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Abstract—Adaptive recommender systems are increasingly
showing their importance as profiling is a dynamic problem.
Their goal is to update recommendation models as new in-
teractions take place, thus swiftly adapting to drifts in the
user’s behavior and desires, and item’s audience. However,
existing recommendation algorithms usually do not perform
well during drifts, as they take long to adapt to changes, or
these updates are suboptimal since they account for all profiles’
preferences equally, which is often untrue as each individual
and its changes are unique. In this paper, we propose the
ADADRIFT algorithm to deal with user and item-based drifts
in adaptive recommender systems using personalized learning
rates based on profile statistics. The experiments using stream-
based recommender systems (ISGD and BRISMF) across four
different datasets show that ADADRIFT surpasses ADADELTA
with significant improvements in recommendation rates. The best
results appear when the data streams have a long history of
the users’ or items’ interactions and drifts become noticeable.
The experimentation in this work highlight the importance of
handling drifts in recommender systems.

Index Terms—incremental recommender systems, adaptive
learning, recommender systems, data stream mining

I. INTRODUCTION

Given the users’ daily use of online platforms, whether
on e-commerce, e.g., eBay, Amazon; or entertainment, e.g.,
Netflix, Spotify, YouTube; the user experience is becoming
more relevant every day. It is vital to provide each user what
he/she is looking for quickly and efficiently, thus decreasing
the time wasted and providing a better experience with the
platform.

Guided by advances in data science and the enormous
amount of data generated by user navigation, both researchers
and practitioners devote their efforts towards user’s profile
identification. This task is called profiling [1], [2], which aims
at enhancing user experience by facilitating the search for the
desired products through the recommendations offered by the
platform. Once user profiles are created, these can be used to
make recommendations.

Massive competitions in the recommendations area, driven
mainly by high funding from companies such as Netflix!
[3] and anual conference-affiliated tasks such as RecSys
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Challenge?> or WSDM Cup® led to the development of new
algorithms and significant advances in recommender systems.

Most of the efforts on recommender systems have been
devoted to batch scenarios, i.e., where models are trained once
and used for recommendations. Yet, batch models possess
an intrinsic problem: the lack of adaptation over time [4].
Therefore, constant retraining of new models is required
to maintain competitive accuracy, especially when the user
behavior and preferences change over time and new items are
incorporated in the system.

Thus, there is a need for incremental recommendation
models that observe user trends and adapt to them without
any additional effort and under-performing periods.

It is possible to find a series of adaptive learning methods in
the literature, but none of them directly addresses the problem
of concept drift, as they were developed to batch scenarios
and do not deal with temporal relations.

Its adaptations aim to converge the model to an optimum
point in a faster and more accurate way, and many techniques
are not prepared for point constantly changing, which is
very characteristic of streaming environments. This optimum
point is often called a concept, and a concept drift is this
movement occurred when, for instance, consumers change
their preferences. Also, the existing techniques for adaptive
learning are not optimized to recommender systems, where
there is a need to deal with a huge number of users, and
adaptations need to act individually. Adaptive learning with
individual approaches is not present in the classic scenarios,
and just a few studies in the area actually deal with incremental
recommendation

At this point, it is important to mention about sequence-
aware recommender systems. As brought up in [5], the prob-
lem we target in this paper is to analyze individual trends for
collaborative-filtering. This is relevant as users’ interests and
behavior may drift over time, new items will appear, and thus,
model adaptation is required.

In this paper, we claim that existing incremental techniques
are not sufficient as is as they overlook the fact that each
user’s needs and opinions, and each item’s audience change

Zhttps://recsys.acm.org/
3http://www.wsdm-conference.org/
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at different rates, performing the profile update with the same
impact for every profile. Therefore, we propose a technique for
identifying user profile changes individually, thus analyzing
the instability of the profile upon changes in daily interaction
with items.

This paper is divided as follows. Section II brings forward
related work on recommender systems, as well as both batch
and incremental systems, and their assessment. Section III
introduces our proposal, which is later assessed in Section IV.
Finally, Section V concludes this paper and states envisioned
future work.

