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a b s t r a c t

Feature selection targets the identification of which features of a dataset are relevant to the learning task.
It is also widely known and used to improve computation times, reduce computation requirements, and
to decrease the impact of the curse of dimensionality and enhancing the generalization rates of classifiers.
In data streams, classifiers shall benefit from all the items above, but more importantly, from the fact that
the relevant subset of features may drift over time. In this paper, we propose a novel dynamic feature
selection method for data streams called Adaptive Boosting for Feature Selection (ABFS). ABFS chains
decision stumps and drift detectors, and as a result, identifies which features are relevant to the learning
task as the stream progresses with reasonable success. In addition to our proposed algorithm, we bring
feature selection-specific metrics from batch learning to streaming scenarios. Next, we evaluate ABFS
according to these metrics in both synthetic and real-world scenarios. As a result, ABFS improves the
classification rates of different types of learners and eventually enhances computational resources usage.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Feature selection is an essential part of a machine learning
pipeline. The central goal of this task is to identify and retain
the subset of features of a dataset that is relevant to the learning
task. Despite its benefits to reduce computation time by focusing
the model training only on a subset of features, feature selection
can have an even bigger impact in diminishing the curse of di-
mensionality. This characteristic can enhance the performance of
predictive models. Comparing the feature selection studies from
the last 20 years, the number of dimensions (features) has rapidly
grown. For instance, the studies of [1,2] tackled datasets described
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with an average of 40 features. In the age of Big Data, the number of
features has grown tremendously, where hundreds, thousands [3]
or even millions of them are observed in specific domains [4], and
these are called high-dimensional scenarios.

Traditional feature selection techniques are tailored to be part
of the pre-processing step of the batch knowledge discovery pro-
cess. Nevertheless, a variety of data mining applications are not
static, as data often arrive in the form of potentially infinite se-
quences of data, the so-called data streams. Learning from data
streams exhibits not only the challenges from traditional learning
schemes, e.g., missing values and class imbalance; but also concept
drifts. A concept drift occurs when the data distribution changes,
possibly impacting the relationship of features, their values, and
the target variable [5].

Recently, studies on data stream mining shed light on the fact
that certain types of drift affect the importance of features over
time. Scenarios where features become, or cease to be, relevant to
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the learning task are called feature drifting data streams, and these
are the target of this paper.

In this paper, we propose a novel dynamic feature selection
method for data streams called Adaptive Boosting for Streaming
Feature Selection. Our proposal is tailored to tackle feature drifting
high-dimensionality scenarios, thus allowing classifiers to learn
from a reduced number of features. This method adopts a boost-
ing scheme inspired by the work of [6] with decision stumps to
dynamically identify which features are relevant to the current
concept of a data stream. Drift detectors are used to flag drifts and
enable quick response to changes in the importance of features.We
evaluate our proposal in a variety of streaming scenarios, and also
with different types of learners. Additionally,we showhowmetrics
from batch feature selection can be ported to streaming scenarios.
These metrics, along with the code for our proposed method, are
made available for the community1 as part of the Massive Online
Analysis (MOA) software [7].

This paper is divided as follows. Section 2 introduces the data
stream classification and feature drifts. Section 3 reviews related
work on feature analysis in data streams. Section 4 introduces
our proposal, namely Adaptive Boosting for Feature Selection (ABFS),
while Section 5 conducts an analysis on how feature selection-
specific evaluation metrics can be used in streaming scenarios.
Next, in Section 6, the proposed method is evaluated against dif-
ferent base learners, showing its efficacy and efficiency in a variety
of data streams and dimensions. Finally, Section 7 concludes this
paper.

2. Problem statement

In this paper, we target the classification task for inductive
learning fromdata streams.More formally, letS to be a data stream
providing instances (x⃗1, y1), . . ., (x⃗t , yt ) as t →∞. We also denote
x⃗t to be a d-dimensional feature vector belonging to a feature set
F =

⋃d
i=1 {fi}, and Y =

⋃c
i=1 {yi} to be the set of c possible

class labels. In data streamclassification, our goal is to continuously
learn and update a model h : x⃗ → y that maps features and their
values to class labels as new data becomes available.

One of the most important traits of data streams is that their
underlying distribution may change over time. As a result, these
changes affect the concept to be learned; a phenomenon referred
to as concept drift. In this paper, we target a specific type of concept
drift that occurs when features become, or cease to be, relevant to
the learning task. In the seminal work of [5], this type of drift was
referred to as contextual concept drift, while more recent works [8,
9] call it feature drift. In contrast to conventional concept drifts,
where changes occur in the relationship between values or ranges
of variables and the class, feature drifts occur whenever a subset of
features becomes or ceases to be relevant for the current concept
to be learned.

Formally, we divide features in two types: relevant and irrele-
vant according to the work of [8]. Assuming Si = F \ {fi}, a feature
fi is deemed relevant iff Eq. (1) holds.

∃S ′i ⊂ Si, such that P[Y |fi, S ′i ] ̸= P[Y |S ′i ] (1)

Otherwise, the feature fi is said irrelevant. In practice, if a
feature that is statistically relevant is removed from a feature
set, it will reduce overall prediction power since (i) it is strongly
correlated with the class; or (ii) it belongs to a subset of features
that is strongly correlated with the class [10].

According to the previous definitions, if a feature that is statis-
tically relevant is removed from a feature set, it will reduce overall

1 The code for our implementation of ABFS, data generators, evaluation metrics,
and scripts to reproduce the experiments shown in this paper are available at
https://github.com/jpbarddal/moa-abfs.

prediction power. This definition encompasses two possibilities
for a feature to be statistically significant: (i) it alone is strongly
correlatedwith the class; or (ii) it forms a feature subsetwith other
features and this subset is strongly correlated with the class [10,
11].

In streaming scenarios, changes in the relevant subset of fea-
tures force the learning process to adapt itsmodel accordingly [12].
Given a feature space F at a timestamp tj, we denote F∗tj as its
ground-truth relevant subset of features such that ∀fi ∈ F∗tj the
aforementioned definition of relevance holds. Therefore, a feature
drift occurs if between two timestamps tj and tk we find that F∗tj ̸=
F∗tk .

To overcome this type of drift, a classifier must identify these
relevance changes, and either (i) discard and learn a new model
with the newly relevant features, or (ii) adapt its current model to
relevance drifts [12].

3. Related work

Finding a compact subset of relevant features is a widely tack-
led problem of batch learning, yet, the same does not hold for
streaming scenarios. At this point, it is relevant to disclaim that
this is different from online feature selection, which is the task that
targets the identification of the best subset of features in a very
high-dimensional space (hundreds of thousands or millions of di-
mensions), which is a typical problem of big data [13,14]. Although
both tasks’ objectives overlap in the sense that both tackle the issue
of feature selection, streaming feature selection receives as input a
stream of features (not instances), and their inclusion in themodel
is performed sequentially, without observing future features [15].
In contrast, our goal in this paper is to dynamically select features
in streaming scenarioswhere new instances become available over
time and the original feature set is static.

Recently, theworks of [16] and [17] surveyed and evaluated dif-
ferent approaches to tackle this problem. According to these stud-
ies, incremental decision trees [18] and its variants [19] are the best
performing approaches. Decision trees can be regarded as feature
selection processes since they continuously select the feature that
maximizes a qualitymetric during the branching step. For instance,
the Hoeffding Tree [18] collects statistics about incoming data,
and periodically, according to a grace period parameter, determine
which feature should be used to split the tree and create even
more specific leaf nodes. One of the significant drawbacks of the
conventional Hoeffding Tree learner is that it is purely incremental
as it does not check if any of the previous splits are still accurate.
To overcome this issue, the Hoeffding Adaptive Tree [19] uses the
ADWIN drift detector [20] inside decision nodes to monitor the
internal error rates of the tree, and re-learn branches if needed.

Another recent work that focused on performing feature selec-
tion is the Heterogeneous Ensemble with Feature Drift for Data
Streams (HEFT-Stream) [12]. HEFT-Stream incorporates traditional
feature selection into a heterogeneous ensemble to adapt to dif-
ferent types of concept and feature drifts. HEFT-Stream adopts a
modification of the Fast Correlation-Based Filter (FCBF) algorithm
so it dynamically updates the selected relevant feature subset of
a data stream. The main shortcoming of HEFT-Stream is that is
processes the data stream using mini-batches, and the determina-
tion of the size of such batches is left to the user. To perform the
scoring of features over sliding windows, the work of [8] proposes
a dynamic feature weighting scheme for the streaming versions of
Naive Bayes and k-Nearest Neighbors. Weights are computed with
sliding window formulas for the Symmetrical Uncertainty scoring
operator [21] and are used in the prediction step of the learners
mentioned above. The accuracy gains are noticeable despite the
expense of reasonable processing time andmemory usage. Finally,
the proposed weighting scheme was used at the leaves of the

https://github.com/jpbarddal/moa-abfs
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Hoeffding Adaptive Tree to improve its prediction rates, againwith
a computational overhead.

