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A B S T R A C T   

Recommender systems uncover relationships between users and items, thus allowing personalized recommen-
dations. Nonetheless, users’ preferences may change over time, the so-called concept drifts; or new users and 
items may appear, making the recommender system unable to accurately map the relationship between users and 
items due to the cold start problem. Consequently, concept drift and cold start are challenges that downgrade the 
recommender system’s predictive performance. This paper assesses existing approaches for collaborative- 
filtering recommender systems over a real supermarket dataset that exhibits both of the issues mentioned 
above. For this purpose, our comparative analysis encompasses batch and streaming learning approaches. As a 
result, we can observe that streaming-based models achieve better recommendation rates since these are tailored 
to fit the concept drift. More specifically, the predictive performance of streaming-based recommendations in-
creases by up to 21% over those provided by batch methods. The supermarket dataset used in experimentation is 
also made publicly available for future studies and recommender systems comparisons.   

1. Introduction 

Recommender systems are a hot topic in today’s world. Businesses of 
all kinds are interested in implementing recommender systems, as these 
allow individualized interactions with customers based on their pref-
erences. A recommender system predicts an item’s probability to be 
preferred by a particular user (Zhang et al., 2019; Ricci et al., 2011). 
Over the years, different approaches were tailored to develop recom-
mender systems. These are categorized as collaborative filtering (CF), 
content-based filtering (CBF), or hybrid approaches that combine the 
strategies mentioned above. Determining whether to use CF, CBF, or 
hybrid approaches depends on the availability and format of the data. In 
CF, the only data required is a list of user-item interactions, while in CBF, 
items’ details are required. Consequently, CF is less restrictive and has 
been the target of many works over the years (Bobadilla et al., 2013; 
Zhang et al., 2019). 

In this paper, we focus on two problems that affect recommender 
systems. The first is concept drift, which refers to changes in the data 
behavior over time (Tsymbal, 2004; Webb et al., 2018). In recommender 

systems, concept drift reflects changes in the interactions between cus-
tomers and items, either because (i) customers’ preferences change, (ii) 
new items become available for purchase, etc. The second is cold start, 
which occurs when new customers or items appear in the recommen-
dation scenario. Such a problem is challenging, because the recom-
mender model cannot make robust inferences for users or items about 
which it has not yet collected enough information (Ocepek et al., 2015; 
Shao et al., 2021). 

Recommender systems are traditionally trained in a batch fashion, 
which means that given a training set composed of interactions between 
users and items, a static model is learned and deployed ad eternum. 
Consequently, it is relevant to tailor recommender systems that can be 
incremented over time, assuming that the interactions between users 
and items are made available as a stream of events. 

In this paper, our goal is to bring forward a case study of existing 
recommender algorithms in a real-world supermarket scenario that ex-
hibits both concept drifts and cold start problems. The contribution of 
this paper is threefold, as follows: 
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• A comparison of existing filtering recommender systems in which the 
impact of concept drift and cold start is assessed in both batch and 
streaming fashions.  

• Evidence that the incremental ability of the streaming-based 
recommender systems allows a better recovery when cold start is 
present.  

• A novel real-word supermarket dataset that exhibits concept drifts 
and cold start problems is made publicly available. 

This paper is divided as follows. Section 2 describes recommender sys-
tems, types of feedback, the problem of concept drift, and the challenge 
of cold start. Section 3 describes existing works on positive-only 
recommender systems in both batch and stream learning scenarios. 
Section 4 details a new dataset we make available regarding super-
market transactions, which exhibits concept drift and cold start char-
acteristics. Section 5 describes the experiments undertaken to perform 
the proposed analysis of recommender systems. Section 6 analyzes 
existing works in recommender systems to answer whether streaming 
recommender systems overcome batch approaches w.r.t. concept drifts 
and cold start. Finally, Section 7 concludes this paper and describes 
future works. 

2. Recommender systems 

Recommender systems have been successfully applied in many real- 
world scenarios, proving efficient in handling diverse information 
related to users, items, and their interaction. The goal of recommender 
systems is personalization, which refers to the ability to recommend 
relevant items to specific users based on their past interactions with the 
system. Considering the type of information used in the recommenda-
tion process and how the system models the user-item relationship, 
recommender systems are categorized into three classes: Content-Based 
Filtering, Collaborative Filtering, and Hybrid Filtering. 

Content-based filtering techniques recommend items to users 
considering items’ characteristics and descriptions (Wei et al., 2017; 
Ricci et al., 2011). One central component of content-based approaches 
is the user modeling process that infers users’ interest from items they 
interacted with. Items are compared with items previously liked by 
users, and the best-matched items are recommended (Beel et al., 2016). 

The second approach, collaborative filtering, doesn’t require previ-
ous knowledge of users or items, and thus, it is the most common 
approach for developing recommender systems. In practice, collabora-
tive systems recommend items based on past user-item interactions 
(Nassar et al., 2020). The rationale behind collaborative filtering is that 
users who have expressed similar interests will share future interests. 
Thus, the items recommended for a particular user are related to items 
preferred by users that demonstrated similar interests previously 
(Portugal et al., 2018; Yin et al., 2019). 

Hybrid filtering techniques combine content-based and collaborative 
filtering to make recommendations. Thus, the recommended items rely 
on both item descriptions and user-item interactions, thus enabling the 
recommendation system to find similarities between users, items, and 
user-item relationships (Portugal et al., 2018). 

According to how the system collects data, the user feedback is 
represented either explicitly or implicitly, thus characterizing the 
recommendation problem as a rating prediction or item prediction, 
respectively. Explicit feedback refers to the availability of quantified 
user preferences, generally available in the form of ratings on a nu-
merical scale, e.g., a 1-star to 5-star ranking. The task is then to predict 
missing values in a matrix of user-item ratings, such as in a regression 
problem (Vinagre et al., 2014). 

However, numerical ratings are not always available due to the 
necessary systemic adaptations to collect them or because users must 
provide feedback after their interaction with a given item. Therefore, 
implicit feedback is more common, such as what happens when a user 
listens to a song, reads a news article, buys a product, and so forth 

(Rendle et al., 2012). In the examples above, the feedback is provided in 
a boolean manner, as either an interaction exists (true) or not (false). 
Consequently, the objective of implicit feedback-based recommender 
systems is to predict unknown true values in the boolean interaction 
matrix, thus characterizing a one-class classification problem (Vinagre 
et al., 2014). 

