2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)

October 11-14, 2020. Toronto, Canada

Combining Slow and Fast Learning for Improved
Credit Scoring

Jean Paul Barddal, Fabricio Enembreck
Graduate Program in Informatics (PPGla)

Pontificia Universidade Catdlica do Parana (PUCPR)

Curitiba, Brazil
{jean.barddal, fabricio} @ppgia.pucpr.br

Abstract—The financial credibility of a person is a relevant
factor to determine whether a loan should be approved or not,
and it is quantified by a credit score, which is computed using
past performance on debt obligations, profiling, and other data
available. Credit scoring becomes even a hotter topic in emerging
countries, as interest rates and customer behavior swiftly vary,
given the economic (in)stability of the country and as fintechs are
chasing robust solutions for improved credit scoring solutions.
Batch machine learning is often deployed for credit scoring, yet,
they are tailored for static scenarios, i.e., they are not prepared
to swiftly detect and adapt to changes in customer behavior,
thus leading to slow recovery in such scenarios. In this paper,
we bring forward an analysis on how batch machine learning
can be combined with data stream mining techniques, thus
leading to better recognition rates in credit scoring scenarios.
We analyze three different real-world datasets from Brazilian
financial institutions, whilst keeping their secrecy preserved, and
show how batch and stream learning can be combined towards
improved credit scoring systems, as well as highlighting relevant
gaps that still require attention.

Index Terms—Credit scoring, machine learning, data streams

I. INTRODUCTION

The financial credibility of a person is a factor used to
determine whether a loan should be approved or not. It
is quantified by a ‘credit score, which is computed using
factors that include a person’s information on past perfor-
mance on debt obligations, profiling, main household, income,
occupation, demographics, possessions (e.g., cars, and other
residences, if any), and census information. The development
and management of effective and reliable risk assessment
credit scoring models are time-consuming, and over decades,
multiple automatic credit scoring models have been created
using machine learning techniques. Even with the help of
machine learning, application papers such as [1] show that
the development of a robust credit scoring model can range
from 3 to 18 months. As a result, it is not rare for financial
institutions and credit scoring operators to use the same credit
scoring model for years without changes. As brought up by
authors in [2], if a model is built on top of 2 or more years
of historical data, while shifted 3 years away from the point
they will be used, a 5-year shift is often exceeded.

In emerging countries, financial institutions suffer from
increased default rates as the market is volatile, meaning

978-1-7281-8526-2/20/$31.00 ©2020 IEEE

Lucas Loezer, Riccardo Lanzuolo
4KST
Curitiba, Brazil
{loezer, riccardo} @4kst.com

that their predictive models are unable to keep up with the
dynamics of the credit market. Therefore, the development of
robust machine learning models that are able to evolve over
time, i.e., using data stream learning techniques, has become
a hot topic in which fintechs are working on.

In this paper, we bring forward an analysis of how slow
(traditional batch machine learning) and fast (data stream
mining techniques) approaches can be combined towards
improved credit scoring systems. We analyze 3 different real-
world datasets from Brazilian institutions and show how these
can be combined following simple strategies that leverage the
scoring rates. We also bring forward an analysis of existing
gaps that are yet to be filled with research in diverse aspects
of machine learning towards its application to credit scoring.

II. CREDIT SCORING

Credit scoring is of the utmost importance for risk man-
agement in financial institutions as it works as a proxy to
predict the risk of loan applications. Statistical models are
used to estimate default probability upon customer information
such as past performance on debt obligations, profiling, main
household, income, occupation, demographics, possessions,
e.g., cars, other residences, and census information. Over time,
standard approaches such as scorecards were replaced by
automated machine learning models since both the dimension
and size of historical data are ever-growing [3].

The development of robust scoring models based on ma-
chine learning depends on several factors, including (i) the
gathering of veracious historical data, (ii) the identification of
key attributes from the customer and his/her past loans, and the
(iii) proper construction and validation of the predictive model.
Another relevant trait of predictive models for credit scoring
is that all the stakeholders may impose constraints on which
kind of data can be used, often to enable audits and prevent
issues, e.g., discriminatory behavior. For instance, in the scope
of our study, all credit scoring models in use in Brazil may
be audited by the Central Bank of Brazil, so understanding
how ‘impactful’ each variable is during prediction is of the
utmost importance. In practice, this is one of the biggest
reasons on why financial institutions often rely on Logistic
Regression, as each variable can be analyzed individually,
and their coefficients can be checked to see how they lean

1149

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:45:38 UTC from IEEE Xplore. Restrictions apply.

the classification towards creditworthy or non-creditworthy
requests.

