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Abstract—The ever increasing data generation confronts both
practitioners and researchers on handling massive and sequen-
tially generated amounts of information, the so-called data
streams. In this context, a lot of effort has been put on the
extraction of useful patterns from streaming scenarios. Learning
from data streams embeds a variety of problems, and by far, the
most challenging is concept drift, i.e. changes in data distribution.
In this paper, we focus on a specific type of drift uncommonly
assessed in the literature: feature drifts. Feature drifts occur
whenever a subset of features becomes, or ceases to be, relevant to
the concept to be learned. We propose and review several feature
drifting data stream generators and use them to benchmark
state-of-the-art data stream classification algorithms and their
combination with drift detectors. Results show that, although
drift detectors enable slight quicker recovery to feature drifts,
best results are obtained by Hoeffding Adaptive Tree, the only
learner that performs dynamic feature selection as streams
progress.

I. INTRODUCTION

The ever increasing data generation confronts both practi-
tioners and researchers on handling massive amounts of data
generated online, the so-called data streams. Examples of
data streams include, but are not limited to, consumer click
streams, telephone usage flows, multimedia data mining [1],
computer networks intrusion detection [2] and stock market
share exchanges [3].

In the context of streaming environments, several proposals
were developed in the last years aiming at extracting useful
patterns from these in both supervised [4], [5], [6] and unsu-
pervised [7] fashions. In both cases, stream learning algorithms
must process instances one at a time and inspect them only
once. There is no restriction against storing instances for a
short time, as long it does not jeopardize overall processing
time nor maximum allowed memory space. Therefore, pro-
cessing time and memory space are intimately related, since if
the learning algorithms take too long to classify each instance,
they will start accumulating in memory, until an overflow
occurs and the system crashes [6].

Albeit latter restrictions, data streams are possibly
ephemeral, it is, their underlying data distribution may shift
through time. This enforces learners to either discard and learn
a new model or adapt the existing model so it reflects the new
reality.

More recently, authors in [8], [9] and [10] highlighted a
specific kind of drift that is uncommonly tackled by existing

learning algorithms, namely feature drift. Practically, a feature
drift occurs whenever a subset of features becomes, or ceases
to be, relevant to the learning task.

None of the early works into feature drifts provide an
analysis into how feature drifts can be synthesized and what
is their impact on prediction rates of state-of-the-art data
stream learners. In this paper, we fill this gap by (i) presenting
a variety of data stream generators capable of synthesizing
feature drifts, and (ii) evaluating several state-of-the-art data
stream learners.

As contributions of this paper, we cite:
1) A review and proposal of data generators capable of

synthesizing feature drifts;
2) An extensive empirical evaluation of state-of-the-art data

stream classifiers over feature drifting data streams; and
3) The provision of insights onto why feature selection is

needed when learning from data streams.
We start this paper with a review of the classification

task for data streams and the phenomenon of concept drift
(Sec. II). Later, we formalize feature drifts accordingly to
previous works [10], [9], [8] (Sec. III) and present data stream
generators capable of synthesizing this type of drift (Sec.
IV). Afterward, we benchmark state-of-the-art data stream
classification algorithms and drift detectors in a variety of
experiments (Sec. V), showing their behavior when confronted
with feature drifts. Finally, we conclude this paper and discuss
the need for future research into feature drifts adaptation (Sec.
VI).

II. DATA STREAMS, CLASSIFICATION AND CONCEPT
DRIFT

Let S = [it = (~xt, yt)]
t→∞
t=0 denote a data stream providing

instances it each of which arriving at a timestamp t, where
~xt is a d-dimensional feature vector belonging to a feature set
D = [Dj ]

d
j=1, while yt ∈ Y is its ground-truth label.

