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Abstract. Data stream mining is an active area of research that poses
challenging research problems. In the latter years, a variety of data
stream clustering algorithms have been proposed to perform unsuper-
vised learning using a two-step framework. Additionally, dealing with
non-stationary, unbounded data streams requires the development of al-
gorithms capable of performing fast and incremental clustering address-
ing time and memory limitations without jeopardizing clustering quality.
In this paper we present CNDenStream, a one-step data stream cluster-
ing algorithm capable of finding non-hyper-spherical clusters which, in
opposition to other data stream clustering algorithms, is able to maintain
updated clusters after the arrival of each instance by using a complex
network construction and evolution model based on homophily. Empiri-
cal studies show that CNDenStream is able to surpass other algorithms
in clustering quality and requires a feasible amount of resources when
compared to other algorithms presented in the literature.

1 Introduction

Data stream clustering can be described as the act of grouping streaming data in
meaningful classes [4]. Data stream clustering is subject to acting within limited
time, memory and treating data incrementally with single pass processing. Apart
from the time and memory space constraints, two requirements are long-awaited
for data stream clustering algorithms. Data stream clustering algorithms must
not make assumptions about the number of clusters, since it is not often known
in advance and due to the temporal aspect, the number of ground-truth clusters
may change regularly [13] and they must be capable of discovering clusters with
arbitrary shapes, since most of data streams are not Gaussian distributed.

In this paper we present an extension of the DenStream algorithm: CNDen-
Stream. CNDenStream, in opposition to other data stream clustering algorithms,
performs a single step processing to find clusters. CNDenStream does so by us-
ing a complex network construction and evolution model based on homophily.
Moreover, CNDenStream is not bounded to the k-means algorithm [11] to find
clusters, therefore it is able to discover clusters with arbitrary shapes and not
only hyper-spherical clusters.

The remainder of this work is organized as follows: Sec. 2 surveys related
work for data stream clustering. Sec. 3 introduces basic concepts of complex



networks. In Sec. 4 we present our proposal: CNDenStream. In Sec. 5 we present
a performance study and discuss about parametrization sensitivity. Finally, Sec.
6 concludes this paper and presents future work.

2 Related Work

A variety of data stream clustering algorithms were developed throughout the
last decade. Generally, these algorithms are divided in online and offline steps.

During the online step, algorithms incrementally update specific data struc-
tures aiming at dealing with the evolving nature of data streams and time-
space constraints. One widely used data structure is the feature vector, a triplet
CF = 〈LS, SS,N〉, where LS stands for the sum of the objects xi summarized,
SS is the squared sum of these objects and N is the amount of objects [13].
Feature vectors are able to represent hyper-spherical clusters incrementally due
to its incremental and additive properties. Basically, an instance xi can incre-
ment an feature vector CFj as follows: LSj ← LSj +xi, SSj ← SSj +(xi)

2 and
Nj ← Nj+1. As for the additive property, two feature vectors CFi and CFj can
be merged into a third CFl as follows: LSl ← LSi+LSj, SSl ← SSi+SSj, and
Nl ← Ni + Nj . Also, in order to assign more importance to recently retrieved
instances in clustering, various window models featuring sliding, damped and
landmark were developed [13]. During the offline step, conventional batch clus-
tering algorithms are used to form final clusters using the CF s.

In the following sections we describe other data stream clustering algorithms.

2.1 CluStream

CluStream adopts the landmark windowing technique, treating the stream based
on data chunks of size H [1]. CluStream assumes a number q of CF s that are
maintained at any instant of the stream. Initial CF s are computed with an
amount of instances N , also determined by the user. CluStream computes an
Euclidean distance for each instance xi to each CF , then, determines whether
the distance to the closest CFj is less or equal to its radius. Positively, xi is
merged within CFj . Conversely, xi starts a new CFk. If the amount of CF s is
above q, the two closest CF s are merged. When H is reached, all q CF s are
recomputed with the next N instances obtained from the stream.

On the offline step, CluStream uses a modification of the k-means or DB-
SCAN algorithms to obtain clusters based on the q CF s computed during the
online step. In this paper, we compare the DBSCAN version, since k-means is
highly dependent of the user-given parameter of ground-truth clusters K.