In this paper, we denote (&, y) to be a loan request, where Z
a vector of characteristics (features) detailing the loan request
and the customer requesting it, and y € {0,1} the target
feature, such that O represents that the customer paid this
specific loan in full, and 1 that the customer defaulted. The
classification task targets the creation of a predictive model
h : & — y that accurately maps features and their values
into classes. Naturally, different types of classification systems
exist, including, for instance, decision trees, linear regression
models, and ensembles; and these are discussed in Section III.

Instead of providing a boolean answer determining whether
a customer loan request is expected to be fully paid or
not, financial institutions and credit operators often work
with scores. A score is usually bounded in the [0;1,000]
interval, where 0 is the value that represents a customer that
is undoubtedly going to default, while 1,000 represents a
customer that will surely pay his debts in full. In practice, these
extreme values are nearly inexistent in real-world applications,
so institutions should decide which threshold to use and
discern between customers who should be granted a loan or
not. To obtain this type of scores, we require classifiers that
instead of only providing their classification outputs h(Z),
also provide probabilities P[h(Z) = 1] and P[h(Z) = 0],
which can be directly re-scaled to the [0;1,000] interval as
P[h(Z) = 0]+ Plh(Z) =1] = 1.

The assessment of machine learning tailored for credit
scoring requires specific metrics that highlight how well
creditworthy and non-creditworthy customers are discerned.
To perform the assessment of the ability of machine learning
methods to discriminate customers that will pay their debts
in full or not, we follow the Kolmogorov-Smirnov (KS)
metric [4]. The KS statistic indicates the maximum distance
between the cumulative probability distribution function (cdfs)
obtained by customers that pay their debts in full and those
who default [4]. Assuming that we are scoring (n + m)
customers, we denote that the ¢-th customer will default as
D; =1, and D; = 0 otherwise. Also, the empirical cumulative
distribution function (cdf) of good and bad customers are
given by Equations 1 and 2, respectively, where n is the total
number of good customers, m is the number of bad customers,
L = mins;, 1 <i < (n+m) is the lower bounds of all the
scores available, H = max s;,1 < i < (n 4 m) is the upper
bound, and a € [L, H].

1~ [1,ifs; <anD;=1
Foood(a) = — = ! 1
zo0d () nZ{O,otherwme M

i=1
1 < |1ifs;<aAD;=0
Foa(a) = — e ! 2
ba(@) m ; {O,otherwise @
The KS metric is given by KS =

max, e (r,H] | Fbad(@) — Fyooa(ayls Which is the maximum
difference between the cdfs that describe the good and bad

customers. When KS is zero, it means that the two credit-
score distributions are the same and that the credit score
fails to differentiate between defaulters and nondefaulters; a
value equal to 100 indicates that the credit score perfectly
differentiates defaulters from non-defaulters. As a rule of
thumb, a KS score greater than 35% depicts a reasonable
discriminative power of the predictive model to discern
between the different types of customers.

In addition to KS, the population Stability Index (PSI)
indicates changes in the population of loan applicants. It is
important to note that this may or not be an indication of
deterioration of the predictive model to predict risk, yet, PSI
depicts changes in the environment that need to be further
investigated by the bank experts to determine whether any
macroeconomic conditions or lending policies are affecting the
model outcomes [5]. To compute the PSI score, the probability
distribution function (pdf) of the defaulting customers in two
different time periods is calculated. First, the pdfs of these
distributions are computed using a specified number of ranges
r so that each range has approximately the same number of
defaulting customers. Here, we denote n; and m; to be the
counters of defaulting customers in the two samples at the
i-th bin, and that > n, = N and > m; = M. Given these
counters, it is possible to compute the PSI, which is given by
Sy [(% — ”J\Z) X (ln & —In ”]\14)} In our analysis, we re-
port PSI rates obtained by comparing two subsequent months.
As a rule of thumb often followed, PSI rates below 10% show
that the population is reasonably stable and that the model is
not unacceptably volatile.

III. MACHINE LEARNING MODELS FOR CREDIT SCORING

Machine learning is a hot topic that aims at building and
assessing predictive models. In this paper, we use both batch
and stream learners. In batch machine learning, constraints
on computational resources are roughly overlooked, and the
ultimate goal is to favor models that generalize well a real-
world phenomenon underlying in the dataset available. For
instance, Random Forest [6], Extreme Gradient Boosting [7],
and deep learning models [8] are popular machine learning
choices that require large datasets, and often large memory
consumption and processing time.

