
Expert Systems With Applications 176 (2021) 114890

Available online 16 March 2021
0957-4174/© 2021 Elsevier Ltd. All rights reserved.

A case study of batch and incremental recommender systems in
supermarket data under concept drifts and cold start

Antônio David Viniski a, Jean Paul Barddal a,*, Alceu de Souza Britto Jr. a, Fabrício Enembreck a,
Humberto Vinicius Aparecido de Campos b

a Graduate Program in Informatics (PPGIa), Pontifícia Universidade Católica do Paraná (PUCPR), Rua Imaculada Conceição, 1155 Curitiba, Brazil
b Himarket, Avenida Visconde de Guarapuava, 2764 Curitiba, Brazil

A R T I C L E I N F O

Keywords:
Collaborative filtering
Recommender systems
Positive-only feedback
Dataset

A B S T R A C T

Recommender systems uncover relationships between users and items, thus allowing personalized recommen-
dations. Nonetheless, users’ preferences may change over time, the so-called concept drifts; or new users and
items may appear, making the recommender system unable to accurately map the relationship between users and
items due to the cold start problem. Consequently, concept drift and cold start are challenges that downgrade the
recommender system’s predictive performance. This paper assesses existing approaches for collaborative-
filtering recommender systems over a real supermarket dataset that exhibits both of the issues mentioned
above. For this purpose, our comparative analysis encompasses batch and streaming learning approaches. As a
result, we can observe that streaming-based models achieve better recommendation rates since these are tailored
to fit the concept drift. More specifically, the predictive performance of streaming-based recommendations in-
creases by up to 21% over those provided by batch methods. The supermarket dataset used in experimentation is
also made publicly available for future studies and recommender systems comparisons.

1. Introduction

Recommender systems are a hot topic in today’s world. Businesses of
all kinds are interested in implementing recommender systems, as these
allow individualized interactions with customers based on their pref-
erences. A recommender system predicts an item’s probability to be
preferred by a particular user (Zhang et al., 2019; Ricci et al., 2011).
Over the years, different approaches were tailored to develop recom-
mender systems. These are categorized as collaborative filtering (CF),
content-based filtering (CBF), or hybrid approaches that combine the
strategies mentioned above. Determining whether to use CF, CBF, or
hybrid approaches depends on the availability and format of the data. In
CF, the only data required is a list of user-item interactions, while in CBF,
items’ details are required. Consequently, CF is less restrictive and has
been the target of many works over the years (Bobadilla et al., 2013;
Zhang et al., 2019).

In this paper, we focus on two problems that affect recommender
systems. The first is concept drift, which refers to changes in the data
behavior over time (Tsymbal, 2004; Webb et al., 2018). In recommender

systems, concept drift reflects changes in the interactions between cus-
tomers and items, either because (i) customers’ preferences change, (ii)
new items become available for purchase, etc. The second is cold start,
which occurs when new customers or items appear in the recommen-
dation scenario. Such a problem is challenging, because the recom-
mender model cannot make robust inferences for users or items about
which it has not yet collected enough information (Ocepek et al., 2015;
Shao et al., 2021).

Recommender systems are traditionally trained in a batch fashion,
which means that given a training set composed of interactions between
users and items, a static model is learned and deployed ad eternum.
Consequently, it is relevant to tailor recommender systems that can be
incremented over time, assuming that the interactions between users
and items are made available as a stream of events.

In this paper, our goal is to bring forward a case study of existing
recommender algorithms in a real-world supermarket scenario that ex-
hibits both concept drifts and cold start problems. The contribution of
this paper is threefold, as follows:

* Corresponding author.
E-mail addresses: adviniski@ppgia.pucpr.br (A.D. Viniski), jean.barddal@ppgia.pucpr.br (J.P. Barddal), alceu@ppgia.pucpr.br (A.S. Britto Jr.), fabricio@ppgia.

pucpr.br (F. Enembreck), humberto.campos@himarket.club (H.V.A. Campos).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2021.114890
Received 1 May 2020; Received in revised form 2 March 2021; Accepted 6 March 2021

mailto:adviniski@ppgia.pucpr.br
mailto:jean.barddal@ppgia.pucpr.br
mailto:alceu@ppgia.pucpr.br
mailto:fabricio@ppgia.pucpr.br
mailto:fabricio@ppgia.pucpr.br
mailto:humberto.campos@himarket.club
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2021.114890
https://doi.org/10.1016/j.eswa.2021.114890
https://doi.org/10.1016/j.eswa.2021.114890
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2021.114890&domain=pdf

Expert Systems With Applications 176 (2021) 114890

2

• A comparison of existing filtering recommender systems in which the
impact of concept drift and cold start is assessed in both batch and
streaming fashions.

• Evidence that the incremental ability of the streaming-based
recommender systems allows a better recovery when cold start is
present.

• A novel real-word supermarket dataset that exhibits concept drifts
and cold start problems is made publicly available.

This paper is divided as follows. Section 2 describes recommender sys-
tems, types of feedback, the problem of concept drift, and the challenge
of cold start. Section 3 describes existing works on positive-only
recommender systems in both batch and stream learning scenarios.
Section 4 details a new dataset we make available regarding super-
market transactions, which exhibits concept drift and cold start char-
acteristics. Section 5 describes the experiments undertaken to perform
the proposed analysis of recommender systems. Section 6 analyzes
existing works in recommender systems to answer whether streaming
recommender systems overcome batch approaches w.r.t. concept drifts
and cold start. Finally, Section 7 concludes this paper and describes
future works.

2. Recommender systems

Recommender systems have been successfully applied in many real-
world scenarios, proving efficient in handling diverse information
related to users, items, and their interaction. The goal of recommender
systems is personalization, which refers to the ability to recommend
relevant items to specific users based on their past interactions with the
system. Considering the type of information used in the recommenda-
tion process and how the system models the user-item relationship,
recommender systems are categorized into three classes: Content-Based
Filtering, Collaborative Filtering, and Hybrid Filtering.

Content-based filtering techniques recommend items to users
considering items’ characteristics and descriptions (Wei et al., 2017;
Ricci et al., 2011). One central component of content-based approaches
is the user modeling process that infers users’ interest from items they
interacted with. Items are compared with items previously liked by
users, and the best-matched items are recommended (Beel et al., 2016).

The second approach, collaborative filtering, doesn’t require previ-
ous knowledge of users or items, and thus, it is the most common
approach for developing recommender systems. In practice, collabora-
tive systems recommend items based on past user-item interactions
(Nassar et al., 2020). The rationale behind collaborative filtering is that
users who have expressed similar interests will share future interests.
Thus, the items recommended for a particular user are related to items
preferred by users that demonstrated similar interests previously
(Portugal et al., 2018; Yin et al., 2019).

Hybrid filtering techniques combine content-based and collaborative
filtering to make recommendations. Thus, the recommended items rely
on both item descriptions and user-item interactions, thus enabling the
recommendation system to find similarities between users, items, and
user-item relationships (Portugal et al., 2018).

According to how the system collects data, the user feedback is
represented either explicitly or implicitly, thus characterizing the
recommendation problem as a rating prediction or item prediction,
respectively. Explicit feedback refers to the availability of quantified
user preferences, generally available in the form of ratings on a nu-
merical scale, e.g., a 1-star to 5-star ranking. The task is then to predict
missing values in a matrix of user-item ratings, such as in a regression
problem (Vinagre et al., 2014).

However, numerical ratings are not always available due to the
necessary systemic adaptations to collect them or because users must
provide feedback after their interaction with a given item. Therefore,
implicit feedback is more common, such as what happens when a user
listens to a song, reads a news article, buys a product, and so forth

(Rendle et al., 2012). In the examples above, the feedback is provided in
a boolean manner, as either an interaction exists (true) or not (false).
Consequently, the objective of implicit feedback-based recommender
systems is to predict unknown true values in the boolean interaction
matrix, thus characterizing a one-class classification problem (Vinagre
et al., 2014).