II. RELATED WORKS

This work addresses user and item-based concept drift adap-
tation in stream-based recommender systems. This section is
divided into two fronts, as Section II-A regards Recommender
Systems and Section II-B discusses stochastic gradient descent
(SGD) optimization techniques.

A. Recommender Systems

Recommender systems are tasked with presenting n items
that are expected to be the most relevant to a user, and these
are often categorized in [6]: (i) collaborative filtering, and
(ii) content-based filtering techniques. The former consists
of grouping users or items based on the ratings provided to
items they interacted with, thus recommending other items
that are related to the group to which the user has expressed
interest previously. On the other hand, the latter techniques
identify similar items without the use of ratings, usually using
description, category, price, year, and other characteristics
related to product content.

Collaborative filtering requires less information that is usu-
ally in the (U, I, R) format, where U is the user identifier, I is
the item identifier, and R is the rating given by the U-th user
to the I-th item. Some datasets are also positive-only, where
data is represented in a binary pattern. In practice, only (U, I)
is given, meaning that there has been a positive interaction
between U and I, whereas negative and unknown relationships
are kept aside [7]. The datasets may also include timestamps
if the problem is to be addressed incrementally. In this work,
we focus on timestamped data as the order in which user-item
interactions take place in the real world affect the training and
test steps of our model.

1) Ratings: In the literature, it is possible to find several
actions by the user that can be considered ratings. In addition
to an explicit rating, such as a 1 to a 5-star rating on a partic-
ular item or an upvote on a social network, there are implicit
ratings that are extracted without direct user interaction with
the item, such as clicking on a product, making a purchase,
or even viewing a large portion of a video on a platform like
YouTube*. All of these options should be considered when
tailoring a recommendation system.

Most of the datasets available follow the explicit pattern,
where ratings vary from 1 to 5 or 1 to 10. On the other hand,

“https://youtube.com

implicit rating datasets follow the positive-only pattern, i.e.,
only positive interactions between users and items are used.
The absence of an interaction or a negative interaction are
treated as equivalents. To transform a dataset from an explicit
to an implicit representation, it is required to define a threshold
0 such that 0 < 6 < Ry, where Ry« is the maximum rating
possible. Therefore, the dataset is binarized by transforming
all instances of (U,I,R) with R > 6 to (U, I), while the
remainder of interactions is ignored.

2) Recall@N: Due to the skewed problem found in the
recommendation scenario (the vast majority of items are
irrelevant to the user), metrics such as RMSE and MAE end up
incorporating unnecessary information when considering pre-
dictions of items with few stars, that is, irrelevant to the user.
The advantage of incremental recall (shortened to Recall@N)
is to use only the relevant items, thereby improving the
measurement of the recommendation system in question [8].

The Recall@N [9] is computed as follows. For each positive
interaction in the dataset, in the (U, I) format:

1) 1000 items not evaluated by the user U are selected at
random, and it is assumed that they will be irrelevant to
the user in question;

2) All 1001 items, with 1000 randomly selected items and
the item I, are ranked using a regression algorithm;

3) If the item [ is in the top N items, the recommendation
is counted as a hit.

Equation 1 is used to extract the recall of the model,
which is simply the number of hits divided by the number
of recommendations obtained with the model.

# of hits
Recall@N = 1
ecd # of recommendations M

3) Batch Recommender Systems: Recommender systems
are often built on top of dimensionality reduction techniques
via matrix factorization. Proposed in [10], matrix factorization
receives as input a hyper-parameter K, which is responsible
for defining the dimension of latent factors. As depicted
in Figure 1, the latent factors matrices have dimensions of
A= (UxK)and B = (I x K), respectively. The first matrix
represents the latent factors for users, and the second stores the
latent factors for items. The algorithm also uses a parameter
that is the impact of model updates, and a parameter A, which
is a regularization value responsible for penalizing high values
for attributes, bringing greater generalization of the model.
Theoretically, A can be specialized for users ()\,) and items
(), but it is commonly set with the same value for both
matrices.

To identify the relevance of an item to a user, the required
operation is a multiplication between vectors, as stated in
Equation 2. The elements of the multiplication are highlighted
in Figure 1.