2.1. Concept drift 

An emerging topic in recommender systems is how to learn from 
potentially infinite sequences of user-item interactions that arrive over 
time. The building of models that learn incrementally from continuous 
flows of data is a concern of data stream mining (Aggarwal, 2007; Gama, 
2010). Models tailored for data streams must have low computational 
cost regarding processing time and memory consumption while also 
tackle concept drifts. Concept drift is a problem that arises when the data 
distribution changes, thus affecting its underlying patterns (Tsymbal, 
2004; Webb et al., 2018). If a model cannot detect and adapt to drifts 
swiftly, prediction power is put in jeopardy. 

In recommender systems, concept drift refers to changes in customer 
behavior, which reflect changes in their preferences (Jorge et al., 2016). 
Consequently, recommender systems should be aware that the rela-
tionship between users and items is not static. Thus, these are expected 
to detect and adapt to changes accordingly (Babüroğlu et al., 2021; 
Gama et al., 2014). 

The most efficient way to deal with potentially drifting scenarios is to 
increment the model as user-item interactions are made available. 
Recommender systems that are tailored to handle data streams address 
both the problem of learning drifting behavior and computational 
complexity issues. In Section 3.2, we discuss incremental algorithms 
tailored for streaming recommender systems. 

2.2. The cold start problem 

Most collaborative filtering approaches require a large number of 
ratings from a user on an item to provide useful recommendations, thus 
leading to unreliable suggestions due to an initial absence of ratings 
(Ocepek et al., 2015). Although collaborative filtering is widely followed 
in recommender systems’ implementation, its techniques suffer from 
sparsity and cold start problems (Wei et al., 2017). Data sparsity occurs 
when the number of interactions between users and items is much 
smaller than the total number of user and item combinations. Conse-
quently, the mapping between the latent factors and the rating matrix R 
becomes even more cumbersome (Shao et al., 2021). 

On the other hand, the cold start problem occurs when either a new 
user or item appears over time. Thus, the recommender model cannot 
map the user-item interactions accurately as no a priori information on 
either of them is available. In recommender systems, the cold start 
problem includes three cases: (1) cold start of users (how to recommend 
items to a user recently entered the system); (2) cold start of items (how 
to recommend a new item recently introduced into the system to 
interested users); and (3) cold start of the system (how to realize accu-
rate recommendation in a new system) (Pandey and Rajpoot, 2016; Wei 
et al., 2017). 

Several techniques have been proposed in the literature to solve the 
cold start problem and deal with data sparseness (Pandey and Rajpoot, 
2016; Wei et al., 2017; Silva et al., 2019; Tahmasebi et al., 2020; Bi et al., 
2020). Yet, most of these techniques require additional data, such as 
demographic and social network information. Nonetheless, in real- 
world scenarios, additional information is often unavailable, and the 
system has to deal with the provided data to alleviate these problems. A 
recent approach for addressing cold-start scenarios is using data stream 
methods, as incremental approaches are continuously learning the new 
underlying patterns between users and items (Chandramouli et al., 
2011; José et al., 2020). 
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3. Positive-only approaches for recommender systems 

In this section, we bring forward existing approaches for positive- 
only recommender systems. We organize the existing methods into 
batch and streaming approaches depending on how training takes place. 

3.1. Batch approaches 

The most common approach for recommender systems with positive- 
only feedback is Matrix Factorization (MF) (Takács et al., 2009; Yu et al., 
2016). MF models have been widely applied to different recommenda-
tion scenarios and overcame clustering and neighborhood methods in 
terms of predictive power and runtime complexity (Vinagre et al., 
2014). Thus, we describe traditional MF techniques, including Singular 
Value Decomposition (SVD) (Sarwar et al., 2000) and Bayesian 
Personalized Ranking for Matrix Factorization (BPRMF) (Rendle et al., 
2012). Furthermore, we also report recent approaches that use neural 
networks with and without matrix factorization, such as Generalized 
Matrix Factorization (GMF), Multi-layer Perceptron (MLP), and Neural 
Matrix Factorization (NeuMF) (He et al., 2017). 

3.1.1. Singular value decomposition (SVD) 
The Netflix challenge (Funk, 2006) popularized the use of matrix 

factorization using Singular Value Decomposition (SVD) (Paterek, 2007) 
or Regularized Singular Value Decomposition (RSVD). SVD factorizes a 
user-item matrix that represents the interaction between users and items 
into low-rank matrices. 

Matrix factorization characterizes both users and items by vectors of 
latent factors. The number of latent factors is much smaller than the 
number of users and items, and the co-occurrence between users and 
items is the basis for recommendations (Takács et al., 2009). 

More formally, matrices R ∈ Rmxn,A ∈ Rmxk and B ∈ Rkxn represent 
users’ ratings to items, users’ latent vectors, and items’ latent vectors, 
respectively. The entry ru,i in the u-th row and the i-th column of R is the 
rating that user u gives to the item i. The u-th row vector pu of A and i-th 
column vector qi of B are user u and item i’s latent vectors, respectively 
(Yu et al., 2016). Given this formulation, we can compute the user u 
predicted rating for the item i using the dot (scalar) product, as depicted 
in Eq. 1 (Vinagre et al., 2014). 

R̂ui = Au⋅BT
i (1)  

Training is performed by minimizing the L2-regularized squared error 
for known values in R and the corresponding predicted ratings as 
denoted in Eq. 2 (Vinagre et al., 2014). 

min
A,B

∑

(u,i)∈D

(
Ru,i − AuBT

i

)2
+ λA‖Au‖

2
+ λB‖Bi‖

2 (2)  

The most common approach for minimizing Eq. 2 is the Stochastic 
Gradient Descendent (SGD) optimization, in which the algorithm loops 
over all ratings in the training set. For each given training interaction, 
the system predicts rui and computes the associated prediction error 
computed using Eq. 3 (Koren et al., 2009). 

errui = Rui − R̂ui (3)  

Next, SGD modifies the parameters by a magnitude proportional to η in 
the inverse direction of the gradient of the error according to Eq. 4 
(Koren et al., 2009), where η is known as step size, or learning rate, and λ 
is a regularization factor for both users and items latent factors (Vinagre 
et al., 2014). 

