
Dynamically Selected Ensemble for Data Stream
Classification

Lucca Portes Cavalheiro, Alceu de Souza Britto Jr., Jean Paul Barddal
Graduate Program in Informatics (PPGIa)
Pontifı́cia Universidade Católica do Paraná

Curitiba, Brazil

{lucca, alceu, jean.barddal}@ppgia.pucpr.br

Laurent Heutte
LITIS

Université de Rouen Normandie
Rouen, France

laurent.heutte@univ-rouen.fr

Abstract—Mining data streams is a hot topic in the machine
learning (ML) community. In addition to learning and updating
accurate models over time, these techniques must respect con-
straints that are not necessarily as strong in batch mode, such as
time processing and memory consumption efficiency. A successful
family of techniques in batch ML is dynamic classifier selection
(DCS). However, these are roughly overlooked in data stream
mining. In this paper, we propose a novel dynamic classifier
selection framework for data streams called Double Dynamic
Classifier Selection (DDCS). We compare DDCS against state-of-
art methods for mining data streams in both synthetic and real-
world datasets. Results depict that DDCS not only outperforms
the state-of-art ensemble methods for data stream classification
in terms of accuracy but is also significantly more efficient in
terms of processing time and memory consumption.

I. INTRODUCTION

With the ever-growing amount of data available in govern-

ments and corporations, machine learning has become more

pervasive every day. Over the years, several approaches for

learning descriptive and predictive models from humongous

amounts of data have been developed in both batch and

streaming fashions. In this paper, we target streaming methods,

as they are tailored for learning and updating such models as

new data become available with high accuracy, while at the

expense of small memory and processing time [1].

Even though machine learning for data streams suffers

from the same problems observed in batch scenarios, e.g.,

class imbalance, label availability, and high dimensionality,

it does present intrinsic problems of its own, such as concept

drift. Concept drifts occur when the data distribution changes.

Consequently, machine learning models should be able to

detect and adapt to them swiftly, so that accuracy rates are

not jeopardized [2].

A common approach for achieving high accuracy rates in

streaming classification is the use of ensembles, which consists

of learning, updating, and combining multiple classifiers. In

streaming scenarios, ensembles benefit from being versatile

and easy to couple with drift detectors, which culminate in

robust solutions for streaming data classification [3].

Overall, most of the existing ensemble-based methods for

data streams assume that either: (i) all classifiers are equally

Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil
(CAPES)

important for prediction [4], or (ii) classifiers have their

predictions weighted according to their past performance [5],

[6]. Nonetheless, as ensemble members are diverse, these

are expected to be experts in different parts of the feature

space. Thus, dynamic classification selection (DCS) targets

the determination of which of these classifiers are the most

suited for predicting each query instance individually given

its characteristics [7].

In this paper, we propose a novel ensemble for data stream

classification that performs dynamic selection of classifiers

in concept drifting data streams. We show that our proposal

overcomes state-of-the-art ensembles with statistical confi-

dence in terms of accuracy while also being significantly

faster and light-weighted in terms of memory consumption.

The implementation and experiments described are available

at https://github.com/dcspaper/dcspaperCode.

This paper is divided as follows. Section II overviews data

stream classification and concept drift. Section III discusses

related works on ensemble learning and dynamic selection of

classifiers in streaming scenarios. Section IV introduces our

proposal, which is a dynamic ensemble with dynamic selection

of classifiers for streaming scenarios. Section V reports the

experimental results obtained. Finally, Section VI concludes

this paper and reports envisioned future works.