Ry = A, -BF )

The initial weights for matrices A and B are randomly
set according to a Gaussian distribution, and then Stochastic
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Fig. 1. Decomposition of matrix R into matrices A, referring to users; and
B, referring to items. Adapted from [4].

Gradient Descent (SGD) is applied targeting minimization
according to Equation 3. The first component of the equation
is defined as erry; = (Ry; — Rm) and returns the difference
between the rating predicted by the model and the rating pro-
vided by the user (ground-truth), while the second maintains
the generalization of the model and decreases the weights of
the attributes. This process is applied to a set of interactions
D used for batch training.

. 2 2
gll}g( z)gDermz + A AN+ 1B ™) (3)

In each iteration, Equations 4 and 5 are used to update
user and item latent vectors, respectively. At this point, it is
important to emphasize the importance of 7, which increases
or decreases the learning pace. As described in Section III, the
core of our proposal is to manipulate 7 effectively for drifting
recommendation problems.

Au — Au + 77(67”%1‘32‘ - )\Au) (4)

Additionally, it is also possible to find methods using deep
learning in the literature for collaborative filtering recommen-
dation [11]-[13]. Even though neural networks are applied to
the recommendation problem, these approaches do not deal
with the concept drift problem or are built on top of matrix
factorization/gradient descent techniques and can still benefit
from the algorithm presented in this paper.

4) Stream-based Recommender Systems: User profiles can
change over time, so systems have been developed so that they
can continuously learn user behavior over time. Analogous to
the concept drift problem in data stream mining [14], new
product creation, declining popularity, and changes in cus-
tomer preferences are difficult to detect and usually jeopardize
the performance of recommender systems [6].

The first adaptation of matrix factorization algorithms for
online scenarios was Biased Regularized Incremental Simul-
taneous Matrix Factorization (BRISMF) [15]. BRISMF’s main
trait is that it is biased, i.e., it maintains a value per profile b,
and a value per item b;. These values are independent of any
multiplication, and these are added directly to Ras represented
in the Equation 6.

Ryi = Ay - B + by + b, (6)

This feature allows the recommender system to better cus-
tomize the user, thus characterizing users who are most critical
in ratings or only interact with items they like, thus allowing
such systems to handle explicit ratings.

A variation to BRISMF called ISGD, specific for dealing
with positive-only ratings, was proposed in [7]. The difference
between BRISMF and ISGD is the lack of bias components,
which are deemed unnecessary in this scenario.

Both BRISMF and ISGD were introduced by combining
batch and incremental learning processes that encompass
training and evaluation. Incremental training differs from batch
training in that it is one-pass, i.e., the latent vectors are updated
according to the arrival of ratings, and each interaction is
assessed only once and in the other that they happen in the
real world. On the other hand, incremental testing uses an
incremental version of the Recall@N metric, which is given in
Equation 1, yet, it is computed along sliding windows so that
the performance of the recommender system can be tracked
over time.

5) Recommender Systems Optimizations: Studies in the
literature related to the optimization of hyperparameters for
stream-based recommendation systems have been a hot topic
recently, particularly two approaches proposed in recent years.
Both solutions seek the ideal parameterization of the model in
the batch period and use it in the stream environment. The
first study [16] uses the Nelder-Mead optimization algorithm
to find the best set of hyper-parameters, while the second
performs with grid search for individually hyper-parameters
[17].

The former, despite seeking optimization of the parameters
is neither personalized nor adaptive. The parameters found are
global, and they do not change during the streaming scenario.
Although the latter uses detectors, it does not update the
learning parameters continuously, doing it only when detectors
fire.

B. Gradient Descent Optimization

Gradient descent optimization techniques are widely studied
and commonly used for deep learning, being present in several
known frameworks as LasagneS, Tensorflow® and Keras’. This
great adhesion in several deep learning frameworks is due to
the gain obtained when using them, which is significant for
this segment.

Nevertheless, these techniques were idealized for the batch
environment, i.e., optimization of the learning rate for training
in a finite and well-defined set of data. The aforementioned
recent adaptation to the streaming context of matrix factoring
techniques, i.e., BRISMF and ISGD, poses a different prob-
lem, continuous learning, and new concepts adaptation.