2.1. Concept drift

An emerging topic in recommender systems is how to learn from
potentially infinite sequences of user-item interactions that arrive over
time. The building of models that learn incrementally from continuous
flows of data is a concern of data stream mining (Aggarwal, 2007; Gama,
2010). Models tailored for data streams must have low computational
cost regarding processing time and memory consumption while also
tackle concept drifts. Concept drift is a problem that arises when the data
distribution changes, thus affecting its underlying patterns (Tsymbal,
2004; Webb et al., 2018). If a model cannot detect and adapt to drifts
swiftly, prediction power is put in jeopardy.

In recommender systems, concept drift refers to changes in customer
behavior, which reflect changes in their preferences (Jorge et al., 2016).
Consequently, recommender systems should be aware that the rela-
tionship between users and items is not static. Thus, these are expected
to detect and adapt to changes accordingly (Babüroğlu et al., 2021;
Gama et al., 2014).

The most efficient way to deal with potentially drifting scenarios is to
increment the model as user-item interactions are made available.
Recommender systems that are tailored to handle data streams address
both the problem of learning drifting behavior and computational
complexity issues. In Section 3.2, we discuss incremental algorithms
tailored for streaming recommender systems.

2.2. The cold start problem

Most collaborative filtering approaches require a large number of
ratings from a user on an item to provide useful recommendations, thus
leading to unreliable suggestions due to an initial absence of ratings
(Ocepek et al., 2015). Although collaborative filtering is widely followed
in recommender systems’ implementation, its techniques suffer from
sparsity and cold start problems (Wei et al., 2017). Data sparsity occurs
when the number of interactions between users and items is much
smaller than the total number of user and item combinations. Conse-
quently, the mapping between the latent factors and the rating matrix R
becomes even more cumbersome (Shao et al., 2021).

On the other hand, the cold start problem occurs when either a new
user or item appears over time. Thus, the recommender model cannot
map the user-item interactions accurately as no a priori information on
either of them is available. In recommender systems, the cold start
problem includes three cases: (1) cold start of users (how to recommend
items to a user recently entered the system); (2) cold start of items (how
to recommend a new item recently introduced into the system to
interested users); and (3) cold start of the system (how to realize accu-
rate recommendation in a new system) (Pandey and Rajpoot, 2016; Wei
et al., 2017).

Several techniques have been proposed in the literature to solve the
cold start problem and deal with data sparseness (Pandey and Rajpoot,
2016; Wei et al., 2017; Silva et al., 2019; Tahmasebi et al., 2020; Bi et al.,
2020). Yet, most of these techniques require additional data, such as
demographic and social network information. Nonetheless, in real-
world scenarios, additional information is often unavailable, and the
system has to deal with the provided data to alleviate these problems. A
recent approach for addressing cold-start scenarios is using data stream
methods, as incremental approaches are continuously learning the new
underlying patterns between users and items (Chandramouli et al.,
2011; José et al., 2020).

A.D. Viniski et al.

Expert Systems With Applications 176 (2021) 114890

3

3. Positive-only approaches for recommender systems

In this section, we bring forward existing approaches for positive-
only recommender systems. We organize the existing methods into
batch and streaming approaches depending on how training takes place.

3.1. Batch approaches

The most common approach for recommender systems with positive-
only feedback is Matrix Factorization (MF) (Takács et al., 2009; Yu et al.,
2016). MF models have been widely applied to different recommenda-
tion scenarios and overcame clustering and neighborhood methods in
terms of predictive power and runtime complexity (Vinagre et al.,
2014). Thus, we describe traditional MF techniques, including Singular
Value Decomposition (SVD) (Sarwar et al., 2000) and Bayesian
Personalized Ranking for Matrix Factorization (BPRMF) (Rendle et al.,
2012). Furthermore, we also report recent approaches that use neural
networks with and without matrix factorization, such as Generalized
Matrix Factorization (GMF), Multi-layer Perceptron (MLP), and Neural
Matrix Factorization (NeuMF) (He et al., 2017).

3.1.1. Singular value decomposition (SVD)
The Netflix challenge (Funk, 2006) popularized the use of matrix

factorization using Singular Value Decomposition (SVD) (Paterek, 2007)
or Regularized Singular Value Decomposition (RSVD). SVD factorizes a
user-item matrix that represents the interaction between users and items
into low-rank matrices.

Matrix factorization characterizes both users and items by vectors of
latent factors. The number of latent factors is much smaller than the
number of users and items, and the co-occurrence between users and
items is the basis for recommendations (Takács et al., 2009).

More formally, matrices R ∈ Rmxn,A ∈ Rmxk and B ∈ Rkxn represent
users’ ratings to items, users’ latent vectors, and items’ latent vectors,
respectively. The entry ru,i in the u-th row and the i-th column of R is the
rating that user u gives to the item i. The u-th row vector pu of A and i-th
column vector qi of B are user u and item i’s latent vectors, respectively
(Yu et al., 2016). Given this formulation, we can compute the user u
predicted rating for the item i using the dot (scalar) product, as depicted
in Eq. 1 (Vinagre et al., 2014).

R̂ui = Au⋅BT
i (1)

Training is performed by minimizing the L2-regularized squared error
for known values in R and the corresponding predicted ratings as
denoted in Eq. 2 (Vinagre et al., 2014).

min
A,B

∑

(u,i)∈D

(
Ru,i − AuBT

i

)2
+ λA‖Au‖

2
+ λB‖Bi‖

2 (2)

The most common approach for minimizing Eq. 2 is the Stochastic
Gradient Descendent (SGD) optimization, in which the algorithm loops
over all ratings in the training set. For each given training interaction,
the system predicts rui and computes the associated prediction error
computed using Eq. 3 (Koren et al., 2009).

errui = Rui − R̂ui (3)

Next, SGD modifies the parameters by a magnitude proportional to η in
the inverse direction of the gradient of the error according to Eq. 4
(Koren et al., 2009), where η is known as step size, or learning rate, and λ
is a regularization factor for both users and items latent factors (Vinagre
et al., 2014).

Au←Au + η(erruiBi − λAu)

Bi←Bi + η(erruiAu − λBi)
(4)

3.1.2. Bayesian personalized ranking for matrix factorization (BPRMF)
Bayesian Personalized Ranking for Matrix Factorization (BPRMF) is a

generic optimization criterion for personalized ranking that is the
maximum posterior estimator derived from a Bayesian analysis of the
problem (Rendle et al., 2012). The authors provide a learning BPR
method based on SGD with bootstrap sampling (Breiman, 1996). In
addition to the matrix factorization parameters, for each instance (u; i) in
the training set, BPRMF selects a negative item j (an item that the u-th
user did not interact with). BPR optimization decomposes triplets in the
(u; i; j) format using the difference of the u-th user predictions w.r.t.
items i and j, such as depicted in Eq. 5.

R̂uij = R̂ui − R̂uj (5)

For each triplet (u; i; j), the latent factor vectors for a user u and items i
and j are updated using Eq. 6.

Θ←Θ+ η
(

e− R̂uij

1 + e− R̂uij

×
∂

∂Θ
R̂uij − λΘ

)

(6)

where

∂
∂Θ

R̂uij =

⎧
⎪⎪⎨

⎪⎪⎩

(
Bi − Bj

)
if Θ = Au

Au if Θ = Bi
− Au if Θ = Bj
0 otherwise

(7)

3.1.3. Generalized matrix factorization
The Generalized Matrix Factorization (GMF) model results from an

extensive literature investigation of factorization models. It is a partic-
ular case of the Neural Collaborative Framework (NCF) (He et al., 2017).
As input, GMF receives the one-hot encoded feature vectors vU

u and vI
i

that describe user u and item i, respectively. Above the input layer are
the embedding layers Au = ATvU

u and Bu = BTvI
i , which are the latent

vectors of user and item, respectively. NCF’s first layer mapping function
is given by Eq. 8, where ⊙ denotes the element-wise product of user and
item latent vectors.

ϕ(Au,Bi) = Au ⊙ Bi, (8)

Each embedding layer (latent vector) is a fully connected layer that
projects the sparse representation of users and items into a dense vector.
Thus, projecting the vector to the output layer, the rating prediction of
the u-th concerning the i-th item is obtained, as denoted in Eq. 9, where
aout and h represent the activation function and edge weights of the
output layer, respectively.