Another relevant approach is given in the work of [22], where
authors proposed an unsupervised approach for feature ranking,
and posterior selection, based on Frequent Directions. In practice,
their proposal operates in a streaming by constructing and main-
taining a sketch matrix that shrinks the original data in orthogo-
nal vectors. Even though the results obtained in terms of feature
selection are interesting, authors work under the assumption that
the number of features to be selected is known a priori and that the
user is able to provide this number correctly.

At this point, it is worthy to notice that measuring the impor-
tance of features on streaming regression scenarios has also gained
traction in the work of [23], yet, no feature selection proposals are
provided. And finally, it is also relevant to mention that our main
goal in this paper is to introduce a feature selectionmethod for data
streams that is not highly dependent of a user-given window size.
This is relevant since, in practice, any traditional feature selection
method can be applied to data streams by partitioning the arriving
data in chunks of size n. At the end of each chunk, traditional
feature selectionmethods could then be applied to the npreviously
instances gathered, thus resulting in a feature set that would be
used to build a classifier to predict the upcoming n instances.
Naturally, the biggest issue here is how to determine an appropri-
ate value for n, and this problem is referred to as the plasticity-
stability dilemma. While short windows reflect the current data
distribution and ensure fast adaptation to drifts (plasticity), they
usually worsen the performance of the system in stable areas. Con-
versely, larger windows give better performance in stable periods
(stability), however, these imply in slower reaction to drifts [24].

4. Proposed method

In this section, we propose a novel method based on Online
Boosting [6] and drift detectors to identify which features are
relevant for the classification task on data streams. We start this
section with an introduction to Boosting methods for both batch
and stream learning settings. These methods are at the core of
the proposed method as Boosting allows feature interactions to
be swiftly identified in data streams. The next part describes the
proposed method and discusses its functioning. At this point, it
is important to highlight that even though the proposed method
has its foundations borrowed from [6], it is not tailored for classi-
fication as its inner weak learners are not used during predictions;
and no convergence with batch learning is reported for the same
reason.

4.1. Preliminaries on boosting

In machine learning, Boosting is a family of meta-learning
methods that target the construction of a strong learner by com-
biningmultipleweak learners that, by definition, are slightly better
than random guessing.

The most widely used and known implementation of Boost-
ing is AdaBoost [25], and multiple variants of it were proposed
throughout the years [26,27]. In AdaBoost, a set of weak learners
H is trained over a series of rounds t = 1, . . . , T . During each
iteration, a newweak learner ht : x⃗→ y is trained over the dataset
(x⃗1, y1), . . . , (x⃗n, yn) taking into account a distribution of weights
Dt for these instances. In the first round, it is assumed that all
instances have the same weight, i.e. D1(i) = 1

n . The error of a weak
learner in the tth round is the sum of the weights of misclassified
instances, as shown in Eq. (2).

ϵt = Pri∼Dt

[
ht (x⃗i) ̸= yi

]
=

∑
∀i,ht (x⃗i)̸=yi

Dt (i) (2)

In each of the following rounds, the weights Dt (i) are up-
dated according to a parameter αt , which is calculated according
to Eq. (3).

αt =
1
2
ln
(
1− ϵt
ϵt

)
(3)

In practice, αt quantifies how ‘‘important’’ ht is, as αt ≥ 0 if
ϵt ≤ 1/2 and that αt increaseswith the decrease of ϵt . According to
αt , the weight distribution can be updated following Eq. (4), where
Zt =

∑n
i Dt (i) is a normalization factor to guarantee that Dt is a

distribution.

Dt+1(i) =
Dt (i)
Zt
×

{
e−αt if ht (x⃗i) = yi

eαt if ht (x⃗i) ̸= yi
(4)

With this update, the weights of correctly classified instances
will decrease, while misclassified instances will increase. As a
result, this process highlights hard-to-classify instances for future
rounds.

Finally, predictions can be extracted from the final ‘‘strong’’
learner as depicted in Eq. (5).2

H(x⃗) = argmax
yi∈Y

(
T∑

t=1

{
αtht (x⃗) if ht (x⃗) = yi
0 if ht (x⃗) ̸= yi

)
(5)

Even though AdaBoost is iterative, it works under the assump-
tion that all instances of the dataset are available at all times so that
re-weighting occurs. Naturally, this is an assumption that does not
hold in streaming scenarios, as each instance should be processed
and discarded right after. Targeting the development of boosting
techniques for data streams, different approaches for classifica-
tion [6,29,30] and regression [31] tasks have been developed over
the years.

In this work, we follow a similar framework proposed in [6],
called OzaBoost. OzaBoost was tailored to be an approximation
of AdaBoost for data streams. Contrary to AdaBoost, where the
number of rounds T determines the ensemble size, OzaBoost has a
predefined number of weak learners M and counters for correctly
(λci , 1 < i < M) and incorrectly (λei , 1 < i < M) classified
instances which are updated as new instances are processed. For
each instance (x⃗t , yt ) drawn from the data stream S, a weight λ =
1 is set. The instance is then traversed along the weak learners
h1, . . . , hM sequentially. For each hi, the instance is tested to check
whether if it is correctly classified or not, i.e. hi(x⃗t ) = yt or not;
and as a result, the counters λci and λei are incremented with λ
(Eqs. (6) and (7), respectively). Next, the value of λ is incremented
or decremented following Eq. (8). This is the same procedure
adopted by AdaBoost in Eqs. (4) and (5), except the normalization
factor Zt , which cannot be used in data streams as past instances
have been discarded.

λci ← λci + λ; (6)

λei ← λei + λ; (7)

λ← λ×

⎧⎪⎪⎨⎪⎪⎩
λci + λ

e
i

2λci
if hi(x⃗) = yt

λci + λ
e
i

2λei
if hi(x⃗) ̸= yt

(8)

2 The original prediction scheme presented in [28] focuses only on binary
classification tasks and has been extended here to account formulti-class problems.
Details about the usage of AdaBoost in binary classification tasks and proofs on its
error bounds can also be found in the same paper.
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4.2. Adaptive boosting for feature selection

The properties of boosting have been investigated to improve
classification rates, but also as a proxy for feature selection in batch
scenarios. For instance, the work of [32] uses gradient boosted re-
gression trees to select features. Also, related to our approach, au-
thors in both [33] and [34] proposed different boosting techniques
that use decision stumps to select features in batch scenarios.

We now propose a novel method based on Boosting to dynam-
ically select features in streaming scenarios hereafter referred to
as Adaptive Boosting for Feature Selection (ABFS). At this point, it is
important to disclaim that the term Adaptive used here stands for
the fact that the proposed method incrementally selects features
as the stream is processed, but it is also able to detect feature drifts
and adapt to them on the fly.

ABFS combines decision stumps and drift detectors to perform
dynamic feature selection. Decision stumps are light-weighted,
incremental, easy to implement and understand, but more impor-
tantly, an elegant approach to identify which feature maximizes
a purity criterion and selects a feature accordingly. Below, we
describe each of these components individually and later how they
are chained together to allow dynamic feature selection in data
streams.

4.2.1. Decision stumps
The decision stump implementation used here is the core unit

of incremental decision trees, e.g., Hoeffding Trees [18], and receive
as input three parameters: a selection threshold θ , a grace period
gp and a purity metric Ω(·) that we wish to maximize, e.g. In-
formation Gain and Gini Index. By definition, a decision stump ds
gathers statistics on the arriving data until the grace period gp is
reached. After that, all features fi ∈ F are evaluated according
to a criterion Ω(·). Let fα and fβ be the two best-ranked features
according toΩ . As proposed in [18], a decision stump will split on
fα ifΩ(fα)−Ω(fβ ) > ϵ, where ϵ is the Hoeffding bound [35], given
by Eq. (9), and R is the range ofΩ .

ϵ =

√
R2 ln

( 1
δ

)
2× gp

(9)

As in [18], the Hoeffding bound is used to approximate how
many samples are required to achieve the optimal selection of a
feature that would occur if the entire data streamwas observed. As
a result, with probability (1−δ), it is statistically valid that fα is the
best feature to be selected [18]. It is also possible that during this
evaluation, two or more features show similarΩ values, and thus,
the number of examples required to decide between them with
high confidencemay grow indefinitely. Naturally, this is unwanted,
as the gain obtained by either makes little difference, i.e., such
features are likely to be redundant; and thus, the proposed imple-
mentation for decision stumps follows the Hoeffding Tree protocol
where a parameter τ is used for tie-breaking [18]. Following the
definition of [18] and [7], the tie-breaking parameter was set as
τ = 0.05 for all of the experiments conducted in this paper. In
practice, the decision stump will select the best-ranked feature fα
if τ > Ω(fα)−Ω(fβ ) > ϵ.

In the proposed method, the decision stump is extended in two
aspects. First, a decision stump will select the most appropriate
feature fα from a subset of features that have not been previously
selected by other decision stumps. The idea on using boosting
with decision stumps is that by traversing each instance across
all the boosting units, instances that are hard to classify will be
highlighted and will force the decision stump that is about to split
to select a feature that better separates such samples. And second,
the best-ranked feature fα will only be selected ifΩ(fα) > θ , which
is a user-given threshold. Naturally, the definition of a selection
threshold θ depends on the data domain being worked on, and
different values are evaluated in Section 6.

