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Analyzing the Impact of Feature Drifts in
Streaming Learning

Jean Paul Barddal, Heitor Murilo Gomes and Fabŕıcio Enembreck

Graduate Program in Informatics (PPGIa), Pontif́ıcia Universidade Católica do
Paraná, R. Imaculada Conceição, 1155

Abstract. Learning from data streams requires efficient algorithms ca-
pable of deriving a model accordingly to the arrival of new instances.
Data streams are by definition unbounded sequences of data that are
possibly non stationary, i.e. they may undergo changes in data distribu-
tion, phenomenon named concept drift. Concept drifts force streaming
learning algorithms to detect and adapt to such changes in order to
present feasible accuracy throughout time. Nonetheless, most of works
presented in the literature do not account for a specific kind of drifts:
feature drifts. Feature drifts occur whenever the relevance of an arbi-
trary attribute changes through time, also impacting the concept to be
learned. In this paper we (i) verify the occurrence of feature drift in a
publicly available dataset, (ii) present a synthetic data stream genera-
tor capable of performing feature drifts and (iii) analyze the impact of
this type of drift in stream learning algorithms, enlightening that there
is room and the need for dynamic feature selection strategies for data
streams.

1 Introduction

Mining massives amount of data that arrive at rapid rates, namely data streams,
is a recurring challenge. Extracting useful knowledge from these potentially un-
bounded sequences of data requires algorithms capable of acting within limited
time, memory space and deal with its peculiarities i.e. concept drifts [9, 15] and
evolutions [13]. Concept drifts occur when the data distribution changes over
time and are divided in two types: real and virtual. Real concept drifts refer to
changes in the conditional distribution of the target variable y given the input
(features) D, while its distribution in the data input space P [x] may stay intact.
Conversely, virtual concept drifts occur when the data distribution P [x] changes,
independently of the conditional probability of the output values P [y|x] [8].

In this paper we review a specific kind of drift that is not commonly addressed
in the literature: feature drifts. Feature drifts occur whenever the relevance of
a feature (dimension) of a data stream grows or shrinks with time, enforcing
the learning algorithm to adapt its model to ignore the irrelevant attributes
and account for the newly relevant ones [14]. Several approaches on how to
compute the relevance of a feature for the classification task were proposed in
the literature, such as Entropy, Information Gain and Gini Index [10].
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Fig. 1: Information Gain for two specific features of the Spam Corpus dataset.

In order to exemplify a feature drift, we refer to the e-mail spam detection
system presented in [12]. This system was a result of a text mining process on
an online news dissemination system. Essentially, this work intended on creating
an incremental filtering of emails that classifies emails as spam or not and based
on this classification, decides whether this email is relevant for dissemination
among users. The dataset created contains 9,324 instances and 39,917 features,
such that each attribute represents the presence of a single work (feature label)
in the instance (e-mail). This dataset is known for containing a concept drift
which occurs gradually around the instance of number 1,500 [1, 12].

In Fig. 1 we present a plot of the information gain [10] of two specific at-
tributes presented in this problem, namely “directed” and “listinfo”, where one
can see that the the importance of these two attributes exchange gradually
around instance 1,500.

This paper is divided as follows. The data stream learning and feature drift
problems are specified in Section 2. In Section 3 we present a data stream gener-
ator able to simulate feature drifts. In Section 4 we empirically show the impact
of feature drifts in two algorithms: an updatable näıve bayes algorithm and an
incremental decision tree, namely Hoeffding Tree. Finally, in Section 5 we state
the conclusions of this work and discuss envisioned future works.

2 Problem Statement

Let S be a data stream providing instances it = (xt, y) intermittently, where
xt is a d-dimensional data object arriving at a timestamp t and y is its label.
Instances xi are labeled accordingly to values defined in Y = {y1, . . . , yc}. Also,
let D = {D1, D2, . . . , Dd} be the set features of a data stream where d ≥ 1 is the
dimensionality of the problem. It is assumed that S is unbounded, i.e. |S| → ∞,
thus, it is not feasible to store all instances in memory before processing. This
characteristic forces algorithms to either process data in limited size chunks or
to incrementally process instances. Firstly, every instance xi must be processed
before an instance xi+1 becomes available, otherwise instances start to accumu-
late and the algorithm may have to discard them. Secondly, there is an inherent
temporal aspect associated with a stream process, where the data distribution



may change over time, namely concept drift. Therefore, algorithms must also be
able to detect and adapt to drifts, updating the algorithm’s model.

