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Abstract Random forests is currently one of the most used machine learning algorithms
in the non-streaming (batch) setting. This preference is attributable to its high learning per-
formance and low demands with respect to input preparation and hyper-parameter tuning.
However, in the challenging context of evolving data streams, there is no random forests
algorithm that can be considered state-of-the-art in comparison to bagging and boosting
based algorithms. In this work, we present the adaptive random forest (ARF) algorithm for
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classification of evolving data streams. In contrast to previous attempts of replicating random
forests for data stream learning, ARF includes an effective resampling method and adaptive
operators that can cope with different types of concept drifts without complex optimizations
for different data sets. We present experiments with a parallel implementation of ARF which
has no degradation in terms of classification performance in comparison to a serial imple-
mentation, since trees and adaptive operators are independent from one another. Finally, we
compare ARF with state-of-the-art algorithms in a traditional test-then-train evaluation and a
novel delayed labelling evaluation, and show that ARF is accurate and uses a feasible amount
of resources.

Keywords Data stream mining · Random forests · Ensemble learning · Concept drift

1 Introduction

As technology advances, machine learning is becoming more pervasive in real world appli-
cations. Nowadays many businesses are aided by learning algorithms for several tasks such
as: predicting users’ interests on advertisements, products or entertainment media recom-
mendations, spam filters, autonomous driving, stock market predictions, face recognition,
cancer detection, weather forecast, credit scoring, and many others. Some of these applica-
tions tolerate offline processing of data, which can take from a few minutes to weeks, while
some of them demand real-time—or near real-time—processing as their source of data is
non-stationary, i.e. it constitutes an evolving data stream.

While learning from evolving data streams one must be aware that it is infeasible to
store data prior to learning as it is neither useful (old data may not represent the current
concept) nor practical (data may surpass available memory). Also, it is expected that the
learning algorithm is able to process instances at least as fast as new ones are made available,
otherwise the system will either collapse due to lack of memory or start discarding upcoming
data.

This evolving data stream learning setting has motivated the development of a multitude
of methods for supervised (Oza 2005; Kolter et al. 2003; Bifet et al. 2010; Brzezinski and
Stefanowski 2014; Gomes and Enembreck 2014), unsupervised (Guha et al. 2000; Ruiz et al.
2009; Barddal et al. 2015), andmore recently semi-supervised learning (Qin et al. 2013; Sethi
et al. 2014; Parker andKhan 2015). Ensemble learners are often preferredwhen learning from
evolving data streams, since they are able to achieve high learning performance,withoutmuch
optimization, and have the advantageous characteristic of being flexible as new learners can
be selectively added, updated, reset or removed (Kolter et al. 2003; Bifet et al. 2009, 2010;
Brzezinski and Stefanowski 2014).

Bagging (Breiman 1996), boosting (Freund et al. 1996) and random forests (Breiman
2001) are classic ensemble methods that achieve superior learning performance by aggre-
gating multiple weak learners. Bagging uses sampling with reposition (i.e. resampling) to
train classifiers on different subsets of instances, which effectively increases the variance
of each classifier without increasing the overall bias. Boosting iteratively trains classifiers
by increasing the weight of instances that were previously misclassified. Random forests
grow decision trees by training them on resampled versions of the original data (similarly
to bagging) and by randomly selecting a small number of features that can be inspected at
each node for split. There are multiple versions of bagging and boosting that are part of the
current state-of-the-art for evolving data stream learning, such as leveraging bagging (Bifet
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et al. 2010) and online smooth-boost (Chen et al. 2012). Random forests for evolving data
stream learning is currently represented by the dynamic streaming random forests (Abdul-
salam et al. 2008), which lacks a resampling method, uses a drift detection algorithm with
no theoretical guarantees, and was evaluated only on limited synthetic data (1 data set with
7 million instances, 5 attributes and 5 classes).

In this work we present the adaptive random forests (ARF) algorithm, a new streaming
classifier for evolving data streams. ARF is an adaptation of the classical Random Forest
algorithm (Breiman 2001), and can also be viewed as an updated version of previous attempts
to perform this adaptation (Abdulsalam et al. 2007, 2008). Therefore, the main novelty of
ARF is in how it combines the batch algorithm traits with dynamic update methods to deal
with evolving data streams. In comparison to previous adaptations of random forest to the
stream setting (Abdulsalam et al. 2007, 2008), ARF uses a theoretically sound resampling
method based on online bagging (Oza 2005) and an updated adaptive strategy to cope with
evolving data streams. This adaptive strategy is based on using a drift monitor per tree to track
warnings and drifts, and to train new trees in the background (when a warning is detected)
before replacing them (when a drift is detected). We avoid bounding ARF to a specific drift
detection algorithm to facilitate future adaptations, thus we present experiments using both
ADWIN (Bifet and Gavaldà 2007) and Page Hinkley Test (Page 1954).

The main contributions of this paper are the following:

– Adaptive random forests (ARF) a newRandom forests algorithm for evolving data stream
classification. As shown in the empirical experiments in Sect. 6, ARF is able to obtain
high classification in data streams with different characteristics without further hyper-
parameter tuning. Since it is a sustainable off-the-shelf learner for the challenging task of
evolving data stream classification, it is going to be useful for both practical applications
and as a benchmark for future algorithms proposals in the field.

– Drift adaptation we propose a drift adaptation strategy that does not simply reset base
models whenever a drift is detected. In fact, it start training a background tree after a
warning has been detected and only replace the primary model if the drift occurs. This
strategy can be adapted to other ensembles as it is not dependent on the base model.

– Parallel implementation we present experiments in terms of CPU time and RAM-hours
of a parallel implementation of ARF.

– Comprehensive experimental setting very often experiments with novel classifiers are
focused on the well known test-then-train setting, where it is assumed that labels for an
instance are available before the next instance arrives. We discuss the implications of a
setting where labels are not readily available (delayed setting) and report experiments
based on it. Besides using accuracy to measure classification performance, we also report
Kappa M (Bifet et al. 2015) and Kappa Temporal (Žliobaitė et al. 2015), which allow
better estimations for data sets with imbalanced classtability-plasticity es and temporal
dependencies, respectively.

– Open source All data sets and algorithms used in this paper are going to be available
as an extension to the MOA software (Bifet et al. 2010), the most popular open source
software on data stream mining,1 as a public available benchmark that other researchers
can use in their research when developing new algorithms.

The remainder of this work is organized as follows. In Sect. 2 we describe the chal-
lenges, characteristics and different settings concerning evolving data streams classification.
In Sect. 3 we briefly discuss related works for data stream classification. Section 4 contains

1 https://github.com/hmgomes/AdaptiveRandomForest
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the description of our novel algorithm, i.e. adaptive random forests. In Sect. 5 the experi-
mental setting and data sets used are described. In Sect. 6 the results of the experiments are
presented and thoroughly discussed. Finally, Sect. 7 concludes this work and poses directions
for future work.

2 Problem statement

Data stream classification, or online classification, is similar to batch classification in the
sense that both are concerned with predicting a nominal (class) value y of an unlabeled
instance represented by a vector of characteristics x . The difference between online and
batch resides in how learning, and predictions, take place. In data stream classification,
instances are not readily available for training as part of a large static data set, instead,
they are provided as a continuous stream of data in a fast-paced way. Prediction requests
are expected to arrive at any time and the classifier must use its current model to make
predictions.On top of that, it is assumed that concept driftsmay occur (evolving data streams),
which damage (or completely invalidate) the current learned model. Concept drifts might be
interleaved with stable periods that vary in length, and as a consequence, besides learning
new concepts it is also expected that the classifier retains previously learned knowledge.
The ability to learn new concepts (plasticity) while retaining knowledge (stability) is known
as the stability-plasticity dilemma (Lim and Harrison 2003; Gama et al. 2014). In other
words, a data stream learner must be prepared to process a possibly infinite amount of
instances, such that storage for further processing is possible as long as the algorithm can
keep processing instances at least as fast as they arrive. Also, the algorithm must incorporate
mechanisms to adapt its model to concept drifts, while selectively maintaining previously
acquired knowledge.