R̂ui = aout
(
hT(Au ⊙ Bi)

)
, (9)

Finally, the matrix factorization model is computed using an identity
function for aout and enforcing h to being a uniform vector of ones (He
et al., 2017).

3.1.4. Multi-layer perceptron (MLP)
Similar to GMF, the multi-layer perceptron (MLP) for recommender

systems is also part of the NCF framework (He et al., 2017). The first
difference between GMF and MLP resides in the first layer. MLP con-
catenates the user and item latent features instead of using the element-
wise dot product between latent factors as in GMF. Second, the model
has hidden layers on the concatenated vector to model the collaborative
filtering effect and learn the interaction between Au and Bi latent fea-
tures. More formally, Eq. 10 describes the MLP model, where Wx,bx, and
ax denote the weight matrix, bias vector, and activation function for the
x-th layer, respectively.

A.D. Viniski et al.

Expert Systems With Applications 176 (2021) 114890

4

z1 = ϕ1

(

Au,Bi

)

=

[
Au

Bi

]

,

ϕ2(z1) = a2
(
WT

2 z1 + b2
)
,

……
ϕL
(
zL− 1

)
= aL

(
WT

2 zL + bL
)
,

R̂ui = σ
(
hT ϕL(zL− 1)

)
,

(10)

3.1.5. Neural matrix factorization
Neural Matrix Factorization (NeuMF) combines GMF and MLP ar-

chitectures. More specifically, it combines the linear kernel from GMF
and the non-linear kernel from MLP. Internally, NeuMF trains GMF and
MLP with random initializers until convergence. To provide more flex-
ibility to the combined model, NeuMF allows GMF and MLP to learn
separated embeddings and merge them by concatenating their last
hidden layer. A formal description for NeuMF is given in Eq. 11 (He
et al., 2017), where AG

u and AM
u denote the user embedding for GMF and

MLP parts, respectively, while similar notations of BG
i and BM

i hold for
item embeddings.

ϕGMF = AG
u ⊙ BG

i ,

ϕMLP = aL

⎛

⎝WT
L

⎛

⎝aL− 1

⎛

⎝…a2

⎛

⎝WT
2

⎡

⎣
AM

u

BM
i

⎤

⎦+ b2

⎞

⎠…

⎞

⎠

⎞

⎠+ bL

⎞

⎠,

R̂ui = σ
(

hT
([

ϕGMF

ϕMLP

]))

,

(11)

3.2. Streaming approaches

In real-world applications, users’ feedback is made available
continuously. Besides, we have no control over the order in which this
data arrives. Let us suppose that new information becomes available in
batch mode, such as a new item, a new user, or a new user-item event. In
that case, we need to retrain the entire matrix factorization (MF) model
using both old and new data. The retraining process may be unfeasible
since batch training is computationally expensive (Yu et al., 2016; Wu
et al., 2008). Furthermore, there is no guarantee that the past user-item
relationships are consistent with those observed in more recent data.
Consequently, we should update the recommender systems in a single-
pass manner, according to the arrival of user-item interactions, instead
of retraining the entire model (Vinagre et al., 2014). As a result, the
practical benefits of using single-pass incremental systems encompass
computational cost reduction (Wu et al., 2008) and drift adaptation
(Matuszyk et al., 2015; Chang et al., 2017).

In this section, we present two techniques designed to work incre-
mentally: Incremental Stochastic Gradient Descendent (ISGD) (Vinagre
et al., 2014) and Incremental Bayesian Personalized Ranking for MF
(IBPRMF) (Rendle et al., 2012). These methods update latent factor
matrices A and B considering the order in which the data becomes
available. Besides, these have two fundamental differences between
their batch versions, i.e., the learning process is performed on a single
data pass (Gaber et al., 2005); and no data shuffling happens so that the
natural order in which user-item interactions occur is preserved.

3.2.1. Incremental stochastic gradient descent (ISGD)
The Incremental Stochastic Gradient Descent (ISGD) is designed to

deal with positive-only feedback. The interactions between users and
items are represented in the boolean matrix R, where Ru,i = 1 stands for
the existence of a relationship between the u-th user and the i-th item,
and Ru,i = 0 depicts the absence of such relation. Therefore, the error is

measured as errui =
⃒
⃒
⃒1 − R̂ui

⃒
⃒
⃒ and the rows in A and BT are updated using

the operations in Eq. 4, adjusting them in the inverse direction of the
gradient of the error, by a factor of 0⩽η⩽1 (Vinagre et al., 2014).

One distinct difference between ISGD and its batch counterpart
(SVD) regards the order in which the data are analyzed to generate the

models. SVD shuffles and performs multiple passes over the data during
pre-processing and model creation. On the other hand, ISGD does not
perform any data pre-processing and processes data according to their
natural arrival order (Vinagre et al., 2014).

3.2.2. Incremental Bayesian personalized ranking for matrix factorization
(IBPRMF)

The Incremental Bayesian Personalized Ranking for Matrix Factor-
ization (IBPRMF) updates vectors Au,Bi and Bj using the operations
present in Eqs. 6 and 7 as each user-item interaction of the dataset is
made available.

Another significant difference between IBPRMF and BPRMF resides
in the set of negative items made available for selection during a user-
item interaction model update. In the streaming variant (IBPRMF), the
negative item is selected based on items that appeared thus far in the
stream and did not interact with the current user.

4. Supermarket dataset with implicit feedback SMDI)

This section describes the Supermarket Dataset with Implicit Feed-
back (SMDI) used in this case study, broadening data acquisition, pre-
processing, and descriptive statistics.

4.1. Data acquisition

The original dataset came from a supermarket that is a customer of
HiMarket1, and it encompasses purchases made between August 1st,
2019, and November 30th, 2019. It contains 737,893 events repre-
senting 9531 customers purchasing 7151 items in supermarket trans-
actions carried out on-site since the customer analyzed does not provide
delivery services. The events are sorted chronologically and reported in
the 〈user; item; rating; timestamp〉 form, as illustrated in Fig. 1.

Fig. 2 provides insights on purchases’ temporal traits considering
different granularities (day, week, and month). In the daily plot pro-
vided in Fig. 2a, we observe that the number of items sold over time
drastically reduces. The reason is that the beginning of the data timespan
matches the rewards club launch and that the interest decreased over
time. Furthermore, we observe that the number of purchases increases
during weekends (Fig. 2b) and and in the first and last three days of the
month (Fig. 2c2).

One particular consideration of the SMDI dataset is that it contains
repeated events, i.e., users may purchase the same item multiple times.
Consequently, Fig. 3a depicts the dataset ‘imbalance’ as the maximum
and minimum amount of user interactions is volatile. On the other hand,

Fig. 1. Dataset representation.

1 Himarket is a company located at Curitiba, Paraná, Brazil. HiMarket’s
website is available at http://himarket.club/

2 An exception regards the 31st day, as not all months have 31 days.

A.D. Viniski et al.

Expert Systems With Applications 176 (2021) 114890

5

Fig. 3b shows that some items have a higher number of interactions than
others, as these are essential items. Given the characteristics mentioned
above, there are two problems related to the supermarket process that
contribute to its ‘imbalancedness.’ First, we observe that cashiers enter
their identification number to enable discounts to customers who do not
provide their rewards club code when making purchases. Consequently,
some users possess an unrealistic number of purchases. Second, users
with a large number of events represent merchants in the region close to
the supermarket. Thus, the next section presents two approaches to
address these problems and reduce the dataset’s imbalance
characteristic.

4.2. Dataset pre-processing approaches

This section presents two pre-processing approaches to alleviate the

‘imbalancedness’ in the number of user events in the SMDI dataset.
These strategies account for the total number of events per user and the
number of unique events per user, respectively.

4.2.1. Cut-off point by the total number of events per user
The first approach filters the dataset according to the maximum

number of events per user. Fig. 4a reports the log10 of the number of
events per user. In this strategy, we assume as a cut-off point the region
of the curve in which the number of interactions substantially rises, i.e.,
where the approximate value of log10 is 2.7; thus indicating a maximum
number of approximately 500 (log10(500) = 2.69897) interactions per
user. We refer to this version of the dataset as SMDI-500E.