4.2.2. Drift detectors
A drift detector is a statistical method that observes a data

sequence and upon on its distribution, flags the occurrence of
significant changes. In data streams, most of the drift detectors
are used to monitor the error rates of a classifier. In this work,
we denote ψ to be a drift detector that receives as input a value
of 1 if h(x⃗t ) ̸= yt , or 0 otherwise. Evidently, different realizations
of ψ exist, e.g. ADWIN [19], HDDM-A and HDDM-W [36]; and the
impact of different techniques are also assessed in Section 6.

ADWIN is, by far, the most popular choice for drift detection.
It keeps a variable-length window of recently seen items, with
the property that the window has the maximal length statistically
consistent with the hypothesis ‘‘there has been no change in the
average value inside the window’’. The ADWIN change detector is
parameter- and assumption-free in sense that it automatically de-
tects and adapts to the current rate of change. In the average case,
the cost of processing each instance by ADWIN is instantaneous,
while in the worst case it can be of O(logW ), where W is the size
of the sliding window maintained in memory.

More recently, the authors in [36] proposed two variants of the
Hoeffding Drift Detection Method (HDDM) detector: HDDM-A and
HDDM-W. Both the former and the latter are similar to ECDD in the
sense that they use moving averages to detect drifts, yet, only the
latter uses an exponentially weighted procedure to provide higher
importance tomost recent data. In both cases, themoving averages
are compared to flag concept drifts based on the misclassification
rates of a classifier, where the Hoeffding Bound (see Eq. (9)) is used
to set an upper bound to the accepted level of difference between
them. In contrast to ADWIN, the complexity for both HDDM-A and
HDDM-W is of O(1) in the worst case.

4.2.3. Chaining decision stumps and drift detectors in a boosting
scheme

The rationale behind ABFS is that boosting givesmoreweight to
instances that are hard to classify. By intuition, these instances are
either (i) located at the decision boundaries of classes, or (ii) are
noise. If wework under the assumption that the labels of incoming
instances are trustworthy (not noisy), decision stumps will be able
to select the most important features according to these hard-
to-classify instances as they naturally account for these weights
during the feature selection process. In ABFS, each decision stump
will be responsible for finding the feature thatmaximizes themerit
function Ω without observing features that have been selected
previously.

Since ABFS was tailored for feature selection in classification
scenarios and not for actually training classifiers, we will adopt
a slightly different notation from the boosting schemes presented
earlier. ABFS is composed of a dynamic set of boosting unitsU such
that each unit ui ∈ U is a 4-tuple in the (dsi, λci , λ

e
i , ψi) form, where

dsi is a decision stump, λci and λei are counters for correctly and
incorrectly classified instances by dsi andψi is a drift detector. The
functioning of ABFS is detailed in Algorithm 1 and is divided into 3
steps: initialization, training, and selection.

In the initialization step (lines 1–4 of Algorithm 1), ABFS instan-
tiates both the set of boosting units U and the subset of selected
features F ′ as empty lists, a candidate decision stump dscandidate
that will gather statistics about incoming data to determine which
feature to split on and select.

During the training step (lines 5–31 of Algorithm 1), ABFS up-
dates its internal structures according to the arrival of an instance
(x⃗t , yt ). First, the instance weight λ and an index to store the first
layer that detects a drift idrift are initialized. Next, the arriving
instance is sequentially traversed along all of the boosting units
in U . In each boosting unit ui = (dsi, λci , λ

e
i , ψi), it is verified

if the decision stump is able to correctly predict the class label
(dsi(x⃗t ) = yt ), or not (dsi(x⃗) ̸= yt ). Here, AdaBoost’s weighting
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strategy is followed (Eqs. (6)–(8)), where higher values of λ will
be associated with instances that are hard to classify. It is also
important to highlight that after the classification of the instance
in a unit ui, the selected feature used in its decision stump dsi is
removed from x⃗ (line 20) so that the candidate decision stump
dscandidate is enforced to select a feature that has not been selected
already by the decision stumps in U .

Algorithm 1 ABFS pseudocode. We denote h to be a pointer to the
classifier, dscandidate a candidate decision stump, F ′ the currently
selected subset of features, θ a selection threshold used in decision
stumps, and U the set of boosting units such that the ui is the ith
unit and it is composed of a decision stump dsi, a set of counters for
correctly (λci ) and misclassified (λei ) instances, and a drift detector
ψi.
1: procedure INITIALIZE(h, F, θ )
2: U ← ∅;
3: dscandidate ← new DecisionStump(θ );
4: F ′ ← ∅;
5: procedure TRAIN(x⃗t , yt )
6: λ← 1;
7: idrift ←−1;
8: for i← 1 to |U | do
9: if dsi(x⃗t ) = yt then

10: λci ← λci + λ;

11: λ← λ×
λci +λ

e
i

2λci
;

12: Update ψi with 0;
13: else
14: λei ← λei + λ;

15: λ← λ×
λci +λ

e
i

2λei
;

16: Update ψi with 1;
17: if ψi flagged a drift and idrift = −1 then
18: idrift ← i;
19: break;
20: Remove from x⃗ the feature selected at dsi;
21: if idrift = −1 then
22: Train dscandidate with (x⃗t , yt ) assuming a weight λ;
23: if dscandidate has selected a feature fα ∈ F then
24: U ← U ∪ {new BoostingUnit(dscandidate)};
25: dscandidate ← new DecisionStump(θ );
26: F ′ ← F ′ ∪ {fα};
27: else
28: while |U |> idrift do
29: Remove from F ′ the feature selected in U .last();
30: U ← U \ {U .last()};
31: Reset the learner h;
32: procedure SELECT(x⃗)
33: return x⃗ after selecting the features selected in F ′ and

dropping the remainder of the features;

In addition to the definition of λ, the drift detector is fed with
the classification result (1 represents an error, while 0 represents
a correct classification). Therefore, each drift detector is used to
keep track of the error distribution of each decision stump. The
rationale here is that changes in these distributionswork as a proxy
to identify when the importance of a feature changes, and thus,
upon the flagging of a drift, it becomes necessary to re-start the
feature selection process. In practice, if a drift is flagged by ψi, its
index i will be stored in idrift so that this and the following units
are removed, and that the feature selection process can self-adjust
upon the new data distribution. Naturally, depending on the drift,
it would be possible that multiple units flag drifts, and thus, only
the first layer that detects such changes is stored.

If no changes are detected (lines 21 to 26), the candidate de-
cision stump dscandidate is trained3 with (x⃗t , yt ) assuming a weight
λ. With the arrival of multiple instances, the candidate decision
stumpwill reach the grace period gp, and as a result, it will eventu-
ally select a new feature fα according to the process described ear-
lier. When this condition holds, a new boosting unit is instantiated
with this decision stump, and it is added to U . A new candidate
decision stump is then created to select the next best feature, and
the selected subset of features is incremented with fα .

On the other hand, it is, a feature drift is detected, all boosting
units from the index that detected the change until the end of the
list are removed (loop described by lines 28 and 29), as a boosting
unit ui affected the creation of its following units ∀uj, j ≥ i. Next,
and the classifier h is reset to allow faster adaptation to the new
concept. In practice, the reset of a classifier stands for the process
inwhich itsmodel is discarded and the learners starts to learn from
scratch.

Finally, the last part is the testing step (lines 32 and 33 of
Algorithm 1), ABFS filters the arriving instance x⃗ so that only the
features in F ′ are selected. This instance can then be passed to the
classifier with a reduced dimensionality equals to |F ′|.

4.2.4. A note on complexity analysis
The initialization step of ABFS is trivial, as it simply instantiates

the required structures, which results in O(1). Naturally, the most
computationally intensive part of ABFS is training step. In practice,
the upper bound cost of ABFS is given by the loop described by lines
8 to 20 of Algorithm 1, which basically loops over all the boosting
units in U , which has the same cardinality as the subset of selected
featuresF ′. Inside this loop, the conditions described by lines 9–12
and 13–16 aremutually exclusive and have the same cost, which is
basically described by the cost of the drift detector update, which
is O(logW ) for ADWIN and O(1) for HDDM-A and HDDM-W. Next,
another important aspect of ABFS occurs in line 22, where the
update of a decision stump has a cost ofO(d−U), as it needs to loop
over all the unselected features. Similarly, the condition described
in line 23,where a feature is selected requires (d−U) computations
of Information Gain, but these are precomputed as statistics are
incrementally updated, but also (d− U) log2(d− U) computations
so that the features are sorted. Yet, such computation only occurs
every gp instances, and thus, the computational cost becomes
O( (d−U) log2(d−U)

gp ). On the other hand, if a drift is flagged in line 27,
the cost in the worst case occurs with the removal of all features
that have been selected, and thus, the cost is of O(U). Given that,
the overall cost for ABFS is of O(U logW + (d−U)+ (d−U) log2(d−U)

gp ),
which after simplification becomes O(U logW + (d−U) log2(d−U)

gp ).
Also, since the average cost of ADWIN is pessimistic, one could also
assumeO(U+(d−U)+ (d−U) log2(d−U)

gp ) instead. Finally, the selection
step is also simple, as it builds a new instance by iterating over the
selected subset of features F ′, and thus, with a cost of O(U).