Au←Au + η(erruiBi − λAu)

Bi←Bi + η(erruiAu − λBi)
(4)  

3.1.2. Bayesian personalized ranking for matrix factorization (BPRMF) 
Bayesian Personalized Ranking for Matrix Factorization (BPRMF) is a 

generic optimization criterion for personalized ranking that is the 
maximum posterior estimator derived from a Bayesian analysis of the 
problem (Rendle et al., 2012). The authors provide a learning BPR 
method based on SGD with bootstrap sampling (Breiman, 1996). In 
addition to the matrix factorization parameters, for each instance (u; i) in 
the training set, BPRMF selects a negative item j (an item that the u-th 
user did not interact with). BPR optimization decomposes triplets in the 
(u; i; j) format using the difference of the u-th user predictions w.r.t. 
items i and j, such as depicted in Eq. 5. 

R̂uij = R̂ui − R̂uj (5)  

For each triplet (u; i; j), the latent factor vectors for a user u and items i 
and j are updated using Eq. 6. 

Θ←Θ+ η
(

e− R̂uij

1 + e− R̂uij

×
∂

∂Θ
R̂uij − λΘ

)

(6)  

where 

∂
∂Θ

R̂uij =

⎧
⎪⎪⎨

⎪⎪⎩

(
Bi − Bj

)
if Θ = Au

Au if Θ = Bi
− Au if Θ = Bj
0 otherwise

(7)  

3.1.3. Generalized matrix factorization 
The Generalized Matrix Factorization (GMF) model results from an 

extensive literature investigation of factorization models. It is a partic-
ular case of the Neural Collaborative Framework (NCF) (He et al., 2017). 
As input, GMF receives the one-hot encoded feature vectors vU

u and vI
i 

that describe user u and item i, respectively. Above the input layer are 
the embedding layers Au = ATvU

u and Bu = BTvI
i , which are the latent 

vectors of user and item, respectively. NCF’s first layer mapping function 
is given by Eq. 8, where ⊙ denotes the element-wise product of user and 
item latent vectors. 

ϕ(Au,Bi) = Au ⊙ Bi, (8)  

Each embedding layer (latent vector) is a fully connected layer that 
projects the sparse representation of users and items into a dense vector. 
Thus, projecting the vector to the output layer, the rating prediction of 
the u-th concerning the i-th item is obtained, as denoted in Eq. 9, where 
aout and h represent the activation function and edge weights of the 
output layer, respectively. 

R̂ui = aout
(
hT(Au ⊙ Bi)

)
, (9)  

Finally, the matrix factorization model is computed using an identity 
function for aout and enforcing h to being a uniform vector of ones (He 
et al., 2017). 

3.1.4. Multi-layer perceptron (MLP) 
Similar to GMF, the multi-layer perceptron (MLP) for recommender 

systems is also part of the NCF framework (He et al., 2017). The first 
difference between GMF and MLP resides in the first layer. MLP con-
catenates the user and item latent features instead of using the element- 
wise dot product between latent factors as in GMF. Second, the model 
has hidden layers on the concatenated vector to model the collaborative 
filtering effect and learn the interaction between Au and Bi latent fea-
tures. More formally, Eq. 10 describes the MLP model, where Wx,bx, and 
ax denote the weight matrix, bias vector, and activation function for the 
x-th layer, respectively. 
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z1 = ϕ1

(

Au,Bi

)

=

[
Au

Bi

]

,

ϕ2(z1) = a2
(
WT

2 z1 + b2
)
,

……
ϕL
(
zL− 1

)
= aL

(
WT

2 zL + bL
)
,

R̂ui = σ
(
hT ϕL(zL− 1)

)
,

(10)  

3.1.5. Neural matrix factorization 
Neural Matrix Factorization (NeuMF) combines GMF and MLP ar-

chitectures. More specifically, it combines the linear kernel from GMF 
and the non-linear kernel from MLP. Internally, NeuMF trains GMF and 
MLP with random initializers until convergence. To provide more flex-
ibility to the combined model, NeuMF allows GMF and MLP to learn 
separated embeddings and merge them by concatenating their last 
hidden layer. A formal description for NeuMF is given in Eq. 11 (He 
et al., 2017), where AG

u and AM
u denote the user embedding for GMF and 

MLP parts, respectively, while similar notations of BG
i and BM

i hold for 
item embeddings. 

ϕGMF = AG
u ⊙ BG

i ,

ϕMLP = aL

⎛

⎝WT
L

⎛

⎝aL− 1

⎛

⎝…a2

⎛

⎝WT
2

⎡

⎣
AM

u

BM
i

⎤

⎦+ b2

⎞

⎠…

⎞

⎠

⎞

⎠+ bL

⎞

⎠,

R̂ui = σ
(

hT
([

ϕGMF

ϕMLP

]))

,

(11)  

3.2. Streaming approaches 

In real-world applications, users’ feedback is made available 
continuously. Besides, we have no control over the order in which this 
data arrives. Let us suppose that new information becomes available in 
batch mode, such as a new item, a new user, or a new user-item event. In 
that case, we need to retrain the entire matrix factorization (MF) model 
using both old and new data. The retraining process may be unfeasible 
since batch training is computationally expensive (Yu et al., 2016; Wu 
et al., 2008). Furthermore, there is no guarantee that the past user-item 
relationships are consistent with those observed in more recent data. 
Consequently, we should update the recommender systems in a single- 
pass manner, according to the arrival of user-item interactions, instead 
of retraining the entire model (Vinagre et al., 2014). As a result, the 
practical benefits of using single-pass incremental systems encompass 
computational cost reduction (Wu et al., 2008) and drift adaptation 
(Matuszyk et al., 2015; Chang et al., 2017). 

In this section, we present two techniques designed to work incre-
mentally: Incremental Stochastic Gradient Descendent (ISGD) (Vinagre 
et al., 2014) and Incremental Bayesian Personalized Ranking for MF 
(IBPRMF) (Rendle et al., 2012). These methods update latent factor 
matrices A and B considering the order in which the data becomes 
available. Besides, these have two fundamental differences between 
their batch versions, i.e., the learning process is performed on a single 
data pass (Gaber et al., 2005); and no data shuffling happens so that the 
natural order in which user-item interactions occur is preserved. 