Formally, a data stream S presents, every u time units, new unlabeled instances xt to
the classifier for prediction, such that xt represents a vector of features made available
at time t . Most of the existing works on data stream classification assumes that the true
class label yt corresponding to instance xt is available before the next instance xt+1 is
presented to the learning algorithm, thus the learner can use it for training immediately
after it has been used for prediction. This setting may be realistic for problems like short-
term stock marketing predictions, although this is not the only meaningful setting for data
stream learning. In some real-world problems labels are not readily available, or some are
never available, after predictions. In Fig. 1 we represent the characteristics of a stream
learning problem according to when labels are made available, and briefly discuss them
below:

– Immediate: labels are presented to the learner before the next instance arrives.
– Delayed: labels arrive with delay d which may be fixed or vary for different instances.
– Never: labels are never available to the learner.

Situations where labels are never available (unsupervised learning) or where some per-
centage p of labels will never arrive (semi-supervised learning) are outside the scope of this
work. Also, when labels are presented in a delayed fashion, it may be the case that they arrive
in batches of size greater than one, and the learner must rapidly use these batches to update
its model as new instances for prediction might arrive concomitantly. In this paper we eval-
uate our adaptive random forests (ARF) algorithm in both immediate and delayed settings.
As well as comparing the results from both settings in terms of classification accuracy, we
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Stream learning

Immediate Delayed Never
(Unsupervised)

Fixed Varying

All labeled
(Supervised)

Some labeled
(Semi-Supervised)

Fig. 1 Stream learning according to labels arrival time

also report CPU time and memory consumption (RAM-hours) as estimates of computational
resources usage.

3 Related work

Ensemble classifiers are often chosen for dealing with evolving data stream classification.
Besides ensembles achieving (on average) higher classification performance than single
models, this decision is also based on the distinctive trait that ensembles allow selective
reset/remove/add/update of base models in response to drifts. Many state-of-the-art ensem-
ble methods for data stream learning (Oza 2005; Chen et al. 2012; Pelossof et al. 2009;
Beygelzimer et al. 2015) are adapted versions of bagging (Breiman 1996) and boosting
(Freund and Schapire 1997). The standard online bagging algorithm uses λ = 1, which
means that around 37% of the values output by the Poisson distribution are 0, another 37%
are 1, and 26% are greater than 1. This implies that by using Poison (1) 37% of the instances
are not used for training (value 0), 37% are used once (value 1), and 26% are trained with
repetition (values greater than 1). Subsequent algorithms like leveraging bagging (Bifet et al.
2010) and the diversity for dealing with drifts ensemble (DDD) (Minku and Yao 2012) uses
different values of λ to use more instances for training the base models (as in leveraging
bagging) or to induce more diversity to the ensemble by using varying values of λ (as in
DDD).

One advantage of adapting existing batch ensembles is that they have already been
thoroughly studied, thus as long as the adaptation to online learning retains the original
method properties it can benefit from previous theoretical guarantees. The first attempt
to adapt random forests (Breiman 2001) to data stream learning is the streaming random
forests (Abdulsalam et al. 2007). Streaming random forests grow binary Hoeffding trees
while limiting the number of features considered for split at every node to a random subset of
features and by training each tree on random samples (without replacement) of the training
data. Effectively, trees are trained sequentially on a fixed number of instances controlled
by a hyper-parameter tree window, which means that after a tree’s training is finished its
model will never be updated. As a result, this approach is only reasonable for stationary data
streams.

123



1474 Mach Learn (2017) 106:1469–1495

To cope with evolving data streams, ensembles are often coupled with drift detectors. For
instance, leveraging bagging (Bifet et al. 2010) andADWINbagging (Bifet et al. 2009) use the
ADaptive WINdowing (ADWIN) algorithm (Bifet and Gavaldà 2007), while DDD (Minku
and Yao 2012) uses early drift detection method (EDDM) (Baena-García et al. 2006) to
detect concept drifts. Another approach to deal with concept drifts while using an ensemble
of classifiers is to constantly reset low performance classifiers (Kolter et al. 2003; Brzezinski
and Stefanowski 2014; Gomes and Enembreck 2014). This reactive approach is useful to
recover from gradual drifts, while methods based on drift detectors are more appropriate for
rapidly recovering from abrupt drifts.

The same authors from streaming random forests (Abdulsalam et al. 2007) presented
the dynamic streaming random forests (Abdulsalam et al. 2008) to cope with evolving data
streams. Dynamic streaming random forests replaces the hyper-parameter tree window by
a dynamically updated parameter tree min which is supposed to enforce trees that achieve
performance at least better than random guessing. Dynamic streaming random Forests also
includes an entropy-based drift detection technique that outputs an estimate percentage of
concept change. According to this estimated percentage of concept change, more trees are
reset. However, if it is 0, at least 25% of the trees are reset whenever a new block of labelled
instances is available.

Our adaptive random forests (ARF) algorithm resembles dynamic streaming random
forests as both use Hoeffding trees as base learners and include a drift detection operator.
The first difference between both algorithms is that ARF simulates sampling with reposition
via online bagging (Oza 2005) instead of growing each tree sequentially on different subsets
of data. This is not only a more theoretically sustainable approach, but also has the practical
effect of allowing training trees in parallel.

Another difference is that dynamic streaming random forests reset 25% of its trees every
new batch of labelled instances, while ARF is based on a warning and drift detection scheme
per tree, such that after a warning has been detected for one tree, another one (background
tree) starts growing in parallel and replaces the tree only if the warning escalates to a drift.

Finally, ARF hyper-parameters are limited to the subset of features size m, the number of
trees n and the thresholds that control the drift detection method sensitivity, thus it does not
depend on difficult to set hyper-parameters such as the number of instances a tree must be
trained on, or the minimum accuracy that a tree has to achieve before training stops.

4 Adaptive random forests

Random forests (Breiman 2001) is a widely used learning algorithm in non-stream (batch)
classification and regression tasks. Random forests can grow many trees while preventing
them from overfitting by decorrelating them via bootstrap aggregating (bagging Breiman
1996) and random selection of features during node split. The original random forests algo-
rithm requires multiple passes over input data to create bootstraps for each tree, while for
each internal node of every tree a pass over some portion of the original features.

In data stream learning it is infeasible to perform multiple passes over input data. Thus,
an adaptation of Random Forests to streaming data depends on: (1) an appropriate online
bootstrap aggregating process; and (2) limiting each leaf split decision to a subset of fea-
tures. The second requirement is achieved by modifying the base tree induction algorithm,
effectively by restricting the set of features considered for further splits to a random subset
of size m, where m < M and M corresponds to the total number of features. To explain
our adaptations to address the first requirement we need to discuss how bagging works in
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Algorithm 1RFTree Train. Symbols: λ: Fixed parameter to Poisson distribution;GP: Grace
period before recalculating heuristics for split test.
1: function RFTreeTrain(m, t, x, y)
2: k ← Poisson(λ = 6)
3: if k > 0 then
4: l ← FindLea f (t, x)
5: UpdateLea f Counts(l, x, k)
6: if I nstancesSeen(l) ≥ GP then
7: Attempt Spli t (l)
8: if DidSpli t (l) then
9: CreateChildren(l,m)

10: end if
11: end if
12: end if
13: end function

non-streaming, and how it is simulated in a streaming setting. In non-streaming bagging
(Breiman 1996), each of the n base models is trained in a bootstrap sample of size Z cre-
ated by drawing random samples with replacement from the training set. Each bootstrapped
sample contains an original training instance K times, where P(K = k) follows a binomial
distribution. For large values of Z this binomial distribution adheres to a Poisson (λ = 1)
distribution. Based on that, authors in Oza (2005) proposed the online bagging algorithm,
which approximates the original random sampling with replacement by weighting instances2

according to a Poisson(λ = 1) distribution. In ARF, we use Poisson (λ = 6), as in leveraging
bagging (Bifet et al. 2010), instead of Poisson (λ = 1). This “leverages” resampling, and
has the practical effect of increasing the probability of assigning higher weights to instances
while training the base models.

The function responsible for inducing each base tree is detailed in Algorithm 1. Random
forest tree training (RFTreeTrain) is based on the Hoeffding tree algorithm (i.e. very fast
decision tree) (Domingos and Hulten 2000) with some important differences. First, RFTree-
Train does not include any early tree pruning. Second, whenever a new node is created (line
9, Algorithm 1) a random subset of features with sizem is selected and split attempts (line 7,
Algorithm 1) are limited to these features for the given node. Smaller values of GP3 (line 6,
Algorithm 1) causes recalculations of the split heuristic more frequently and tends to yield
deeper trees. In general, deeper trees are acceptable, even desired, in random forests. It is
acceptable because even if individual trees overfit, the variance reduction from averaging
multiple trees prevents the whole forest from overfitting. It is desired as trees with very
specialized models tend to differ more from one another.