Definition 1. Let Eq. 1 denote a concept C, a set of prior probabilities of the
classes and class-conditional probability density function [14]. Given a stream S,
instances it retrieved will be generated by a concept Ct. If during each instant
ti of S we have Cti = Cti−1

, it occurs that the concept is stable. Otherwise, if
between any two timestamps ti and tj occurs that Cti 6= Ctj , we have a concept
drift.

C = {(P [y1], P [x|y1]), . . . , (P [yc], P [x|yc])} (1)

Definition 2. Given a feature space D at a timestamp t, we are able to select
the top discriminative subset D∗t ⊆ D. A feature drift occurs if, at any two time
instants ti and tj, D∗ti 6= D

∗
tj betides.

In this paper we address the feature drift problem, where relevances of fea-
tures of the data stream vary through time.

Definition 3. Let r(Di, tj) ∈ {0, 1} denote a function which determines the
relevance of a feature Di in a timestamp tj of the stream. A positive relevance
(r(Di, ti) = 1) states that Di ∈ D∗ in a timestamp ti and that it impacts the
underlying probabilities P [x|yi] of the concept Ct in S. A feature drift occurs
whenever the relevance of an attribute Dα changes in a timespan between tj and
tk, as stated in Eq. 2.

∃tj∃tk, tj < tk, r(Dα, tj) 6= r(Dα, tk) (2)

Changes in r(·, ·) directly affect the ground-truth decision boundary to be
learned by the inductive algorithm. Therefore, feature drifts can be seen as a
specific type of real concept drift which can occur with or without changes in
the data distribution P [x]. As in other concept drifts, changes in r(·, ·) may occur
during the stream, therefore enforcing algorithms to discard or adapt the model
already learned, which is based on features that became irrelevant, which shall
be replaced by the most relevant ones [14]. It is important to emphasize that
feature drifts differ from concept drifts since concept drifts might occur without
changes in attributes relevances but only in the a posteriori probabilities P [x|y].

Additionally, performing dynamic feature selection is desired since it pro-
vides a smaller subset of features that gives you as good or better accuracy
in the predictive model, while requiring less data. Less attributes (dimensions)
is desirable since it reduces the complexity of the model, leading to a smaller
chance of overfitting and a model that is simple to understand and explain [5].

In the following section we present a data stream generator able to simulate
feature drifts.



3 Simulating Feature Drifts

To verify the impact of feature drifts in existing streaming learning algorithms,
we present a data stream generator that extends the SEA generator [16].

The generator here proposed simulates streams with d > 2 uniformly dis-
tributed features given by the user, where ∀Di ∈ D, Di ∈ [0; 10] and only two
randomly picked features are relevant to the concept to be learned: Dω and Dζ .
As in [16], the class value y is given accordingly to Eq. 3, where θ is a user-given
threshold.

y =

{
1, Dω +Dζ ≤ θ
0, otherwise

(3)

Additionally, each instance synthesized has a 10% probability of being gen-
erated as noise.

To promote synthetic feature drifts in streams, we adopt the sigmoid frame-
work stated in Eq. 4 and introduced in [4]. This model treats a feature drift as
a combination of two pure distributions that characterizes concepts before and
after the drift. The variables presented in Eq. 4 are the following: f(ti) is the
probability that an instance xi belongs to the prior concept, 1 − f(ti) is the
probability for the posterior concept, w is the drift window size and t0 is the
drift moment.

f(ti) =
1

(1 + e−w×(ti−t0))
(4)

In [2] authors observe that Eq. 4 has a derivative at time t0 equal to f ′(t0) =
s/4 and that tan α = f ′(t0), thus tan α = s/4. Also, tan α = 1/W and as
s = 4 tan α then α = 4/W , namely t0 (time of drift), w and α (phase angle).
In this sigmoid model there are only two parameters to be specified: t0 and W .