The resulting density distributions obtained for users and items with
the removal of such users are depicted in Fig. 5a and b, respectively.
Despite the removal of users in this pre-processing approach, the

Fig. 2. Number of purchases considering different timestamp granularity.

Fig. 3. Probability density for users (a) and items (b) in the original SMDI dataset.

A.D. Viniski et al.

Expert Systems With Applications 176 (2021) 114890

6

distribution observed for the number of items (Fig. 5b) does not largely
differ from the one observed in the original dataset (Fig. 3b). On the
other hand, with the removal of users with more than 500 interactions,
the ‘imbalancedness’ was reduced. In Table 2, we observe the charac-
teristics of the pre-processed dataset. We observe that the maximum
number of interactions per user is 500, regardless of whether there are
multiple interactions with the same items.

4.2.2. Cut-off point by the number of unique events per user
When analyzing the number of unique interactions per user in the

original dataset in Fig. 4b and Table 2, we also observe another relevant
imbalance in the dataset. More specifically, the number of unique events
for cashiers is close to the total number of items available in the dataset
and reinforces the need to remove such users.

Following the same rationale for picking a cut-off point, an analysis
of Fig. 4b showed that the number of unique events per user rapidly
increases with an approximate value of 2.3 for the log10 transformation

of the number of unique events, thus indicating the removal of users who
interacted with more than 200 (log10(200) = 2.3010) different items in
the analyzed period. Consequently, we refer to this dataset as SMDI-
200E in the remainder of the paper.

The probability distribution for users and items obtained after this
pre-processing approach are given in Fig. 6a and b, respectively. Simi-
larly to the previous section’s approach, a significant reduction in the
number of interactions per user has been observed (Fig. 6a). At the same
time, the probability curve for items (Fig. 6b) does not significantly
differ from the one observed in the original dataset (Fig. 3b). Table 2
depicts this variant characteristics.

4.3. Dataset availability and content

Table 1 overviews the dataset’s content, particularly the included
files, their respective formats, and pieces of information. The dataset, its
pre-processed versions, and the source code to replicate the experiments
described in this paper can be downloaded from http://www.ppgia.
pucpr.br/jean.barddal/datasets/SMDIDataset.zip. The original events
without any pre-processing are in the SMDI_original.csv file. The
SMDI-500E.csv and SMDI-200UE.csv files contain the results of
pre-processing approaches shown in Section 4.2.1 and 4.2.2, respec-
tively. Users and items information are presented in SMDI_users.csv
and SMDI_items.csv, respectively.

On the item information level, the SMDI dataset includes section and
brand identifiers (section_id and brand_id), reference price
(ref_price), average, minimum and maximum prices during the
period (avg_price, min_price, and max_price), and amount. Since
users’ personal information is not made available and only purchase
data was collected, we calculate, based on the obtained data, the
Recency-Frequency-Monetary (RFM) score (Weng, 2017). Recency (R) is
the interval between the current and previous purchase, and thus, the
shorter the interval is, the bigger R is. Frequency (F) indicates the user’s
number of transactions in a particular period. The bigger the frequency

Fig. 4. log10 transformation applied to ordered events (N) for each user (a) and unique events per user (b).

Fig. 5. Probability distribution for users (a) and items (b) in the SMDI-500E dataset.

Table 2
Description of the SMDI dataset variants.

Information Original SMDI-500E SMDI-200UE

Events 737,893 448,791 447,391
Unique events 292,943

(39.7%)
268,592
(59.84%)

266,354
(59.84%)

Users 9531 9,480 9472
Items 7141 6933 6924
Avg # of events 77 47 47
Min # of events 1 1 1
Max # of events 166,549 491 775
Sparsity 99.57% 99.59% 99.59%
Avg # of unique

events
30 28 28

Min # of unique
events

1 1 1

Max # of unique
events

5853 270 200

A.D. Viniski et al.

Expert Systems With Applications 176 (2021) 114890

7

is, the bigger F is. Finally, Monetary (M) refers to all transactions’
monetary value in a specific period.

The RFM analysis assigns three different scores related to recency,
frequency, and monetary variables to each customer, using a scale from
1 to 5. Therefore, the database is sorted per RFM dimension, and the
customer list is divided into five equal segments. The top quintile is
assigned a score of 5, and the others receive 4, 3, 2, and 1 (Christy et al.,
2018), according to the quintile they belong. The RFM score is then
generated by concatenating R, F, and M components, in this specific
order. The normalized recency, frequency, and monetary values,
calculated monthly (variables R1, F1, M1; R2, F2, M2; and so forth) and
the entire period’s value are available in the SMDI_users.csv file.

4.4. Descriptive statistics

Table 2 provides statistics from the variants of the SMDI dataset.
Regarding the pre-processing methods discussed in Sections 4.2.1 and
4.2.2, we see that both pre-processing approaches obtained close values
to the total number of interactions (448791 and 447391), as well as the
number of users (9480 and 9472) and items (6933 and 6924).
Conversely, the maximum number of events per user in the SMDI-500E
dataset is 775, which is much higher than 491 seen in the SMDI-200UE
variant. For both pre-processed datasets, the average number of in-
teractions (Avg # of events) per user was the same (47).

Table 2 also presents the statistics for each dataset w.r.t. unique
events. Despite the maximum number of unique events per user in the
original dataset (5853) being much higher than for pre-processed
datasets (270 for both), the average number of unique events per user
(Avg # of events) for both is roughly the same (30 for the SMDI_original
dataset and 28 for the SMDI-500E and SMDI-200UE datasets).

5. Experimental protocol

This section describes the experimental protocol used to compare
batch and streaming algorithms in the SMDI dataset. This experimental
protocol is relevant to guarantee that batch and streaming methods are
adequately compared and enable identifying concept drifts and cold

start problems.
Fig. 7 shows the proposed batch and stream protocols. The dataset

was split using the first two months of data for training and the
remainder two months for testing. The temporal split makes more sense
than a random one because users’ interest may change over time
(Matuszyk et al., 2015). It is also more realistic as it mimics the data
behavior if any of the recommender systems were applied in the real-
world (Sidana et al., 2017), thus making a fair comparison between
batch and stream learning algorithms.

During the training step, batch and streaming algorithms have sig-
nificant differences. For batch training, we first shuffle the data and use
20% of it for validation. The validation set is applied to monitor the
validation loss, thus allowing early stopping during training. Finally, we
use the test set for assessing the recommender system on unseen data.

Regarding streaming models, the first 20% of the training set is used
solely for training. The rationale is to allow the streaming recommender
system to learn initial parameters, uncover user-item relationships
embedded within the latent factors, and output non-random recom-
mendations at the beginning of the experiment. We use the remainder of
the training set for testing and incremental training. Data shuffling is not
performed as the instances’ natural order must be preserved (Vinagre
et al., 2014). Next, the test set is used in a test-then-train fashion,
meaning that user-item interaction is queried and later used for model
update Gama et al. (2013).

We implemented the batch models on top of TensorFlow (Abadi
et al., 2016) and streamers using native Python. The source code for all
the experiments reported in this paper is made available alongside the
dataset in the same link, i.e., http://www.ppgia.pucpr.br/jean.barddal/
datasets/SMDIDataset.zip. All experiments were performed on an Intel
i7-based computer equipped with 64 GB of RAM, an NVIDIA Titan V
with 12 GB of RAM, and an NVIDIA RTX 2070 SUPER with 8 GB of RAM.
For the NCF models (GMF, MLP, and NeuMF), instead of only using the
positive examples to modeling the relationship between users and items,
we randomly sampled four unknown items per positive example to serve
as negative ones according to the protocol suggested in He et al. (2017).
Considering the paired model BPRMF, it requires a single negative
instance per positive interaction during training. Thus, we randomly
selected a negative example to balance the positive–negative item pairs.
To deal with the negative examples in the NCF models, we used the
Binary Cross-Entropy (Log-loss) loss functions, shown in Eq. 12, where
|T| is the number of training or validating samples.

Log − loss = −
1
|T|

∑

u,i∈T

(
Ru,ilog

(
R̂ui

)
+
(
1 − Ru,i

)
×
(

log
(

1 − R̂ui

))
(12)

For the other methods (SVD, BPRMF, ISGD, and IBPRMF), we used Mean
Squared Error (MSE) as the loss function, which is depicted in Eq. 13).