5. Evaluating feature selection on data streams

There are different factors to account for when evaluating fea-
ture selection proposals. Throughout the years, different quanti-
tative measures, such as accuracy and scalability, and subjective
ones, such as ‘ease of use’, have been used to highlight the effi-
ciency of feature selectors [37]. In this paper, we define a quan-
titative framework to evaluate our proposal and future works on
feature selection for data streams. This framework includes (i)
accuracy, (ii) processing time, (iii) memory usage, (iv) selection
accuracy; and (v) stability metrics. Metrics (i) through (iii) are

3 In decision stumps, whenever an instance (x⃗t , yt ) is used for training with a
weight λ, it means that the same instance has been observed λ times
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widely used in the area as they follow traditional data stream eval-
uation frameworks [38] for the assessment of classifiers. Metrics
(iv) and (v) are absent in streaming scenarios as both Selection
Accuracy and Stabilitymetrics were developed for batch scenarios.
The following sections present these metrics and discuss their
computation on data streams. Along the proposedmethod, the im-
plementation of these metrics is also provided to the data stream
mining community as part of the Massive Online Analysis (MOA)
software [7].

5.1. Selection accuracy

Selection Accuracy (SA) is a classifier-independent score that
quantifies to what extent a selected subset of features matches the
ground-truth relevant ones [39]. Given a feature set F , its relevant
subset of features F∗ and the selected set F ′ ⊆ F , SA is given
by Eq. (10), where γ ∈ [0; 1] is a weighting factor and its output is
also bounded in [0; 1].

SA(F,F∗,F ′) = γ

RRF  (
|F∗ ∩ F ′|
|F∗|

)
+(1− γ )

(
1−
|(F \ F∗) ∩ F ′|
|F| − |F∗|

)
  

CCP

(10)

A score of SA = 1 corresponds to a perfect selection, where all
the relevant set of features is selected, and no extraneous features
are retained; whereas SA = 0 represents the opposite, i.e., a se-
lection with no relevant features and all extraneous ones selected.
One of the main advantages of SA is that the information on the
degree to which a model has been correctly or incorrectly speci-
fied is combined into a single value, thus making the comparison
between several feature selection proposals clear and classifier-
independent.

The computation of SA also requires an appropriate γ . This
choice is subjective and depends on howmuch one wants to favor
accuracy over parsimony or vice-versa. Hereafter, the two compo-
nents that compose the SA formula are referred as Recall of Relevant
Features (RRF ) and Complement of Complexity Penalty (CCP). A suit-
able value for γ should reflect the fact that choosing an extraneous
feature is usually better than missing a relevant one, something
that can be achieved by selecting γ , such that γ

|X∗| >
1−γ
|X |−|X∗| [39].

On the other hand, γ should not be too large, as thatwould result in
insignificant penalties for unnecessarily complex models. Authors
in [37] provided an empirical evaluation of different values of γ
and claimed that 0.7 is an appropriate value since it satisfies the
condition mentioned above while being sufficiently less than 1 to
appropriately penalize unnecessary complexity.

The advantage of computing Selection Accuracy scores is that
they express the degree towhich a selectionmodel over- or under-
specifies. It is important to mention, however, that this metric is
affected by the dimensionality of the problem, as the cardinality
of the relevant and extraneous feature sets are taken into account
directly in the formula.

Evidently, computing a Selection Accuracy score after each in-
stance is unfeasible as its running time scales with the dimension-
ality d. Therefore, these scores are computed every n instances,
where n is the user-given window evaluation size.

5.2. Stability

Another important trait of feature selectors that deserves at-
tention is stability. Stability measures the sensitivity of the feature
selection solution given perturbations in input data. The goal is to
provide evidence that the selected features are consistent across

different data samples. Therefore, stable feature selection algo-
rithms are preferable when compared to those with highly volatile
outputs. It is important to highlight that stability, however, does
not relate to the performance of the selected features as it indices
how unstable a feature selection algorithm is w.r.t. perturbations
in input data, and not on how accurate the selection is.

In batch learning, stability is often measured by repeatedly
performing feature selection over k different bootstraps of disjoint
folds of a static dataset, leading to a set of feature selection results.
Let F ′i be the subset of features selected over the ith samples of
instances extracted from a static dataset. The stability of a feature
selection algorithm can be computed by averaging the similarity
coefficient φ for each of the possible pairs of (F ′i ,F

′

j ) of selected
features, as stated in Eq. (11).

S =
2

k(k− 1)

k−1∑
i=1

k∑
j=i+1

φ(F ′i ,F
′

j ) (11)

Although several similarity metrics (φ) for stability do exist,
until recently, there has not been an agreement on which one
to use [40]. Recently, the work of [41] has provided insights on
the main properties a stability measure should possess. First, it
should be fully defined, as a stability measure should be defined
regardless of the selected feature sets and respective lengths. Also,
it must have pre-defined upper and lower bounds to facilitate
the comparison between selectors. The third trait is the relation-
ship called Deterministic Selection ⇔ Maximum Stability: if a
selector always selects the same k features, then it should present
maximum stability. The converse should also hold, i.e., the stability
is maximum only if the selection is deterministic. Finally, it should
have chance correction, so if the selector is random, its stability
should be 0. Even though these traits are rather simple, the analysis
conducted in [41] shows that most approaches do not fulfill these
criteria. More importantly, in the same work, authors show that
the Pearson coefficient overcomes this problem. This coefficient
is given by Eq. (12), where d = |F|, ri,j = |F ′i ∩ F ′j |, and vi =√

ki
d

(
1− ki

d

)
with ki = |F ′i |.

φPearson(F ′i ,F
′

j ) =
ri,j −

kikj
d

d vivj
(12)

Finally, the last challenge to be tackled here regards how sta-
bility scores can be calculated in streaming scenarios. A naive
proposition to select samples of a stream would be to adopt a
landmark windowing scheme, where every m instances would
be grouped and inputted to a feature selection algorithm. After
performing feature selection over n batches, the stability could
then be computed. The major drawbacks of such proposal are that
it assumes that (i) the feature selection algorithm is not dynamic
and that (ii) the underlying data distribution is static since the
selected subset of features for each batch is expected to be the
same. As discussed in the previous sections of this paper, none of
the latter assumptions hold or are preferable, thus, evaluatingwith
landmarks is not reasonable.

To overcome such limitations, we propose to adapt the Pre-
quential Cross-Validation (Preq-CV) scheme presented in [42] for
stability computation. Following the original Preq-CV, three dif-
ferent k-fold approaches can be used to evaluate the stability of
a feature selector: cross-validation, split-validation and boot-
strapping. The first strategy updates (k − 1) folds, while the
second updates only one of the k folds. Finally, the bootstrapping
approach updates each of the k folds using a weight obtained with
a Poisson distribution with a parameter λ = 1. In this scheme, the
probability of an instance being used in each fold is approximately
two thirds, as P[x > 0] = 1− P[x = 0] = 1− e−1

x! ≈ 63% and the
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same value depicts the intersection of instances used in each pair
of folds.

Similarly to Selection Accuracy, calculating a Stability score is
computationally intensive as it requires k(k−1)

2 pairwise similarity
computations, and thus, these are only calculated according to an
user-given evaluation window size. Also, even though this score
is calculated only every n instances, it is important to notice that
the actual feature selection process occurs incrementally, which
causes the process to be different from performing batch feature
selection and conventional stability computation.

6. Analysis

In this section we analyze the proposed method in light of the
evaluation metrics presented in Section 5 in both synthetic and
real-world scenarios. First, we report the experimental protocol
adopted, followed by the discussion on synthetic experiments, and
finally, on real-world datasets.

6.1. Experimental protocol

In the following sections, ABFS is applied to different classifiers
on both synthetic and real-world data. In Table 1 we show the syn-
thetic experiments conducted, including the number of instances,
average number of relevant features and number of irrelevant
features appended. Regarding synthetic experiments, AGR repre-
sents the AGRAWAL [43] generator andAN is the Asset Negotiation
generator [44]. BG1, BG2 and BG3 are synthetic generators based
on binary features proposed in [45] that were recently used to
synthetize feature drifts in [17]. Finally, the Random Tree Gener-
ator (RTG) was used to create more complex concepts (where the
number of relevant features is bigger), while SEA [46] concepts
depend on only 2 features. All of the aforementioned synthetic
experiments are reported in different variants. First, all synthetic
data streams have 2 equally distributed drifts along the stream,
i.e. each occurring at 66,666 and 133,333 instances, and each of
these drifts is gradual with a window of 10,000 instances. As a
result, drifting regions of synthetic experiments are located at
61,666-71,666 and 128,333-138,333 [7]. Second, a different num-
ber of irrelevant features were appended (100, 200 and 500), such
that half are numeric and the other half categorical. The proposed
strategy to append irrelevant features is to increment the attribute
set F of a data stream with numeric or categorical attributes. In
the first case, values for a numeric attribute are sampled from
a uniform distribution bounded in [0; 1], with no regard to the
instance outcome. The procedure for categorical features is similar,
where new irrelevant attributes possess m different values, such
that m is a user-given value and the probability of each partition
being used in an instance equals 1

m . Also, the RTG experiment was
changed so that redundant features were also added. Redundant
features are synthesized by copying the value of another feature
with 95% probability, while the remainder 5% result in a value
drawn from a uniform distribution of the other possible values for
that specific feature.