II. DATA STREAM CLASSIFICATION

Traditional machine learning algorithms handle data in a

offline manner. In other words, data are gathered together,

labeled according to their proper classification, and used to

train models. Next, these models are used to classify new

unseen data instances. Nonetheless, most of the scenarios

in which machine learning is applied to are based on data

streams, as new data are continuously made available over

time, thus requiring predictive models to be updated accord-

ingly. More specifically, real-world applications that interact

with data streams are required to process data quickly to both

provide responses timely and to avoid data to be buffered,

thus avoiding memory issues [2]. These scenarios become even

more cumbersome if the data distribution changes over time,

which is a phenomenon named ‘concept drift’ that renders

predictive models obsolete (see Section II-A). Consequently,

researchers and practitioners have been gathering efforts to

978-0-7381-3366-9/21/$31.00 ©2021 IEEE

20
21

 In
te
rn
at
io
na
l J
oi
nt
 C
on

fe
re
nc
e
on

 N
eu

ra
l N

et
w
or
ks
 (I
JC
N
N
) |

 9
78

‐1
‐6
65
4‐
39
00

‐8
/2
1/
$3
1.
00

 ©
20
21

 IE
EE
 |
 D
O
I:
10
.1
10
9/
IJC

N
N
52
38
7.
20
21
.9
53
37
02

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:35:23 UTC from IEEE Xplore. Restrictions apply.

tailor techniques that are able to update predictive models as

new training data become available, the so-called data stream
mining methods.

A. Concept Drift

Concept drift is, by far, the most tackled issue of data

stream learning. By definition, data streams are potentially un-

bounded. Consequently, the idea that these are made available

over time is often followed. As a result, the processes that

generate data may change over time, thus leading to changes

in the data distribution. Focusing on classification, a concept

drift is said to happen when the decision boundary between

classes changes [2]. A theoretical explanation of concept drift

is related to probability distributions. More specifically, we

assume instances in the �xt, yt format, where x ∈ X is a d-

dimensional feature vector, y ∈ Y is the corresponding label,

and t is the arrival timestamp. Following [2], a concept drift

is said to occur when the probability distribution between

labels and features changes between timestamps ti and tj ,

i.e., Pti (y|X) �= Ptj (y|X) , i �= j. Another important charac-

teristic of concept drifts regards its length. A drift is said to

be abrupt when the concept completely changes between two

subsequent timestamps t and (t+1), or gradual if the posterior

concept takes longer to stabilize.

Furthermore, drifts can be detected using several strategies,

ranging from performance monitoring to algorithms that per-

form data distribution comparisons [8]. One of the most used

detectors is the Drift Detection Method (DDM) [9], which

monitors the error rate of the model: if it suddenly rises and

exceeds certain thresholds, a drift is signaled. Another method,

ADWIN [10], uses the same rationale, however keeping this

monitoring limited to a window with variable size with rigor-

ous statistical guarantees. Finally, it is noteworthy to highlight

that drift detectors are often coupled with classifiers in en-

sembles, including those that are described in the following

section.

III. RELATED WORKS

This section introduces related works to our approach that

involve (i) ensemble learning for data streams, (ii) dynamic

classifier selection, or both.

A. Ensembles for data stream classification

Ensembles have been widely used in batch machine learning

to improve the accuracy of classifiers in complex problems.

The rationale is that diverse members working together pro-

vide a better representation of the problem than a single clas-

sifier [11]. Given the success obtained by ensembles in batch

scenarios, adaptations were made to apply such techniques in

the data stream context.

One of the most classical ensemble algorithms for data

stream mining is the OzaBag [4], which is an adaptation of

the batch ensemble called Bootstrap Aggregating or Bagging

[12]. In OzaBag, instances are resampled for training each

member of the ensemble k times, such that k is drawn from

a Poisson(λ = 1) distribution. Therefore, the probability of

an instance being used for training each classifier is approxi-

mately two thirds, as P [k > 0] = 1− P [k = 0] = 1− e−1

k! =

1− e−1

0! ≈ 63%. Despite its simplicity, OzaBag and its internal

mechanism for ensuring diversity have inspired more data

streaming ensembles [1], [5], [6], and it remains competitive

in multiple scenarios given the trade-off between accuracy,

processing time, and memory consumption.