MSE =
1
|T|

∑

u,i∈T

(
Ru,i − R̂ui

)2
(13)

Fig. 6. Probability density for users (a) and items (b) in the SMDI-200E dataset.

Table 1
Description of the files constituting the SMDI datasets. Bold and underlined
contents represent the same information across different files.

File Format Content

SMDI_original csv user_id, item_id, rating, timestamp

SMDI-500E csv

SMDI-200UE csv
SMDI_users csv user_id, R, F, M, RFM, R1, F1, M1, RFM1, R2, F2, M2,

RFM2, R3, F3, M3, RFM3, R4, F4, M4, RFM4
SMDI_items csv item_id, section_id, brand_id, ref_price, avg_price,

min_price, max_price, amount

A.D. Viniski et al.

Expert Systems With Applications 176 (2021) 114890

8

The model parameters were randomly set according to a Gaussian dis-
tribution with μ = 0 and a ρ = 0.01. Hyper-parameter tuning was per-
formed on a recommender model and dataset basis. We tested the
following hyper-parameter values for SVD, BPRMF, ISGD, and IBPRMF:
learning rate (learning-rate) ∈ [0.01, 0.02, 0.05, 0.001, 0.005, 0.0001,
0.0005], regularization rate (reg-rate) ∈ [0.01, 0.001, 0], latent factors
∈ [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95,
100] for SVD, BPRMF, ISGD and IBPRMF. For GMF, MLP, and NeuMF
models, we tested the values of latent factors ∈ [8, 16, 32, 64, 128], and
as suggested in the original paper (He et al., 2017), the embedding layers
do not have regularization, i.e., reg-rate = 0. The number of negative
items selected for the NCF models (GMF, MLP and NeuMF) were
neg_items ∈ [0, 1, 2, 3, 4, 5, 10, 15, 20]. In Table 3, we show the best
parameters selected per model and dataset.

In this analysis, we use the RECALL@N metric (Cremonesi et al.,
2010) to assess the goodness of the recommendations obtained. The

RECALL@N metric quantifies how often a recommender suggests a
relevant item (hit) amongst unknown items, which are assumed to be
irrelevant. In other words, the RECALL@N score, computed using Eq. 14,
measures the average (across all users) of the proportion of recom-
mended items that appear on the top N items in the ranked list (Yuan
et al., 2011), where |T| denotes the number of user-item interactions
assessed.

RECALL@N =
1
|T|

∑

u,i∈T
(hit@N(u, i)) (14)

Consequently, the RECALL@N metric was computed as follows (Matus-
zyk and Spiliopoulou, 2017): for each instance 〈u, i〉 in the test set (T), a
candidate list of 100 unknown items to user u is selected, and the known
(relevant) item i is appended to this candidate list. The candidate items
are ranked according to the scores (probability of interaction with the
user) obtained from the recommender system and sorted in descending
order. For each instance (u, i), hit@N(u, i) = 1 is said to happen when i is
ranked amidst the top N items, and hit@N(u, i) = 0, otherwise.

The protocol followed to assess recall has two variants. The first is an
approach we refer to as a ‘basic evaluator,’ which measures the
recommender system’s using the entire test set. This approach allows the
comparison between recommender systems and hypothesis testing. The
second approach is the ‘window-based evaluator,’ which reports the
recall over test set chunks. We use a window with a size at every 1% of
the test set.

The rationale behind the window-based evaluation is that it allows
the assessment of recommender systems over time. This assessment is
critical to verify whether the dataset exhibits drifting characteristics and
whether streaming models benefit from the incremental updates per-
formed over test data. Therefore, we followed the Prequential test-then-
train process (Gama et al., 2013; Jorge et al., 2016) for validating
streaming models as depicted in Fig. 8.

Finally, we incorporate hypothesis testing to determine whether one
recommender algorithm outperforms others. We followed the protocol
reported in Demsar (2006) by combining Friedman (1937) and the
Nemenyi post hoc (Nemenyi, 1963) statistical tests. The experimental
results are the mean and standard deviation of 30 replications.

6. Experimental results and analysis

This section reports the experimental results observed when
comparing batch and streaming recommender algorithms applied to the
SMDI datasets. We discuss the observations of the two proposed stra-
tegies planned in the experimental protocol, as follows: the basic eval-
uation in Section 6.1 and the window-based evaluation in Section 6.2.

Fig. 7. Batch and stream protocols.

Table 3
Parameters tuning for each model and dataset.

Dataset Model Opt Loss Factors Reg-
rate

Learning-
rate

SMDI_original SVD SGD MSE 40 0.01 0.001
BPRMF SGD MSE 30 0.01 0.0005
GMF Adam Log-

loss
32 0 0.001

MLP Adam Log-
loss

32 0 0.0001

NeuMF Adam Log-
loss

32 0 0.0005

ISGD SGD MSE 10 0.01 0.02
IBPRMF SGD MSE 20 0.001 0.001

SMDI-500E SVD SGD MSE 30 0.01 0.001
BPRMF SGD MSE 40 0.01 0.0001
GMF Adam Log-

loss
32 0 0.001

MLP Adam Log-
loss

32 0 0.001

NeuMF Adam Log-
loss

32 0 0.001

ISGD SGD MSE 10 0.01 0.02
IBPRMF SGD MSE 30 0.001 0.05

SMDI-200UE SVD SGD MSE 40 0.01 0.001
BPRMF SGD MSE 80 0.01 0.0005
GMF Adam Log-

loss
32 0 0.001

MLP Adam Log-
loss

32 0 0.0001

NeuMF Adam Log-
loss

32 0 0.0001

ISGD SGD MSE 10 0.01 0.02
IBPRMF SGD MSE 40 0.001 0.05

A.D. Viniski et al.

Expert Systems With Applications 176 (2021) 114890

9

6.1. Results of the basic evaluation

This section reports the results obtained by batch and streaming
models in the SMDI dataset variants. More specifically, we focus on the
basic evaluation process described in the proposed experimental pro-
tocol (Section 5) in which the recommendation rates are computed over
the entire test set. Table 4 shows the general performance obtained.

According to the dataset variants’ results, we observe differences in
the tested recommender models’ behavior. Considering the original
dataset results, we verify that there is no clear indication of whether
batch or streaming models outperform others. We report the statistical
test results obtained by combining Friedman and Nemenyi tests
assuming a 95% confidence level throughout our discussion. These
differences are also reported in Table 4, where recall values are marked
with letters (a ≻ b ≻ c ≻ d ≻ e ≻ f) that depict and group the goodness
of their results.

In this table, we also report the results for PopTop (Cremonesi et al.,
2010), a non-machine learning approach for assessing recommender
systems. PopTop consists of recommending items with the best degree of
success among all users instead of modeling the user-item relationship
using a machine learning method. Consequently, we observe that Pop-
Top is outperformed by all methods regardless of the recall metric
analyzed. This observation depicts that both batch and streaming algo-
rithms model the users’ behavior in supermarket purchases adequately
and surpass a naive baseline.

When comparing the batch models, we observe that two neural
network models, i.e., MLP and NeuMF, outperform GMF, BPFMF, and
SVD in most datasets and recall values. These results indicate that the
neural networks are suitable to captura complex interactions between
users and items. In all datasets, MLP and NeuMF models do not depict a
significant difference between each other. Even though NeuMF is a
combination of MLP and GMF, GMF alone did not result in better per-
formance as the recall rates observed are not significantly higher than
those surveyed for MLP alone.

Regarding the streaming recommender models’ results (highlighted
in Table 4), ISGD outperformed their batch version (SVD) concerning
the RECALL@10 values in all datasets, thus showing a statistically sig-
nificant difference with a 95% confidence level. The improvement is
more significant in the pre-processed datasets than in the original one.
We observe an increase of 2.8% for RECALL@10 in both SMDI-500E and
SMDI-200UE, in contrast to 0.5% in the original dataset. The discrep-
ancy between streaming algorithms and the corresponding batch
counterpart depicts the importance of constantly updating the recom-
mender system as new data becomes available. This claim is further
backed up as ISGD obtained superior results when compared to MLP and
NeuMF in the pre-processed variants considering RECALL@1,
RECALL@5, and RECALL@10.