Regarding real-world datasets, depicted in Table 2, it is im-
possible to tell whether and when drifts occur. Nevertheless, five
different datasets were still used to verify how ABFS behaves
when applied to real-world datasets with a reasonable number of
features. The first is the Forest Covertype [47] dataset (COVTYPE),
which is widely used to evaluate data stream learning algorithms.
This dataset represents the problem of determining the forest
covertype given characteristics (features) of forest areas. Another
dataset used was the Internet Advertisements (IADS) [48], which
targets the classification of whether images on a website are ad-
vertisements or not. Next, the NOMAO dataset (NOMAO) [49]
was introduced during the ECML-PKDD’12 challenge as part of

a deduplication task for determining whether two spots should
have their data merged or not. The Physical Activity Monitoring
dataset (PAMAP2) contains data of 18 different physical activities
performed by 9 subjects wearing 3 inertial measurement units
and a heart rate monitor [50]. The goal of this dataset is to deter-
mine which activity each subject is performing over time, such as
walking, cycling, playing soccer, and so forth. Another traditional
dataset is the Spam Corpus (SPAM), which is the result of a text
mining process of an e-mail dissemination system which targeted
initially the determination of whether each e-mail was spam or
not [51]. It is also important to highlight that other datasets that
are commonly used in data stream studies, e.g., Pokerhand and
Electricity; were not used here due to the small number of features
or because traditional feature selection has already been applied
before these datasets were made publicly available.

The latter experiments are used to benchmark ABFSwith differ-
ent types of classifiers. In this testbed, we verify how ABFS works
in conjunction with Naive Bayes, k-Nearest Neighbors (kNN), Ho-
effding Tree [18], and Hoeffding Adaptive Tree [19] classifiers.
All of the classifiers parameters’ were set following the default
values used in the Massive Online Analysis framework, except for
the window size in kNN, which was set to 500 to make it viable
as larger window sizes impact on larger processing times as the
number of distance computations per instance grows according to
the number of instances buffered. The parameters for ABFS will be
discussed in Sections 6.2 and 6.3 as multiple combinations have
been empirically tested, and as the characteristics of synthetic and
real-world experiments strongly vary, different sets of parameters
have been adopted. Also, due to the lack of techniques that dy-
namically select features during the processing of data streams, we
compare our method against a theoretical upper bound hereafter
referred to as the ‘‘oracle’’,4 which always selects the relevant
features and ignores the irrelevant ones resulting in SA = 1. Also,
every time a change in the relevant subset of features is detected,
the classifier is reset. We refer to this selector as ORACLE in the
following experiments.

Evaluation of the classifiers with and without the proposed
method has been conducted regarding accuracy, processing time,
and memory consumption. Accuracy is measured following the
Prequential test-then-train [38] procedure, processing time is the
time that the methods spend in the CPU (in seconds), and memory
consumption is given in RAM-Hours, where 1 RAM-Hour corre-
sponds to 1 GB of memory spent in 1 h of processing. We also use
SelectionAccuracy and Stabilitymetrics to evaluate ABFS and show
how accurate it is during the feature selection process and how
stable this method is given perturbations in the input data. All of
the above-cited metrics are computed every 5% of the experiment.

All experiments reported in this paper have been coded and
conducted on theMassive Online Analysis (MOA) software. The re-
sultswere obtained in a computerwith 40 Intel(R) Xeon(R) CPUE5-
2660 v3 2.60 GHz cores and with 64 GB of RAM devoted to the ex-
periments. Statistical tests have been conducted with Wilcoxon’s
test [52], or a combination of Friedman [53] and Nemenyi’s [54]
hypothesis tests following the protocol of [55], according to the
number of hypotheses being tested. In the sections below, the
synthetic experiments have been performed 30 times by changing
the random seed in the data generation process and by randomly
shuffling real-world datasets. The results of the statistical reports
are then performed with the average results obtained from these
executions and under a 95% confidence level.

4 The term oracle is borrowed from dynamic selection methods in ensemble
learning.
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Table 1
Details on the synthetic experiments conducted. Each of the synthetic experiments has been repeated where drifts were
abrupt and gradual.
Experi-
ment

Type # of
Instances

Avg. # of
relevant
features

# of Irrelevant
features
appended

# of redundant
features

AGR Synthetic 200,000 3.66a 100/200/500 –
AN Synthetic 200,000 2 100/200/500 –
BG1 Synthetic 200,000 3 100/200/500 –
BG2 Synthetic 200,000 3 100/200/500 –
BG3 Synthetic 200,000 3 100/200/500 –
RTG Synthetic 200,000 6 100/200/500 15/30/40
SEA Synthetic 200,000 2 100/200/500 –

aTheAGR experiment has three concepts, such that the first has 4 relevant features, the second only 3, and the last another
4.

Table 2
Details of the real-world datasets used during the experiments.
Experiment Type # of instances # of Features Feature types Reference

COVTYPE Real-world 581,012 54 Mixed [47]
IADS Real-world 3,279 1,558 Numeric [48]
NOMAO Real-world 34,465 118 Mixed [49]
PAMAP2 Real-world 1,942,872 52 Numeric [50]
SPAM Real-world 9,324 39,917 Binary [51]

6.2. Synthetic experiments

In this section, we show how different classifiers behave with
and without ABFS in synthetic experiments. In contrast to real-
world datasets, synthetic experiments allow greater flexibility. As
depicted in the previous section, we target the dimensionality
aspect of data streams, where 100, 200, and 500 features are
appended to each of the experiments. The rationale behind this
process is to verify how each learner and ABFS behave when noisy
features are added to a data stream regarding accuracy, processing
time, and memory consumption.

We start this section by investigating how different values for
each of the main parameters of ABFS impact final classification
accuracy and selection accuracy rates. Our investigation targets
the parameters and values detailed below, whereas each one will
be analyzed individually w.r.t. classification accuracy and selec-
tion accuracy metrics, and finally, the best parametrization will
be chosen as the default one. In practice, this analysis will be
conducted across all experiments, meaning that we are trying to
find a good parametrization that works reasonably well across dif-
ferent datasets, which is different from tuning our method to each
experiment individually. The parameters analyzed are as follows:

• Grace period (gp): This parameter controls how ‘‘fast’’ the
candidate decision stump will attempt to select a feature.
Smaller values of gp allow the decision stump to branch
quicker, yet, the sample distribution obtained during this
grace period is expected to be less precise compared to the
samples obtained with greater grace periods. The values of
100, 200, 500 and 1000 were tested for this parameter.
• Selection threshold (θ ): This parameter determines themin-

imum value of Ω so that a feature is selected. In practice,
if the candidate decision stump determines that fα is the
most appropriate feature to be selected, it will only select
it if Ω(fα) ≥ θ . Three different values were tested for this
parameter: 0.01, 0.05 and 0.1.
• Drift detector (ψ): this parameter determines which type

of drift detector is used in each boosting unit. Three dif-
ferent competitive methods have been tested here, namely
ADWIN [19], HDDM-A and HDDM-W [36].

As a result, 36 different configurations for ABFS were tested in
association with Naive Bayes, KNN, Hoeffding Tree and Hoeffding

Adaptive Tree classifiers, culminating in a total of 144 configura-
tions per stream, which were then repeated 30 times by changing
the random seed of the experiments. Below, we use box-plots to
report the results obtained across different classifiers, streams, and
parameter values.

In Fig. 1 we see the results obtained by different grace period
values across experiments grouped by the number of irrelevant
features appended. Even though no clear difference is observable
across different grace period concerning accuracy (Fig. 1(a)), the
highest results are obtained when the grace period is set to either
500 or 1000, showing that higher grace periods are preferable.
Nevertheless, the results observed in Figs. 1(b)–1(d) show the
results for Selection Accuracy and its components, where gp = 500
is themost stable and preferred value regardless of the experiment
dimensionality in terms of Selection Accuracy and Recall of Rele-
vant Features.

Naturally, an important aspect here is the high variance ob-
served in the results, as the rates go from 50% up to 90% or more.
This high variance occurs mainly because of the BG3 and RTG
experiments. Ifwe analyze the classification and selection accuracy
rates, depicted in Figs. 5(a) and 5(b), respectively; we observe that
these experiments result in rates that aremuch lower than the rest.
The explanation is that these concepts are much more complex
than the others, as BG3 is a XOR-like classification problem [45],
and RTG has complex interactions between the features [17]. In
practice, the Selection Accuracy rates obtained in the BG3 and RTG
experiments are below the expected baseline of 0.7. This is relevant
since if one selects all features, it would incur in a SA baseline
of 0.7, regardless of the selection of the extraneous features since
γ = 0.7.

In Fig. 2we conduct a similar analysis for the selection threshold
(θ ) parameter. From the accuracy results shown in Fig. 2(a), the
three threshold values behave similarly in terms of variance, yet
smaller values, i.e., 0.01 and 0.05, show higher accuracy rates.
When analyzing Selection Accuracy rates (Fig. 2(b)) and its com-
ponents (Figs. 2(c) and 2(d)), we observe a trade-off between
θ and the accuracy of the selection process. In practice, higher
threshold values are more ‘selective’ as less irrelevant features
are selected (higher Complement of Complexity Penalty rates),
while itmisses the relevant ones (lower Recall of Relevant Features
values). Overall, both θ = 0.01 and θ = 0.05 seem reasonable
as they are able to correctly identify relevant features in all the
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Fig. 1. Results obtained across different grace period values.

