. Table III depicts the F-score (%) obtained
in all experiments, where the highest values per data stream
are highlighted in bold.

Overall, one can observe that both transformations im-
prove the prediction performance of the Naive Bayes clas-
sifier. The average F-score obtained using the original data
is 63.25%, and it is improved by 2.81% and 3.03% with
transformed (known DS) and incrementally transformed data

TABLE III
F-SCORE (%) OBTAINED WITH ORIGINAL, TRANSFORMED, AND

INCREMENTALLY TRANSFORMED FLAT DATA STREAMS.

Data stream Original Transformed
(known DS)

Incrementally
transformed

Agrawal 73.86 74.54 74.64
Airlines 61.38 61.46 60.79

Asset Negotiation 83.40 83.40 83.44
Forest Covertype 49.12 51.09 51.20

Credit card 55.54 55.58 57.51
Electricity 70.39 73.36 73.63

Kaggle’s GMSC 51.09 67.86 67.82
RTG 61.25 61.24 61.28

Average 63.25 66.07 66.29

Fig. 3. Critical difference chart for F-score rates.

streams, respectively. We also highlight some noticeable im-
provements, as in the Electricity data stream, with an increase
of about 3%, and in Kaggle’s GMSC data stream, with more
than 16% on both transformations. Also, the values obtained
with both transformations are similar across all data streams,
with an average difference of 0.40% favoring the incremental
one. We submitted the F-score rates obtained with all data
transformations to a Friedman test to check if the Naive
Bayes classifier could achieve the same prediction results
using traditional and incremental transformations.

Figure 3 shows the critical difference chart obtained after
Friedman and Nemenyi tests for the F-score rates obtained.
The Friedman test showed a statistical difference between
the F-score rates and the post-hoc Nemenyi test only iden-
tified a difference between the performance of the classifier
with and without data transformations but not between both
transformations.

The performance of the classifier was significantly im-
proved using both sets of transformed data streams. More
importantly, there is no statistical difference between the
performances using the traditional (known DS) and the
incremental transformations.

C. Case study: Hierarchical Data Stream Classification

As previously described, we used the classifier (GNB-
hDS) and the data streams proposed in [14] as a testbed
for our proposal in a hierarchical data stream classification
scenario [11]. We follow the same protocol provided in
[14] in the classification experiment, as our proposal can be
attached to any data stream classifier without modifications
in the main process since it represents an additional on-the-
fly data processing step.

Table IV depicts the 14 hierarchical data streams used
in our testbed, listing their number of instances, features,



TABLE IV
HIERARCHICAL DATA STREAMS USED IN THE EXPERIMENT.

Data stream Instances Features Classes

Entomology [36] 21,722 33 14
Ichthyology [36] 22,444 15 15
Insects-a-b [37] 52,848 33 6
Insects-a-i [37] 355,275 33 6
Insects-i-a-r-b [37] 79,986 33 6
Insects-i-a-r-i [37] 452,044 33 6
Insects-i-b [37] 57,018 33 6
Insects-i-g-b [37] 24,15 33 6
Insects-i-g-i [37] 143,323 33 6
Insects-i-i [37] 452,044 33 6
Insects-i-r-b [37] 79,986 33 6
Insects-i-r-i [37] 452,044 33 6
Insects-o-o-c [37] 905,145 33 24
Instruments [36] 9,419 30 31

TABLE V
SHAPIRO-WILK W STATISTIC FOR ORIGINAL, TRANSFORMED, AND
INCREMENTALLY TRANSFORMED HIERARCHICAL DATA STREAMS.

Data stream Original Transformed
(known DS)

Incrementally
transformed

Entomology 0.7489 0.9517 0.9513
Ichthyology 0.9028 0.9839 0.9773
Insects-a-b 0.7236 0.9240 0.9204
Insects-a-i 0.7248 0.9272 0.9229

Insects-i-a-r-b 0.7268 0.9273 0.9250
Insects-i-a-r-i 0.7234 0.9269 0.9311

Insects-i-b 0.7239 0.9239 0.9254
Insects-i-g-b 0.7280 0.9273 0.9148
Insects-i-g-i 0.7227 0.9288 0.9166

Insects-i-i 0.7234 0.9269 0.9305
Insects-i-r-b 0.7250 0.9252 0.9249
Insects-i-r-i 0.7234 0.9269 0.9307

Insects-o-o-c 0.7416 0.9468 0.9462
Instruments 0.9689 0.9868 0.9865

Average 0.7577 0.9381 0.9360

and classes. Table V depicts the Shapiro-Wilk W Statistic
for original, transformed, and incrementally transformed data
streams. The average W Statistic obtained with the original
data is 0.7577. In contrast, the averages obtained with both
transformations (known DS and incremental) surpass 0.93.