The overall ARF pseudo-code is presented in Algorithm 2. To cope with stationary data
streams a simple algorithm where each base tree is trained according to RFTreeTraining
function as new instances are available would be sufficient, i.e. the lines 11–21 could be
ommited from Algorithm 2. However, in ARF we aim at dealing with evolving data streams,
thus it is necessary to include other strategies to cope with concept drifts. Concretely, these
strategies include drift/warning detection methods, weighted voting and training trees in the
background before replacing existing trees. The rest of this section is dedicated to explain
and justify these strategies.

2 In this context, weighting an instance with a value w for a given base model is analogous to training the
base model w times with that instance.
3 GP was originally introduced in Domingos and Hulten (2000) as nmin , we use GP for consistency with
the rest of our nomenclature.
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Algorithm 2 Adaptive random forests. Symbols: m: maximum features evaluated per split;
n: total number of trees (n = |T |); δw: warning threshold; δd : drift threshold; c(·): change
detection method; S: Data stream; B: Set of background trees; W (t): Tree t weight; P(·):
Learning performance estimation function.
1: function AdaptiveRandomForests(m, n, δw, δd )
2: T ← CreateTrees(n)

3: W ← I ni tWeights(n)

4: B ← ∅
5: while HasNext (S) do
6: (x, y) ← next (S)

7: for all t ∈ T do
8: ŷ ← predict (t, x)
9: W (t) ← P(W (t), ŷ, y)
10: RFTreeTrain(m, t, x, y) � Train t on the current instance (x, y)
11: if C(δw, t, x, y) then � Warning detected?
12: b ← CreateTree() � Init background tree
13: B(t) ← b
14: end if
15: if C(δd , t, x, y) then � Drift detected?
16: t ← B(t) � Replace t by its background tree
17: end if
18: end for
19: for all b ∈ B do � Train each background tree
20: RFTreeTrain(m, b, x, y)
21: end for
22: end while
23: end function

To cope with evolving data streams a drift detection algorithm is usually coupled with
the ensemble algorithm (Bifet et al. 2009, 2010). The default approach is to reset learners
immediately after a drift is signaled. This may decrease the ensemble classification per-
formance, since this learner has not been trained on any instance, thus making it unable
to positively impact the overall ensemble predictions. Instead of resetting trees as soon as
drifts are detected, in ARF we use a more permissive threshold to detect warnings (line 11,
Algorithm 2) and create “background” trees that are trained (line 16, Algorithm 2) along the
ensemble without influence the ensemble predictions. If a drift is detected (line 15, Algo-
rithm 2) for the tree that originated the warning signal it is then replaced by its respective
background tree.

ARF is not bounded to a specific detector. To show how different drift detection meth-
ods would perform in our implementation, we present experiments with ADWIN and Page
Hinkley Test (PHT) (Page 1954). Some drift detection algorithms might depend on many
parameters (this is the case for PHT), however to simplify our pseudocode we assume only
two different parameters one for warning detection δw and another for drift detection δd .
Effectively, for ADWIN δw and δd corresponds to the confidence level of the warning and
drift detection, respectively, while in PHT each would comprise a set of parameters.

In ARF votes are weighted based on the trees’ test-then-train accuracy (line 9, Algorithm
2), i.e. assuming the tree l has seen nl instances since its last reset and correctly classi-
fied cl instances, such that cl ≤ nl , then its weight will be cl/nl . Assuming the drift and
warning detection methods are precise, then this weighting reflects the tree performance on
the current concept. An advantage of using this weighting mechanism is that it does not
require a predefined window or fading factor to estimate accuracy as in other data stream
ensembles (Brzeziński and Stefanowski 2011; Brzezinski and Stefanowski 2014; Gomes and
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Enembreck 2014). Similarly to the drift/warning detection method, other voting schemes
could be used. To illustrate that we also present experiments using a simple majority vote.

4.1 Theoretical insights

Given the maximum features per splitm, the number of classes c, the number of leaves l, and
the maximum number of possible values per feature v, a single Hoeffding Tree (Domingos
and Hulten 2000) demands O (lmcv) memory assuming memory depends only on the true
concept (Domingos and Hulten 2000). Given T as the total number of trees and lmax as the
maximum number of leaves for all trees, the ARF algorithm, without warning/drift detection,
requires O (T lmaxmcv), while using drift detection requires the space allocated for each data
structure per tree to be allocated. For example, ADWIN (Bifet and Gavaldà 2007) requires
O(M · log(W/M)), such that M is the number of buckets, while W is maximum numbers
per memory word (Bifet and Gavaldà 2007), thus ARF using ADWIN for warning and drift
detection requires O (T ((M · log(W/M) + lmaxmcv)) of space.

The number of background trees is never greater than the maximum number of trees, i.e.
|B| ≤ n, thus in the worst case it is necessary to allocate 2n trees concurrently. However
the warning/drift detection data structures are not activated in the background trees, thus
they require less memory than an actual tree and this also prevents background trees from
triggering warnings which could lead to multiple recursive creations of background trees.

Finally, in the Hoeffding Tree algorithm (Domingos and Hulten 2000) authors present
a strategy to limit memory usage by introducing a threshold that represents the maximum
available memory, in case this threshold is reached then the least promising leaves are deac-
tivated. Assuming pl is the probability that a leaf node is reach, and el is the observed error
rate at l, then pl ·el is an upper bound on the error reduction achievable by refining l, the least
promising leaves are those that achieve the lowest values of pl · el . Originally, Hoeffding
Trees also include a pruning strategy that removes poor attributes early on, yet we do not
include this operation in ARF as pruning in Random Forests reduces variability.

4.2 Parallelizing the adaptive random forests algorithm

The most time consuming task in ensemble classifiers is often training its base learners,
exceptions being ensembles in which lazy learners are used. In a data stream configuration,
base learners are recurrently responsible for other tasks, for example, keeping track of drift
and updating individual data structures that represent their weights. In ARF, training a tree
with an instance includes updates to the underlying drift detector, incrementing its estimate
test-then-train accuracy, and, if a warning is signalled, starting a new background tree. The
aforementioned operations can be executed independently for each tree, thus it is doable to
execute them in separate threads. To verify the advantages of training trees in parallel we
provide a parallel version ARF[M] and compare it against a standard serial implementation
ARF[S]. Anticipating the results presented in the experiments section, the parallel version is
around 3 times faster than the serial version and since we are simply paralleling independent
operations there is no loss in classification performance, i.e. the results are exactly the same.

5 Experimental setting

In this section we present the experimental setting used.We evaluate the experiments in terms
of memory, time and classification performance. Memory is measured in GBs and based on
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RAM-hours (Bifet et al. 2010), i.e. one GB of memory deployed for 1 h corresponds to one
RAM-Hour. Processing time is measured in seconds and is based on the CPU time used for
training and testing. To assess classification performancewe perform tenfold cross-validation
prequential evaluation (Bifet et al. 2015).4 This evaluation ought not be confused with the
standard cross-validation from batch learning, which is not applicable to data stream classifi-
cation mainly because instances can be strongly time-dependent, thus making it very difficult
to organize instances in folds that reflects the characteristics of the data. Three different strate-
gies were proposed in Bifet et al. (2015) for cross-validation prequential evaluation, namely:
k-fold distributed cross-validation, k-fold distributed split-validation and k-fold distributed
bootstrap validation. These strategies share the characteristic of training and testing k models
in parallel, while they differ on how the folds are built. In our evaluation framework we use
the k-fold distributed cross-validation as recommended in Bifet et al. (2015). In this strat-
egy, each instance is used for testing in one randomly selected model and for training by all
others.

Since accuracy can be misleading on data sets with class imbalance or temporal depen-
dencies, so we also report KappaM and Kappa Temporal. Bifet et al. (2015) show that Kappa
M measure has advantages over Kappa statistic as it has a zero value for a majority class
classifier. For data sets that exhibit temporal dependencies it is advisable to evaluate Kappa
Temporal since it replaces majority class classifier with the NoChange classifier (Žliobaitė
et al. 2015).