One of the current state-of-art ensemble algorithms for data

stream mining is the Adaptive Random Forest (ARF) [5]. As

OzaBag, ARF is an adaptation of the batch Random Forest

algorithm [13]. ARF builds an ensemble of Hoeffding decision

trees [14] using resampling with Poisson(λ=6) and by choos-

ing a random subset of features that each tree considers when

analyzing which feature to split on. Both of these traits allow

ARF to induce diversity amongst its classifiers, as the number

of times each instance is used for training and the features used

for learning in each tree are likely to be different. Focusing

on drift detection, ARF combines the use of drift detectors

and background learners to optimize drift recovery speed.

Even though ARF can be coupled with any drift detector,

authors in [5] used ADWIN [10] as the off-the-shelf detector.

More specifically, ARF couples two drift detectors with each

tree, such that one has low confidence and the other, high

confidence. When the low confidence detector is triggered, it

flags a warning, which initializes the construction of a new tree

in the background. If the high confidence detector is triggered,

the tree pre-built in the background replaces the tree where the

drift was flagged. ARF presents robust statistical measures for

many data stream problems, yet, its internal mechanisms are

computationally expensive, which renders ARF prohibitive in

several applications [15].

Many more ensemble algorithms for data stream mining

were proposed in the literature, often focusing on specific

classification and data stream characteristics. For instance, we

highlight the recent Kappa Updated Ensemble (KUE) [6],

which as the names states, is based on the Kappa metric.

Kappa measures how well the classifiers are performing w.r.t.

pure statistical probability. This is particularly useful when

dealing with imbalanced datasets, as in such scenarios, an

evaluation with accuracy is not representative of the actual

quality of the learned concept. In opposition to ARF, KUE

works by treating the stream as chunks of data. With the

arrival of a data chunk, the ensemble is updated following the

OzaBag resampling process and random subspaces [16]. To

keep the ensemble updated, at each new chunk, KUE removes

ensemble members with Kappa rates below new classifiers that

are trained solely on the chunk that arrived. During prediction,

KUE selects only the members with Kappa greater than 0.

Even though this selection process exists, it is not considered

DCS, as it does not account for characteristics of each query

instance individually. Finally, the output prediction is a Kappa-

weighted majority vote obtained from the selected classifiers.

In this work, we used the OzaBag and ARF for comparison.

OzaBag was chosen because it is the base for many other

methods and depicts solid results in the trade-off between

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:35:23 UTC from IEEE Xplore. Restrictions apply.

accuracy, processing time, and memory consumption. Further-

more, ARF was selected as it is one of the current state-of-

art ensembles for dealing with concept drift, which is tackled

in our experiments. KUE is not considered because (i) it

is focused on the imbalanced problem, which is not in the

scope of our work, and (ii) the results obtained by it in

large-scale analyses in [6] do not depict improvements when

compared to ARF. Finally, the interested reader in thorough

and comprehensive analyses on ensemble learning for data

streams is referred to [3], [15].

B. Dynamic Classifier Selection

Combining the predictions of all the ensemble members is a

crucial step for the ensemble to work. Most ensemble methods

use the majority vote rule to output a prediction, which means

that all classifiers have the same weight in defining the final

prediction [3]. Weighted voting can also be used so that the

performance of the classifiers are used to guide the importance

of each classifier during prediction, which is the case of ARF

[5], and KUE [6].

There is, however, another approach for combining the

predictions obtained by classifiers in an ensemble, which is

called dynamic classifier selection (DCS). DCS selects a subset

of the classifiers in an ensemble to predict a query instance

according to its characteristics. The rationale is that in a

diverse ensemble, members are experts in different regions

of the feature space, and thus, selecting them adequately

improves the overall performance of the ensemble [7].

DCS is widely studied in the traditional (batch mode)

machine learning area, and most of the methods have a similar

structure. The process begins by dividing the training portion

of the dataset into actual training and validation sets, such

that the first part is used to induce the classification models,

and the second is used to guide the selection process during

prediction. During the prediction of a query instance, the

most similar instances in the validation set are gathered using

the K-Nearest Neighbors [17], which is referred to as the

region of competence. As the region of competence consists

of close instances to the test instance, its behavior on the base

classifiers can be seen as a representation of the behavior on

the test instance. Then, this behavior is analyzed to select the

member(s) of the ensemble. Each method has its own way of

performing this analysis. We can cite as some of the currently

most relevant works in this area:

• Overall Local Accuracy - OLA [18]: Selects the classifier

with the highest accuracy on the region of competence.