The most common approach for extracting useful knowl-
edge from data streams is classification. Classification is the
task that distributes a set of instances into discrete classes
accordingly to relations or affinities. Assuming a set of pos-
sible classes Y = {y1, . . . , yc}, a classifier builds a model
f : ~x → Y that predicts for every unlabeled instance ~xi its
corresponding class yi accurately [11]. Therefore, given a data
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stream S, a classifier must produce and update a model f as
new instances become available [11], [12].

Due to the temporal trait of data streams, these are expected
to be ephemeral, thus, they are expected to undergo changes
in their data distributions, a phenomenon named concept drift.
Let Eq. 1 denote a concept, i.e. a set of prior probabilities of
classes and class-conditional probability density function.

C =

Y⋃
yj

{(P [yj ], P [~x|yj ])} (1)

Given a stream S, instances are generated accordingly to
Ct. If for every moment ti we have Cti = Cti−1

, the concept
is said stable, otherwise, we have a concept drift.

The real-time response, single-pass processing and dealing
with concept drifts are important traits that must be accounted
for by state-of-the-art algorithms for data streams [6] and have
been somewhat tackled by existing works [13], [14], [12].
Yet, recent researches in [8], [9] demonstrated that the above
definition does not broaden a specific kind of drift that occurs
when features become, or cease to be, relevant to the learning
task, namely feature drift.

III. PROBLEM STATEMENT

Most of existing algorithms for data streams tackle the
infinite length and drifting concept characteristics. However,
not many attention has been given to a specific kind of drift:
feature drifts. Conversely to conventional concept drifts, where
changes in data distribution are claimed to occur inside the
skewing of classes in ranges of features’ values, feature drifts
occur whenever a subset of features becomes, or ceases to be,
relevant to the concept to be learned.

Until this point, the term “relevance” was used without a
proper definition. In this paper we divide features in two types:
relevant and irrelevant [9]. Assuming Si = D \ {Di} and
P [Y |S′i] to be a conditional probability of Y given a subset
of features S′i, a feature Di is deemed relevant iff Eq. 2 holds
[15].

∃S′i ⊂ Si, such that P [Y |Di, S
′
i] 6= P [Y |S′i] (2)

Otherwise, the feature Di is said irrelevant. In practice,
if a feature that is statistically relevant is removed from a
feature set, it will reduce overall prediction power since (i) it
is strongly correlated with the class; or (ii) it forms a subset
with other features and this subset is strongly correlated with
the class [16].

Changes in the relevant subset of features enforce the
learning algorithm to adapt its model to ignore the irrelevant
attributes and account for the newly relevant ones [10]. Given
a feature space D at a timestamp t, we are able to select the
ground-truth relevant subset D∗t ⊆ D such that ∀Di ∈ D∗t
Eq. 2 holds and ∀Dj ∈ D \ D∗t the same definition does not.
A feature drift occurs if, at any two time instants ti and tj ,
D∗ti 6= D

∗
tj betides.

Let r(Di, tj) ∈ {0, 1} denote a function which determines
whether Eq. 2 holds for a feature Di in a timestamp tj of

the stream. A positive relevance (r(Di, ti) = 1) states that
Di ∈ D∗ in a timestamp ti. A feature drift occurs whenever
the relevance of an attribute Di changes in a timespan between
tj and tk, as stated in Eq. 3.

∃tj∃tk, tj < tk, r(Di, tj) 6= r(Di, tk) (3)

Changes in r(·, ·) directly affect the ground-truth decision
boundary to be learned by the learning algorithm. Therefore,
feature drifts can be posed as a specific type of concept
drift that may occur with or without changes in the data
distribution P [~x] [8], [9]. We emphasize that feature drifts
are indeed targeted by the generic concept drift formalization,
however, most of existing works on concept drift detection and
adaptation assume that the relevant subset of features remains
the same and that drifts occur if certain values, or ranges of
values, have their class distribution re-skewed.

As pointed out in [8] and [9], feature drifts are likely to
occur in a variety of scenarios, but mainly on text stream sce-
narions, e.g. social media, SMS chats, online social networks
(Facebook, Twitter) and e-mail spam detection systems.