It is also noteworthy the analysis between BPR batch and streaming
variants, especially in the pre-processed datasets. For instance, IBPRMF
increased the RECALL@10 values up to 21% compared to the batch
model BPRMF, while ISGD improved SVD rates by 2.8%. Extending the
analysis, the RECALL@10 and RECALL@20 results obtained in the orig-
inal dataset show that IBPRMF had performance decreases, yet, it was
not statistically significant. These decreases were due to the volatility of
the recall rates observed, as IBPRMF did not converge in all experiment
runs.

Overall, we observe that streaming models performed competitive
results in all the datasets, except the ISGD model in the original dataset
when RECALL@1 is assessed. In this specific scenario, we observe that
IBPRMF is a formidable contender to match traditional matrix factor-
ization techniques (SVD) and even more complex approaches that rely
on neural networks (MLP and NeuMF). Summing up, we see that in
smaller N values, i.e., N ∈ [1, 5, 10], either ISGD or IBPRMF overcome

Fig. 8. Prequential validation. Adapted from Jorge et al. (2016).

Table 4
Recall values obtained by the recommendation methods in each tested dataset.
The shaded area comprises the results of the data stream algorithms.

Model RECALL@1 RECALL@5 RECALL@10 RECALL@20

SMDI_original.csv
PopTop 0.041d 0.102d 0.150e 0.215f

SVD 0.325 ±
0.0021a

0.565 ±
0.0012a

0.669±
0.0011b

0.779 ±
0.0009b,c

BPRMF 0.242 ±
0.0013b,c

0.410 ±
0.0018c

0.484±
0.0019d

0.564 ±
0.0014d,e

GMF 0.218 ±
0.0023c

0.376 ±
0.0037c

0.454±
0.0048d

0.542 ±
0.0055e

MLP 0.324 ±
0.0032a

0.559 ±
0.0086b

0.665±
0.0096b,c

0.790 ±
0.0116a,b

NeuMF 0.322 ±
0.0125a

0.559 ±
0.0243a,b

0.664±
0.0257b,c

0.790 ±
0.0268a

ISGD 0.298 ±
0.0023b

0.562 ±
0.0012b

0.674±
0.0027a

0.782 ±
0.0020a,b

IBPRMF 0.324 ±
0.0144a

0.559 ±
0.0075b

0.662±
0.0046c,d

0.766 ±
0.0038c,d

SMDI-500E.csv
PopTop 0.042f 0.102f 0.150f 0.216e

SVD 0.299 ±
0.0019c

0.543 ±
0.0010b,c

0.648±
0.0011c

0.757 ±
0.0015c,d

BPRMF 0.212 ±
0.0031d,e

0.382 ±
0.0046d,e

0.457±
0.0050d,e

0.538 ±
0.0057d

GMF 0.197 ±
0.0025e

0.371 ±
0.0038e

0.454±
0.0041e

0.540 ±
0.0046d

MLP 0.299 ±
0.0108c,d

0.539 ±
0.0020c,d

0.645±
0.0016c,d

0.779 ±
0.0019a,b

NeuMF 0.293 ±
0.0220b,c

0.543 ±
0.0057b,c

0.650±
0.0027b,c

0.782 ±
0.0030a

ISGD 0.317 ±
0.0008a,b

0.571 ±
0.0004a

0.676±
0.0004a

0.782 ±
0.0005a

IBPRMF 0.322 ±
0.0007a

0.565 ±
0.0006a,b

0.667±
0.0006a,b

0.772 ±
0.0006b,c

SMDI-200UE.csv
PopTop 0.042e 0.102e 0.150e 0.216e

SVD 0.299 ±
0.0023b

0.544 ±
0.0012b,c

0.648±
0.0011c

0.757 ±
0.0016c,d

BPRMF 0.213 ±
0.0028c

0.384 ±
0.0029c,d

0.459±
0.0031c,d

0.539 ±
0.0040d

GMF 0.198 ±
0.0026c

0.371 ±
0.0031d

0.453±
0.0036d

0.539 ±
0.0044d

MLP 0.285 ±
0.0586b

0.544 ±
0.0072b

0.666±
0.0029b

0.785 ±
0.0013a

NeuMF 0.292 ±
0.0235b

0.542 ±
0.0140b

0.667±
0.0035b

0.784 ±
0.0011a

ISGD 0.316 ±
0.0009a

0.570 ±
0.0005a

0.676±
0.0005a

0.782 ±
0.0005a,b

IBPRMF 0.322 ±
0.0006a

0.565 ±
0.0008a

0.667±
0.0007b

0.772 ±
0.0007b,c

A.D. Viniski et al.

Expert Systems With Applications 176 (2021) 114890

10

batch models in the SMDI-500E and SMDI-200UE variants and that
MLP and NeuMF achieve superior results in RECALL@20. Comparing the
results acquired for both recommendation approaches, i.e., batch and
streaming, we observe that streaming models resulted in improvements
of 2.8% in recall values. In the next section, we further analyze these
results from a different perspective. More specifically, we focus on the
performance assessment that takes place over time, thus allowing a more
fine-grained analysis on why streaming recommender systems exhibit
the behavior mentioned above and provide evidence of the existence of
concept drifts and cold start in the dataset assessed.

6.2. Results of the window-based evaluation

In this section, we report the recall rates using the window-based
process. Fig. 9 shows the results obtained with the assessment taking
place at every 1% of the test set. In the same figure, we also report the
cumulative number of users and items to verify the cold start problem’s
impact.

In real-world datasets, the assessment of user-item interactions over
time may uncover concept drifts, such as the launch of a product that
reduces the popularity of previous versions of the same product or its
competitors. Consequently, users’ interests and preferences may drift
over time, resulting in concept drifts that should be targeted by adaptive
recommender systems (Matuszyk et al., 2015; Chang et al., 2017). In
Fig. 9, we observe recurrent fluctuations in the RECALL@10 rates, which
represent concept drifts. This observation is corroborated by the recall
rates obtained by PopTop, thus depicting that as new user-item in-
teractions occur, the overall behavior in the dataset also changes. Such
changes are weekly recurring drifts (Gama et al., 2014), thus meaning
that the relationship between users and items changes over the week,
but it repeats itself across weeks. Recurring concepts are expected in

supermarket scenarios as specific sales are repeated along weeks, days of
the month, or even months of the year.

In this analysis, we observe that the streaming recommender models,
i.e., ISGD and IBPRMF, allowed significant parameter adjustments over
time that induced better performance when compared to other models,
especially in the pre-processed dataset variants.

Another relevant aspect observed in Fig. 9 regards the performance
decrease observed after the processing of 50 thousand interactions. This
decrease matches the behavior change of the cumulative number of
users in the dataset, thus culminating in a cold start problem. However,
even though we notice an abrupt increase in the number of users in all
datasets, most algorithms recover from the cold start and maintain good
performance as new instances appear, except for the BPRMF and GMF
methods. These results show that (i) streaming models, despite built on
matrix factorization, recover from cold start issues swiftly and that (ii)
recommender models based on neural networks exhibit interesting
behavior in cold-start scenarios even though they are not continuously
updated. The reason behind this behavior is related to the internal
learning process of neural network-based recommender systems, where
the user-item interactions result in higher-order embeddings that better
generalize the underlying behavior between users and items when
compared to traditional matrix factorization. Consequently, given the
neural networks’ generalization ability, the recommender models
extract unseen patterns in user-item interactions and provide useful
suggestions in cold-start scenarios.

On the other hand, when we analyze the cumulative number of
items, we observe that the increase is gradual. Comparing the behavior
between the original and pre-processed variants, we also observe that
the latter datasets’ increase is slightly faster. This behavior explains why
the performance of streaming and neural batch approaches observed in
Table 4 in the original dataset is similar. The streaming models are

Fig. 9. Moving averages of RECALL@10 values in the test stage, when using a sliding window with size 2000; a) shows the plot evolution obtained in the original
dataset; b) pre-processed SMDI-500E dataset; and c) pre-processed SMDI-200UE dataset.