All the experiments were performed on machines with 40 cores5 and 200 GB of RAM.
Experiments focusing resources usage were run individually and repeated 10 times to dimin-
ish perturbations on the results. We evaluate algorithms using the immediate setting and
delayed setting. In the delayed setting, the delay was set to 1000 instances and the classifica-
tion performance estimates are calculated the same way as they are in the immediate setting,
i.e. a tenfold cross-validation. The only difference is ‘when’ labels become available to train
the classifier, i.e. 1000 instances after the instance is used for prediction. To verify if there
were statistically significant differences between algorithms, we performed non-parametric
tests using themethodology fromDemšar (2006). For the statistical test we employ the Fried-
man test with α = 0.05 and the null hypothesis “there were no statistical difference between
given algorithms”, if it is rejected, then we proceed with the Nemenyi post-hoc test to identify
these differences. All experiments were configured and executed within the massive online
analysis (MOA) framework (Bifet et al. 2010).

We use 10 synthetic and 6 real data sets on our experiments. The synthetic data sets
include abrupt, gradual, incremental drifts and one stationary data stream, while the real data
sets have been thoroughly used in the literature to assess the classification performance
of data stream classifiers and exhibit multiclass, temporal dependences and imbalanced
data sets. The tenfold distributed cross-validation for SPAM data set with 100 base mod-
els did not finish for LevBag, OzaBag and OzaBoost, as the machine run out of memory
(we have tried using up to 200GB of memory). Therefore we only report SPAM results in
the end of this report to show how ARF performs on a data set with a massive amount
of features (see Fig. 6). Our goal with this multitude of data sets with different char-
acteristics is to show how ARF performs on each of these scenarios. Table 1 presents
an overview of the data sets, while further details can be found in the rest of this sec-
tion.

4 Prequential evaluation is similar to test-then-train, the only difference between them is that prequential
includes a fading factor to ‘forget’ old predictions performance.
5 Intel(R) Xeon(R) CPU E5-2660 v3 2.60GHz
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Table 1 Data sets configurations [A: Abrupt Drift, G: Gradual Drift, Im : Incremental Drift (moderate) and
I f : Incremental Drift (fast)]

Data set # Instances # Features Type Drifts # Classes MF label (%) LF label (%)

LEDa 1,000,000 24 Synthetic G 10 10.08 9.94

LEDg 1,000,000 24 Synthetic G 10 10.08 9.94

SEAa 1,000,000 3 Synthetic G 2 57.55 42.45

SEAg 1,000,000 3 Synthetic G 2 57.55 42.45

AGRa 1,000,000 9 Synthetic A 2 52.83 47.17

AGRg 1,000,000 9 Synthetic G 2 52.83 47.17

RTG 1,000,000 10 Synthetic N 2 57.82 42.18

RBFm 1,000,000 10 Synthetic Im 5 30.01 9.27

RBF f 1,000,000 10 Synthetic I f 5 30.01 9.27

HYPER 1,000,000 10 Synthetic I f 2 50.0 50.0

AIRL 539,383 7 Real – 2 55.46 44.54

ELEC 45,312 8 Real – 2 57.55 42.45

COVT 581,012 54 Real – 7 48.76 0.47

GMSC 150,000 11 Real – 2 93.32 6.68

KDD99 4,898,431 41 Real – 23 57.32 0.00004

SPAM 9324 39,917 Real – 2 74.4 25.6

MF Label and LF Label stands for Most Frequent and Less Frequent class label, respectively

LED The LED data set simulates both abrupt and gradual drifts based on the LED genera-
tor, early introduced in Breiman et al. (1984). This generator yields instances with 24 boolean
features, 17 of which are irrelevant. The remaining 7 features corresponds to each segment of
a seven-segment LED display. The goal is to predict the digit displayed on the LED display,
where each feature has a 10% chance of being inverted. To simulate drifts in this data set the
relevant features are swapped with irrelevant features. Concretely, we parametrize 3 gradual
drifts each with an amplitude of 50k instances and centered at the 250k, 500k and 750k
instance, respectively. The first drift swaps 3 features, the second drift swaps 5 features, and
the last one 7 features. LEDg simulates 3 gradual drifts, while LEDa simulates 3 abrupt
drifts.

SEA The SEA generator (Street and Kim 2001) produces data streams with three continu-
ous attributes ( f1, f2, f3). The range of values that each attribute can assume is between
0 and 10. Only the first two attributes ( f1, f2) are relevant, i.e. f3 does not influence
the class value determination. New instances are obtained through randomly setting a
point in a two dimensional space, such that these dimensions corresponds to f1 and f2.
This two dimensional space is split into four blocks, each of which corresponds to one
of four different functions. In each block a point belongs to class 1 if f1 + f2 ≤ θ

and to class 0 otherwise. The threshold θ used to split instances between class 0 and 1
assumes values 8 (block 1), 9 (block 2), 7 (block 3) and 9.5 (block 4). It is possible to
add noise to class values, being the default value 10%, and to balance the number of
instances of each class. SEAg simulates 3 gradual drifts, while SEAa simulates 3 abrupt
drifts.

AGRAWAL AGRa and AGRg data sets are based on the AGRAWAL generator (Agrawal
et al. 1993), which produces data streams with six nominal and three continuous attributes.
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There are ten different functions that map instances into two different classes. A perturbation
factor is used to add noise to the data, both AGRg and AGRa includes 10% perturbation
factor. This factor changes the original value of an attribute by adding a deviation value to
it, which is defined according to a uniform random distribution. AGRg simulates 3 gradual
drifts, while AGRa simulates 3 abrupt drifts.

RTG The random tree generator (RTG) (Domingos and Hulten 2000) builds a decision
tree by randomly selecting attributes as split nodes and assigning random classes to each
leaf. After the tree is build, new instances are obtained through the assignment of uniformly
distributed random values to each attribute. The leaf reached after a traverse of the tree,
according to the attribute values of an instance, determines its class value. RTG allows
customizing the number of nominal and numeric attributes, as well as the number of classes.
In our experiments we did not simulate drifts for the RTG data set.

RBF RBFm and RBF f data sets were generated using the radial basis function (RBF)
generator. This generator creates centroids at random positions and associates them with
a standard deviation value, a weight and a class label. To create new instances one cen-
troid is selected at random, where centroids with higher weights have more chances to be
selected. The new instance input values are set according to a random direction chosen
to offset the centroid. The extent of the displacement is randomly drawn from a Gaus-
sian distribution according to the standard deviation associated with the given centroid.
To simulate incremental drifts, centroids move at a continuous rate, effectively causing
new instances that ought to belong to one centroid to another with (maybe) a differ-
ent class. Both RBFm and RBF f were parametrized with 50 centroids and all of them
drift. RBFm simulates a “moderate” incremental drift (speed of change set to 0.0001)
while RBF f simulates a more challenge “fast” incremental drift (speed of change set to
0.001).

HYPER The HYPER data set simulates an incremental drift and it was generated based
on the hyperplane generator (Hulten et al. 2001). A hyperplane is a flat, n − 1 dimensional
subset of that space that divides it into two disconnected parts. It is possible to change a
hyperplane orientation and position by slightly changing its relative size of the weights wi .
This generator can be used to simulate time-changing concepts, by varying the values of
its weights as the stream progresses (Bifet et al. 2011). HYPER was parametrized with 10
attributes and a magnitude of change of 0.001.

Airlines The Airlines data set was inspired by the regression data set from Ikonomovska6.
The task is to predictwhether a given flightwill be delayed given information on the scheduled
departure. Thus, it has 2 possible classes: delayed or not delayed. This data set contains
539, 383 records with 7 attributes (3 numeric and 4 nominal).

Electricity The Electricity data set was collected from the Australian New South Wales
ElectricityMarket, where prices are not fixed. These prices are affected by demand and supply
of the market itself and set every 5 min. The Electricity data set contains 45,312 instances,
where class labels identify the changes of the price (2 possible classes: up or down) relative
to a moving average of the last 24 h. An important aspect of this data set is that it exhibits
temporal dependencies.

Covertype The forest covertype data set represents forest cover type for 30 × 30 m cells
obtained from the US Forest Service Region 2 resource information system (RIS) data. Each
class corresponds to a different cover type. This data set contains 581,012 instances, 54
attributes (10 numeric and 44 binary) and 7 imbalanced class labels.