It is already known that the functioning of ADAGRAD
[18] converges to infinitesimal learning rates by constantly
adding the error to the divisor. In the same way, other
known techniques tend to converge to an optimal point [19]

Shttps://lasagne.readthedocs.io/en/latest/
Ohttps://www.tensorflow.org/
"https://keras.io/
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Fig. 2. Prequential Protocol when using ADADRIFT. Adapted from [4].

like RMSProp [20], Momentum [21] and Adam [22]. When
converging to an optimum, these techniques will eventually
take the learning rate to very low levels, failing to learn and
going against the principles of data stream mining, which
needs continuous training and adaptations to new situations.
Due to these different issues, those techniques will not be used
in this work.

ADADELTA [23] is one of the well-known optimization
techniques and, although it is also developed for a batch
environment, it uses a p decay coefficient to avoid converging
to an infinitesimal point. It is possible to use it for a streaming
environment since there is no convergence to a specific point,
but a sliding window adaptation, that could be profitable
against concept drifts. It will be used and better detailed due
to this characteristic.

1) ADADELTA: ADADELTA [23] development is based on
the assumption of limited learning and that the constant error
sum should be windowed. The decay hyper-parameter p is
used to perform this windowing scheme. Equation 7 performs
the error accumulation, with = being the gradient error, that

; 2
is erry,.

Pt =ptxp+(p—1)xz ©)

To make the gradient update Equations 8 and 9 are used.
The learning parameter is divided by the accumulated error. €
has the function of avoiding an invalid value for the operation,
being suggested € = 176,

A, +— A, + (erruiBi — AAy) (8)
pt+ e

B; «+ B; + L(erruiAu —AB;) )
Vil +e

III. ADADRIFT

Recommender systems should be able to adapt to users’
preferences and items’ changes over time. Our major claim
in this paper is that not all profiles experience change at the
same pace. Some profiles are at a time of greater stabilization
in a concept, while others are experiencing periods of greater
change.

Given this rationale, this paper proposes the ADADRIFT,
which consists of a dynamic learning mechanism that aims at
keeping up with different learning rhythms, in a personalized
way and is independent of the matrix factoring algorithm
used, i.e., BRISMF and ISGD. As can be seen in the diagram
shown in Figure 2, ADADRIFT adds just one more instantly
step in the model update process, generating a personalized
71p for each user or item p. Overall, ADADRIFT demand
an insignificant additional computational cost and lightweight
memory consumption.

ADADRIFT has three input parameters: ¢y, ds and «. The
« parameter controls the impact of learning and will be used
later to obtain the dynamic learning rate 7,,.

The 67, and §g parameters define the size of two moving
windows used to increase or decrease the learning rate of
each profile. The relationship between those moving windows
shows whether a concept drift is happening or not. They work
in pairs with &y, relative to the long-term average, while dg
represents the short-term average. To dg capture short-term
changes and ¢ long-term changes, it is necessary to keep
always dg < dr.

After defining §;, and Jg values, ADADRIFT -calculates
moving averages pr and pg, respectively, according to the
Equation 10. The p! represents the moving average p at the
beginning of the interaction, that is, at time ¢, while /f*l is
the moving average at the end of the interaction, that is, at
time ¢ 4+ 1. The same notation is also used in Equations 11
and 12, with variables o and 7.

The value of mp represents the number of elements x
already in the window and remains in the range 1 < ny < dr,
fixing at & after the window has been completed. The ng
follows the same process, with dg as the maximum value
possible. The variables ng and ny will compose the moving
averages ug and pr, respectively.