As in conventional concept drifts, changes in r(·, ·) may
occur during the stream. This enforces learning algorithms to
detect changes in D∗, discerning between features that became
irrelevant and the ones that are now relevant and vice-versa.
In order to overcome feature drifts, a learner must either (i)
discard and derive an entirely new classification model that is
consistent with relevant features; or (ii) adapt its current model
to relevance drifts [10].

IV. SYNTHESIZING FEATURE DRIFTS

The majority of existing data generators allow the creation
of data streams with concept drifts. In contrast to feature drifts,
conventional concept drifts are often synthesized by promoting
changes in P [~x|Y ] of the prior and posterior concepts and
the subset of relevant features remains the same and the
drifts occur due class distribution changes in certain values,
or ranges of values, of such features.

In this section, we survey and introduce data generators
capable of inducing feature drifts as streams progress and
present the drift framework adopted during experiments.

A. Generators

In this section, we survey and propose data stream genera-
tors capable of inducing feature drifts during streams.

SEA-FD. Described in [8], SEA-FD extends the SEA
generator [17] and synthesizes streams with d > 2 uniformly
distributed features, where ∀Di ∈ D, Di ∈ [0; 10] and
D∗ = {Dω, Dζ} is randomly chosen. As in [17], the class
value y is given accordingly to Eq. 4, where θ is a user-given
threshold.

y =

{
1, if Dα +Dβ ≤ θ
0, otherwise

(4)

BG-FD. The Binary Generator with Feature Drift (BG-FD)
is a new generator composed by boolean ({0, 1}) features and
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that possess three functions: BG1-FD, BG2-FD, and BG3-FD,
all inspired in [18]. In BG1-FD, a random subset D∗ ⊂ D
is relevant to the concept to be learned, where |D∗| is a
parameter. Conversely, in BG2-FD and BG3-FD we have
D∗ = {Dα, Dβ , Dε}. Instances’ labels are defined as stated
in Eqs. 5 (BG1-FD), 6 (BG2-FD) and 7 (BG3-FD) and labels
are evenly likely to occur.

y =

1, if
∧

Di∈D∗
Di

0, otherwise
(5)

y =

{
1, if (Dα ∧Dβ) ∨ (Dα ∧Dε) ∨ (Dβ ∧Dε)

0, otherwise
(6)

y =

{
1, if (Dα ∧Dβ ∧Dε) ∨ (¬Dα ∧ ¬Dβ ∧ ¬Dε)

0, otherwise
(7)

RTG-FD. The original Random Tree Generator (RTG)
builds a decision tree by randomly performing splits on
features and assigning a random class label to each leaf.
Instances are created by generating a random valued ~x and
traversing the tree for its corresponding label. We propose
an extension to this generator, namely RTG-FD, such that a
random D∗ ⊂ D is relevant, where |D∗| < |D| is a user-given
parameter.

Asset Negotiation (AN). This generator was originally
presented in [19], where the aim was to simulate drifting
bilateral multi-agent system negotiation of assets. Assets are
described by the following features: color, price, payment,
amount and delivery delay. The task is to predict whether
an opposing agent would or not be interested in an asset
(binary classification problem). Feature drifts are synthesized
with changes in the interest of an agent by modifying the
concept through time based on five functions, each of which
relying on a different subset of features.

B. Drift Framework

Feature drifts are synthesized accordingly to the sigmoid
framework proposed in [11], where a drift is the change
between two pure distributions given by two different concepts
CA and CB , each built upon different relevant feature subsets.
To model the probability that every new instance it drawn from
S belongs to the concepts CA or CB , the framework follows
a sigmoid given by Eq. 8, where P [CB ] and P [CA] are the
probabilities of it belonging to CA or CB , W is the drift
window size, t is the current timestamp and t0 is the time of
the drift, when P [CA] = P [CB ] = 0.5.