• Local Class Accuracy - LCA [18]: Selects the classifier

with the highest recall on the region of competence.

• K-Nearest-Oracles Eliminate [19]: Selects all the classi-

fiers with the highest accuracy on the region of compe-

tence.

• K-Nearest-Oracles Union [19]: Selects all the classifiers

that correctly predicted at least one instance in the region

of competence; the more instances correctly predicted, the

more weight the classifier has in the final prediction.

• META-DES [20]: Treats the DCS process as a meta-

learning problem; it extracts metrics from the region of

competence to train a new classifier aimed at selecting

the most competent members.

For more information regarding Dynamic Classifier Selec-

tion in static environments, the reader is referred to [7], [21].

In streaming environments, DCS methods are scarce. Since

the training and testing phase are not clear cut as in the batch

scenarios, DCS methods for data stream need to be adapted to

encompass aspects such as the validation set. A relevant work

is the Dynamic Selection Based Drift Handler (DYNSE) [22],

which focuses on concept drifts. The method treats the data

stream in chunks of data of size j. After the arrival of a data

chunk, a new classifier is trained and added to the ensemble. In

the original paper, the authors do not state that the maximum

size of the ensemble must be bounded to n as it becomes an

ever-growing ensemble. Nonetheless, in its implementation,

when n is reached, the oldest classifier is removed from the

ensemble. Furthermore, the last arrived chunk is always set

as the validation set, so in the prediction step, batch DCS

methods are used.

Focusing on the class imbalance imbalanced problem, two

similar methods were proposed using data preprocessing.

Since they are not given a name, we will hereby call them

Preprocessed DCS I [23] and II [24] (PDCS I and II). Both

are similar to DYNSE in the sense that they also process the

data stream in chunks and new classifiers to the ensemble

upon each chunk arrival. PDCS I works with an ensemble of

ensembles so that at each chunk, a new ensemble is trained

using offline bagging, yet, the data sample is stratified. If

the ensemble maximum size n is reached, the ensemble with

the lowest balanced accuracy (BAC) is removed from the

pool. The validation set is also set as the last arrived batch;

however, before updating it, a preprocessing technique focused

on data imbalance, either under- or oversampling, is applied

to the chunk. PDCS II, on the other hand, works with any

classifier, and the preprocessing step is applied to the chunk

before training. It also adds a step that removes any classifiers

from the ensemble that have their BAC below a user-given

threshold.

These methods can use both offline and online classifiers

as they handle the data stream as chunks, and classifiers

are only trained once. Consequently, the ensemble may not

take advantage of online classifiers as its members are not

updated as new data become available. Our proposal, described

in the next section, takes a different direction as we focus

on incremental classifiers and the approach is not limited to

imbalanced data streams.

IV. DOUBLE DYNAMIC CLASSIFIER SELECTION

In this section, we introduce the Double Dynamic Classifier

selection method. The rationale behind our proposal is that

diverse classifiers are: (i) trained using different chunks of

data and also using bagging and that (ii) they are appropri-

ately selected according to their competence w.r.t. the query

instance.