A.D. Viniski et al.

Expert Systems With Applications 176 (2021) 114890

11

unable to take advantage of noticeable changes in data behavior. In
contrast, in the pre-processed datasets where these changes are abrupt,
the streaming models can adapt their parameters and achieve higher
recall values.

Finally, in both evaluation phases, the streaming methods were more
efficient in almost all presented recommendation scenarios. ISGD and
IBPRMF outperform their batch versions SVD and BPRMF and obtained
better results than observed in the neural network approaches. Consid-
ering the concept drift and cold start problems, we verify that the in-
cremental ability of the streaming recommender models improved
model prediction accuracy.

7. Conclusion

This paper analyzed batch and stream learning algorithms concern-
ing concept drifts and the cold start problem. As a by-product of this
work, we made publicly available a new collaborative filtering super-
market dataset, alongside two pre-processed variants. As a result of this
analysis, we observed that streaming recommender systems significantly
overcome batch approaches. Thus, more effort should be put into
tailoring techniques at the intersection of data streams and recom-
mender systems. For instance, streaming recommender systems were
especially beneficial with the occurrence of the cold start issue and
overcame complex neural network approaches in weekly recurrent
concept drifts with statistical significance.

As future works, we envision scaling up the data acquisition process.
A larger data timespan would be beneficial for concept drift analysis
across multiple years, yet, such data were unavailable for academic
purposes. We also plan to account for the item content such as price,
section, and brand that were unused in the current analysis. Thus, an
adaptive content-based method or even its combination in an adaptive
hybrid approach are envisioned. We also plan to combine explicit drift
detection on matrix factorization and neural models in terms of
recommendation techniques. Finally, another envisioned approach is to
apply content-based filtering techniques in cold start cases, i.e., when a
new customer or item appears in the dataset.

CRediT authorship contribution statement

Antônio David Viniski: Methodology, Software, Validation, Formal
analysis, Investigation, Data curation, Writing - original draft, Visuali-
zation. Jean Paul Barddal: Conceptualization, Methodology, Valida-
tion, Formal analysis, Writing - original draft, Visualization,
Supervision, Project administration. Alceu Souza Britto Jr.: Concep-
tualization, Writing - review & editing, Supervision, Project adminis-
tration. Fabrício Enembreck: Conceptualization, Writing - review &
editing. Humberto Vinicius Aparecido de Campos: Resources, Fund-
ing acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

We would like to thank the Conselho Nacional de Desenvolvimento
Científico e Tecnológico – CNPq (Grant #142195/2019-7) for financing
this research and the HiMarket company for the financial support and
making the data analyzed in this work available. We also gratefully
acknowledge the support of NVIDIA Corporation with the donation of
the Titan V GPU used for this research.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G.,
Steiner, B., Tucker, P.A., Vasudevan, V., Warden, P., Wicke, M., Yu, Y. & Zheng, X.
(2016). Tensorflow: A system for large-scale machine learning. In K. Keeton & T.
Roscoe (Eds.), 12th USENIX symposium on operating systems design and
implementation, OSDI 2016, Savannah, GA, USA, November 2–4, 2016 (pp.
265–283). USENIX Association.

Aggarwal, C. C. (Ed.) (2007). Data streams – models and algorithms. Volume 31 of
advances in database systems. Springer.

Babüroğlu, E. S., Durmuşoğlu, A., & Dereli, T. (2021). Novel hybrid pair
recommendations based on a large-scale comparative study of concept drift
detection. Expert Systems with Applications, 163, Article 113786.

Beel, J., Gipp, B., Langer, S., & Breitinger, C. (2016). Research-paper recommender
systems: A literature survey. International Journal on Digital Libraries, 17, 305–338.

Bi, Y., Song, L., Yao, M., Wu, Z., Wang, J. & Xiao, J. (2020). DCDIR: A deep cross-domain
recommendation system for cold start users in insurance domain. In J. Huang, Y.
Chang, X. Cheng, J. Kamps, V. Murdock, J. Wen & Y. Liu (Eds.), Proceedings of the
43rd international ACM SIGIR conference on research and development in
information retrieval, SIGIR 2020, Virtual Event, China, July 25–30, 2020 (pp.
1661–1664). ACM.

Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems
survey. Knowledge-Based Systems, 46, 109–132.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.
Chandramouli, B., Levandoski, J. J., Eldawy, A., & Mokbel, M. F. (2011). Streamrec: A

real-time recommender system. In Proceedings of the 2011 ACM SIGMOD international
conference on management of data SIGMOD, ’11 pp. 1243–1246). New York, NY, USA:
Association for Computing Machinery.

Chang, S., Zhang, Y., Tang, J., Yin, D., Chang, Y., Hasegawa-Johnson, M. A., &
Huang, T. S. (2017). Streaming recommender systems. In R. Barrett, R. Cummings,
E. Agichtein, & E. Gabrilovich (Eds.), Proceedings of the 26th international conference
on world wide web, WWW 2017, Perth, Australia, April 3–7, 2017 (pp. 381–389). ACM.

Christy, A. J., Umamakeswari, A., Priyatharsini, L. & Neyaa, A. (2018). Rfm ranking–an
effective approach to customer segmentation. Journal of King Saud University-
Computer and Information Sciences.

Cremonesi, P., Koren, Y., & Turrin, R. (2010). Performance of recommender algorithms
on top-n recommendation tasks. In X. Amatriain, M. Torrens, P. Resnick, &
M. Zanker (Eds.), Proceedings of the 2010 ACM conference on recommender systems,
RecSys 2010, Barcelona, Spain, September 26–30, 2010 (pp. 39–46). ACM.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research, 7, 1–30.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in
the analysis of variance. Journal of the American Statistical Association, 32, 675–701.

Funk, S. (2006). Netflix update: Try this at home.
Gaber, M. M., Zaslavsky, A. B., & Krishnaswamy, S. (2005). Mining data streams: A

review. SIGMOD Record, 34, 18–26.
Gama, J. (2010). Knowledge discovery from data streams. CRC Press.
Gama, J., Sebastião, R., & Rodrigues, P. P. (2013). On evaluating stream learning

algorithms. Machine Learning, 90, 317–346.
Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on

concept drift adaptation. ACM Computing Surveys, 46, 44:1–44:37.
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. (2017). Neural collaborative

filtering. In R. Barrett, R. Cummings, E. Agichtein, & E. Gabrilovich (Eds.),
Proceedings of the 26th international conference on world wide web, WWW 2017, Perth,
Australia, April 3–7, 2017 (pp. 173–182). ACM.

Jorge, A. M., Vinagre, J., Domingues, M. A., Gama, J., Soares, C., Matuszyk, P. &
Spiliopoulou, M. (2016). Scalable online top-n recommender systems. In D. Bridge,
& H. Stuckenschmidt (Eds.), E-commerce and web technologies – 17th international
conference, EC-Web 2016, Porto, Portugal, September 5–8, 2016, Revised Selected
Papers (pp. 3–20). Volume 278 of Lecture Notes in Business Information Processing.

José, E. F., Enembreck, F., & Barddal, J. P. (2020). Adadrift: An adaptive learning
technique for long-history stream-based recommender systems. In Proceedings of
IEEE systems. IEEE. and Cybernetics 2020 (IEEE SMC 2020).

Koren, Y., Bell, R. M., & Volinsky, C. (2009). Matrix factorization techniques for
recommender systems. IEEE Computer, 42, 30–37.

Matuszyk, P., & Spiliopoulou, M. (2017). Stream-based semi-supervised learning for
recommender systems. Machine Learning, 106, 771–798.

Matuszyk, P., Vinagre, J., Spiliopoulou, M., Jorge, A. M., & Gama, J. (2015). Forgetting
methods for incremental matrix factorization in recommender systems. In
R. L. Wainwright, J. M. Corchado, A. Bechini, & J. Hong (Eds.), Proceedings of the
30th annual ACM symposium on applied computing (pp. 947–953). ACM.

Nassar, N., Jafar, A. & Rahhal, Y. (2020). A novel deep multi-criteria collaborative
filtering model for recommendation system. Knowledge Based Systems, 187.

Nemenyi, P. B. (1963). Distribution-free multiple comparisons. PhD thesis Princeton
University.