As in the flat scenario, the W statistic is similar across all
hierarchical data stream sets, with Yeo-Johnson being applied
with the data known a priori and incrementally. The average
W Statistic of traditional and incremental transformations
differ by 0.0021.

Figure 4 shows the critical difference chart for the Shapiro-
Wilk W Statistic obtained with original data and both trans-
formations on the hierarchical data streams.

The tests showed a significant difference between Shapiro-

Fig. 4. Critical difference chart for Shapiro-Wilk W on hierarchical streams.

TABLE VI
hF (%) OBTAINED WITH ORIGINAL, TRANSFORMED, AND

INCREMENTALLY TRANSFORMED HIERARCHICAL DATA STREAMS.

Data stream Original Transformed
(known DS)

Incrementally
transformed

Entomology 48.64 53.87 52.82
Ichthyology 46.82 50.27 49.72
Insects-a-b 81.11 81.90 81.96
Insects-a-i 80.88 84.05 84.03

Insects-i-a-r-b 81.42 83.48 84.07
Insects-i-a-r-i 81.57 83.40 83.70

Insects-i-b 80.55 82.28 82.40
Insects-i-g-b 81.53 81.42 81.50
Insects-i-g-i 80.40 83.16 83.38

Insects-i-i 80.90 83.05 83.18
Insects-i-r-b 78.57 79.58 80.21
Insects-i-r-i 81.61 83.45 83.72

Insects-o-o-c 64.14 69.46 69.38
Instruments 48.31 49.93 49.48

Average 72.60 74.95 74.97

Wilk W Statistic obtained with both transformations and the
original data. Also, the tests confirmed that there is no dif-
ference between both transformations, thus, the Incremental
Yeo-Johnson could achieve the same improvements in the
data normality without accessing the complete data stream.

Regarding prediction performance, Table VI depicts the
Hierarchical F-score (hF ) obtained with original, trans-
formed, and incrementally transformed hierarchical data
streams (highest values per data stream are highlighted in
bold). As expected, both transformations improve the pre-
diction performance of the Gaussian Naive Bayes classifier.
The average hF obtained using the original data is 72.60%,
and it is improved by more than 2% with transformed (known
DS) and incrementally transformed data stream sets.

The values obtained with both transformations are similar
across all data streams, with an average difference of 0.02%
favoring the incremental one. We highlight that the classifier
was even able to obtain better results using the incremental
transformation than the traditional (known DS) transforma-
tion in 9 out of the 14 data streams, probably due to its
ability to obtain a better λ estimation.

As described in the experimental setup subsection (IV-A),
the hF rates obtained with all data transformations were
statistically compared to check if the Gaussian Naive Bayes
classifier could achieve the same prediction results using both
transformations.

Figure 5 shows the critical difference chart obtained after
Friedman and Nemenyi tests for the hF rates obtained.

Similar to the results obtained with flat data streams,

Fig. 5. Critical difference chart for hierarchical F-score rates.



Friedman and Nemenyi tests identified a difference between
the performance of the classifier with and without data
transformations but not between the traditional and the
incremental transformations.

These results corroborate our claims that that our proposal
can be applied to a data stream classification learning model
as an attached data processing step without the need for a full
view of the input data and can still improve the prediction
performance of the classifier by reducing data skewness.

V. CONCLUSION

In this paper we introduced the Incremental Yeo-Johnson
Power Transformation, an adaptation of the Yeo-Johnson
Power Transformation. The proposal is suited for streaming
scenarios as it performs the transformation on an instance-
basis and adaptively along the stream.

Also, the incremental transformation can be appended to a
learning model that uses data normality premises to improve
data stream classification. Results showed that the incremen-
tal transformation obtains the same data normality as the
traditional transformation and that Naive Bayes classifiers
benefit in 3.03% in flat prediction rates and 2.36% in the
hierarchical setting.

As future works, we plan to perform a deeper analysis
of how different chunk sizes affect data normality and pre-
diction performance on data streams with particular kinds of
concept drifts. We are also interested in analyzing the impact
of our proposal on decision trees (and their ensembles) that
use Naive Bayes classifiers at their leaves.
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