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:35:23 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: DDCS: Training step

input : BaseClassifier: base classifier to add to

the ensemble, (X,Y): chunk to train, N : the

maximum possible size of E,

use_bagging: if set, train using online

bagging, init_all: if set, initialize all the

classifiers of the ensemble on the first run

1 E ← get ensemble();
2 if |E| = 0 then
3 if init_all then
4 E ← {ei| such that 1 ≤ i ≤ (N − 1) and ei is

a BaseClassifier instance};
5 end
6 end
7 new_classifier ← new BaseClassifier();

8 if |E| = N then
9 Remove from E the member ei with lowest

accuracy;

10 end
11 E ← E ∪ {new_classifier};
12 if use_bagging then
13 For i = 1, . . . , |E|, train ei using (X,Y) using

Online Bagging;

14 else
15 For i = 1, . . . , |E|, train ei using (X,Y);
16 end
17 V ← (X,Y);
18 KNNSearcher ← get_searcher();

19 KNNSearcher.train(V);

Double Dynamic Classifier Selection (DDCS) structure is

similar to DYNSE and PDCS (I and II). However, all ensemble

members are updated when a new chunk arrives, and thus, the

base learners in DDCS are required to be online learners, such

as the Updatable Naive Bayes and Hoeffding Trees [14]. This

represents an advantage over DYNSE and PDCS since DDCS

is able to maintain members that have a more broad view

of the concept, while having new members for each chunk.

New members tend to be more specialized in recent concepts,

while old members tend to make better predictions in stable

concepts.

Algorithm 1 depicts DDCS training process. DDCS receives

as input the base classifier of the ensemble, the chunk of

instances and their labels (X,Y) to train on, the maximum

ensemble size N , and the use_bagging and init_all
hyper-parameters. At the beginning of the training process,

i.e., the ensemble size is 0, if init_all is set, the ensemble

is initialized with (N − 1) new base classifiers (lines 2 to 6),

and otherwise, the ensemble will be filled at the pace of one

classifier per chunk. Next, a new base classifier is created (line

7), which in the case of init_all being set, culminates in

the ensemble reaching its maximum size N .

Lines 8 to 10 check if the maximum size of the ensemble is

reached. If that is true, the member with the lowest accuracy

Algorithm 2: Prediction Step of DDCS

input : x: instance to predict, dcs: DCS method to

use, k: number of neighbors to gather

1 KNNSearcher ← get_searcher();

2 E ← get_ensemble();

3 neighbors ←
KNNSearcher.find_neighbors(x, k);

4 selected_members ←
apply_dcs(neighbors, dcs, E);

5 ŷ ← predict(x, selected_members);

6 return ŷ;

is removed. The continuous replacement of poor performing

classifiers induces poor performing classifiers, i.e., those af-

fected by concept drifts, to be replaced by new models. The

new classifier is then added to the ensemble (line 11). Lines 12

to 16 illustrate the step where all the members of the ensemble

are trained. If use_bagging is set, the ensemble is updated

using the same protocol described by OzaBag. Otherwise, the

chunk will be trained on by each classifier as is. Next, lines

17 to 19 show the process of creating a new validation set

and updating the algorithm responsible for finding the nearest

neighbors.

Finally, the prediction step is depicted in Algorithm 2. This

algorithm receives as input an instance to be predicted x, a

DCS algorithm (dcs), and the number of neighbors (k) for

similarity assessing in the DCS process. The KNN algorithm is

used in line 3 to find the k-nearest neighbors in the validation

set updated in the training phase. Next, these neighbors select

the most competent members by applying the chosen DCS

technique (line 4). Finally, the prediction is obtained from the

selected members (line 5).

Since performance is relevant when mining data streams, the

K-Nearest Neighbors search for the DCS methods is not tradi-

tional. Rather, we use the KD-Tree algorithm [25], which sub-

divides the validation set into subspaces. Consequently, when

querying neighbors, distances only need to be computed within

the group that most likely contains its similars. This drastically

reduces the computational complexity as the original brute

force KNN has the complexity of O(1) and O(k × n × d)
for training and testing, respectively, where k is the number

of neighbors, n is the number of instances buffered, and d
is the dimension of the instances. On the other hand, KD-

Tree has training time complexity of O(d × n × log n) and

O(k × log n) for testing. In DDCS, it is noteworthy that the

training phase is performed once per chunk, while the testing

phase is performed for every instance of the chunk.