3.2.1. Incremental stochastic gradient descent (ISGD) 
The Incremental Stochastic Gradient Descent (ISGD) is designed to 

deal with positive-only feedback. The interactions between users and 
items are represented in the boolean matrix R, where Ru,i = 1 stands for 
the existence of a relationship between the u-th user and the i-th item, 
and Ru,i = 0 depicts the absence of such relation. Therefore, the error is 

measured as errui =
⃒
⃒
⃒1 − R̂ui

⃒
⃒
⃒ and the rows in A and BT are updated using 

the operations in Eq. 4, adjusting them in the inverse direction of the 
gradient of the error, by a factor of 0⩽η⩽1 (Vinagre et al., 2014). 

One distinct difference between ISGD and its batch counterpart 
(SVD) regards the order in which the data are analyzed to generate the 

models. SVD shuffles and performs multiple passes over the data during 
pre-processing and model creation. On the other hand, ISGD does not 
perform any data pre-processing and processes data according to their 
natural arrival order (Vinagre et al., 2014). 

3.2.2. Incremental Bayesian personalized ranking for matrix factorization 
(IBPRMF) 

The Incremental Bayesian Personalized Ranking for Matrix Factor-
ization (IBPRMF) updates vectors Au,Bi and Bj using the operations 
present in Eqs. 6 and 7 as each user-item interaction of the dataset is 
made available. 

Another significant difference between IBPRMF and BPRMF resides 
in the set of negative items made available for selection during a user- 
item interaction model update. In the streaming variant (IBPRMF), the 
negative item is selected based on items that appeared thus far in the 
stream and did not interact with the current user. 

4. Supermarket dataset with implicit feedback SMDI) 

This section describes the Supermarket Dataset with Implicit Feed-
back (SMDI) used in this case study, broadening data acquisition, pre- 
processing, and descriptive statistics. 

4.1. Data acquisition 

The original dataset came from a supermarket that is a customer of 
HiMarket1, and it encompasses purchases made between August 1st, 
2019, and November 30th, 2019. It contains 737,893 events repre-
senting 9531 customers purchasing 7151 items in supermarket trans-
actions carried out on-site since the customer analyzed does not provide 
delivery services. The events are sorted chronologically and reported in 
the 〈user; item; rating; timestamp〉 form, as illustrated in Fig. 1. 

Fig. 2 provides insights on purchases’ temporal traits considering 
different granularities (day, week, and month). In the daily plot pro-
vided in Fig. 2a, we observe that the number of items sold over time 
drastically reduces. The reason is that the beginning of the data timespan 
matches the rewards club launch and that the interest decreased over 
time. Furthermore, we observe that the number of purchases increases 
during weekends (Fig. 2b) and and in the first and last three days of the 
month (Fig. 2c2). 

One particular consideration of the SMDI dataset is that it contains 
repeated events, i.e., users may purchase the same item multiple times. 
Consequently, Fig. 3a depicts the dataset ‘imbalance’ as the maximum 
and minimum amount of user interactions is volatile. On the other hand, 

Fig. 1. Dataset representation.  

1 Himarket is a company located at Curitiba, Paraná, Brazil. HiMarket’s 
website is available at http://himarket.club/  

2 An exception regards the 31st day, as not all months have 31 days. 
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Fig. 3b shows that some items have a higher number of interactions than 
others, as these are essential items. Given the characteristics mentioned 
above, there are two problems related to the supermarket process that 
contribute to its ‘imbalancedness.’ First, we observe that cashiers enter 
their identification number to enable discounts to customers who do not 
provide their rewards club code when making purchases. Consequently, 
some users possess an unrealistic number of purchases. Second, users 
with a large number of events represent merchants in the region close to 
the supermarket. Thus, the next section presents two approaches to 
address these problems and reduce the dataset’s imbalance 
characteristic. 

4.2. Dataset pre-processing approaches 

This section presents two pre-processing approaches to alleviate the 

‘imbalancedness’ in the number of user events in the SMDI dataset. 
These strategies account for the total number of events per user and the 
number of unique events per user, respectively. 

4.2.1. Cut-off point by the total number of events per user 
The first approach filters the dataset according to the maximum 

number of events per user. Fig. 4a reports the log10 of the number of 
events per user. In this strategy, we assume as a cut-off point the region 
of the curve in which the number of interactions substantially rises, i.e., 
where the approximate value of log10 is 2.7; thus indicating a maximum 
number of approximately 500 (log10(500) = 2.69897) interactions per 
user. We refer to this version of the dataset as SMDI-500E. 

The resulting density distributions obtained for users and items with 
the removal of such users are depicted in Fig. 5a and b, respectively. 
Despite the removal of users in this pre-processing approach, the 

Fig. 2. Number of purchases considering different timestamp granularity.  

Fig. 3. Probability density for users (a) and items (b) in the original SMDI dataset.  
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distribution observed for the number of items (Fig. 5b) does not largely 
differ from the one observed in the original dataset (Fig. 3b). On the 
other hand, with the removal of users with more than 500 interactions, 
the ‘imbalancedness’ was reduced. In Table 2, we observe the charac-
teristics of the pre-processed dataset. We observe that the maximum 
number of interactions per user is 500, regardless of whether there are 
multiple interactions with the same items. 

4.2.2. Cut-off point by the number of unique events per user 
When analyzing the number of unique interactions per user in the 

original dataset in Fig. 4b and Table 2, we also observe another relevant 
imbalance in the dataset. More specifically, the number of unique events 
for cashiers is close to the total number of items available in the dataset 
and reinforces the need to remove such users. 

Following the same rationale for picking a cut-off point, an analysis 
of Fig. 4b showed that the number of unique events per user rapidly 
increases with an approximate value of 2.3 for the log10 transformation 

of the number of unique events, thus indicating the removal of users who 
interacted with more than 200 (log10(200) = 2.3010) different items in 
the analyzed period. Consequently, we refer to this dataset as SMDI- 
200E in the remainder of the paper. 

The probability distribution for users and items obtained after this 
pre-processing approach are given in Fig. 6a and b, respectively. Simi-
larly to the previous section’s approach, a significant reduction in the 
number of interactions per user has been observed (Fig. 6a). At the same 
time, the probability curve for items (Fig. 6b) does not significantly 
differ from the one observed in the original dataset (Fig. 3b). Table 2 
depicts this variant characteristics. 