Fig. 2. Results obtained across different selection threshold (θ ) values.

tested dimensionalities (Fig. 2(c)), while reasonably ignoring the
irrelevant ones (Fig. 2(d)).

Finally, the results for different drift detectors are reported in
Fig. 3. Regarding classification accuracy, depicted in Fig. 3(a), the

use of different drift detectors barely impact the overall results
regardless of the dimensionality of the experiments. Yet, when
analyzing the results for Selection Accuracy and its components
(Figs. 3(b) through 3(d)), we observe thatHDDM-A is slightly better
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Fig. 3. Results obtained across different drift detectors.

Fig. 4. Results obtained by ABFS and a random feature selection algorithm.

in overall SelectionAccuracy rates,while experimentswithADWIN
are better at retaining the relevant features, and HDDM-W is the
best performing in terms of ignoring the irrelevant features. It is
important to note that even though these drift detectors are not
part of the feature selection process, they indirectly impact the
entire process, as they may flag drifts at different moments, which
cause the feature selection process adapt itself at different regions
of the stream. As a result, ABFS becomes more or less precise
according to each of the metrics mentioned above depending on
the drift detector being used.

To determine whether these results are reasonable, we also
report in Fig. 4 the results obtained by a random feature selection
process. These results were obtained across different 30 execu-
tions, such as the remainder of the experiments. In this figure,
we report the selection accuracy rates and its components across
different proportions where different proportions of the features
available in the dataset are randomly selected. From these results,
we observe that the Selection Accuracy rates obtained are quite
volatile, mostly since the recall of relevant features highly varies,
whereas the rates for the complement of complexity penalty are
stable since the number of irrelevant features is much higher than

the relevant ones. When these results are compared to the results
given in Figs. 1–3, it becomes evident that the results are signifi-
cantly better than random guessing for feature selection on all of
the components of Selection Accuracy computation. (See Fig. 5.)

Naturally, since the goal of classification is to achieve the high-
est classification rates possible, we show in Fig. 6 the 10 best-
ranked configurations of ABFS. In this figure, we corroborate the
values identified in the previous analyses, as the best performing
parametrization, in average, for ABFS in synthetic experimentswas
(gp = 500, θ = 0.01, ψ = ADWIN), and this configuration is
assumed for comparisons against the base learners and theORACLE
feature selector. We highlight, however, that this configuration is
not the optimal one for each of the experiments conducted, and
thus, these parameters’ valuesmust not be assumed to be the result
of a tuning process.

Accuracy rates. The accuracy rates obtained by the classifierswith-
out feature selection, with the ORACLE selector and ABFS are re-
ported in Tables 3–5. Focusing on the accuracy rates obtained in
experiments with 100 irrelevant features, we observe that ABFS
can improve the classification rates of the NB, KNN and HT classi-
fiers in all scenarios. In average, the improvements for NB, KNN and
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Fig. 5. Classification and selection accuracy rates obtained per experiment.

Fig. 6. Accuracy rates (%) obtained across the 10-best ranked ABFS configurations
in synthetic experiments.

HT classifiers are of 7.67%, 11.95%, and 4.64%, respectively. On the
other hand, the combination of ABFSwith the HAT classifier results
in accuracy decreases inmost scenarioswith an average of−5.76%,
which shows that combining two adaptive approaches that con-
comitantly select features jeopardizes the learning process. The
comparison of the ABFS results against theORACLE show that there
is still room for improvements and other feature selectionmethods
for data streams since theORACLE feature selector overcomesABFS
in 1.46% for theNB classifier, 8.18% for KNN, 0.03% forHT, and 5.83%
for HAT.

In Fig. 7 we report the relationship between Selection Accuracy
and classification accuracy rates obtained by different learners in
the different experiments. From this visualization, we see that:
(i) different learners benefit differently when fed with the same
subset of features, (ii) there is an interesting relationship between
achieving higher selection accuracy rates and classification accu-
racy, and finally (iii) that most of the results obtained by ABFS
are located in regions of high Selection Accuracy and classification
accuracy rates, thus showing the efficacy of the proposed method.

The results obtained in experiments with 200 and 500 irrele-
vant features, reported in Tables 3 and 4, follow the same behavior
as noticed in Table 3, where NB, KNN, and HT classifiers benefit
from ABFS, while HAT has its accuracy rates decreased. As an
important disclaimer,wehighlight that the experiments using 100,
200, and 500 features are not the same, as each one is created
with a different concept generator scheme, and thus, the ORACLE
results differ. Analyzing the results in quantitative terms, accuracy
changes of 8.25% and 7.99% forNB, 11.11% and 9.24% for KNN, 5.11%
and 5.21% for HT, −3.19% and −2.35% for HAT, are observed in
experiments with 200 and 500 irrelevant features, respectively.
Similarly as before, the ORACLE method overcomes ABFS in 1.15%

for the NB classifier, 10.68% for KNN, 0.03% for HT, and 3.66%
for HAT, when focusing on the experiments with 200 irrelevant
features. The rates obtained with 500 irrelevant features are also
similar, with 1.18% for NB, 15.60% for KNN, 0.03% for HT, and 3.00%
for HAT.

Computational resources. In addition to the comparisons conducted
in terms of classification accuracy and selection accuracy, it is
also important to verify if the introduction of ABFS in the data
stream classification process is not computationally prohibitive,
or in the best case scenario, improves the processing time and
memory consumption rates of learners. For the sake of brevity,
we only compare the computational resources required for the
biggest experiments, i.e., thosewith 500 irrelevant features, as they
are the most computationally intensive. In Table 6, we report the
processing times obtained by classifiers both with and without
ABFS. From these results, we observe that the introduction of
ABFS impacts different learners differently. For instance, NB has its
processing times significantly improved in all scenarios,while KNN
has the opposite behavior. Regarding KNN, such processing time
decreases are expected as the complexity of computing distances
between instances with reduced dimensionality are faster than
computing distances with the entire set of features. It is also
worthy to highlight that even decision trees have their processing
times decreased in a handful of scenarios.

Similarly, the results obtained for memory consumption are
reported in Table 7. Regarding the NB and HAT classifiers, the
introduction of ABFS introduces significant overheads in mem-
ory consumption rates, while KNN highly benefits from it, as the
buffered instances are stored in reduced dimensionality. Next, the
results for the HT classifier show that in most cases ABFS does
introduce a relatively small overhead, yet, some improvements are
also observed. The overheads observed for memory consumption
are expected since all learners (with the exception of KNN) still
allocate memory assuming the existence and availability of the
original feature set, but is trained only on the selected ones. This is
an implementation gap that should be further examined in future
implementations.

Finally, it is important to highlight that when analyzing the
computational resource metrics mentioned above, the technology
in which the method is implemented on is important. As the
implementation of ABFS evaluated here has been performed on the
Massive Online Analysis framework, it is important to highlight
that when a classifier is fed with an instance for training, it still
loops over all the original feature set F and not only over the
selected subset F ′. As a result, the overall processing times are
expected to be incremented, but this behavior may change if the
base learners allow sparse data representations. Similarly, the NB,
HT and HAT classifiers still instantiate data structures for each of
the original features in F and not only for F ′, and as a result, the
introduction of ABFS negatively impacts thememory consumption
rates of these learners.
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Fig. 7. Relationship between Selection Accuracy and classification accuracy rates across different classifiers with ABFS. The results plotted in this figure report the rates
obtained with different ABFS configurations and stream dimensionalities (100, 200, and 500).