Conversely, machine learning from streaming data learns
as data becomes available, and thus, storing data becomes
unfeasible as the data stream is potentially infinite and is
not sampled from an i.i.d. distribution. Therefore, models are
incrementally trained and each arriving datum is analyzed and
discarded right after. The reason for continuously adapting
predictive models is that streaming data may drift over time,
as the relationship between input data and the response (in
our case, whether the customer is creditworthy or not) may
change over time.

In this section, we describe the learning algorithms used
in our analysis. These algorithms were chosen due to their
availability in data mining frameworks, i.e. scikit-learn [9],
RAPIDS AI [10], xgboost [7], and MOA [11]; by achieving
state-of-the-art results [12], [13], and also per request of our

1150

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:45:38 UTC from IEEE Xplore. Restrictions apply.

partners. Below, we describe these learners and divide them
into batch and stream learners, where the former are trained
over a static amount of training data, while the latter can be
incremented over time. Upon availability of large datasets,
batch learners can be used to learn complex and accurate
models, while streaming approaches can adapt to changes
faster as it takes into account more recent data. Therefore,
our driving rationale is to show that batch and streaming data
must not be replacing but complementary.

A. Batch Learners

Logistic Regression (LR). Logistic regression is a linear
model where the target variable (class) is categorical [14]. It
creates a linear model based on a sigmoid function that is
used to estimate the probability of a binary response based
on the input features. This is, by far, the most widely used
approach for credit scoring, and all 3 of our partners adopt it
in their current models. The reason why LR is so popular with
financial institutions is that they are human-readable, which
means that each feature and its coefficient can be analyzed
individually, thus determining how important it is to discern
between creditworthy and non-creditworthy customers and that
scorecards can be derived from it [3]. Random Forest (RF).
The Random Forest classifier [6] is an ensemble of unpruned
classification trees, which are induced from bootstraps of the
training data [15]. In contrast to conventional decision trees,
during the branching process, only a randomly selected subset
of features is evaluated [16]. The final predictions scores are
obtained by averaging the output probabilities given by each of
the trees. XGBoost (XGB). XGBoost is an additive learning
scheme where decision trees are learned sequentially with the
goal of minimizing a loss function [7] while not overfitting.
The implementation of XGBoost used in this paper learns
decision trees sequentially while using both horizontal and
vertical sampling.

B. Stream Learners

Leveraging Bagging (LB). Leveraging Bagging [13] is an
extension to Online Bagging [17] where the weights of training
instances are randomized according to a Poisson distribution
with a mean A\ = 6, the ADWIN drift detector [18] is used to
flag drifts and reset classifiers accordingly, and random output
codes are used to improve the accuracy of the whole ensemble.
As in the original paper, we have conducted our analysis by
creating a leveraging Bagging ensemble of Hoeffding trees
[19] with the default values available in the MOA framework
[11], i.e., an ensemble size of 10 trees. Finally, probabilities
are obtained by averaging the probabilities obtained in each
of the subtrees available in the ensemble. Adaptive Random
Forest (ARF). The Adaptive Random Forest algorithm (ARF)
was introduced in [12] with the goal of allowing adaptive
learning from data streams by extending the original Random
Forests of Breiman [6]. ARF combines drift detection as
in Leveraging Bagging, ensemble adjustments, limited tree
sizes, and background learning to improve accuracy rates over
concept drifting data streams. As in the other ensembles, the

TABLE I: Hyper-parameters and values tested in the experiments.

Learner Parameter Value
Logistic Regression Penalty LI, L2, ElasticNet
Intercept Yes, No
Regularization factor 0.1, 0.01, 0.001

Random Forest Number of learners 50, 100, 150

Maximum depth 3, 5, 10, Unlimited
Number of features
analyzed during split Vd, log, d
XGBoost Number of learners 50, 100, 150

Sample percentage

Column sampling per tree

Maximum depth

60%, 80%, 100%
60%, 80%, 100%
3,5, 10

Adaptive Random Forest

Number of learners
Maximum depth
Number of features

50, 100, 150
3, 5, 10, Unlimited

analyzed during split Vd, log, d
Leveraging Bagging Number of learners 50, 100, 150
Resampling factor 1,6

final output probability scores are obtained by averaging the
outputs obtained from each subtree.