2.2 ClusTree

ClusTree [9] maintains CF s in a hierarchy with different granularity levels. De-
pending on how much time is available to process each instance, ClusTree per-
forms a search in the R-Tree in order to find the most similar CF . Accordingly



to user-given thresholds, it is determined whether this instance should or not
be merged. In the negative case, a new CF is then created and added to the
R-Tree. ClusTree also copes with noisy data by using outlier-buffers.

In order to assign more importance to recent data, ClusTree assigns a expo-
nentially decaying weight for all CF s’ components.

On the offline step, algorithms such as k-means and DBSCAN are used in
order to obtain clusters, where CF s centers are treated as centroids.

2.3 DenStream

DenStream is based on the DBSCAN algorithm, which guarantees the union of
the ǫ-neighborhood of clusters which covers all dense areas of the attribute space.
A core object is an object which ǫ-neighborhood has at least ψ neighbors and
a dense area is the union of all ǫ-neighborhoods of all core objects. DenStream
defines the concept of a core-micro-cluster in a time instant t, which is a temporal
extension to a CF , as CMC(w, c, r) to a group of near instances xi,xi+1, . . . ,xn

where w is its weight, c its center and r its radius. DenStream assumes two
types of micro-clusters: potential and outlier micro-clusters. A micro-cluster is
said potential or outlier based on its weight restriction, where w ≥ βψ implies
in a potential micro-cluster and outlier otherwise and 0 ≤ β ≤ 1.

The online step of DenStream has the objective of maintaining a group of
potential and outlier micro-clusters. At the arrival of each instance xi, Den-
Stream tries to aggregate xi to the closest potential micro-cluster accordingly to
the weight restrictions. In the negative case, the same occurs for outlier micro-
clusters. If xi was aggregated in an outlier micro-cluster, the weight restriction
is checked to determine whether this micro-cluster should be promoted to a po-
tential micro-cluster. Conversely, if xi was not merged with any micro-cluster at
all, it starts a new outlier micro-cluster.

The offline step of DenStream uses the DBSCAN algorithm to find clusters
based on current potential micro-clusters.

3 Complex Networks

Complex Network Theory has been applied in many research fields, from com-
puter science to sociology, mainly due to its formal description of structural
variables. Although complex networks analysis are mixed with social network
analysis for subjective topics, such as an individual behavior in society, both of
its building blocks can be represented computationally as a graph.

Different complex network models were developed over the years, aiming
at representing the evolutionary aspects of real networks [3,7,12,14]. The first
complex network model is denominated random [7]. This model is based on the
hypothesis that the existence of a connection between any pair of nodes is given
by a probability p. The Small-world model, based on the studies of “Small-
World” conducted in [12], incorporates attributes of both random and regular
(lattices) networks and presents high clustering coefficient and a small average
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Fig. 1. Insertion example using k = 2.

path length. Finally, the Scale–free model aims on modeling networks presented
in real–world situations with higher accuracy than both random and small–world
networks by performing nodes additions and edges rewirings throughout time.
In this paper we adapt the rewiring component for the clustering task so they
occur accordingly to homophily. Homophily is a characteristic of real networks
where nodes tend to eradicate connections with dissimilar nodes and replace
these by new connections with more similar ones.

4 CNDenStream

Complex Network-based DenStream (CNDenStream) is based on the hypothesis
that intra-cluster data are related due to high similarity and inter-cluster data
are not related, due to high dissimilarity. CNDenStream generates a complex
network G = (V,E,W ), where the set of nodes V are micro-clusters, edges E
represent connections between these nodes, W is a set of weights (Euclidian
distances) wi associated to each edge ei ∈ E where subgroups in this network
represent clusters and an outlier micro-cluster buffer B. In order to keep track of
clusters during the stream without the need of batch processing during the offline
step, CNDenStream uses an homophily-based insertion and rewiring procedures
inspired in complex networks theory.

Initially, CNDenStream stores the first N instances retrieved from S in a
buffer to an initial DBSCAN run, thus finding initial potential and outlier micro-
clusters. While outlier micro-clusters are stored in an outlier buffer B, potential
micro-clusters PMCi are added to the network G, where each potential micro-
cluster establishes with the k closest possible neighbors (considering Euclidian
distances) currently in V .