P [CB ] = |1− P [CA]| =
1

eW (t0−t)
(8)

V. BENCHMARK

In this section we assess the performance of several existing
data stream classifiers (Sec. V-A) in synthetic streams gener-
ated accordingly to generators and framework stated in the
previous section with a proper protocol (Sec. V-C).

A. Classifiers

This section briefly presents evaluated algorithms: 1-
Nearest Neighbor (1NN), Updatable Naive Bayes (NB),
Very Fast Decision Rules (VFDR), Very Fast Decision
Tree (VFDT) and Hoeffding Adaptive Tree (HAT). These
classifiers were chosen due to their different bias and their
consistent implementation provided in the Massive Online
Analysis (MOA) framework [20].

1) 1-Nearest Neighbor (1NN): 1-Nearest Neighbor main-
tains a fixed-sized buffer queue of labeled instances, each
of which is used for classifying future unlabeled ones [20].
Instances are labeled accordingly to the instance ~xj in a buffer
that minimizes the Euclidian distance given by Eq. 9.

d(~xi, ~xj) =

√√√√ D∑
Dk

(~xi[Dk]− ~xj [Dk])
2 (9)

2) Naive Bayes (NB): Naive Bayes is a probabilistic learner
that assumes input features to be independent of one another.
As new instances arrive, a probability contingency table is
incremented accordingly features’ values and labeling of each
instance is given by the maximization of the conditional
probability as follows: argmaxyi∈Y P [yi]

∏D
Dj
P [~xt[Dj ] | yi].

3) Very Fast Decision Rules (VFDR): Very Fast Deci-
sion Rules learns ordered and/or unordered rules in the IF
antecedent THEN consequent form, where antecedent is a
conjunction of tests over features and consequent is a class
label. It starts with an empty rule set and rules are grown and
expanded accordingly to the minimization of the entropy of
class labels Y of instances covered by each rule [21] if they
satisfy the Hoeffding bound [22].

4) Very Fast Decision Tree (VFDT): It constructs a decision
tree by using constant memory and time per instance by
recursively replacing leaves with decision nodes as data arrives
[23]. Different heuristic evaluation functions, e.g. Information
Gain and Gini Impurity, are used to select features and
to determine whether a split should be performed by also
verifying the Hoeffding bound. Finally, VFDT assumes that
the stream underlying distribution is stationary, i.e. no drifts
occur.

5) Hoeffding Adaptive Tree (HAT): Hoeffding Adaptive
Tree (HAT) is an extension of VFDT to deal with concept
drifts [24]. Based on ADWIN change detector (Sec. V-B1),
HAT verifies if the statistics of split nodes over features still
meet the Hoeffding criterion. If there is an alternate better
splitting feature, the entire subtree is replaced by a new leaf
and this new subtree is grown with upcoming instances.

B. Drift Detectors

In this section, we state two recent and broadly used
drift detectors presented in the literature. In our experiments,
whenever a drift is detected, the classifier is reset so it can start
learning an entirely new concept. This approach is, by far, the
most widely used in data stream learning approaches [25],
[26], [11]. These following drift detectors were chosen since
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they provided better results when compared to seminal works,
e.g. DDM [25], EDDM [26], in a variety of applications.

1) Adaptive Sliding Window (ADWIN): The Adaptive Slid-
ing Window change detector (ADWIN) keeps a variable-length
window of recently seen items consistent with the hypothesis
“there has been no change in the average output value (classi-
fication error) inside the window accordingly to a confidence
bound δ” [11]. ADWIN is parameter- and assumption-free
since it automatically detects and adapts to the current rate
of change.

2) Exponentially Weighted Moving Average (EWMA): Ex-
ponentially Weighted Moving Average (EWMA) was pro-
posed in [27], where misclassification rates are exponentially
weighted accordingly to their position inside a sliding window.
EWMA maintains three threshold levels: in-control, warning,
and out-of-control. Given the overall misclassification rates
inside the sliding window, the current system state varies
inside these three thresholds. EWMA postulates that a concept
drift occurs whenever the misclassification rates achieve the
out-of-control level.