The value x represents the profile instability over time and it
is used for both moving averages iy, and pg. Profile stability
can be obtained by the standard deviation of the gradient
already calculated in the Equations 4 and 5, represented
respectively by (err,;B; — AA,) and (err,;A, — AB;), and
used in user/item profile training. The standard deviation of
the gradients difference shows how severe the update was,
being directly linked also to the error obtained from the model.
The greater the error, the higher the impact of the update on
the user/item profile (Equations 4 and 5), and the greater the
instability coefficient will be, representing a concept drift.

ptx(n—1)+z
n

t+1

p = (10)

The moving average p, refers to the long-term average, i.e.,
it has less sensitivity and represents profile long-term stability.
In conjunction with py, oy, is the incremental standard devi-
ation, and it is used to define the intensity of the changes. Its
update accounts for the moving average and can be observed
in Equation 11.

Since s < dr, the pg behavior is more unstable, seeking
a balance between detecting a concept drift quickly (by the
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Fig. 3. Profile changes over time and the relationship with short and long
term averages.

short-term moving average pg) and having the resilience to
outliers (by the long-term moving average pr). This relation-
ship between the two moving averages allows the identification
of concept drifts.

t+1 _ UtL ¥ (np — 1) + (v — /~LL)2
o = -

(1)

The behavior of this error over time can be seen in Figure
3a, where both py and pg are represented. At times where
s is greater than ur, the dynamic learning rate will be
increased proportionally with their difference, i.e., (s — pr),
while the dynamic learning rate decreases in the opposite
scenario. Equation 12 uses oy to observe how non-standard
the recent instability coefficient pattern is, directly impacting
the dynamic learning rate as the difference (ug — p1r,) grows.
The relationship with o, can be seen in Figure 3b. This change
in the learning rate is calculated with Equation 12.

It is important to note that each user/item should have pri-
vate moving averages, moving standard deviation, and custom
learning rate because the concept drift occurs individually, not
to the entire model.

t4+1 [M]

't =ntxal oL (12)

The pseudo-code can be observed in the Algorithm 1. For
implementation details, the variable often mentioned p, for a
user, was valued as u and the user identifier, i.e., u23 for the
user with identifier number 23; while the notation for items is
123 for the item with identifier number 23. Lines 2 through 4
update the values of KL, 1S, and oL, These lines use both
Equations 10 and 11. It is important to note that = is a vector
of the difference between each latent factor before and after
the update, so the value used is the standard deviation of that
difference, represented by z,. With these values set for this
profile, Equation 12 is applied in lines 5 and 6, resulting in

7)p. Soon after, the values of ny, and ng are updated respecting
the limits d;, and dg respectively, and finally, in line 11, the
final value of 7, is returned.

After calculating the new 7, for profile p, p is updated
according to Equations 13 and 14, replacing both Equations
4 and 5. This n replacement process can be applied to all
algorithms that use such a parameter, thus showing versatility
and adaptability of the proposed method.

Au — Au + np(errmBi — )\Au)
B; < B; + np(erry; Ay — AB;)

13)
(14)

IV. EXPERIMENTATION

This section details the procedures used to perform the
experimentation with the algorithm, along with the actual
results and analysis.

To observe the independence of the matrix factorization
algorithm in ADADRIFT, experiments are carried out using
both ISGD and BRISMF. Other algorithms that can be found
in the literature can also be adapted for the use of ADADRIFT,
but such experiments are out of the scope of this paper.

For ISGD and BRISMF to work, one must generate an
initial model using an offline approach and then deploying it
to a streaming environment. This process is given in Figure 4,
where parts A and B are responsible for training and testing
a model using Stochastic Gradient Descent (SGD) in batch

Algorithm 1: ADADRIFT

/+ Input: (err,;B; —AA,) and p */
/* Output: 7, */
/* Variables: {5, ds, a and arrays ur,

Hs, N, OL Np, Ng */

/+ Initialization: Arrays with size
|A|+|B|. n is an array and each
position is initialized to the
default value of the matrix
factorization technique. Variables
pr, o and pug do not require
initialization values, and n is
initialized to 1 for each profile.
*/

1 2+ (erry; B; — \Ay)

2 pp, < (pr, * (np, — 1) +x5)/nL,

3 ,USp <— (ILLSP * (ngp — 1) + 170)/7151)

4 ULP — (ULP * (an - 1) + (xU - MLp)2) /an

5 s (us, — pr,)/oL,

6 Np < Mp * F

7 if ny, < dr then

8 L ng, < NL, +1

9 if ng, < s then

10 L TLSP<—TLSP+1

11 return 7,
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Fig. 4. The dataset was separated into three parts, the first two refer to the
batch matrix generation process, while the last one is the application of the
prequential protocol for validation.

mode during part A, and performing one-pass updates using
the data in B.