C. Parametrization

In the following experiments, batch learners, i.e., Logistic
Regression, Random Forest, and XGBoost, were trained using
a 10-fold cross-validation scheme using a grid search process
for parameter tuning. On the other hand, tuning is a complex
process when the data is processed as a stream. In practice,
after the model is deployed, it is roughly impossible to
guarantee that the hyper-parameters were set appropriately, as
they may also drift along with the data. Still, a grid search
has been conducted with the goal of determining a fair set of
parameters’ values for posterior testing in the specified time
period. Even though 10-fold cross-validation is not possible
in streaming scenarios as the order in which the data is
made available is relevant, the goal of the tuning process was
maximizing the average monthly prequential KS rates. The
learners, hyper-parameters, and values tested throughout this
process are given in Table 1.

IV. EXPERIMENTATION

In batch machine learning, the dataset is often divided into
training and test subsets, a process called holdout validation,
with the goal of determining whether the predictive model
built generalizes and performs well on unseen data. In the
following experiments, we follow the holdout procedure for
assessing batch learners. The definition of which data periods
are used for training and testing depend on the dataset, and
this information is given in Section IV-A. Yet, data stream
mining techniques are tailored to take advantage of the arrival
of new data, and thus, the traditional holdout process cannot be
used. Therefore, we used a prequential-like validation process
[20], where the data of each month is used for training right
after its evaluation. In practice, the entire training set is still
used solely for training, yet, the test data is passed to the
learner for training as their label becomes available, i.e., at
the end of each month. The rationale is to compare the results
obtained by a learner that is constantly being updated with
new data against a model that was learned until a certain

1151

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:45:38 UTC from IEEE Xplore. Restrictions apply.

point and only evaluated after. By comparing these results,
and also by combining them, we will be able to identify
whether continuously updating predictive models significantly
improves the KS results without jeopardizing PSI rates.

A. Datasets

In this section, we present the main characteristics of the
datasets analyzed. We use 3 different datasets during this study
that were borrowed from [21], each obtained from a different
financial institution, hereafter referred to as DS1, DS2, and DS3.
We refrained from using credit scoring datasets available in the
literature [22], [23] as they are either (i) too small in terms
of instances available, and in some cases, (ii) unclear on what
each feature stands for.

B. Combination rules

In the following experiments, we report the results obtained
by combining the predictions from batch and stream learners
in different ways. Assuming that the classifiers described
above are enlisted in H = {hy,ha,...,h,}, and that P
is the probability obtained by the i-th classifier that a loan
request & will default (P[h;(Z) = 1]), we tested extracted
the minimum (H(Z) = minP[h;(£) = 1]), maximum
(H(Z) = maxP[h;(Z) = 1]), and average probabilities
(H(Z) = L 3" | P[hi(Z) = 1)) of the entire set of classifiers.

Minimum, maximum, and average combination rules have
been applied twice. First, they were applied globally, as all
learners were accounted for, while the second approach was to
combine the probabilities obtained by the two best-performing
classifiers (one batch and one stream). Hereafter, we will
refer to the global rules using the MIN, MAX, and AVG, terms,
whilst the best-performing models will be reported using the
MIN-TOP2, MAX-TOP2, and AVG-TOP2 terms.

Besides the aforementioned combination rules, a meta-
classification scheme was also tested, as the probabilities
P[h;(Z) = 1] were used as input to a Logistic Regression
model. An important aspect of this approach is that only the
probabilities obtained during training data were used to create
this model, and thus, it does not account for changes that
might take place during the updates of streaming models. In
the following experiments, we refer to this approach as META.

C. Analysis

In this section we analyze the results obtained in terms of
KS and PSI in the DS1, DS2, and DS3 experiments. The KS
rates obtained in the DS1 experiment are given in Figure 1.
From the Logistic Regression (LR) results, we observe that it
is roughly in the middle of the plot, showing mild KS rates
compared to all the other approaches tested. Focusing on the
data stream algorithms, i.e., Adaptive Random Forest (ARF)
and Leveraging Bagging (LEVBAG), we observe that ARF
shows competitive results from MONTH 3 and beyond, while
LEVBAG depicts poor results during the entire test set. On
the other hand, the batch algorithms, i.e., XGBoost (XGB)
and Random Forest (RF) depict a conflicting behavior. The
MIN and AVG combination rules show that they are unable to

DS1

] A
xS Rt

26 4

2549

24 4

KS [%]

234

2249

214

201
MONTH 1

T T T T
MONTH 2 MONTH 3 MONTH 4 MONTH 5

TESTING PERIOD
—8— ARF —4 LEVBAG MAX-TOP2 —¥— MIN-TOP2
AVG =F- LR —&- META 4= RF
ke AVG-TOP2 -l MAX MIN XGB

Fig. 1: KS analysis for the DS1 experiment.