4.3. Dataset availability and content 

Table 1 overviews the dataset’s content, particularly the included 
files, their respective formats, and pieces of information. The dataset, its 
pre-processed versions, and the source code to replicate the experiments 
described in this paper can be downloaded from http://www.ppgia. 
pucpr.br/jean.barddal/datasets/SMDIDataset.zip. The original events 
without any pre-processing are in the SMDI_original.csv file. The 
SMDI-500E.csv and SMDI-200UE.csv files contain the results of 
pre-processing approaches shown in Section 4.2.1 and 4.2.2, respec-
tively. Users and items information are presented in SMDI_users.csv 
and SMDI_items.csv, respectively. 

On the item information level, the SMDI dataset includes section and 
brand identifiers (section_id and brand_id), reference price 
(ref_price), average, minimum and maximum prices during the 
period (avg_price, min_price, and max_price), and amount. Since 
users’ personal information is not made available and only purchase 
data was collected, we calculate, based on the obtained data, the 
Recency-Frequency-Monetary (RFM) score (Weng, 2017). Recency (R) is 
the interval between the current and previous purchase, and thus, the 
shorter the interval is, the bigger R is. Frequency (F) indicates the user’s 
number of transactions in a particular period. The bigger the frequency 

Fig. 4. log10 transformation applied to ordered events (N) for each user (a) and unique events per user (b).  

Fig. 5. Probability distribution for users (a) and items (b) in the SMDI-500E dataset.  

Table 2 
Description of the SMDI dataset variants.  

Information Original SMDI-500E SMDI-200UE 

Events 737,893 448,791 447,391 
Unique events 292,943 

(39.7%) 
268,592 
(59.84%) 

266,354 
(59.84%) 

Users 9531 9,480 9472 
Items 7141 6933 6924 
Avg # of events 77 47 47 
Min # of events 1 1 1 
Max # of events 166,549 491 775 
Sparsity 99.57% 99.59% 99.59% 
Avg # of unique 

events 
30 28 28 

Min # of unique 
events 

1 1 1 

Max # of unique 
events 

5853 270 200  
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is, the bigger F is. Finally, Monetary (M) refers to all transactions’ 
monetary value in a specific period. 

The RFM analysis assigns three different scores related to recency, 
frequency, and monetary variables to each customer, using a scale from 
1 to 5. Therefore, the database is sorted per RFM dimension, and the 
customer list is divided into five equal segments. The top quintile is 
assigned a score of 5, and the others receive 4, 3, 2, and 1 (Christy et al., 
2018), according to the quintile they belong. The RFM score is then 
generated by concatenating R, F, and M components, in this specific 
order. The normalized recency, frequency, and monetary values, 
calculated monthly (variables R1, F1, M1; R2, F2, M2; and so forth) and 
the entire period’s value are available in the SMDI_users.csv file. 

4.4. Descriptive statistics 

Table 2 provides statistics from the variants of the SMDI dataset. 
Regarding the pre-processing methods discussed in Sections 4.2.1 and 
4.2.2, we see that both pre-processing approaches obtained close values 
to the total number of interactions (448791 and 447391), as well as the 
number of users (9480 and 9472) and items (6933 and 6924). 
Conversely, the maximum number of events per user in the SMDI-500E 
dataset is 775, which is much higher than 491 seen in the SMDI-200UE 
variant. For both pre-processed datasets, the average number of in-
teractions (Avg # of events) per user was the same (47). 

Table 2 also presents the statistics for each dataset w.r.t. unique 
events. Despite the maximum number of unique events per user in the 
original dataset (5853) being much higher than for pre-processed 
datasets (270 for both), the average number of unique events per user 
(Avg # of events) for both is roughly the same (30 for the SMDI_original 
dataset and 28 for the SMDI-500E and SMDI-200UE datasets). 

5. Experimental protocol 

This section describes the experimental protocol used to compare 
batch and streaming algorithms in the SMDI dataset. This experimental 
protocol is relevant to guarantee that batch and streaming methods are 
adequately compared and enable identifying concept drifts and cold 

start problems. 
Fig. 7 shows the proposed batch and stream protocols. The dataset 

was split using the first two months of data for training and the 
remainder two months for testing. The temporal split makes more sense 
than a random one because users’ interest may change over time 
(Matuszyk et al., 2015). It is also more realistic as it mimics the data 
behavior if any of the recommender systems were applied in the real- 
world (Sidana et al., 2017), thus making a fair comparison between 
batch and stream learning algorithms. 

During the training step, batch and streaming algorithms have sig-
nificant differences. For batch training, we first shuffle the data and use 
20% of it for validation. The validation set is applied to monitor the 
validation loss, thus allowing early stopping during training. Finally, we 
use the test set for assessing the recommender system on unseen data. 

Regarding streaming models, the first 20% of the training set is used 
solely for training. The rationale is to allow the streaming recommender 
system to learn initial parameters, uncover user-item relationships 
embedded within the latent factors, and output non-random recom-
mendations at the beginning of the experiment. We use the remainder of 
the training set for testing and incremental training. Data shuffling is not 
performed as the instances’ natural order must be preserved (Vinagre 
et al., 2014). Next, the test set is used in a test-then-train fashion, 
meaning that user-item interaction is queried and later used for model 
update Gama et al. (2013). 

We implemented the batch models on top of TensorFlow (Abadi 
et al., 2016) and streamers using native Python. The source code for all 
the experiments reported in this paper is made available alongside the 
dataset in the same link, i.e., http://www.ppgia.pucpr.br/jean.barddal/ 
datasets/SMDIDataset.zip. All experiments were performed on an Intel 
i7-based computer equipped with 64 GB of RAM, an NVIDIA Titan V 
with 12 GB of RAM, and an NVIDIA RTX 2070 SUPER with 8 GB of RAM. 
For the NCF models (GMF, MLP, and NeuMF), instead of only using the 
positive examples to modeling the relationship between users and items, 
we randomly sampled four unknown items per positive example to serve 
as negative ones according to the protocol suggested in He et al. (2017). 
Considering the paired model BPRMF, it requires a single negative 
instance per positive interaction during training. Thus, we randomly 
selected a negative example to balance the positive–negative item pairs. 
To deal with the negative examples in the NCF models, we used the 
Binary Cross-Entropy (Log-loss) loss functions, shown in Eq. 12, where 
|T| is the number of training or validating samples. 