Afterwards, PMCi is added to V and edges and corresponding weights are
added to its correspondent sets E and W . Fig. 1 presents the insertion of 4 po-
tential micro-clusters, namely PMC1 to PMC4. The insertion procedure is able
to connect the last added node to the k-most similar nodes in G, nevertheless,
the same can not be said for the other nodes currently in G. In Fig. 1(d) one
can see that after the addition of PMC4, PMC1 should be connected to PMC4

instead of PMC3, since d(PMC1, PMC4) < d(PMC1, PMC3).
After the addition of each PMCi obtained from the DBSCAN initial run

to the network, all nodes PMCi ∈ V perform rewirings based on homophily,
such that each PMCi replaces its edges with higher dissimilarities w by edges
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Fig. 3. Insertion of potential micro-clusters obtained from the insertion of micro-
clusters during the RBF2 experiment.

to its closest neighbors, i.e., edges with lower dissimilarity. For every PMCi

the Euclidean distances for all of its 2-hop neighbors are then computed. A
2-hop neighborhood is assumed since potential closest nodes are likely to be
neighbors (2-hop) of the current neighbors (1-hop). This 2-hop neighborhood is
an approximation in order to prevent distance computation between all nodes,
which would be computationally costly. With the results of these Euclidean
distances, PMCi replaces edges by the most dissimilar instances with some
similar ones, yet, maintaining its degree di.

In order to present how the rewiring procedure works, we refer back to the
addition of nodes presented in Fig. 1, where one could see that PMC1 is ca-
pable of connecting itself with higher similar nodes. Therefore, Fig. 2 presents
the rewiring of node PMC1. Firstly, Euclidean distances between PMC1 and
its 2-hop neighborhood are computed, and compared to its current neighbors
(1-hop). In Fig. 2(b) one can see that d(PMC1, PMC4) < d(PMC1, PMC3).
Consequently, PMC1, in order to maintain its degree d1 = 2, must eliminate
the its current most dissimilar edge to replace it with a similar one. Fig. 2(c) the
edge between PMC1 and PMC3 is removed from G and a new one connecting
PMC1 and PMC4 and its corresponding weight d(·, ·) are added to E and W .

Due to the rewiring process, communities of potential micro-clusters tend to
appear naturally since the amount of intra-clusters edges between similar micro-
clusters grows, while those of dissimilar micro-clusters shrinks. Fig. 3 presents
the evolution of a network as instances arrive, where one can see that the rewiring
procedure enlarges the amount of intra-cluster edges and diminishes the amount
of inter-clusters connections. This procedure is repeated until, in Fig. 3(r), two
clusters emerge.



After the DBSCAN execution and the initial network is build, all arriving in-
stances xi are processed according to an adaptation of the DenStream algorithm.
Firstly, CNDenStream finds the potential micro-cluster in V which minimizes
the dissimilarity with xi: PMCi. Afterwards, CNDenStream verifies whether
the addition of xi with PMCi results in a micro-cluster with a radius below ǫ,
if true, then xi is added to PMCi. Otherwise, this process is repeated within
the outlier micro-clusters: the most similar outlier micro-cluster OMCj to xi is
found and if the addition of xi results in a micro-cluster with radius below ǫ, xi

is then added to OMCj .

When an outlier micro-cluster OMCj is promoted to a potential micro-
cluster, i.e., w(OMCj) ≥ βψ, it is removed from the outlier buffer B, and thus
it is inserted in the network G.

As in DenStream, micro-clusters weights’ decay exponentially with time.
When the weight w(PMCi) of an micro-cluster PMCi is below βψ, it is removed
from the network, or from B. In the first case, all neighbors PMCj of PMCi are
allowed to rewire in order to maintain their degree dj after the PMCi’s removal.
When the micro-cluster is an outlier, it is simply removed from B.

CNDenStream’s power resides in the rewiring process which aims to enable
each micro-cluster to establish connections with the most similar micro-clusters.
As presented in Fig. 1, the rewiring procedure finds clusters without using any
batch clustering algorithm at the offline step such as k-means or DBSCAN.

One could argue about the effects of the parameter k on the construction and
evolution of the network, therefore, in Sec. 5, we discuss about the parameter
sensitivity and show that k = 4 is a good choice for many data streams domains.

5 Experimental Evaluation

Our proposal is evaluated in several experiments with different types of data
domains. Synthetic data streams were generated using the Radial Basis Function
(RBF) generator, which creates a user-given number of drifting centroids, each
defined by a class label, position, weight and standard deviation accordingly
to a Gaussian distribution. In our experiments, the RBF generator is used for
modeling concept drifts every 500 instances. Three data streams using the RBF
generator were created changing the dimension of the instances d = {2, 5, 10}.