Nonetheless, it is important to emphasize that any decay function can be
applied to simulate feature drifts.

4 Analysis

In this section we evaluate the accuracy of an incremental and updatable Näıve
Bayes algorithm and an incremental decision tree, namely Hoeffding Tree [6], in
both abrupt and gradual feature drifts. Firstly, we briefly introduce the evaluated
algorithms and the experimental protocol adopted. Finally, we discuss the results
obtained.

4.1 Evaluated Algorithms

Updatable Näıve Bayes The updatable Näıve Bayes algorithm is an incre-
mental version of the popular Näıve Bayes algorithm. Both algorithms rely on



the assumption that all attributes of the dataset are independent, with the ex-
ception of the output value y, which depends on all others D1, . . . , Dd. Therefore,
these algorithms compute the output value for an input instance xi as stated in
Eq. 5, determining the value of y that maximizes the probability P [xi|y].

P [xi|y] =
P [y|xi]× P [xi]

P [y]
(5)

In order to compute probabilities in a streaming environment, the Updat-
able Näıve Bayes stores a contingency table, therefore, no windowing process is
needed whatsoever.

Hoeffding Tree Hoeffding Trees algorithms construct decision trees by using
constant memory and constant time per sample [6]. These trees are built by re-
cursively replacing leaves with decision nodes, as data arrives. Different heuristic
evaluation functions are used to determine whether a split should be performed
or not, such as Gain Ratio, Entropy and Gini Coefficient [10]. To do so, Hoeffding
Trees assume that the input data meets the Hoeffding bound [11].

Assuming a random variable r ∈ R with range R, a number of independent
observations n, the mean computed by the latter observations n̄; the Hoeffding
Inequality states that with probability 1 − δ the true mean of a variable is at
least r̄ − ε, where ε is given by Eq. 6 and δ is a user-given confidence bound.

ε =

√
R2 ln

(
1
δ

)
2n

(6)

The Hoeffding bound is able to give results regardless the probability distri-
bution that generates data. However, the number of observations needed to reach
certain values of δ and ε are different across different probability distributions
[3]. Generally, with probability 1− δ, one can say that one attribute is superior
when compared to others when observed difference of information gain (or any
other metric that computes the importance of an attribute) is greater then ε.

Finally, all tree’s nodes maintain statistics about the data used to derive itself.
Periodically, Hoeffdings Trees discard nodes of the tree that are not accessed
during traverses and replaces them by new ones accordingly to the Hoeffding
bound and the chosen split function.

4.2 Experimental Protocol

Five different scenarios are evaluated in this section. The first scenario is the
Spam Corpus dataset presented in [12], while the other four adopt the generator
presented in Section 3 and were parametrized as follows:

– FD-1: 50,000 instances, θ = 7 and d = 10
• Drift 1: t0 = 25, 000, w = 1;

– FD-2: 50,000 instances, θ = 7 and d = 10
• Drift 1: t0 = 25, 000, w = 1, 000;



– FD-3: 100,000 instances, θ = 9.5 and d = 10
• Drift 1: t0 = 34, 000, w = 1;
• Drift 2: t0 = 67, 000, w = 1;

– FD-4: 100,000 instances, θ = 9.5 and d = 10
• Drift 1: t0 = 34, 000, w = 1, 000;
• Drift 2: t0 = 67, 000, w = 1, 000;

In our experiments accuracy is measured using the Prequential test-then-
train method. We adopted the Prequential procedure [7] due the the monitoring
of the evolution of performance of models over time although it may be pes-
simistic in comparison to the holdout estimative. Nevertheless, authors in [7]
observe that the prequential error converges to an periodic holdout estimative
when estimated over a sliding window. Along these lines, we determined an
evaluation sliding window of 1,000 instances for these experiments.

Finally, all experiments here presented were implemented and evaluated un-
der the Massive Online Analysis (MOA) framework [4].