Log − loss = −
1
|T|

∑

u,i∈T

(
Ru,ilog

(
R̂ui

)
+
(
1 − Ru,i

)
×
(

log
(

1 − R̂ui

))
(12)  

For the other methods (SVD, BPRMF, ISGD, and IBPRMF), we used Mean 
Squared Error (MSE) as the loss function, which is depicted in Eq. 13). 

MSE =
1
|T|

∑

u,i∈T

(
Ru,i − R̂ui

)2
(13) 

Fig. 6. Probability density for users (a) and items (b) in the SMDI-200E dataset.  

Table 1 
Description of the files constituting the SMDI datasets. Bold and underlined 
contents represent the same information across different files.  

File Format Content 

SMDI_original csv user_id, item_id, rating, timestamp 

SMDI-500E csv 

SMDI-200UE csv 
SMDI_users csv user_id, R, F, M, RFM, R1, F1, M1, RFM1, R2, F2, M2, 

RFM2, R3, F3, M3, RFM3, R4, F4, M4, RFM4 
SMDI_items csv item_id, section_id, brand_id, ref_price, avg_price, 

min_price, max_price, amount  
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The model parameters were randomly set according to a Gaussian dis-
tribution with μ = 0 and a ρ = 0.01. Hyper-parameter tuning was per-
formed on a recommender model and dataset basis. We tested the 
following hyper-parameter values for SVD, BPRMF, ISGD, and IBPRMF: 
learning rate (learning-rate) ∈ [0.01, 0.02, 0.05, 0.001, 0.005, 0.0001, 
0.0005], regularization rate (reg-rate) ∈ [0.01, 0.001, 0], latent factors 
∈ [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 
100] for SVD, BPRMF, ISGD and IBPRMF. For GMF, MLP, and NeuMF 
models, we tested the values of latent factors ∈ [8, 16, 32, 64, 128], and 
as suggested in the original paper (He et al., 2017), the embedding layers 
do not have regularization, i.e., reg-rate = 0. The number of negative 
items selected for the NCF models (GMF, MLP and NeuMF) were 
neg_items ∈ [0, 1, 2, 3, 4, 5, 10, 15, 20]. In Table 3, we show the best 
parameters selected per model and dataset. 

In this analysis, we use the RECALL@N metric (Cremonesi et al., 
2010) to assess the goodness of the recommendations obtained. The 

RECALL@N metric quantifies how often a recommender suggests a 
relevant item (hit) amongst unknown items, which are assumed to be 
irrelevant. In other words, the RECALL@N score, computed using Eq. 14, 
measures the average (across all users) of the proportion of recom-
mended items that appear on the top N items in the ranked list (Yuan 
et al., 2011), where |T| denotes the number of user-item interactions 
assessed. 

RECALL@N =
1
|T|

∑

u,i∈T
(hit@N(u, i)) (14)  

Consequently, the RECALL@N metric was computed as follows (Matus-
zyk and Spiliopoulou, 2017): for each instance 〈u, i〉 in the test set (T), a 
candidate list of 100 unknown items to user u is selected, and the known 
(relevant) item i is appended to this candidate list. The candidate items 
are ranked according to the scores (probability of interaction with the 
user) obtained from the recommender system and sorted in descending 
order. For each instance (u, i), hit@N(u, i) = 1 is said to happen when i is 
ranked amidst the top N items, and hit@N(u, i) = 0, otherwise. 

The protocol followed to assess recall has two variants. The first is an 
approach we refer to as a ‘basic evaluator,’ which measures the 
recommender system’s using the entire test set. This approach allows the 
comparison between recommender systems and hypothesis testing. The 
second approach is the ‘window-based evaluator,’ which reports the 
recall over test set chunks. We use a window with a size at every 1% of 
the test set. 

The rationale behind the window-based evaluation is that it allows 
the assessment of recommender systems over time. This assessment is 
critical to verify whether the dataset exhibits drifting characteristics and 
whether streaming models benefit from the incremental updates per-
formed over test data. Therefore, we followed the Prequential test-then- 
train process (Gama et al., 2013; Jorge et al., 2016) for validating 
streaming models as depicted in Fig. 8. 

Finally, we incorporate hypothesis testing to determine whether one 
recommender algorithm outperforms others. We followed the protocol 
reported in Demsar (2006) by combining Friedman (1937) and the 
Nemenyi post hoc (Nemenyi, 1963) statistical tests. The experimental 
results are the mean and standard deviation of 30 replications. 

6. Experimental results and analysis 

This section reports the experimental results observed when 
comparing batch and streaming recommender algorithms applied to the 
SMDI datasets. We discuss the observations of the two proposed stra-
tegies planned in the experimental protocol, as follows: the basic eval-
uation in Section 6.1 and the window-based evaluation in Section 6.2. 

Fig. 7. Batch and stream protocols.  

Table 3 
Parameters tuning for each model and dataset.  

Dataset Model Opt Loss Factors Reg- 
rate 

Learning- 
rate 

SMDI_original SVD SGD MSE 40 0.01 0.001  
BPRMF SGD MSE 30 0.01 0.0005  
GMF Adam Log- 

loss 
32 0 0.001  

MLP Adam Log- 
loss 

32 0 0.0001  

NeuMF Adam Log- 
loss 

32 0 0.0005  

ISGD SGD MSE 10 0.01 0.02  
IBPRMF SGD MSE 20 0.001 0.001 

SMDI-500E SVD SGD MSE 30 0.01 0.001  
BPRMF SGD MSE 40 0.01 0.0001  
GMF Adam Log- 

loss 
32 0 0.001  

MLP Adam Log- 
loss 

32 0 0.001  

NeuMF Adam Log- 
loss 

32 0 0.001  

ISGD SGD MSE 10 0.01 0.02  
IBPRMF SGD MSE 30 0.001 0.05 

SMDI-200UE SVD SGD MSE 40 0.01 0.001  
BPRMF SGD MSE 80 0.01 0.0005  
GMF Adam Log- 

loss 
32 0 0.001  

MLP Adam Log- 
loss 

32 0 0.0001  

NeuMF Adam Log- 
loss 

32 0 0.0001  

ISGD SGD MSE 10 0.01 0.02  
IBPRMF SGD MSE 40 0.001 0.05  
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6.1. Results of the basic evaluation 

This section reports the results obtained by batch and streaming 
models in the SMDI dataset variants. More specifically, we focus on the 
basic evaluation process described in the proposed experimental pro-
tocol (Section 5) in which the recommendation rates are computed over 
the entire test set. Table 4 shows the general performance obtained. 