Finally, in part C, the prequential protocol [24] is applied,
which consists of predicting each datum prior to its use during
a model update, always following the natural temporal order
in which data is made available.

A. Datasets

Given the use of BRISMF and ISGD for this experiment,
both numerical and positive-only datasets were selected, total-
ing two datasets per category. Considering that our objective
was to observe a concept drift, it was necessary to carry
out some treatments on the selected datasets to observe this
problem. The concept drift, as already explained, affects both
users and items. Because of this, the selection of datasets must
also represent this problem. Thus, two datasets with a long
history of interactions per user and two with a long history
of interactions per item have been selected. It is important to
keep in mind that, when referring to a profile, the rationale
provided can be applied to both user and item profiles.

The datasets were purposely selected with a considerable
number of instances to be pruned, whilst maintaining a signif-
icant number of ratings per profile and still a reasonable size,
with around 1 million ratings. We first present the original
datasets followed by their transformed variants.

For numeric ratings, the both datasets Netflix® [3] (NF),
and Personality made available by GroupLens9 [25] (PL)
were selected. All of them are related to movie consumption,
the former being from a streaming platform, and the latter
with user interviewing for scientific experimentation. When
it comes to positive-only datasets, we selected LastFM'0 -
1K users [26] (LFM) and converted version of the Netflix
(NFS), selecting positive interactions according to the thresh-
old # = 5. This transformation was previously detailed in
Section II. More information about the original datasets is
given in Table L.

Both Netflix datasets (CD-NF and CD-NF5) own a long
history for some films. Therefore, there are a large number
of interactions for a few items, allowing item-based concept

8https://www.kaggle.com/netflix-inc/netflix- prize-data
%https://grouplens.org/datasets/personality-2018/
10http://ocelma.net/MusicRecommendationDataset/

TABLE I
ORIGINAL DATASETS DETAILS USED DURING EXPERIMENTATION.

Dataset Size Users Items Mean Iterations!! Sparsity
Netflix (NF) 100,480,507 | 480,189 17,770 5,654 98.82%
Personality (PL) 1,028,751 1,820 35,196 565 98.41%
LastFM 1K (LFM) 19,150,868 992 1,500,661 19,305 99.69%
Netflix GTE 5 (NF5) 23,168,232 463,616 17,775 1304 99,72%
TABLE II

PROCEDURE APPLIED TO EMPHASIZE CONCEPT DRIFT.
Dataset Last 2M Slice | Prune Threshold | Prune Type | Sign
Netflix X 1K Item CD-NF
Personality 150 User CD-PL
LastFM 1K X SK User CD-LFM
Netflix GTE 5 X 1K Item CD-NF5

drift to arise during the rating stream. When considering the
other two datasets (CD-PL and CD-LFM), it is possible to
observe a long history of interactions per user. Similarly to
how item-based concept drift was treated, these datasets are
used to highlight the user-based concept drift.

For the three most massive datasets (LastFM, Netflix, and
Netflix GTE 5), a cut was made of the last 2 million instances.
From then on, pruning was performed according to the values
presented in Table II, dropping users in CD-LFM and CD-PL
datasets, and items for CD-NF and CD-NF5 where the number
of ratings was smaller than the pre-defined threshold. The
dataset with these procedures applied, we add the CD prefix,
i.e., CD-PL, CD-NF, CD-NF5, and CD-LFM. The result of
this procedure can be seen in Table III. As a consequence, it
was possible to obtain datasets with a large average number
of ratings per user/item compared to other datasets in the
literature, with the possibility of producing a concept drift due
to the users and items’ long history of iterations.