4.3 Results Obtained

In Fig. 2a one can see that accuracy drops by 60% during the known feature
drift and slowly recovers after approximately 3,500 instances.

In Figs. 2b through 2e we present the results obtained by the Näıve Bayes and
the Hoeffding Tree algorithms in the FD-1, FD-2, FD-3 and FD-4 experiments,
respectively.

In Figs. 2b and 2c one can see the impact of one feature drift during the
stream. In both cases, it is, abrupt and gradual changes, both algorithms has its
accuracy damped in 20% and the Näıve Bayes fails to completely recover until
the end of the stream.

Additionally, in Figs. 2d and 2e one can see that impact of two drifts in
accuracy for both algorithms. Again, the mean accuracy drops by 30%, showing
the difficulty of adapting to both abrupt and gradual feature drifts.

The results here presented enable us to argue that existing algorithms do not
account for the possibility of feature drifts. Even Hoeffding Trees, which perform
feature selection during the stream, fail to quickly adapt to changes in features’
relevances, showing that there is room and the need for dynamic feature selection
algorithms for data streams.

5 Conclusion

In this paper we analyzed the feature drift problem. Feature drifts differ from
conventional concept drifts since they do not occur accordingly to changes in
the data distribution, but on the relevance of each attribute in the concept to
be learned. Additionally, we presented a data generator capable of synthesizing
data streams with this peculiarity. Finally, we benchmarked an incremental and
updatable Näıve Bayes classifier and an incremental decision tree on synthetic
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Fig. 2: Accuracy obtained during experiments with feature drifts.

data streams with feature drifts, showing the impact of feature drifts in their
accuracy. We must emphasize that even the Hoeffding Tree fails to quickly adapt
to feature drifts, an important trait since it possesses an embedded feature se-
lection algorithm to determine splits in real-time processing, which is however,
performed accordingly to user-given parameters and not automatically.

The results here presented highlight the inefficiency of algorithms on track-
ing which attributes are relevant for classification in data streams. Therefore,
dynamic feature selection algorithms are of utmost importance to quickly detect
and adapt to feature drifts.

In future works we plan to verify the efficiency of state-of-the-art algorithms
with the addition of feature selection algorithms using periodical verifications
of feature relevances accordingly to a landmark windowing technique. Further-
more, we plan to study the impact of feature evolutions, i.e. appearance and
disappearance of features, in streaming learning environments.
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methods for evolving data streams. In Proc. of the 15th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 139–148. ACM
SIGKDD, Jun. 2009.
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8. João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. A survey on concept drift adaptation. ACM Comput. Surv.,
46(4):44:1–44:37, March 2014.

9. Joao Gama. Knowledge Discovery from Data Streams. Chapman & Hall/CRC, 1st
edition, 2010.

10. Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. The weka data mining software: An update. SIGKDD Explor.
Newsl., 11(1):10–18, November 2009.

11. Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, March 1963.

12. Ioannis Katakis, Grigorios Tsoumakas, and Ioannis Vlahavas. Dynamic fea-
ture space and incremental feature selection for the classification of textual data
streams. In in ECML/PKDD-2006 International Workshop on Knowledge Discov-
ery from Data Streams. 2006, page 107. Springer Verlag, 2006.

13. Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, and Bhavani M.
Thuraisingham. Classification and novel class detection in concept-drifting data
streams under time constraints. IEEE Trans. Knowl. Data Eng., 23(6):859–874,
2011.

14. Hai-Long Nguyen, Yew-Kwong Woon, Wee-Keong Ng, and Li Wan. Heterogeneous
ensemble for feature drifts in data streams. In Pang-Ning Tan, Sanjay Chawla,
ChinKuan Ho, and James Bailey, editors, Advances in Knowledge Discovery and
Data Mining, volume 7302 of Lecture Notes in Computer Science, pages 1–12.
Springer Berlin Heidelberg, 2012.

15. Jonathan A. Silva, Elaine R. Faria, Rodrigo C. Barros, Eduardo R. Hruschka,
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