Table 3
Average accuracy (%) obtained by different classifiers and feature selection methods in experiments with 100 irrelevant features. Results in bold highlight the best accuracy
rates per classifier and underlined results are the best across learners and selectors.
Experiment NB NB-ORACLE NB-ABFS KNN KNN-ORACLE KNN-ABFS HT HT-ORACLE HT-ABFS HAT HAT-ORACLE HAT-ABFS

AGR 67.27 77.13 76.10 50.62 85.38 73.30 77.38 85.95 85.90 91.15 91.19 81.38
AN 81.52 92.71 91.20 64.57 75.59 70.05 92.92 93.66 93.63 94.33 94.36 93.61
BG1 80.17 88.78 86.96 70.94 81.48 76.92 86.41 88.82 88.79 89.09 89.17 89.13
BG2 74.11 89.51 88.56 57.63 83.18 75.98 79.91 88.58 88.55 88.06 88.08 84.76
BG3 55.84 61.91 60.94 53.11 75.26 65.46 70.46 72.18 72.17 85.61 85.63 67.31
RTG 59.22 66.83 65.93 54.57 68.07 55.64 66.09 74.53 74.48 88.56 88.59 80.01
SEA 79.15 84.35 81.33 59.14 82.52 76.90 84.05 86.25 86.22 86.41 86.68 86.66

Table 4
Average accuracy (%) obtained by different classifiers and feature selection methods in experiments with 200 irrelevant features. Results in bold highlight the best accuracy
rates per classifier and underlined results are the best across learners and selectors.
Experiment NB NB-ORACLE NB-ABFS KNN KNN-ORACLE KNN-ABFS HT HT-ORACLE HT-ABFS HAT HAT-ORACLE HAT-ABFS

AGR 67.19 76.82 75.67 50.55 85.38 61.62 77.53 86.10 86.06 91.07 91.12 81.39
AN 81.58 92.22 91.21 61.15 75.75 69.67 92.53 93.88 93.85 94.36 94.41 93.12
BG1 79.72 87.89 86.81 65.87 81.56 75.38 85.87 88.81 88.76 89.11 89.23 89.22
BG2 74.11 90.09 89.09 55.41 83.00 69.01 79.01 89.13 89.11 88.02 89.17 89.12
BG3 55.47 61.52 60.52 51.90 75.32 65.29 68.56 71.12 71.11 86.22 86.24 78.70
RTG 59.22 68.02 66.18 55.78 66.47 57.66 63.25 70.00 69.98 91.01 91.04 84.07
SEA 79.04 85.63 84.63 56.79 82.51 76.58 82.52 86.23 86.18 84.69 86.60 86.56

Table 5
Average accuracy (%) obtained by different classifiers and feature selection methods in experiments with 500 irrelevant features. Results in bold highlight the best accuracy
rates per classifier and underlined results are the best across learners and selectors.
Experiment NB NB-ORACLE NB-ABFS KNN KNN-ORACLE KNN-ABFS HT HT-ORACLE HT-ABFS HAT HAT-ORACLE HAT-ABFS

AGR 66.97 76.12 75.78 50.41 85.38 52.49 75.60 85.07 85.02 90.80 90.85 81.44
AN 81.56 92.33 91.31 56.99 75.75 70.12 92.74 93.61 93.58 94.39 94.40 93.00
BG1 79.49 87.98 86.81 60.18 81.43 73.53 85.84 88.74 88.71 89.04 89.29 89.25
BG2 73.84 89.89 88.19 53.28 83.18 63.93 77.57 85.84 85.79 87.50 88.50 88.48
BG3 55.85 60.12 59.72 50.85 75.20 54.61 67.51 71.94 71.91 85.46 85.48 83.22
RTG 68.08 77.67 76.59 58.84 74.99 62.50 70.17 77.83 77.81 89.93 89.96 82.14
SEA 79.05 84.95 82.39 53.90 82.43 71.99 82.28 85.36 85.34 81.81 85.02 84.98

Table 6
Average processing time (s) obtained by different classifiers and feature selectionmethods in experiments with 500 irrelevant features. Results in bold highlight the smallest
times per classifier and underlined results are the best across learners and selectors.
Experiment NB NB-ABFS KNN KNN-ABFS HT HT-ABFS HAT HAT-ABFS

AGR 32.03 58.81 818.80 525.66 178.27 98.85 165.19 215.49
AN 69.53 117.76 1827.45 1023.79 392.34 267.95 395.43 367.15
BG1 13.08 51.10 612.49 570.14 44.27 75.90 45.93 80.55
BG2 11.55 30.86 606.38 387.84 45.24 52.23 51.92 59.97
BG3 12.78 38.11 596.88 437.59 43.52 45.00 50.33 70.55
RTG 52.23 71.95 698.87 422.32 187.92 148.03 145.52 117.78
SEA 27.01 28.86 656.02 259.64 85.78 53.86 195.08 79.92

Stability. Determining how ABFS behaves when fed with different
inputs of data is another important trait that must be analyzed.
In Fig. 8 we report the stability rates obtained by ABFS across syn-
thetic experiments, followingbootstrap-, split- and cross-validation

schemes in a 10-fold validation environment. At first, it is impor-
tant to highlight that the stability rates achieved by ABFS vary
according to the experiment conducted, but more importantly,
according to the validation process adopted. Naturally, the highest
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Table 7
Average RAM-Hours (GB-Hour) obtained by different classifiers and feature selection methods in experiments with 500 irrelevant features. Results in bold highlight the
smallest memory consumption rates per classifier and underlined results are the best across learners and selectors.
Experiment NB NB-ABFS KNN KNN-ABFS HT HT-ABFS HAT HAT-ABFS

AGR 1.76× 10−6 7.82× 10−4 6.63× 10−3 1.23× 10−4 1.21× 10−3 1.45× 10−3 4.05× 10−4 3.68× 10−3

AN 7.87× 10−6 8.33× 10−4 7.04× 10−3 5.32× 10−4 4.73× 10−3 2.60× 10−3 2.65× 10−3 4.53× 10−3

BG1 6.03× 10−7 2.40× 10−4 2.65× 10−3 9.01× 10−5 7.84× 10−5 4.21× 10−4 3.69× 10−5 4.04× 10−4

BG2 5.32× 10−7 8.40× 10−5 1.04× 10−3 8.92× 10−5 8.53× 10−5 1.71× 10−4 5.14× 10−5 1.81× 10−4

BG3 5.90× 10−7 3.36× 10−4 3.77× 10−3 8.80× 10−5 7.46× 10−5 4.21× 10−4 4.47× 10−5 6.88× 10−4

RTG 2.97× 10−6 2.69× 10−4 1.62× 10−3 1.03× 10−4 2.24× 10−3 1.32× 10−3 4.15× 10−4 6.58× 10−4

SEA 1.61× 10−6 5.89× 10−4 5.16× 10−3 9.53× 10−5 3.13× 10−4 1.18× 10−3 1.03× 10−3 1.95× 10−3

Fig. 8. Stability results obtained for synthetic data streams.

stability rates are achieved using the cross-validation scheme,
as 9 out of the 10 folds are updated with the arrival of each
instance, thus making the selection process much more uniform
across the folds. The same rationale can be applied to explain the
rates obtained by the bootstrap-validation experiments, as each
instance is used to update the feature selection process allocated
in each fold approximately 66% of the times. Finally, the results
obtained with the split-validation process are the lowest, as only
1 out of the 10 folds are updated with the arrival of each instance.
We also highlight at this point that it is hard to tell how ‘stable’
ABFS is due to the lack of competing techniques, and as a result,
the results reported here may serve as baselines for future works
on the area.

Number of selected features. To finalize the discussion on synthetic
experiments,wehighlight twoexamples on thenumber of selected
features over the processing of streams. In Fig. 9 we show the
number of features that were selected by HT and HAT classifiers
with and without ABFS in BG1 and SEA experiments. We target
these experiments as these are cases where the overall accuracy
of tree-based learners has improved with ABFS. In Fig. 9(a) we ob-
serve that the number of features used by the Hoeffding Tree (HT)
classifier continuously increases, while the Hoeffding Adaptive
Tree (HAT) can discard features when drifts occur, which are the
areas highlighted in the plot. It is important to remember that in
this experiment, only 3 features are relevant, and thus, bothHT and
HAT are rapidly growing and selecting features as new instances
become available. In contrast to this behavior, we observe that
the same classifiers with ABFS selects up to 4 features and quickly
flags and adapts to drifts, which are marked as a vertical line in
the plot. A different behavior is observed in Fig. 9(b), where HAT
has the same behavior of a conventional incremental HT, as the
number of selected features continuously increases, showing the
HAT is unable to discard features that become irrelevant after
drifts. Again, ABFS shows a limited number of selected features,
which result in much smaller decision trees, thus improving their
readability and understandability.

Abfs on scenarioswith a high number of relevant features. The exper-
iments conducted and discussed during this section show a small
number of relevant features. Therefore, it becomes of interest to
determine how ABFS behaves when confronted with data stream
scenarios where a relatively high number of features is required
for classification. To achieve this, we conducted a variation of
the RTG experiment, where 100 relevant features out of the 500
available are relevant. The results obtained by the 3 best-ranked
ABFS configurations presented in Fig. 6 are reported in Table 8,
whereas the accuracy rates obtained by classifiers using all the 500
features available are given in Table 9.

First, it is important to note the selection accuracy rates ob-
tained by ABFS, which are competitive with the results obtained in
the previous experiments, only a smaller number of features was
relevant. This, accompanied by the number of features selected,
shows that ABFS is able to scale to scenarios where more features
are required for the classification task. In terms of classification
accuracy rates, and comparing the rates shown in Tables 8 and 9,
we are able to see that ABFS continues to improve NB and KNN
learning schemes, whereas decision trees marginally benefit from
the features selected by ABFS or even have their accuracy rates
prejudiced.

6.3. Real-world datasets

As conducted in the synthetic experiments, the different con-
figurations of ABFS were ranked across all the real-world experi-
ments according to the accuracy rates obtained. The 10 best con-
figurations among the 36 tested are reported in Fig. 10 with the
accuracy results. In contrast to what was observed for synthetic
experiments, smaller grace periods combined with the ADWIN
drift detector dominate the top positions, and as a result, we select
gp = 100, θ = 0.05 and ADWIN as the default configuration for
real-world experiments.