Ocepek, U., Rugelj, J., & Bosnic, Z. (2015). Improving matrix factorization
recommendations for examples in cold start. Expert Systems with Applications, 42,
6784–6794.

Pandey, A. K., & Rajpoot, D. S. (2016). Resolving cold start problem in recommendation
system using demographic approach. In 2016 International conference on signal
processing and communication (ICSC) (pp. 213–218). IEEE.

Paterek, A. (2007). Improving regularized singular value decomposition for collaborative
filtering. In Proceedings of KDD cup and workshop (Vol. 2007, pp. 5–8).

A.D. Viniski et al.

http://refhub.elsevier.com/S0957-4174(21)00331-6/h0015
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0015
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0015
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0020
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0020
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0030
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0030
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0035
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0040
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0040
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0040
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0040
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0045
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0045
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0045
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0045
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0055
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0055
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0055
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0055
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0060
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0060
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0065
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0065
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0075
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0075
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0080
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0085
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0085
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0090
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0090
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0095
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0095
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0095
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0095
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0105
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0105
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0105
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0110
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0110
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0115
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0115
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0120
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0120
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0120
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0120
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0135
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0135
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0135
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0140
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0140
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0140

Expert Systems With Applications 176 (2021) 114890

12

Portugal, I., Alencar, P. S. C., & Cowan, D. D. (2018). The use of machine learning
algorithms in recommender systems: A systematic review. Expert Systems with
Applications, 97, 205–227.

Rendle, S., Freudenthaler, C., Gantner, Z. & Schmidt-Thieme, L. (2012). BPR: Bayesian
personalized ranking from implicit feedback. CoRR, abs/1205.2618.

Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems
handbook. In F. Ricci, L. Rokach, B. Shapira, & P. B. Kantor (Eds.), Recommender
systems handbook (pp. 1–35). Springer.

Sarwar, B., Karypis, G., Konstan, J. & Riedl, J. (2000). Application of dimensionality
reduction in recommender system-a case study. Technical Report Minnesota Univ
Minneapolis Dept of Computer Science.

Shao, B., Li, X., & Bian, G. (2021). A survey of research hotspots and frontier trends of
recommendation systems from the perspective of knowledge graph. Expert Systems
with Applications, 165, Article 113764.

Sidana, S., Laclau, C., Amini, M., Vandelle, G., & Bois-Crettez, A. (2017). In N. Kando,
T. Sakai, H. Joho, H. Li, A. P. de Vries, & R. W. White (Eds.), Proceedings of the 40th
international ACM SIGIR conference on research and development in information
retrieval, Shinjuku, Tokyo, Japan, August 7–11, 2017 (pp. 1245–1248).

Silva, N., Carvalho, D., Pereira, A. C. M., Mourão, F., & da Rocha, L. C. (2019). The pure
cold-start problem: A deep study about how to conquer first-time users in
recommendations domains. Information Systems, 80, 1–12.

Tahmasebi, F., Meghdadi, M., Ahmadian, S. & Valiallahi, K. (2020). A hybrid
recommendation system based on profile expansion technique to alleviate cold start
problem. Multimedia Tools and Applications, (pp. 1–16).

Takács, G., Pilászy, I., Németh, B., & Tikk, D. (2009). Scalable collaborative filtering
approaches for large recommender systems. Journal of Machine Learning Research,
10, 623–656.

Tsymbal, A. (2004). The problem of concept drift: Definitions and related work. Computer
Science Department, Trinity College Dublin, 106, 58.

Vinagre, J., Jorge, A. M. & Gama, J. (2014). Fast incremental matrix factorization for
recommendation with positive-only feedback. In V. Dimitrova, T. Kuflik, D. Chin, F.
Ricci, P. Dolog & G. Houben (Eds.), User modeling, adaptation, and personalization –

22nd international conference, UMAP 2014, Aalborg, Denmark, July 7–11, 2014.
Proceedings (pp. 459–470). Springer Volume 8538 of Lecture Notes in Computer
Science.

Webb, G. I., Lee, L. K., Goethals, B., & Petitjean, F. (2018). Analyzing concept drift and
shift from sample data. Data Mining and Knowledge Discovery, 32, 1179–1199.

Wei, J., He, J., Chen, K., Zhou, Y., & Tang, Z. (2017). Collaborative filtering and deep
learning based recommendation system for cold start items. Expert Systems with
Applications, 69, 29–39.

Wei, J., He, J., Chen, K., Zhou, Y., & Tang, Z. (2017). Collaborative filtering and deep
learning based recommendation system for cold start items. Expert Systems with
Applications, 69, 29–39.

Weng, C. (2017). Revenue prediction by mining frequent itemsets with customer
analysis. Engineering Applications of Artificial Intelligence, 63, 85–97.

Wu, H., Wang, Y., & Cheng, X. (2008). Incremental probabilistic latent semantic analysis
for automatic question recommendation. In P. Pu, D. G. Bridge, B. Mobasher, &
F. Ricci (Eds.), Proceedings of the 2008 ACM conference on recommender systems,
RecSys 2008, Lausanne, Switzerland, October 23–25, 2008 (pp. 99–106). ACM.

Yin, R., Li, K., Zhang, G. & Lu, J. (2019). A deeper graph neural network for
recommender systems. Knowledge Based Systems, 185.

Yu, T., Mengshoel, O.J., Jude, A., Feller, E., Forgeat, J. & Radia, N. (2016). Incremental
learning for matrix factorization in recommender systems. In J. Joshi, G. Karypis, L.
Liu, X. Hu, R. Ak, Y. Xia, W. Xu, A. Sato, S. Rachuri, L. H. Ungar, P. S. Yu, R.
Govindaraju & T. Suzumura (Eds.), 2016 IEEE international conference on big data,
BigData 2016, Washington DC, USA, December 5–8, 2016 (pp. 1056–1063). IEEE
Computer Society.

Yuan, Q., Chen, L., & Zhao, S. (2011). Factorization vs. regularization: Fusing
heterogeneous social relationships in top-n recommendation. In B. Mobasher,
R. D. Burke, D. Jannach, & G. Adomavicius (Eds.), Proceedings of the 2011 ACM
conference on recommender systems, RecSys 2011, Chicago, IL, USA, October 23-27,
2011 (pp. 245–252). ACM.

Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system:
A survey and new perspectives. ACM Computing Surveys, 52, 5:1–5:38.

A.D. Viniski et al.

http://refhub.elsevier.com/S0957-4174(21)00331-6/h0150
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0150
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0150
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0160
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0160
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0160
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0170
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0170
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0170
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0175
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0175
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0175
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0175
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0180
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0180
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0180
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0190
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0190
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0190
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0195
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0195
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0205
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0205
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0210
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0210
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0210
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0215
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0215
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0215
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0220
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0220
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0225
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0225
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0225
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0225
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0240
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0240
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0240
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0240
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0240
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0245
http://refhub.elsevier.com/S0957-4174(21)00331-6/h0245

	A case study of batch and incremental recommender systems in supermarket data under concept drifts and cold start
	1 Introduction
	2 Recommender systems
	2.1 Concept drift
	2.2 The cold start problem

	3 Positive-only approaches for recommender systems
	3.1 Batch approaches
	3.1.1 Singular value decomposition (SVD)
	3.1.2 Bayesian personalized ranking for matrix factorization (BPRMF)
	3.1.3 Generalized matrix factorization
	3.1.4 Multi-layer perceptron (MLP)
	3.1.5 Neural matrix factorization

	3.2 Streaming approaches
	3.2.1 Incremental stochastic gradient descent (ISGD)
	3.2.2 Incremental Bayesian personalized ranking for matrix factorization (IBPRMF)

	4 Supermarket dataset with implicit feedback SMDI)
	4.1 Data acquisition
	4.2 Dataset pre-processing approaches
	4.2.1 Cut-off point by the total number of events per user
	4.2.2 Cut-off point by the number of unique events per user

	4.3 Dataset availability and content
	4.4 Descriptive statistics

	5 Experimental protocol
	6 Experimental results and analysis
	6.1 Results of the basic evaluation
	6.2 Results of the window-based evaluation

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