6 http://kt.ijs.si/elena_ikonomovska/data.html
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Table 2 Accuracy in the immediate setting for ARF variations (# learners = 100)

Data set ARFmoderate ARFfast ARFPHT ARFnoBkg ARFstdRF ARFmaj

LEDa 73.72 73.74 73.57 73.73 66.5 73.71

LEDg 72.87 72.89 72.83 72.84 66.36 72.86

SEAa 89.66 89.66 89.58 89.66 87.27 89.66

SEAg 89.24 89.23 89.25 89.24 87.2 89.24

AGRa 89.75 89.98 89.3 89.75 79.88 89.6

AGRg 84.54 84.6 84.45 84.73 76.96 84.39

RTG 93.91 93.91 93.91 93.89 93.89 93.89

RBFm 86.02 86.19 85.18 86.05 74.96 86.01

RBF f 72.36 72.46 70.73 72.45 47.02 72.21

HYPER 85.16 85.44 84.87 85.42 78.68 85.16

Synthetic avg 83.72 83.81 83.37 83.78 75.87 83.67

Synthetic avg rank 2.7 1.8 4.1 2.6 5.9 3.9

AIRL 66.26 66.48 66.03 66.66 65.09 66.23

ELEC 88.54 89.44 87.04 88.6 85.81 88.5

COVT 92.32 91.85 91.81 92.35 88.18 92.31

GMSC 93.55 93.55 93.55 93.55 93.55 93.55

KDD99 99.97 99.97 99.98 99.97 99.97 99.97

Real avg 88.13 88.26 87.68 88.23 86.52 88.11

Real avg rank 3.6 2.4 3.6 2.8 4.6 4

Overall avg 85.19 85.29 84.81 85.26 79.42 85.15

Overall avg rank 3 2 3.93 2.67 5.47 3.93

Bold values indicate the best results per data set

GMSC The give me some credit (GMSC) data set7 is a credit scoring data set where the
objective is to decide whether a loan should be allowed. This decision is crucial for banks
since erroneous loans lead to the risk of default and unnecessary expenses on future lawsuits.
The data set contains historical data provided on 150,000 borrowers, each described by 10
attributes.

KDD99 KDD’99 data set8 is often used for assessing data stream mining algorithms’
accuracy due to its ephemeral characteristics (Aggarwal et al. 2003; Amini and Wah 2014).
It corresponds to a cyber attack detection problem, i.e. attack or common access, an inherent
streaming scenario since instances are sequentially presented as a time series (Aggarwal et al.
2003). This data set contains 4,898,431 instances and 41 attributes.

Spam The spam corpus data set was developed in Katakis et al. (2009) as the result of a
text mining process on an online news dissemination system. The work presented in Katakis
et al. (2009) intended on creating an incremental filtering of emails classifying them as spam
or ham (not spam), and based on this classification, deciding whether an email was relevant
or not for dissemination among users. This data set has 9324 instances and 39,917 boolean
attributes, such that each attribute represents the presence of a single word (the attribute label)
in the instance (e-mail).

7 https://www.kaggle.com/c/GiveMeSomeCredit
8 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

123

https://www.kaggle.com/c/GiveMeSomeCredit
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html


1482 Mach Learn (2017) 106:1469–1495

5.1 Ensembles and parametrization

We compare ARF to state-of-the-art ensemble learners for data stream classification, includ-
ing bagging and boosting variants with and without explicit drift detection and adaptation.
Bagging variants includes online bagging (OzaBag) (Oza 2005) and leveraging bagging
(LevBag) (Bifet et al. 2010). Boosting inspired algorithms are represented by online boost-
ing (OzaBoost) (Oza 2005) and online smooth-boost (OSBoost) (Chen et al. 2012). The
online accuracy updated ensemble (OAUE) (Brzezinski and Stefanowski 2014) is a dynamic
ensemble designed specifically for data stream learning and it is neither based on bagging
nor boosting.

All experiments use theHoeffdingTree (Domingos andHulten 2000) algorithmwithNaive
Bayes at the leaves (Holmes et al. 2005) as the base learner, which we refer to as Hoeffding

123456

CD = 1.947

ARFfast

ARFnoBkg

ARFmoderate

ARFstdRF

ARFPHT

ARFmaj

Fig. 2 ARF variations nemenyi test (95% confidence level)—immediate setting with 100 learners

(a) (b) (c)

(d) (e) (f)

Fig. 3 ARF: accuracy (immediate) × ensemble size (n) × subspace size (m). Marked lines highlights m =√
M + 1. a AGRg . b AIRL. c COVT. d GMSC. e KDD99. f RTG
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Naive Bayes Tree (HNBT). ARF uses a variation of HNBT that limits splits to m randomly
selected features, where m = √

M + 1 in all our experiments (see Sect. 6.1 for experiments
varying m). An important parameter of the trees is the grace period GP , which is used to
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Fig. 4 ARF[M] and ARF[S] comparison in terms of CPU Time and Memory, for 10, 20, 50 and 100 learners.
a CPU Time. b RAM-hours

Table 3 CPU time—immediate setting (# learners = 100)

Data set ARF[S] ARF[M] OzaBag OAUE OzaBoost OSBoost LevBag

LEDa 1251.31 582.31 1388.63 1659.16 1305.46 1778.47 2698.73

LEDg 1236.91 679.68 1244.97 1567.29 1154.88 1847.86 2332.57

SEAa 1293.37 490.08 466.27 684.69 507.4 493.18 1431.29

SEAg 1272.34 461.99 459.96 602.56 491.54 454.83 1379.41

AGRa 1864.13 818.63 710.86 854 828.83 661.61 3981.14

AGRg 2002.59 821.73 804.08 903.02 801.96 690.55 3225.2

RTG 5910.1 475.57 571.51 701.78 889.57 636.74 2865.09

RBFm 1713.33 1133.28 1438.18 1876.86 1335.2 1822.05 3440.54

RBF f 1711.51 908.26 1389.02 1815.99 1273.64 1998.32 3517.02

HYPER 1736.24 837.89 976.29 1050.43 922.73 927.8 3708.08

Synthetic avg 1999.18 720.94 944.98 1171.58 951.12 1131.14 2857.91

Synthetic avg rank 5 1.8 2.8 5 3 3.5 6.9

AIRL 2745.49 361.31 544.75 896.69 626.04 448.45 4925.71

ELEC 73.37 31.28 30.01 24.69 34.69 28.01 104.97

COVT 1230.93 686.08 1160.96 1603.41 1148.46 1359.04 2906.84

GMSC 189.55 149.96 100.04 152.69 83.3 76.26 306.23

KDD99 4322.82 2109.04 2945.59 4910.54 3462.14 7553.36 4795.75

Real avg 1712.43 667.53 956.27 1517.6 1070.93 1893.02 2607.9

Real avg rank 5.2 2.2 2.8 4.6 3.2 3.4 6.6

Overall avg 1903.6 703.14 948.74 1286.92 991.06 1385.1 2774.57

Overall avg rank 5.07 1.93 2.8 4.87 3.07 3.47 6.8

Bold values indicate the best results per data set
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optimize training time (Domingos and Hulten 2000) by delaying calculations of the heuristic
measure G used to choose the test features (in this work we use Information Gain). By using
smaller values of GP run time (and memory usage) is increased, and also causes trees to
grow deeper, which enhances the overall variability of the forest, and consequently ARF’s
classification performance. For consistency, we use the same base learner configuration for all
ensembles, i.e. HNBTs with GP = 50. We report statistics for ensembles of 100 members,
with the exception of adhoc experiments that focus on CPU Time and RAM-hours analysis.
In the following sections we organize experiments as follows: (1) Comparisons among ARF
and some of its variants; (2) Resource usage analysis; and (3) Comparisons of ARF against
other state-of-the-art ensembles.