Additionally, we evaluated algorithms in two massive datasets, namely Forest
Covertype [8] and KDD’99 [2], where clusters are non-hyper-spherical.

Algorithms parameters were set accordingly to its original papers. CluStream
parameters are: a horizon H = 1000 and q = 1000 [1]. ClusTree parameters are:
a horizon H = 1000 and a maximum tree height = 8 [9]. DenStream parameters
are: ψ = 1, N = 1000, λ = 0.25, ǫ = 0.02, β = 0.2 and an offline step multiplier
η = 2 [6]. Finally, CNDenStream parameters are: ψ = 1, N = 1000, λ = 0.25,
ǫ = 0.02 and β = 0.2 and k = 4. All experiments were performed on a Intel
Xeon CPU E5649 @ 2.53GHz ×8 based computer running CentOS with 16GB
of memory at MOA framework [5].
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Fig. 4. Critical distances CMM comparison for results obtained in experiments.

5.1 Discussion

In order to evaluate algorithms in terms of clustering quality, we have adopted
the Cluster Mapping Measure (CMM). CMM is an external clustering evaluation
metric that accounts for non-associated and misassociated instances and noisy
data inclusion [10]. Also, CMM considers recently retrieved instances with more
weight than older ones by using an exponential decay function inside evaluation
windows. In Fig. 4(a) we summarize the results obtained by algorithms after
applying Friedman’s and Nemenyi’s tests, where one can see that CNDenStream
is superior when compared to others with a 95% confidence level.

Besides CMM, we evaluated both CPU Time and RAM-Hours, however,
Friedman test pointed out that there is no significant difference between algo-
rithms in these two dimensions.

5.2 Parameter Sensitivity

In opposition to pure density-based algorithms, CNDenStream relies on the
amount of connections k established at the arrival of each instance parame-
ter to find and keep track of clusters. Therefore, to determine whether different
values of k affect results directly, we ran all experiments varying it in the [1; 10]
interval.

In Fig. 4(b) we summarize the results obtained by applying Friedman and
Nemenyi’s tests, where one can see that k ∈ [2; 10] ≻ k = 1. Also, one can see
that k = 4 presents the best averaged rank, therefore, this value is adopted as a
default value for CNDenStream.

6 Conclusion

In this paper CNDenStream algorithm was presented. CNDenStream is a one-
step incremental complex network-based data stream clustering algorithm. It
was empirically evaluated in both real and synthetic datasets where one can see
that it achieves significant superior CMM when compared to others algorithms,
while demanding similar resources (CPU Time and RAM-Hours). Additionally,
CNDenStream does not make assumptions about the number of ground-truth
clusters. This characteristic also allows the algorithm to naturally cope with
concept evolutions.



In future works we expect to use archive programming techniques to optimize
distance computation and develop a specific graph implementation to reduce
memory usage. Besides, we envision experiments with other evaluation metrics,
algorithms and datasets.
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7. P. Erdos and A. Rényi. On the evolution of random graphs. In Publication of the
Mathematical Institute of the Hungarian Academy of Sciences, pages 17–61, 1960.

8. Petr Kosina and João Gama. Very fast decision rules for multi-class problems. In
Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC ’12,
pages 795–800, New York, NY, USA, 2012. ACM.

9. Philipp Kranen, Ira Assent, Corinna Baldauf, and Thomas Seidl. The clustree:
Indexing micro-clusters for anytime stream mining. Knowl. Inf. Syst., 29(2):249–
272, November 2011.

10. Hardy Kremer, Philipp Kranen, Timm Jansen, Thomas Seidl, Albert Bifet, Geoff
Holmes, and Bernhard Pfahringer. An effective evaluation measure for clustering
on evolving data streams. In Proc. of the 17th ACM Conference on Knowledge
Discovery and Data Mining (SIGKDD 2011), San Diego, CA, USA, pages 868–
876, New York, NY, USA, 2011. ACM.

11. S. Lloyd. Least squares quantization in pcm. IEEE Trans. Inf. Theor., 28(2):129–
137, September 1982.

12. S. Milgram. The small world problem. Psychology Today, 1(1):61–67, May 1967.
13. Jonathan A. Silva, Elaine R. Faria, Rodrigo C. Barros, Eduardo R. Hruschka,
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