According to the dataset variants’ results, we observe differences in 
the tested recommender models’ behavior. Considering the original 
dataset results, we verify that there is no clear indication of whether 
batch or streaming models outperform others. We report the statistical 
test results obtained by combining Friedman and Nemenyi tests 
assuming a 95% confidence level throughout our discussion. These 
differences are also reported in Table 4, where recall values are marked 
with letters (a ≻ b ≻ c ≻ d ≻ e ≻ f) that depict and group the goodness 
of their results. 

In this table, we also report the results for PopTop (Cremonesi et al., 
2010), a non-machine learning approach for assessing recommender 
systems. PopTop consists of recommending items with the best degree of 
success among all users instead of modeling the user-item relationship 
using a machine learning method. Consequently, we observe that Pop-
Top is outperformed by all methods regardless of the recall metric 
analyzed. This observation depicts that both batch and streaming algo-
rithms model the users’ behavior in supermarket purchases adequately 
and surpass a naive baseline. 

When comparing the batch models, we observe that two neural 
network models, i.e., MLP and NeuMF, outperform GMF, BPFMF, and 
SVD in most datasets and recall values. These results indicate that the 
neural networks are suitable to captura complex interactions between 
users and items. In all datasets, MLP and NeuMF models do not depict a 
significant difference between each other. Even though NeuMF is a 
combination of MLP and GMF, GMF alone did not result in better per-
formance as the recall rates observed are not significantly higher than 
those surveyed for MLP alone. 

Regarding the streaming recommender models’ results (highlighted 
in Table 4), ISGD outperformed their batch version (SVD) concerning 
the RECALL@10 values in all datasets, thus showing a statistically sig-
nificant difference with a 95% confidence level. The improvement is 
more significant in the pre-processed datasets than in the original one. 
We observe an increase of 2.8% for RECALL@10 in both SMDI-500E and 
SMDI-200UE, in contrast to 0.5% in the original dataset. The discrep-
ancy between streaming algorithms and the corresponding batch 
counterpart depicts the importance of constantly updating the recom-
mender system as new data becomes available. This claim is further 
backed up as ISGD obtained superior results when compared to MLP and 
NeuMF in the pre-processed variants considering RECALL@1, 
RECALL@5, and RECALL@10. 

It is also noteworthy the analysis between BPR batch and streaming 
variants, especially in the pre-processed datasets. For instance, IBPRMF 
increased the RECALL@10 values up to 21% compared to the batch 
model BPRMF, while ISGD improved SVD rates by 2.8%. Extending the 
analysis, the RECALL@10 and RECALL@20 results obtained in the orig-
inal dataset show that IBPRMF had performance decreases, yet, it was 
not statistically significant. These decreases were due to the volatility of 
the recall rates observed, as IBPRMF did not converge in all experiment 
runs. 

Overall, we observe that streaming models performed competitive 
results in all the datasets, except the ISGD model in the original dataset 
when RECALL@1 is assessed. In this specific scenario, we observe that 
IBPRMF is a formidable contender to match traditional matrix factor-
ization techniques (SVD) and even more complex approaches that rely 
on neural networks (MLP and NeuMF). Summing up, we see that in 
smaller N values, i.e., N ∈ [1, 5, 10], either ISGD or IBPRMF overcome 

Fig. 8. Prequential validation. Adapted from Jorge et al. (2016).  

Table 4 
Recall values obtained by the recommendation methods in each tested dataset. 
The shaded area comprises the results of the data stream algorithms.  