1.75

1.50

1.25

1.00

PsI [%]

0.75

0.50

0.25

0.00 -

T T T T T
MONTH 1 MONTH 2 MONTH 3 MONTH 4 MONTH 5

TESTING PERIOD
—8— ARF —<4— LEVBAG MAX-TOP2 —¥— MIN-TOP2
AVG -»- LR —®&- META --4- RF
-~k AVG-TOP2 -l MAX MIN XGB

Fig. 2: PSI analysis for the DS1 experiment.

overcome Logistic Regression (LR), while MIN-TOP2 showed
improvements only in the last 3 testing periods. Conversely,
MAX, MAX-TOP2, and AVG-TOP2 yielded interesting improve-
ments compared to LR and XGB. Finally, we emphasize the
results obtained by META, as it depicted the best overall KS
rates throughout the testing months. The PSI rates observed
throughout the test data for DS1 are given in Figure 2. Overall,
most of the learners, as well as their combination, yield
PSI rates below 0.5%, while the stream learners (ARF and
LEVBAG), have increased PSI that reach 1.75%. Despite such
spikes and differences, all the PSI rates are low, so these values
are not determinant for model selection.

The KS results for DS2 are given in Figure 3. As in the
previous experiment, Logistic Regression (LR) shows mild
KS rates compared to the remainder of the tested approaches.
Clearly below or tied with it, we observe ARF, MIN, AVG,
MIN-TOP2, and LEVBAG. On the other hand, the results for
batch learners (RF and XGB), show consistent improvements
to those seen by LR. These results show that both of the
stream learners are below the LR baseline, yet, when combined
with XGB, according to META, MAX, MAX-TOP2, and AVG-TOP2
approaches, even improvements to XGB are observed.

1152

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:45:38 UTC from IEEE Xplore. Restrictions apply.

Ds2

58
56 4
54 4
® 52
;
50 4
48 1
46 1
MONTH 1 MONTH 2 MONTH 3 MONTH 4 MONTH 5
TESTING PERIOD
—8— ARF —4— LEVBAG MAX-TOP2 —¥— MIN-TOP2
AVG =r- LR —-&- META -4+ RF
ke AVG-TOP2 M- MAX MIN XGB
Fig. 3: KS analysis for the DS2 experiment.
DS2
84
61
5
g 41
21
* s
o4
MONTH 1 MONTH 2 MONTH 3 MONTH 4 MONTH 5
TESTING PERIOD
—e— ARF —— LEVBAG MAX-TOP2 —¥— MIN-TOP2 |
AVG -F- LR —#- META --4- RF
-k AVG-TOP2Z -l MAX MIN XGB

Fig. 4: PSI analysis for the DS2 experiment.

The PSI results for DS2 are given in Figure 4. In contrast to
the previous experiment, the PSI values observed are higher,
as most of the learners depict PSI rates that grow, on average,
to 3.5%. An important behavior is observed by AREF, as its
PSI nearly reaches 9% in the second month of the test dataset.
Overall, these PSI rates are also inconclusive and do not affect
the selection of a predictive model or even their combination.

The KS results for DS3 are given in Figure 5. In opposition
to the previous experiments, the KS rates obtained by Logistic
Regression are at the bottom part of the plot. With similar
KS rates, we see MIN-TOP2, LEVBAG, ARF, and MIN. The
Random Forest classifier (RF) obtained mild results, while
XGBoost (XGB) achieved interesting KS rates compared to
others. In opposition to the previous experiments, we see
that MAX and MAX-TOP2 achieved very interesting rates, thus
showing that the combination of XGB with ARF leverages the
final KS rates, despite the existing gap w.r.t. their performance.
Additionally, AVG and AVG-TOP2 showed that averaging the
probabilities is unbeneficial, as the KS rates are much below
the rates seen for XGB. We also observe that the META
approach overcomes the remainder throughout the entire test
set. Regarding PSI rates, given in Figure 6, we observe that