6 Experiments

We start our experimentation by comparing variations of ARF to evaluate its sensitivity to
parameters (e.g. drift and warning threshold, ensemble size and subspace size) and varia-
tions of the algorithm that deactivates some of its characteristics (e.g. drift detection, warning
detection, weighted vote). The second set of experiments concerns the evaluation of com-
putational resources usage (CPU time and RAM-hours). Finally, we present experiments

Table 4 RAM-hours—immediate setting (# learners = 100)

Data set ARF[S] ARF[M] OzaBag OAUE OzaBoost OSBoost LevBag

LEDa 0.054 0.023 0.297 0.151 0.279 0.162 0.056

LEDg 0.054 0.038 0.264 0.109 0.244 0.163 0.053

SEAa 0.219 0.083 0.046 0.022 0.062 0.015 0.607

SEAg 0.229 0.083 0.045 0.03 0.06 0.014 0.341

AGRa 0.855 0.098 0.361 0.13 0.329 0.114 0.174

AGRg 0.856 0.851 0.425 0.096 0.332 0.123 0.486

RTG 1.121 0.09 0.17 0.18 0.317 0.065 0.15

RBFm 0.038 0.025 0.236 0.036 0.177 0.144 0.764

RBF f 0.01 0.006 0.106 0.008 0.1 0.131 0.085

HYPER 0.173 0.084 0.413 0.035 0.361 0.116 1.075

Synthetic avg 0.361 0.138 0.236 0.08 0.226 0.105 0.379

Synthetic avg rank 4.8 2.5 5.2 2.6 4.9 3.1 4.9

AIRL 0.422 0.056 0.023 0.337 0.196 0.216 1.425

ELEC 0.001 0.001 0.001 0 0.001 0 0.003

COVT 0.002 0.002 0.516 0.089 0.557 0.178 0.19

GMSC 0.02 0.016 0.004 0.005 0.004 0.001 0.067

KDD99 0.013 0.007 0.499 0.039 1.335 0.992 0.253

Real avg 0.092 0.016 0.209 0.094 0.419 0.278 0.388

Real avg rank 4.4 2.6 3.4 3.2 5 3.4 6

Overall avg 0.271 0.098 0.227 0.084 0.29 0.162 0.382

Overall avg rank 4.86 2.64 4.43 2.71 4.86 3.07 5.43

Bold values indicate the best results per data set
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Table 5 Accuracy—immediate setting (# learners = 100)

Data set ARF OzaBag OAUE OzaBoost OSBoost LevBag

LEDa 73.72 69.18 73.35 68.88 72.53 73.92

LEDg 72.87 69.17 72.55 69.57 72.47 73.22

SEAa 89.66 87.19 88.77 88.21 89.15 88.36

SEAg 89.24 87.12 88.26 87.87 88.92 89.08

AGRa 89.75 82.83 90.67 88.49 91.02 89.17

AGRg 84.54 79.26 85.29 84.39 87.73 83.4

RTG 93.91 97.2 97 95.97 97.25 97.53

RBFm 86.02 62.62 83.69 36.23 65.84 84.89

RBF f 72.36 38.33 56.19 26.16 42.38 58.28

HYPER 85.16 80.2 87.67 85.93 87.88 87.45

Synthetic avg 83.72 75.31 82.34 73.17 79.52 82.53

Synthetic avg rank 2.5 5.4 2.9 5.1 2.6 2.5

AIRL 66.26 64.96 65.35 60.83 65.62 63.38

ELEC 88.54 82.51 86.37 90.17 87.05 88.53

COVT 92.32 84.05 92.26 93.83 86.34 93.08

GMSC 93.55 93.52 93.55 92.64 92.95 93.54

KDD99 99.97 99.93 2.61 99.01 99.93 99.96

Real avg 88.13 84.99 68.03 87.29 86.38 87.7

Real avg rank 1.6 4.8 4 3.8 3.8 3

Overall avg 85.19 78.54 77.57 77.88 81.8 84.25

Overall avg rank 2.2 5.2 3.27 4.67 3 2.67

Bold values indicate the best results per data set

comparing ARF and other state-of-the-art ensemble classifiers in terms of accuracy, Kappa
M and Kappa T, for immediate and delayed settings.

6.1 ARF variations

Our first analysis is a comparison between 6 variations of the ARF algorithm, each of which
‘removes’ some characteristics fromARF (e.g. drift detection) or has a different parametriza-
tion (e.g. uses Page Hinkley drift detection). We did this comparison to illustrate the benefits
of using ARF as previously stated in Sect. 4, and also to discuss how each strategy included
in it contributes to the overall classification performance. Table 2 presents the immediate
setting tenfold cross-validation accuracy for these variations. Each variation configuration is
as follows:

– ARFmoderate: Adopts a parametrization to ADWIN that results in less drifts/ warnings
being flagged (δw = 0.0001 and δd = 0.00001).

– ARFfast: Uses a parametrization of ADWIN that causes more drifts/warnings to be
detected (δw = 0.01 and δd = 0.001).

– ARFPHT: Uses Page Hinkley Test (PHT) to detected drifts/warnings (δw = 0.005, δd =
0.01, other parameters: λ = 50, α = 0.9999).
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Table 6 Kappa M—immediate setting (# learners = 100)

Data set ARF OzaBag OAUE OzaBoost OSBoost LevBag

LEDa 70.75 65.7 70.35 65.36 69.43 70.98

LEDg 69.8 65.68 69.45 66.13 69.35 70.2

SEAa 74.21 68.05 71.98 70.59 72.93 70.96

SEAg 73.16 67.86 70.71 69.75 72.37 72.77

AGRa 78.26 63.61 80.22 75.6 80.96 77.04

AGRg 67.22 56.04 68.82 66.9 73.98 64.8

RTG 85.56 93.36 92.89 90.45 93.48 94.14

RBFm 80.03 46.59 76.69 8.89 51.19 78.42

RBF f 60.51 11.88 37.41 −5.5 17.67 40.39

HYPER 70.27 60.33 75.29 71.81 75.72 74.85

Synthetic avg 72.98 59.91 71.38 58 67.71 71.45

Synthetic avg rank 2.5 5.4 2.9 5.1 2.6 2.5

AIRL 24.24 21.34 22.21 12.05 22.82 17.8

ELEC 73 58.79 67.89 76.84 69.49 72.97

COVT 85 68.87 84.89 87.96 73.35 86.5

GMSC 3.51 3 3.46 −10.17 −5.54 3.4

KDD99 99.93 99.83 −128.21 97.68 99.85 99.92

Real avg 57.14 50.37 10.05 52.87 51.99 56.12

Real avg rank 1.6 4.8 4 3.8 3.8 3

Overall avg 67.7 56.73 50.94 56.29 62.47 66.34

Overall avg rank 2.2 5.2 3.27 4.67 3 2.67

Bold values indicate the best results per data set

– ARFnoBkg: Removes only thewarning detection and background tree, thereforewhenever
drifts are detected the associated trees are immediately reset.

– ARFstdRF: This is a ‘pure’ online Random Forests version as it deactivates the detection
algorithm, does not reset trees and uses majority vote.

– ARFmaj: Same configuration asARFmoderate, but it usesmajority vote instead ofweighted
majority.

Without any drift detection (ARFstdRF) the results on data streams that contains drifts are
degraded severely. If trees are reset immediately whenever a drift (ARFnoBkg) is detected
the results improve in 2 real data sets (AIRL and COVT), although we observe better, yet
small improvements, when using background trees and drift warnings (ARFmoderate and
ARF f ast ), especially on the synthetic data sets. In general, the weighted majority vote is
capable of improving performance on almost every data set when we compare ARFmoderate

and ARFmaj, such that both use the exact same configuration, but the latter uses majority vote
instead ofweightedmajority. This behavior can be attributed to the variance inweights during
periods of drift, such that trees adapted to the current concept shall receive higher weights and
obfuscate outdated trees. However, if trees’ weights are overestimated (or underestimated)
this can lead to a combination that is inferior to majority vote. Therefore, if it is infeasible
to obtain accurate weights, e.g. accuracy is not a reasonable metric for the data set, then it
is safer to use majority vote or change the weighting function. ARFmoderate and ARF f ast
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Table 7 Kappa temporal—immediate setting (# learners = 100)