Model RECALL@1 RECALL@5 RECALL@10 RECALL@20  

SMDI_original.csv  
PopTop 0.041d 0.102d 0.150e 0.215f  

SVD 0.325 ±
0.0021a  

0.565 ±
0.0012a  

0.669±
0.0011b  

0.779 ±
0.0009b,c   

BPRMF 0.242 ±
0.0013b,c  

0.410 ±
0.0018c  

0.484±
0.0019d  

0.564 ±
0.0014d,e   

GMF 0.218 ±
0.0023c  

0.376 ±
0.0037c  

0.454±
0.0048d  

0.542 ±
0.0055e   

MLP 0.324 ±
0.0032a  

0.559 ±
0.0086b  

0.665±
0.0096b,c  

0.790 ±
0.0116a,b   

NeuMF 0.322 ±
0.0125a  

0.559 ±
0.0243a,b  

0.664±
0.0257b,c  

0.790 ±
0.0268a   

ISGD 0.298 ±
0.0023b  

0.562 ±
0.0012b  

0.674±
0.0027a  

0.782 ±
0.0020a,b   

IBPRMF 0.324 ±
0.0144a  

0.559 ±
0.0075b  

0.662±
0.0046c,d  

0.766 ±
0.0038c,d   

SMDI-500E.csv  
PopTop 0.042f 0.102f 0.150f 0.216e  

SVD 0.299 ±
0.0019c  

0.543 ±
0.0010b,c  

0.648±
0.0011c  

0.757 ±
0.0015c,d   

BPRMF 0.212 ±
0.0031d,e  

0.382 ±
0.0046d,e  

0.457±
0.0050d,e  

0.538 ±
0.0057d   

GMF 0.197 ±
0.0025e  

0.371 ±
0.0038e  

0.454±
0.0041e  

0.540 ±
0.0046d   

MLP 0.299 ±
0.0108c,d  

0.539 ±
0.0020c,d  

0.645±
0.0016c,d  

0.779 ±
0.0019a,b   

NeuMF 0.293 ±
0.0220b,c  

0.543 ±
0.0057b,c  

0.650±
0.0027b,c  

0.782 ±
0.0030a   

ISGD 0.317 ±
0.0008a,b  

0.571 ±
0.0004a  

0.676±
0.0004a  

0.782 ±
0.0005a   

IBPRMF 0.322 ±
0.0007a  

0.565 ±
0.0006a,b  

0.667±
0.0006a,b  

0.772 ±
0.0006b,c   

SMDI-200UE.csv  
PopTop 0.042e 0.102e 0.150e 0.216e  

SVD 0.299 ±
0.0023b  

0.544 ±
0.0012b,c  

0.648±
0.0011c  

0.757 ±
0.0016c,d   

BPRMF 0.213 ±
0.0028c  

0.384 ±
0.0029c,d  

0.459±
0.0031c,d  

0.539 ±
0.0040d   

GMF 0.198 ±
0.0026c  

0.371 ±
0.0031d  

0.453±
0.0036d  

0.539 ±
0.0044d   

MLP 0.285 ±
0.0586b  

0.544 ±
0.0072b  

0.666±
0.0029b  

0.785 ±
0.0013a   

NeuMF 0.292 ±
0.0235b  

0.542 ±
0.0140b  

0.667±
0.0035b  

0.784 ±
0.0011a   

ISGD 0.316 ±
0.0009a  

0.570 ±
0.0005a  

0.676±
0.0005a  

0.782 ±
0.0005a,b   

IBPRMF 0.322 ±
0.0006a  

0.565 ±
0.0008a  

0.667±
0.0007b  

0.772 ±
0.0007b,c    
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batch models in the SMDI-500E and SMDI-200UE variants and that 
MLP and NeuMF achieve superior results in RECALL@20. Comparing the 
results acquired for both recommendation approaches, i.e., batch and 
streaming, we observe that streaming models resulted in improvements 
of 2.8% in recall values. In the next section, we further analyze these 
results from a different perspective. More specifically, we focus on the 
performance assessment that takes place over time, thus allowing a more 
fine-grained analysis on why streaming recommender systems exhibit 
the behavior mentioned above and provide evidence of the existence of 
concept drifts and cold start in the dataset assessed. 

6.2. Results of the window-based evaluation 

In this section, we report the recall rates using the window-based 
process. Fig. 9 shows the results obtained with the assessment taking 
place at every 1% of the test set. In the same figure, we also report the 
cumulative number of users and items to verify the cold start problem’s 
impact. 

In real-world datasets, the assessment of user-item interactions over 
time may uncover concept drifts, such as the launch of a product that 
reduces the popularity of previous versions of the same product or its 
competitors. Consequently, users’ interests and preferences may drift 
over time, resulting in concept drifts that should be targeted by adaptive 
recommender systems (Matuszyk et al., 2015; Chang et al., 2017). In 
Fig. 9, we observe recurrent fluctuations in the RECALL@10 rates, which 
represent concept drifts. This observation is corroborated by the recall 
rates obtained by PopTop, thus depicting that as new user-item in-
teractions occur, the overall behavior in the dataset also changes. Such 
changes are weekly recurring drifts (Gama et al., 2014), thus meaning 
that the relationship between users and items changes over the week, 
but it repeats itself across weeks. Recurring concepts are expected in 

supermarket scenarios as specific sales are repeated along weeks, days of 
the month, or even months of the year. 

In this analysis, we observe that the streaming recommender models, 
i.e., ISGD and IBPRMF, allowed significant parameter adjustments over 
time that induced better performance when compared to other models, 
especially in the pre-processed dataset variants. 

Another relevant aspect observed in Fig. 9 regards the performance 
decrease observed after the processing of 50 thousand interactions. This 
decrease matches the behavior change of the cumulative number of 
users in the dataset, thus culminating in a cold start problem. However, 
even though we notice an abrupt increase in the number of users in all 
datasets, most algorithms recover from the cold start and maintain good 
performance as new instances appear, except for the BPRMF and GMF 
methods. These results show that (i) streaming models, despite built on 
matrix factorization, recover from cold start issues swiftly and that (ii) 
recommender models based on neural networks exhibit interesting 
behavior in cold-start scenarios even though they are not continuously 
updated. The reason behind this behavior is related to the internal 
learning process of neural network-based recommender systems, where 
the user-item interactions result in higher-order embeddings that better 
generalize the underlying behavior between users and items when 
compared to traditional matrix factorization. Consequently, given the 
neural networks’ generalization ability, the recommender models 
extract unseen patterns in user-item interactions and provide useful 
suggestions in cold-start scenarios. 

On the other hand, when we analyze the cumulative number of 
items, we observe that the increase is gradual. Comparing the behavior 
between the original and pre-processed variants, we also observe that 
the latter datasets’ increase is slightly faster. This behavior explains why 
the performance of streaming and neural batch approaches observed in 
Table 4 in the original dataset is similar. The streaming models are 

Fig. 9. Moving averages of RECALL@10 values in the test stage, when using a sliding window with size 2000; a) shows the plot evolution obtained in the original 
dataset; b) pre-processed SMDI-500E dataset; and c) pre-processed SMDI-200UE dataset. 
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unable to take advantage of noticeable changes in data behavior. In 
contrast, in the pre-processed datasets where these changes are abrupt, 
the streaming models can adapt their parameters and achieve higher 
recall values. 

Finally, in both evaluation phases, the streaming methods were more 
efficient in almost all presented recommendation scenarios. ISGD and 
IBPRMF outperform their batch versions SVD and BPRMF and obtained 
better results than observed in the neural network approaches. Consid-
ering the concept drift and cold start problems, we verify that the in-
cremental ability of the streaming recommender models improved 
model prediction accuracy. 

7. Conclusion 

This paper analyzed batch and stream learning algorithms concern-
ing concept drifts and the cold start problem. As a by-product of this 
work, we made publicly available a new collaborative filtering super-
market dataset, alongside two pre-processed variants. As a result of this 
analysis, we observed that streaming recommender systems significantly 
overcome batch approaches. Thus, more effort should be put into 
tailoring techniques at the intersection of data streams and recom-
mender systems. For instance, streaming recommender systems were 
especially beneficial with the occurrence of the cold start issue and 
overcame complex neural network approaches in weekly recurrent 
concept drifts with statistical significance. 

As future works, we envision scaling up the data acquisition process. 
A larger data timespan would be beneficial for concept drift analysis 
across multiple years, yet, such data were unavailable for academic 
purposes. We also plan to account for the item content such as price, 
section, and brand that were unused in the current analysis. Thus, an 
adaptive content-based method or even its combination in an adaptive 
hybrid approach are envisioned. We also plan to combine explicit drift 
detection on matrix factorization and neural models in terms of 
recommendation techniques. Finally, another envisioned approach is to 
apply content-based filtering techniques in cold start cases, i.e., when a 
new customer or item appears in the dataset. 
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