DS3

45.0 4

42.5

40.0 4

E 37.51
£ 35.0
32.59
30.0 4
27.54
MONTH 1 MONTH 2 MONTH 3 MONTH 4 MONTH 5
TESTING PERIOD
—8— ARF —4— LEVBAG MAX-TOP2 —¥— MIN-TOP2
AVG =r- LR -&- META --4- RF
-k AVG-TOP2 =M MAX MIN XGB
Fig. 5: KS analysis for the DS3 experiment.
DS3
2.004
1.75 4
1.50
& 125
@
a
1.00 A
0.75
0.50

T T T T T
MONTH 1 MONTH 2 MONTH 3 MONTH 4 MONTH 5

TESTING PERIOD
—&— ARF —&— LEVBAG MAX-TOP2 —¥— MIN-TOP2
AVG -r- LR —&- META --4- RF
-~k AVG-TOP2 -l MAX MIN XGB

Fig. 6: PSI analysis for the DS3 experiment.

this dataset is much more stable than others. In practice, most
of the learners and their combinations yield stable PSI rates
throughout the entire test set. The exceptions are again the
stream learners, as both ARF and LEVBAG achieve slightly
higher PSI rates, up to 2%.

Summing up the results, it is observed that the combination
of batch and stream learning is fruitful, mainly in terms
of KS. Regardless of whether drifts are present or not and
whether there is a discrepancy between the KS rates of batch
and stream learners, their combination yielded interesting KS
improvements. In practice, assuming the XGB as the baseline
and using the META combiner, the average KS improvements
in the DS1, DS2, and DS3 experiments were of 1.01%, 1.80%,
and 1.82%, respectively.

D. Challenges

Despite the interesting results displayed in the previous
section, it is important to clarify challenges that still exist and
demand the attention of financial institutions and fintechs.

One important aspect shared amongst all datasets in the
analysis is that labels are assumed to become available at the
end of each month. Even though this is reasonable, financial

1153

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:45:38 UTC from IEEE Xplore. Restrictions apply.

institutions often label their customers according to whether
they paid their loan in the past 3 or even 6 months. This
is a scenario where labels are delayed, and thus, techniques
tailored for taking advantage of unlabelled instances could be
deployed. For instance, semi-supervised learning [24], and co-
training [25] could be applied, so that loan requests are used
for model updates as soon as they arrive instead of waiting up
to 3 months until their actual label is available.

Another important aspect behind the combination of batch
and stream learning is model explainability. As mentioned
in Section II, logistic regression is widely applied to credit
scoring as they are human-readable and can easily derive
scorecards. Similarly, more complex models such as Random
Forests and XGBoost can also provide explainable predictions
and feature importances, for instance, with the use of Shapley
Values [26]. The issue relies on streaming models as they adapt
to changes, and both feature importances are also expected
to drift as well as the explainability behind each prediction.
Therefore, it becomes relevant not only to propose feature
ranking approaches such as in [27], but also make assure that
each prediction is explained individually, which is untouched
ground thus far for streaming models.

V. CONCLUSION

In this paper, we discuss an important topic for fintechs:
credit scoring. We showed how traditional batch machine
learning algorithms can be combined with data stream min-
ing approaches for improved recognition rates. We brought
forward an analysis of the proposed combination scheme in
two real-world datasets provided by partners from financial
institutions in Brazil. Results show that, in emerging countries,
where the customer behavior drifts over time, this combination
can be fruitful and deserves further research and application.
Therefore, we claim that financial institutions should account
for data stream learning and assess whether improved credit
scoring systems can be obtained by diversifying their frame-
works and going beyond Logistic Regression. We also brought
forward technical aspects that still require attention from both
researchers and practitioners, as certain label availability and
computational constraints are yet to be addressed.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support of NVIDIA Corpo-
ration with the donation of the TITAN V GPU used for this
research.

REFERENCES

[1] D. J. Hand and N. M. Adams, “Selection bias in credit scorecard
evaluation,” Journal of the Operational Research Society, vol. 65,
pp. 408415, Mar 2014.

2] L Zliobaité, M. Pechenizkiy, and J. Gama, An Overview of Concept
Drift Applications, pp. 91-114. Cham: Springer International Publishing,
2016.

[3] G. Dong, K. K. Lai, and J. Yen, “Credit scorecard based on logistic
regression with random coefficients,” Procedia Computer Science, vol. 1,
no. 1, pp. 2463 — 2468, 2010. ICCS 2010.