B. Results and Discussion

ADADRIFT has 3 parameters that require tuning: «, 6,
dg. Therefore, a grid search has been conducted with the
goal of determining the most suited configuration. The grid
search for this search was o € {1.001,1.1}; (61,0s) € {(20,
10), (100, 50), (200, 100)}. The number of latent factors
k was set to 60, and the regularization factor A = (.001

Since we are looking for different types of concept drift, the average
considered is users’ iterations for CD-PL and CD-LFM, while average items’
iterations for CD-NF and CD-NF5.

TABLE III
DATASETS WITH THE CONCEPT DRIFT TREATMENT.

Dataset Size Users Items | Mean Iterations'T | Sparsity
CD-PL 991,456 1,289 35,144 769 97,83%
CD-NF 810,046 108,269 452 1,792 98,34%
CD-NF5 1,012,145 | 141,132 468 2,162 98,47%
CD-LFM | 1,028,379 119 260,098 8,641 98,72%
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TABLE IV
RESULTS IN PERCENT GAIN AGAINST THE BASELINE MODEL IN
RECALL@N WITH N € {1, 5,10, 20}.

Algorithm ‘ BRISMF ‘ ISGD ‘ Average
[ CbPL_ | CDNF_| CD-NF5 | CDLFM |
Recall@1
Base Model | 1.31%10°T 556%10~° 1.20%10"°2 1.07x 102 -
ADADELTA —92.68% +105.14%  +514.15% +27.80% +138.60%
ADADRIFT —4.28% +156.91%  +401.65%  +908.22% | +365.63%
Recall@5
Base Model | 257+ 10" 1 1.69%10°2 3.88%10 2 24910~ -
ADADELTA —87.90% +75.46% +419.52% +36.81% +110.97%
ADADRIFT —4.19% +99.68% +295.51%  +622.41% | +253.35%
Recall@10
Base Model | 3.55 %10~ 2.96%10 2 8.05%10 3 4.85%10 2 B
ADADELTA —83.18% +67.58% +331.82% +10.25% +81.62%
ADADRIFT —4.30% +71.02% +211.25%  +346.06% | +156.01%
Recall@20
Base Model | 4.82%10° 1 525%10 2 1.77%10 2 1.20%10 1 -
ADADELTA —75.65% +63.66% +255.42% —34.01% +52.36%
ADADRIFT —4.99% +47.85% +14351%  +113.75% +75.03%
CD-LFM
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Fig. 5. The earnings of the models compared to the baseline (ISGD),
measured in percentage gain from Recall@10. The dataset used was CD-
LFM, which consists of the treatment for concept drift carried out in LastFM
1K users.

was set for both BRISMF and ISGD. The best globally'?
performing ADADRIFT configuration was « = 1.1 and
(6r,0s) = (200,100). For ADADELTA, the main hyper-
parameter is the decay rate, which has been explored in the
set p € {0.99,0.95}. The best result shown was p = 0.99.
We used € = 178, which has been recommended in the article
where ADADELTA was proposed [23].

The results of the experiments were presented in Table
IV, considering the percent gain against the baseline model,
i.e., BRISMF and ISGD, without any other technique. This
approach was used due to Recall’s scale, which generally
remains small and makes it difficult to measure/compare gains.

To observe the gain over time, the results obtained for
Recall@10 for the CD-LFM and CD-NF5 datasets can be
seen in the Figures 5 and 6 respectively. The CD-LFM dataset
is the one with the highest number of average ratings per
profile, having about 4 times more than the second-largest,

21t is important to highlight that the tuning process was carried out
globally; that is, the best configuration was obtained considering all datasets.
This procedure was chosen to avoid an optimism of the results, but it also
implies that the result has room for improvement if the search for hyper-
parameters is carried out considering the nuances of each dataset.

CD-NF5
350 1 —— ADADRIFT
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3009 e Baseline

[l
LA
=

=]
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=

=]
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400000 500000

300000
Index

o 100000 200000

Fig. 6. The earnings of the models compared to the baseline (ISGD),
measured in percentage gain from Recall@10. The dataset used was CD-NFS5,
which consists of the treatment for concept drift carried out in positive-only
Netflix dataset.