In Table 10 we compare the average accuracy rates obtained
by different classifiers with and without ABFS across the 30 exe-
cutions performed. Here, we note that the NB and HT classifiers
benefit from ABFS in all experiments (at least marginally, as we
note in COVTYPE), whereas they match or improve for KNN. The
observed increases are relevant as they broaden 1.61% to 19.45%
for NB and up to 7.10% for HT. Similarly, the results for HAT show
no difference for IADS, while a significant decrease of 4.66% is ob-
served in NOMAO, another decrease for COVTYPE of 1.86%, and an
increase of 1.47% for SPAM. Following the outcome of theWilcoxon
test, both NB and HT classifiers are significantly improved regard-
ing accuracy in these scenarios, whereas the remainder are not
significantly affected.

In Table 11 we compare the processing times of the classifiers
with and without ABFS. Here, we observe similar behavior to what
has been observed for synthetic data, where the processing time
rates of all classifiers have increased, except for KNN. Here, the
Wilcoxon test showed that ABFS significantly improves the KNN
running times, while NB is worsened, and the results obtained
for the remainder of the classifiers are rendered inconclusive. The
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Fig. 9. Number of features selected and used by decision tree models with and without ABFS in experiments with 500 irrelevant features. Grayed areas are drifting regions
and vertical black lines depict the moments where drifts have been flagged by ABFS. The drift moments for HT-ABFS and HAT-ABFS match as ABFS is classifier independent.

Table 8
Results obtained by different configurations of ABFS and base learners in the RTG experiment with 100 relevant features. Classification accuracy improvements compared
to the results obtained by the same classifier when using all features are reported in bold.
ABFS Configuration Classifier Avg. Accuracy (%) Avg. SA Avg. RRF Avg. CUCP Avg. # of features selected
ψ gp θ

ADWIN 500 0.01 NB 64.13%

0.735 0.66 0.91 102ADWIN 500 0.01 KNN 58.58%
ADWIN 500 0.01 HT 66.89%
ADWIN 500 0.01 HAT 68.11%

ADWIN 1000 0.01 NB 62.93%

0.516 0.36 0.88 84ADWIN 1000 0.01 KNN 58.52%
ADWIN 1000 0.01 HT 65.49%
ADWIN 1000 0.01 HAT 66.61%

HDDM-A 1000 0.01 NB 60.54%

0.569 0.41 0.94 65HDDM-A 1000 0.01 KNN 58.48%
HDDM-A 1000 0.01 HT 60.97%
HDDM-A 1000 0.01 HAT 62.17%

Table 9
Results obtained by different classifiers in the RTG experi-
ment with 100 relevant features.
Classifier Avg. Accuracy (%)

NB 58.46%
KNN 51.83%
HT 61.22%
HAT 73.53%

memory consumption results, depicted in Table 12, show that ABFS
also introduces overheads to all classifiers. This is a similar behav-
ior to the one observed in the previous section, as the actual clas-
sification models still allocates memory to keep track of statistics
about all the original features, even though they only update those
for the selected ones. One exception worthy to mention is that
memory consumption of HAT in the IADS experiment, which has
significantly decreased, while the accuracy rate was maintained.
Again, the Wilcoxon test was used, and its outcomes show that
both NB and HT are significantly penalized when combined with
ABFS, while the remainder of the classifiers is not.

Finally, we highlight the improvements observed in the SPAM
experiment, which are important as it is the experiment with
the highest dimensionality. In this experiment, all classifiers have
their accuracy rates significantly improved (Table 10), while their
processing time and memory consumption rates decreased (Ta-
bles 11 and 12). To understand the impact of ABFS in the SPAM
experiment, we show in Fig. 11 the average number of features
selected by ABFS and used by decision tree-based classifiers. Here,
we observe that out of the nearly 40 thousand features, and only
16 were used by the HAT alone, while the maximum number of

Fig. 10. Accuracy rates (%) obtained across the 10-best ranked ABFS configurations
in real-world experiments.

features used by the same classifier with ABFS was 5. A similar
behavior can be observed for the HT classifier, which used 10
features, while its version with ABFS used only 5. These results
are particularly interesting as it shows that despite the fact that
decision trees select a small subset of features to build its predictive
model, they can still be further simplified so that their models are
smaller and achieve higher generalization rates.

7. Conclusion

In this paper, we introduced ABFS, an adaptive boosting-based
feature selection algorithm for data streams. ABFS includes strate-
gies to select features over data streams and to detect and adapt
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Table 10
Average accuracy rates (%) obtained by different classifiers and ABFS in real-world experiments. Results in bold are the highest accuracy rates obtained per classifier type.
Experiment NB ABFS-NB KNN ABFS-KNN HT ABFS-HT HAT ABFS-HAT

COVTYPE 70.41 83.20 81.23 84.64 83.77 84.31 82.75 80.89
IADS 80.55 100.00 100.00 100.00 92.90 100.00 82.80 84.00
NOMAO 83.36 93.52 94.10 94.43 91.43 94.55 93.67 89.01
PAMAP2 97.11 98.72 99.91 99.91 97.66 98.85 86.72 87.91
SPAM 75.78 87.76 86.15 94.14 83.49 88.81 83.45 84.92

Table 11
Average processing time (s) rates obtained by different classifiers and ABFS in real-world experiments. Results in bold are the smaller rates obtained per classifier type.
Experiment NB ABFS-NB KNN ABFS-KNN HT ABFS-HT HAT ABFS-HAT

COVTYPE 8.71 10.45 82.16 52.96 11.02 15.62 15.42 20.91
IADS 4.06 9.74 48.82 28.11 5.89 10.91 6.78 12.52
NOMAO 3.42 7.81 33.50 22.96 4.95 10.01 7.14 11.19
PAMAP2 13.32 82.37 114.42 81.46 14.97 89.71 13.15 89.74
SPAM 563.71 586.39 8074.61 3062.64 686.41 716.89 739.11 1277.18

Table 12
Average RAM-Hours (GB-Hour) rates obtained by different classifiers and ABFS in real-world experiments. Results in bold are the smaller rates obtained per classifier type.
Experiment NB ABFS-NB KNN ABFS-KNN HT ABFS-HT HAT ABFS-HAT

COVTYPE 1.17× 10−7 4.29× 10−6 7.97× 10−6 2.01× 10−5 1.06× 10−6 5.49× 10−6 5.04× 10−7 6.97× 10−6

IADS 7.78× 10−7 7.25× 10−4 1.48× 10−4 1.73× 10−3 1.87× 10−6 7.95× 10−4 2.62× 10−6 6.16× 10−9

NOMAO 5.59× 10−8 2.80× 10−5 6.38× 10−6 5.64× 10−5 7.32× 10−7 3.02× 10−5 5.70× 10−7 3.43× 10−5

PAMAP2 1.71× 10−7 9.11× 10−6 7.34× 10−6 1.20× 10−6 9.54× 10−7 2.90× 10−7 2.90× 10−7 2.88× 10−7

SPAM 4.09× 10−3 9.15× 10−2 6.32× 10−1 4.82× 10−1 8.51× 10−3 1.26× 10−1 1.28× 10−2 2.22× 10−1

Fig. 11. Number of features selected and used during the SPAM experiment.

to concept drifts. The proposed method is classifier-independent,
and results show that ABFS can improve all types of classifiers
in different scenarios. Despite performing interesting cuts to the
dimensionality of data streams, ABFS still increases the processing
time and memory consumption of Bayesian and decision tree-
based types of learners. An important exception is the KNN clas-
sifier, in which the results show that both processing times and
memory consumption rates are improved.

In addition to the proposed method, we expect that the contri-
butions on feature selection evaluation and the framework added
to the Massive Online Analysis software to help in the assessment
and comparison of future works in the area. Feature selection-
specificmetrics, such as Selection Accuracy and Stability have been
introduced to streaming scenarios, and the results reported here
can be assumed as baselines in future works of the area.

As future works, we highlight the following:

• Feature selection based on decision trees and random
forests: generally speaking, decision trees can be seen as a
feature selection process are they iteratively select features
to maximize some ‘purity’ metric. Nevertheless, as observed
in some of the experiments conducted in this paper, original
Hoeffding Trees are prone to overfitting, as they tend to
(i) branch over irrelevant features, and (ii) they are unable
to prune poor performing branches (except the Hoeffding
Adaptive Tree). For instance, the works of [56,57] are two of

many studies where only the k-best features used on the first
branches of decision trees are used and improve the classifi-
cation rates of different learners. Also, if the dimensionality of
the stream is too big, another important investigation would
be to perform feature selection based on Adaptive Random
Forests [58], as previously conducted on batch scenarios on
the works of [59,60].
• Distributed feature selection: feature selection and dimen-

sionality reduction are of the utmost importance when the
number of features in a data stream grows up to thousands
ormillions. Therefore, proposing feature selection techniques
that can be paralleled and scaled up to these extreme scenar-
ios is another important gap to be pursued.
• Feature selection on semi-supervised, unsupervised and

delayed labeling learning schemes: in real-world scenarios
the assumption that all instances are labeled is unlikely to
hold. Thus, it is important to tailor feature selection tech-
niques that can accurately select features with very few or
even no labels at all (for clustering scenarios). Closely related
to this topic, feature selection methods should also be able
to handle delayed labeling scenarios, where the labels of
instances become available, but after a delay of n instances.
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