C. Experimental Protocol

Accuracy is measured accordingly to the Prequential test-
then-train method [28]. Although claimed as pessimistic, Pre-
quential is capable of monitoring models’ performance over
time when estimated over a sliding window. In the following
experiments, the sliding window size was set to 1/100 of the
stream size. This size was selected to provide clear accuracy
results obtained during the stream, as the ones presented in
Figs 1. We refrain from providing results for both processing
time and memory usage for the sake of brevity and since our
focus is mainly on feature drift adaptation, which is translated
onto accuracy.

Experiments encompass the usage of generators presented
in Sec. IV. Synthesized streams have a length of 100, 000
instances, |D| = 50 and |D∗| = 3, with the exception of SEA-
FD experiments where |D∗| = 2 and θ = 7 [8] and AN,
where |D| = 5. Streams with an (A) suffix contain 9 equally
distributed abrupt (W = 1) feature drifts, while streams with
a (G) contain 9 drifts at the same positions, however, these
are gradual (W = 1, 000).

Experiments were performed under the Massive Online
Analysis (MOA) framework [20] in an Intel Xeon CPU
E5649 @ 2.53GHz×8 and 16GB of RAM computer and
statistical differences are verified accordingly to Friedman’s
and Nemenyi’s non-parametric tests with α = 0.05 [29].

D. Discussion

In Tab. I we present the Prequential accuracy obtained in
experiments, where one can see that HAT presents higher
accuracy in most of the experiments. With the aid of hy-
pothesis tests, we determined that {HAT, NB-ADWIN, VFDT-
ADWIN} are statistically superior to others (Fig. 2), thus high-
lighting the capability of HAT and drift detectors to overcome
feature drifts. The results obtained are expected since HAT
performs evaluations of features used in test nodes of the

tree accordingly to drifts flagged by the ADWIN detector.
This must be emphasized since HAT is the only algorithm
capable of performing dynamic feature selection as the stream
progresses, thus, corroborating the claims provided in [9].

Focusing on the usage of drift detectors, we ran statistical
tests multiples times to verify if their usage sufficiently im-
proved accuracy of algorithms to show statistical difference
and verified that {1NN, 1NN-ADWIN} � {1NN-EWMA},
{NB-ADWIN, NB-EWMA} � {NB}, {HAT} � {HAT-
ADWIN, HAT-EWMA}, while for both VFDT and VFDR no
statistical difference was found. Therefore, one can see that
drift detectors enable classifiers to obtain higher accuracy, yet,
the gain is not commonplace for all learners. For example,
NB when combined to ADWIN, showed an average boost
in performance of 11.32%, yet, it is still outperformed by
HAT alone. On the other hand, drift detectors did not show
impressive results when applied to the 1NN classifier. 1NN is a
lazy learner that labels instances given data stored in a buffer,
and in streaming scenarios, this buffer is a sliding window,
which “forgets” older data automatically, thus adapting its
pseudo-model.

More importantly, we refer to the results obtained by
HAT, which obtained higher accuracy without drift detectors,
showing that partial model resets are more interesting than full
model resets. In contrast to full model resets, partial resets
are beneficial since classifiers still possess a partial model to
classify upcoming instances, even after drifts.

Results obtained also show that feature selection is benefi-
cial for streaming environments. In the case of HAT, feature
selection allowed higher prediction rates since subtrees given
by split nodes over irrelevant features were replaced accord-
ingly to the increase of error rates.

In Fig. 1 we present results obtained during the RTG-FD(G)
experiment since it provided, in average, worst results. We
group results accordingly to the classifiers used and plot results
without the usage of drift detectors and with the usage of
ADWIN and EWMA. From Figs. 1a through 1d, one can see
that the usage of conventional drift detectors does not allow
quick recovery to drifts. These results show the difficulty of
detecting and adapting to feature drifts. Finally, we highlight
the results plotted in Fig. 1e, where HAT performs better in
certain drifts, due to its internal periodical feature evaluation.