CD-NF5. Because of this, the incidence of changes from
concept tends to be higher. This characteristic showed a great
impact on the results, as can be seen in Figure 5. ADADRIFT
has a significant and constant gain over time compared to
baseline and ADADELTA. This improvement skyrockets in
the last 125,000 instances, reaching the mark of 346.06% in
the last instance'. This growth is even greater, resulting in
a performance of 908.22% for Recall@1 compared to the
gain of only 27.80% when using ADADELTA, representing
32.67 times more effective. This high performance is due to
the users’ preferences changing and ADADRIFT adaptations,
which are stacking in the final results.

As the average number of ratings per profile decreases
for the datasets, there is a degradation in the gain of the
algorithm. Concerning the CD-NF5 dataset, it is possible to
observe an advantage of ADADELTA, although ADADRIFT
still presents gains compared to the baseline and being a
competitive algorithm. The numerical version of the Net-
flix dataset, CD-NF, has a very similar result between both
algorithms, with slight advantages alternating between the
metrics used. Because ADADRIFT remains competitive, it
is possible to see a better result in the average gain for the
Recall@N|N € {1,5,10,20}. This degradation is expected
due to the decrease in the incidence of concept drifts, which
can generate adaptation where it is not necessary and bring
errors. The graph in Figure 6 shows similar growth for both
algorithms, with ADADELTA having a constant advantage
of around 100% of the ISGD performance. This difference
remains throughout the course, with ADADELTA being 1.39
times more effective than ADADRIFT in the last measure-
ment.

ADADELTA ends up degrading even more by decreasing
the average number of ratings per profile, with ADADRIFT
maintaining a similar result to BRISMF. The importance of

3Due to the functioning of the Recall previously detailed, the last point
represents all hits divided by the number of elements tested. The last point
should be used for measurement.
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the average number of ratings is clear when observing that the
ordering by average ratings is the same as the ADADRIFT’s
gain compared to the baseline for Recall@N|N € {1,5,10}
in CD-PL, CD-NF, CD-NF5, and CD-LFM. This effect is
expected due to the problem that ADADRIFT was thought
to, which will appear exclusively when disposable of a long
interaction history on the platform.

The performance highly correlated with the iteration history
size is desired for easy decision making in which scenarios
his use is profitable or not. Considering that the production
scenario has a larger number of ratings per profile than the
datasets present in the literature, ADADRIFT will thrive with
the adaptation to concept drifts.

V. CONCLUSION AND FUTURE WORK

This paper proposed the ADADRIFT adaptive learning
technique. ADADRIFT increases the learning rate to more
effectively adapt to concept drift, and decreases it during mo-
ments of concept stability, thus avoiding unrequired changes in
the learning process and increased error rates. ADADRIFT was
applied to different learning schemes across different datasets.

Experiments were carried out involving 4 datasets, 2 differ-
ent base algorithms (ISGD and BRISMF), 2 different scenarios
(user-based and item-based concept drift), and a different
adaptive learning technique. ADADRIFT yielded, on average,
better results due to the stability of the algorithm given by the
dualistic relationship between moving averages.

ADADRIFT’s performance has a high correlation with the
average size of iteration history, an expected behavior since
concept drifts need time to appear. ADADRIFT had the best
performance in the modified dataset of LastFM 1K users (CD-
LFM), which possibly had a higher incidence of concept
drifts. It still performed well for the other datasets used,
despite losing slightly to ADADELTA in the version with
only positive interactions of Netflix dataset, CD-NF5. When
using the dataset with the lowest interaction history, it was not
possible to observe any gain in use, resulting in the opposite
effect: a degradation when using the algorithm. Despite this,
there was a slight degradation of ADADRIFT compared to a
worse result for ADADELTA.

It is important to note that the problem of concept drift is
not exclusively for stream-based recommender systems, but
with the entire area of data stream mining. ADADRIFT can
be evaluated in other types of applications that extrapolate rec-
ommender systems, i.e., whenever gradient descent techniques
are applied in streaming environments such as classification
and regression problems.

For future work, we expect to analyze ADADRIFT’s be-
havior with other matrix factorization algorithms, as well as
analyzing the impact of other hyper-parameters, such as the
number of latent factors that could possibly impact profile
change adaptation over time.
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