[4] M. Rezac and F. Rezac, “How to Measure the Quality of Credit Scoring
Models,” Czech Journal of Economics and Finance (Finance a uver),

vol. 61, pp. 486-507, November 2011.
[5] G. Karakoulas, “Empirical validation of retail credit-scoring models,”

The RMA Journal, vol. 87, no. 1, pp. 56-60, 2004.

[6]
[7]

[8]
[9]

(10]
(11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]
[24]

[25]

[26]

(27]

1154

L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5—
32, 2001.

T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 16, (New York, NY,
USA), pp. 785-794, ACM, 2016.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT
Press, 2016.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

RAPIDS Development Team, RAPIDS: Collection of Libraries for End
to End GPU Data Science, 2018.

A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “Moa: Massive online
analysis,” J. Mach. Learn. Res., vol. 11, pp. 1601-1604, Aug. 2010.
H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck,
B. Pfharinger, G. Holmes, and T. Abdessalem, “Adaptive random forests
for evolving data stream classification,” Machine Learning, vol. 106,
pp. 1469-1495, Oct 2017.

A. Bifet, G. Holmes, and B. Pfahringer, “Leveraging bagging for
evolving data streams,” in Machine Learning and Knowledge Discovery
in Databases (J. L. Balcazar, F. Bonchi, A. Gionis, and M. Sebag, eds.),
(Berlin, Heidelberg), pp. 135-150, Springer Berlin Heidelberg, 2010.
D. R. Cox, “The regression analysis of binary sequences,” Journal of
the Royal Statistical Society. Series B (Methodological), pp. 215-242,
1958.

L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, pp. 123—
140, Aug 1996.

T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 20, pp. 832-844, Aug 1998.

N. C. Oza, “Online bagging and boosting,” in International Confer-
ence on Systems, Man, and Cybernetics, Special Session on Ensemble
Methods for Extreme Environments (M. Jamshidi, ed.), (New Jersey),
pp. 2340-2345, Institute for Electrical and Electronics Engineers, Octo-
ber 2005.

A. Bifet, “Adaptive learning and mining for data streams and frequent
patterns,” SIGKDD Explor. Newsl., vol. 11, pp. 55-56, Nov. 2009.

P. Domingos and G. Hulten, “Mining high-speed data streams,” in
Proceedings of the Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 00, (New York, NY,
USA), pp. 71-80, ACM, 2000.

J. Gama, R. Sebastido, and P. P. Rodrigues, “On evaluating stream
learning algorithms,” Machine Learning, vol. 90, pp. 317-346, Mar
2013.

J. P. Barddal, L. Loezer, F. Enembreck, and R. Lanzuolo, “Lessons
learned from data stream classification applied to credit scoring,” Expert
Systems with Applications, p. 113899, 2020.

J. Abelldn and J. G. Castellano, “A comparative study on base classifiers
in ensemble methods for credit scoring,” Expert Systems with Applica-
tions, vol. 73, pp. 1 — 10, 2017.

D. Dua and C. Graff, “UCI machine learning repository,” 2017.

T. Wagner, S. Guha, S. Kasiviswanathan, and N. Mishra, “Semi-
supervised learning on data streams via temporal label propagation,” in
Proceedings of the 35th International Conference on Machine Learning
(J. Dy and A. Krause, eds.), vol. 80 of Proceedings of Machine Learning
Research, (Stockholmsmissan, Stockholm Sweden), pp. 5095-5104,
PMLR, 10-15 Jul 2018.

A. Blum and T. Mitchell, “Combining labeled and unlabeled data with
co-training,” in Proceedings of the Eleventh Annual Conference on
Computational Learning Theory, COLT’ 98, (New York, NY, USA),
p. 92-100, Association for Computing Machinery, 1998.

M. T. Ribeiro, S. Singh, and C. Guestrin, ““why should i trust you?”:
Explaining the predictions of any classifier,” in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD 16, (New York, NY, USA), p. 1135-1144,
Association for Computing Machinery, 2016.

J. A. P. Karax, A. Malucelli, and J. P. Barddal, “Decision tree-based
feature ranking in concept drifting data streams,” in Proceedings of the
34th ACM/SIGAPP Symposium on Applied Computing, SAC 19, (New
York, NY, USA), p. 590-592, Association for Computing Machinery,
2019.

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:45:38 UTC from IEEE Xplore. Restrictions apply.