Data set ARF OzaBag OAUE OzaBoost OSBoost LevBag

LEDa 70.79 65.74 70.38 65.41 69.46 71.01

LEDg 69.83 65.72 69.48 66.17 69.39 70.23

SEAa 78.31 73.13 76.43 75.27 77.23 75.58

SEAg 77.44 72.98 75.37 74.57 76.77 77.11

AGRa 77.57 62.45 79.59 74.82 80.35 76.31

AGRg 66.61 55.22 68.24 66.29 73.5 64.15

RTG 87.51 94.26 93.86 91.74 94.37 94.93

RBFm 81.92 51.63 78.89 17.49 55.8 80.45

RBF f 64.24 20.2 43.32 4.46 25.44 46.02

HYPER 70.32 60.4 75.33 71.87 75.77 74.9

Synthetic avg 74.45 62.17 73.09 60.81 69.81 73.07

Synthetic avg rank 2.5 5.4 2.9 5.1 2.6 2.5

AIRL 19.56 16.48 17.39 6.61 18.05 12.71

ELEC 21.86 −19.24 7.08 32.99 11.73 21.78

COVT −55.59 −222.99 −56.81 −24.91 −176.49 −40.07

GMSC 48.29 48.01 48.26 40.95 43.43 48.22

KDD99 −140.48 −471.44 −769385.24 −7717.89 −416.24 −177.84

Real avg −21.27 −129.84 −153873.86 −1532.45 −103.9 −27.04

Real avg rank 1.6 4.8 4 3.8 3.8 3

Overall avg 42.54 −1.83 −51242.56 −470.28 11.9 39.7

Overall avg rank 2.2 5.2 3.27 4.67 3 2.67

Bold values indicate the best results per data set

differ the most on the real data set ELEC (almost 1% accuracy), while the other results are
quite similar with a slight advantage for ARF f ast . ARF f ast trains background trees for less
time than ARFmoderate as it detects drifts sooner, while ARFnoBkg is an extreme case with
no background training at all. In practice, it is necessary to experiment with the warning and
drift detector parameters to find the optimal combination for the input data. However, it is less
likely that not training the trees before adding them to the forest, even for short periods, would
benefit the overall classification performance as the first decisions of a newly created tree are
essentially random. On the other hand, it is expected that the improvements obtained by using
background tree training might not differ a lot from the not using it, as the most important
thing remains resetting trees when drifts occurs as short periods of random decisions can be
‘corrected’ as long as not all trees are undergoing this process at the same time. The best result
for RTG is obtained by ARFPHT , however this data set does not contains any drift, thus it is
not reasonable to attribute its classification performance to the Page Hinkley Test detector.
Also, the difference between ARFmoderate and ARFPHT is after the second decimal place.

The Friedman test based on the overall rankings of Table 2 (both synthetic and real
data sets) indicated that there were differences among these ARF variations, the follow-up
posthoc nemenyi test, presented in Fig. 2, indicates that there are no significant differences
between ARFf ast , ARFmoderate, ARFPHT , ARFnoBkg and ARFmaj . Further experiments
in this work are based on the ARFmoderate configuration and referred to solely as ARF (or
ARF[M] or ARF[S] when evaluating resources usage).
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Table 8 Accuracy—delayed setting (# learners = 100)

Data set ARF OzaBag OAUE OzaBoost OSBoost LevBag

LEDa 73.57 69.01 73.19 68.72 72.37 73.76

LEDg 72.76 69.03 72.44 69.44 72.36 73.16

SEAa 89.57 87.11 88.68 88.14 89.06 88.27

SEAg 89.17 87.03 88.17 87.81 88.84 89

AGRa 89.58 82.67 90.48 88.31 90.84 88.98

AGRg 84.48 79.11 85.14 84.28 87.59 83.3

RTG 93.85 97.13 96.94 95.91 97.19 97.46

RBFm 83.45 56.69 80.42 34.7 59.72 81.81

RBF f 29.12 28.76 28.69 26.12 28.43 27.82

HYPER 84.85 79.97 87.27 85.57 87.39 87.06

Synthetic avg 79.04 73.65 79.14 72.9 77.38 79.06

Synthetic avg rank 2.5 5.1 2.9 5.1 2.6 2.8

AIRL 64.93 64.82 65.13 60.63 65.32 62.74

ELEC 75.36 74.27 74.63 71.07 72.91 74.61

COVT 83.79 78.34 84.81 84.48 80.11 85.09

GMSC 93.55 93.52 93.55 92.67 92.96 93.55

KDD99 98.72 99.53 2.4 98.62 99.59 99.38

Real avg 83.27 82.1 64.1 81.49 82.18 83.07

Real avg rank 2.6 4 2.9 5.2 3.4 2.9

Overall avg 80.45 76.47 74.13 75.76 78.98 80.4

Overall avg rank 2.53 4.73 2.9 5.13 2.87 2.83

Bold values indicate the best results per data set

To illustrate the impact of using different values form (feature subset size) and n (ensemble
size) we present 3D plots of six data sets in Fig. 3. In Figs. 3a, b, e it was clearly a good choice
to use small values ofm, however itmight not always be the case as observed in Figs 3c, 3d and
3f. In the COVT, GMSC and RTG plots (Figs. 3c, d, f) we observe a trend where increasing
the number of features results in classification performance improvements. For RTG we can
affirm that this behavior is associated with the fact that the underlying data generator is based
on a random assignment of values to instances and a decision tree traversal to determine the
class label (see Sect. 6), which causes that no unique feature, or subset of features (other than
the full set), is strongly correlated with the class label. Therefore when each tree is assigned
the full set of features, and use only sampling with reposition as the diversity induction, better
performance per base tree is achieved, thus the overall ensemble obtains better performance
as well.We cannot affirm this same behavior for the real data sets that exhibit similar behavior
as RTG (GMSC and COVT) as the underlying data generator is unknown.

6.2 Resources comparison between ARF[S] and ARF[M]

To assess the benefits in terms of resources usage we compare ARF[M] and ARF[S] imple-
mentations. We report average memory and processing time used to process all data sets
for 10, 20, 50 and 100 classifiers. Figure 4a, b present the results of these experiments. It is
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Table 9 Kappa M—delayed setting (# learners = 100)

Data set ARF OzaBag OAUE OzaBoost OSBoost LevBag

LEDa 70.58 65.51 70.16 65.18 69.25 70.79

LEDg 69.68 65.53 69.32 65.99 69.24 70.13

SEAa 73.97 67.84 71.77 70.41 72.7 70.74

SEAg 72.99 67.65 70.5 69.59 72.16 72.57

AGRa 77.92 63.25 79.82 75.21 80.58 76.65

AGRg 67.1 55.71 68.5 66.68 73.7 64.6

RTG 85.42 93.2 92.74 90.3 93.34 93.98

RBFm 76.35 38.11 72.03 6.7 42.45 74.02

RBF f −1.27 −1.78 −1.88 −5.56 −2.26 −3.13

HYPER 69.64 59.88 74.5 71.09 74.74 74.07

Synthetic avg 66.24 57.49 66.74 57.56 64.59 66.44

Synthetic avg rank 2.5 5.1 2.9 5.1 2.6 2.8

AIRL 21.26 21.03 21.72 11.61 22.14 16.35

ELEC 41.96 39.38 40.23 31.85 36.19 40.17

COVT 68.36 57.72 70.35 69.71 61.19 70.9

GMSC 3.53 3.08 3.51 −9.69 −5.41 3.51

KDD99 97 98.89 −128.69 96.76 99.05 98.55

Real avg 46.42 44.02 1.42 40.05 42.63 45.9

Real avg rank 2.6 4 3 5.2 3.4 2.8

Overall avg 59.63 53 44.97 51.72 57.27 59.59

Overall avg rank 2.53 4.73 2.93 5.13 2.87 2.8

Bold values indicate the best results per data set

expected that ARF[M] requires more memory than ARF[S], yet since it executes faster its
average RAM-hours is lower in comparison to ARF[S]. Ideally, a parallel implementation on
elements that are independent, in our case the trees’ training, must scale linearly in the num-
ber of elements if enough threads are available. Although there are some factors that forestall
scalability in our implementation of ARF[M], such as the number of available threads, over-
head on job creation at every new training instance and operations that are not parallelized
(e.g. combining votes). Examining Fig. 4a, b one can see that when the number of trees is
closer or less than 40 (number of available processors) the gains are more prominently, this
is expected as there is a limited number of trees that can be trained at once.

6.3 ARF compared to other ensembles

This section comprises the comparison of ARF against state-of-the-art ensemble classifiers.
First, we report the CPU time and RAM-hours for ensembles with 100 base models in Tables
3, 4. Since ARF[M] distributes the training and drift detection among several threads it is
unsurprisingly the most efficient in terms of CPU time and memory used. Besides that, we
note that ARF[S] outperforms leveraging bagging and is close to OAUE in terms of CPU
time, while being very similar to others in terms of RAM-hours, yet worse than OAUE,
OzaBag and OSBoost.
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Table 10 Kappa temporal—delayed setting (# learners = 100)