VI. CONCLUSION

In this paper, we introduced and reviewed several feature-
drifting data stream generators. Additionally, we benchmarked
data stream classification algorithms with and without drift
detectors in several feature drifting streams. Results obtained
show that feature drift is a challenging trait of streams that
must be accounted for by learning algorithms. Although the
adoption of drift detectors allowed classifiers to overcome
feature drifts quicker, they are still beaten by a Hoeffding
Adaptive Tree (HAT). HAT is able to provide better results
since it combines an embedded feature selection procedure
and the adoption of a drift detector to verify if features used
in split nodes are still relevant [9].
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TABLE I: Average Prequential Accuracy (%) obtained during experiments.

Experiment No drift detector ADWIN EWMA
1NN NB VFDT VFDR HAT 1NN NB VFDT VFDR HAT 1NN NB VFDT VFDR HAT

AN(A) � 87.09 77.12 91.47 � 72.05  93.63 85.12 � 92.49 � 92.30 54.68 92.93 83.77 90.55 90.67 68.39 91.11
AN(G) � 87.05 77.13 91.57 � 72.81  92.62 85.01 � 91.23 � 91.92 52.41 91.96 83.93 89.90 90.09 66.00 90.30

BG1-FD(A) 86.00 69.99 78.21 � 72.67 94.00 � 86.19  94.52 � 94.32 51.55 � 94.28 84.10 92.94 92.69 71.30 92.46
BG1-FD(G) � 85.65 69.98 78.25 71.91  93.31 84.59 � 92.96 � 92.93 52.49 92.62 83.08 92.05 91.98 � 76.56 91.89
BG2-FD(A) 73.31 62.57 67.70 70.75  91.21 � 73.37 � 82.49 � 82.09 53.06 80.53 69.40 81.33 80.36 � 73.90 82.08
BG2-FD(G) � 72.98 62.60 67.27 68.20  88.98 72.09 � 81.23 � 80.86 58.56 79.55 69.25 80.36 80.35 � 73.50 81.43
BG3-FD(A) � 65.96 54.96 � 62.08 53.60  86.20 65.76 � 59.98 60.41 50.81 60.00 61.87 57.49 60.45 � 61.02 64.52
BG3-FD(G) � 65.86 54.73 60.14 54.26  82.03 65.42 � 60.70 60.33 51.42 59.70 62.69 58.26 � 60.39 � 55.61 59.36
RTG-FD(A) � 57.21 55.41 55.65 56.08  65.24 57.09 � 60.55 � 60.28 � 56.91 59.42 56.41 57.81 57.82 56.07 57.98
RTG-FD(G) � 57.11 55.41 55.68 55.86  63.25 57.03 � 60.55 � 60.00 � 56.52 59.71 56.36 57.65 57.42 55.96 57.39
SEA-FD(A) � 75.28 79.83 80.82 � 79.14  83.80 75.20 � 82.68 � 82.82 75.15 82.64 73.49 79.90 79.66 73.32 78.53
SEA-FD(G) 75.29 79.85 80.80 � 78.22  83.59 � 75.31 � 82.90 � 82.61 74.99 81.74 73.61 79.14 79.14 73.39 78.23

 stands for best result obtained by all classifiers in given experiment. � stands for best result obtained by each classifier in the given experiment.
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Fig. 1: Prequential accuracies (%) during RTG-FD(G) experiment.
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Fig. 2: Critical differences chart for comparison among all classifiers.

Accordingly to the results provided in this paper, we claim
that there are the need and room for new methods for dynamic
feature selection [30], [31], [32]. Future works envision the
creation of adaptive feature selection filters for data streams.
Filters would allow different biased classifiers to detect and
adapt to feature drifts, thus boosting their accuracy during
feature drifting streams, while diminishing processing time and
memory space, due to lower dimensionality.
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