Data set ARF OzaBag OAUE OzaBoost OSBoost LevBag

LEDa 70.62 65.55 70.2 65.23 69.28 70.83

LEDg 69.72 65.57 69.35 66.02 69.27 70.16

SEAa 78.11 72.95 76.25 75.11 77.04 75.39

SEAg 77.29 72.8 75.19 74.43 76.59 76.94

AGRa 77.21 62.08 79.17 74.42 79.96 75.9

AGRg 66.49 54.89 67.91 66.06 73.21 63.94

RTG 87.39 94.12 93.72 91.61 94.24 94.79

RBFm 78.59 43.96 74.67 15.52 47.89 76.47

RBF f 8.3 7.83 7.74 4.41 7.4 6.61

HYPER 69.7 59.95 74.54 71.15 74.79 74.12

Synthetic avg 68.34 59.97 68.88 60.39 66.97 68.52

Synthetic avg rank 2.5 5.1 2.9 5.1 2.6 2.8

AIRL 16.39 16.14 16.87 6.14 17.33 11.17

ELEC −67.95 −75.4 −72.95 −97.18 −84.65 −73.1

COVT −228.29 −338.67 −207.64 −214.26 −302.69 −201.9

GMSC 48.29 48.05 48.28 41.21 43.5 48.28

KDD99 −10010.79 −3644.79 −771004.82 −10839.44 −3103.47 −4775.42

Real avg −2048.47 −798.93 −154244.05 −2220.7 −685.99 −998.19

Real avg rank 2.6 4 3 5.2 3.4 2.8

Overall avg −637.26 −226.33 −51368.77 −699.97 −184.02 −287.05

Overall avg rank 2.53 4.73 2.93 5.13 2.87 2.8

Bold values indicate the best results per data set

The next step in our comparison of ARF to other ensembles is the evaluation of its overall
classification performance according to Accuracy, Kappa M and Kappa Temporal. We group
experiments per evaluation metric and setting used (delayed or immediate) in Tables 5, 6, 7,
8, 9, and 10. The variations in the rankings from delayed to immediate suggest that ARF is
more suitable to the immediate setting. In Table 5 we highlight ARF performance in RBFm
and RBF f data sets, both containing incremental drifts. As previously mentioned in Sect. 6.1
ARF cannot obtain good results in RTG while using only m = √

M + 1 features, this is
emphasized when comparing ARF against other ensembles as ARF consistently obtains the
worst results in RTG. ARF performs well on SEAa and SEAg , however these results are not
related to the random selection of features as SEA generator has only 3 features and each
tree ends up using 3 features per split.9

Analysing the results from Kappa Temporal in Table 7 we observed that none of the
classifiers were able to surpass the baseline (NoChange classifier, Žliobaitė et al. 2015) on
the COVT data set. This characteristic is accentuated on the experiments using the delayed
setting displayed in Table 10, where algorithms also failed to overcome the baseline on
the ELEC data set as well. Probably, using a temporally augmented wrapper, as suggested
in Žliobaitė et al. (2015), would aid this problem for the immediate setting, although it is

9 After rounding
√
3 + 1 to the closest integer we obtain 3, such that m = M for SEAa and SEAg
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Fig. 5 Nemenyi test with 95% confidence level. a Immediate setting with 100 learners. b Delayed setting
with 100 learners

unclear if it would solve the problem on the delayed setting. Through analysis of Kappa M
on Tables 6, 9 we observed that differences in accuracy that appeared to be not very large are
actually highlighted in KappaM, for example, ARF and OzaBoost in data set AIRL achieved
66.26 and 60.83% accuracy, respectively, in terms of Kappa M ARF achieves 24.24% while
OzaBoost only 12.05%.

We report only statistical tests based on the average rank of accuracy, since ranks did not
change among Accuracy, Kappa M and Kappa Temporal. Concretely, we used the results
from Tables 5, 8. The Friedman test indicates that there were significant differences in the
immediate and delayed setting. We proceeded with the Nemenyi post-hoc test to identify
these differences, which results are plotted in Fig. 5.

The statistical tests for the immediate setting indicates that there are no significant differ-
ences between ARF, LevBag, OSBoost and OUAE. While differences in the delayed setting
are less prominent, including OzaBag to the aforementioned classifiers. This suggests that
sometimes the active drift detection techniques are less impactating in the delayed setting as
ARF and LevBag have their overall performance degraded when training is delayed. This
is especially true for incremental drifts, as drift signals (and warning signals in ARF) are
delayed and action is taken to accommodate a potentially already outdated concept. This is
observable by analysing the accuracy drop from the immediate to delayed setting for ARF
and LevBag in RBF f (Tables 5, 8).

There is not much variation with respect to ranking changes while comparing the syn-
thetic data sets results between the immediate and delayed settings. The only change is that
OzaBag swaps rankings with LevBag in RBF f , which effectively boosts the overall OzaBag
ranking. In the real data sets the variations are more prominent, such that ARF surpasses
OzaBoost in the ELEC data set for the delayed setting, however ARF loses 1 average rank
from the immediate to the delayed setting in the real data sets. Finally, OzaBag, OAUE and
OSBoost improved their overall average rankings from the immediate results to the delayed
results, while ARF, OzaBoost and LevBag, decreased their classification performances. Sur-
prisingly, GMSC results improved in the delayed setting in comparison to those obtained in
the immediate setting, this is better observable while comparing the Kappa M results from
Tables 6, 9 for the GMSC data set.

Focusing on the real world data sets it is clear that ARF consistently obtains the best results
or at least results that could be considered reasonable in contrast with other algorithms that
even though achieve very good results, sometimes fail to obtain a reasonable model (e.g.
OAUE and OzaBoost on KDD99).

In Fig. 6 some of the experiments from the immediate setting (see Tables 5, 6, 7). ARF
is able to consistently achieve superior accuracy on RBFm (Fig. 6c), which exhibits a mod-
erate incremental drift. In LEDg (Fig. 6a) and AGRa (Fig. 6b), ARF obtain a reasonable
performance, even though it was not the method with highest accuracy it was able to adapt
to the abrupt and gradual drifts. Figure 6d, e are interesting as the analysis solely focused on
accuracy would indicate that classifiers stabilize after 200 thousand instances, however by
observing the Kappa M plot it is visible that classifiers are actually improving relatively to
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 6 Sorted plots of Accuracy, Kappa M and Kappa T over time (100 classifiers per ensemble). Solid and
dashed vertical lines indicates drifts and drift window start/end, respectively. a Accuracy LEDg . b Accuracy
AGRa . c Accuracy RBFm . d Accuracy AIRL. e Kappa M AIRL. f Accuracy GMSC. g Kappa M GMSC.
h Accuracy KDD99. i Kappa M KDD99. j Accuracy SPAM. k Kappa M SPAM. l Kappa T SPAM

the majority class classifier. Similarly GMSC and KDD99 plots in Fig. 6f–i shows that by
using Kappa M on an imbalanced data set the differences between methods are intensified.
Finally, on SPAM only ARF, OAUE and OSBoost could finish executing, the results in Fig.
6j–l shows that Kappa M for OSBoost is below −100 (not showing in the plot) indicating
that it is not a reasonable choice for this data set. Also, in every plot from SPAM it is observ-
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able that OAUE and OSBoost are degrading over time while ARF maintains its performance
stable.

7 Conclusion

In this work we have presented the adaptive random forests (ARF) algorithm, which enables
the Random Forests algorithm for evolving data stream learning. We provide a serial and a
parallel implementation of our algorithm, ARF[S] and ARF[M], respectively, and show that
the parallel version can process the same amount of instances in reasonable time without
any decrease in the classification performance. As a byproduct and additional contribution
of this work we discuss stream learning according to when labels are available (immediate
and delayed settings). We also remark that several of the techniques that were implemented
on ARF can be used in other ensembles, such as warning detection and background trees.

We use a diverse set of data sets to show empirical evidence that ARF obtains good
results in terms of classification performance (Accuracy, Kappa M and Kappa Temporal)
and reasonable performance resources usage, even for the sequential version ARF[S], when
compared to other state-of-the-art ensembles. The classification performance experiments
are further divided into the usual immediate setting and the delayed setting. From these
experiments we highlight the following characteristics of ARF:

– ARF obtains good classification performance on both delayed and immediate settings,
especially on real world data sets;

– ARF can be used to process data streams with a large number of features, such as SPAM
data set with almost fourty thousand features, using a relatively small number of trees
(in our experiments 100);

– ARF can train its base trees in parallel without affecting its classification performance.
This is an implementation concern, but it is useful to investigate and make it available
along with the algorithm as scalability is often a concern;

– ARF might not be able to improve on data sets where all features are necessary to build
a reasonable model (such as RTG).

In future work we will investigate how to optimize the run-time performance of ARF by
limiting the number of detectors, as it is wasteful to maintain several detectors that often
trigger at the same time. Another possibility is to implement a big data stream version
of ARF, as we show in this work that each tree can be trained independently (the most
time consuming task) without affecting the classification performance. Besides enhancing
execution performance we are also interested in investigating the development of a semi-
supervised strategy to deal with different real world scenarios, which might also lead to
better performance on the delayed setting.
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