V. ANALYSIS

In this section we compare the proposed methods against

state-of-the-art ensembles for data streams. First, we bring

forward the experimental protocol adopted, followed by the

results obtained and discussion.

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:35:23 UTC from IEEE Xplore. Restrictions apply.

A. Experimental protocol

In the following experiments, all classifiers were tested in

an interleaved chunks test-then-train process. Therefore, each

stream is divided in chunks of one thousand instances, and

each chunk is used first for testing and later for training. The

only exception is the first chunk, which is used solely for

training.

The proposed testbed also included synthetic and real-world

datasets. The synthetic generators were: Agrawal (Agr) [26],

Asset Negotiation (An) [27], [28], and SEA [29]. The real-

world datasets encompassed Electricity (Elec) [30], Nomao

[31], and Spam Corpus [32]. All of the synthetic streams

contain 100,000 instances. Different realizations of the streams

were created with zero, one, two, and three concept drifts in

both abrupt and gradual fashions, and gradual drifts were set

to happen over a window of 1,000 instances.

Our proposal (DDCS) was compared against the OzaBag

[4], Adaptive Random Forest (ARF) [5], and the Dynamic

Selection Based Drift Handler (DYNSE) [22] ensemble clas-

sifiers. ARF was set to possess 100 Hoeffding Trees, while

DDCS and DYNSE were bounded to the same number and

classifier type. Even though these may not represent opti-

mal values for all classifiers in all the data streams, this

parametrization resulted in robust average results in [5]. Re-

garding the selection process, the number of neighbors k for

DDCS and DYNSE was set to 7, as suggested in [21].

In this analysis, different hyper-parameter values in DDCS

for use_bagging and init_all were used. As for the dy-

namic selection algorithms, KNORA-E (KNE) and KNORA-U

(KNU) [19] were chosen for the comparison. These algorithms

were selected because of their smaller computational cost

when compared to more recent approaches such as META-

DES [20].

Since execution time and memory were also considered, an

important hyper-parameter of ARF was optimized to provide a

fair comparison, max_features. This parameter represents

the size of the subset of features that ARF will take into

account when splitting a node. It is important to optimize

it because, in some cases, it can lead to changes in time of

execution without losing its accuracy. The values used in this

parameter ranged from 2 to 6, plus the square root of the total

number of features. In the following results, we show two

variants for ARF. The first regards the optimized ARF version

towards accuracy (ARF ACC), while the second focuses on

processing time (ARF TIME). Regarding DDCS, only the ex-

ecution with both parameter use_bagging and init_all
set to false are reported, as these were the most positive

results. The remainder of the hyper-parameters were set as

the default provided in the Massive Online Analysis (MOA)

framework [33]. Experimentation encompassed the assessment

of accuracy, execution time (CPU time), and memory use. The

results reported are averages computed after 20 experiment

runs.

After the results were gathered, we applied two statistical

tests on the results, i.e., the Friedman and Nemenyi combina-

Fig. 1. Critical distance plot for accuracy results.

tion proposed in [8], and the pairwise Bayesian comparison

brought forward in [34]. Finally, the source code behind our

proposal, the script to reproduce the results, and the full

list of the results are available at https://github.com/dcspaper/

dcspaperCode.

B. Discussion

Table I shows the accuracy values obtained. Even though

the algorithm that appeared most times as the winner (7) was

ARF ACC, its superiority was restrained to a single dataset,

the SEA generator. Next, we see DDCS with KNORA-E ap-

pearing as the winner six times, which occurred in a multitude

of datasets. In such scenarios, the mean accuracy gain provided

by DDCS with KNORA-E achieved 3.04%. However, if we do

the opposite analysis, the mean difference between ARF ACC

and the proposed methods was of 0.83%. Furthermore, the

results depict that DYNSE (DYN) methods were outperformed

by DDCS methods, except on SEA Generator and Spam

Corpus.

It is also relevant to discuss the accuracy differences ob-

served between ARF ACC and ARF TIME, which is sig-

nificant. In average, ARF ACC resulted in % improvements

when compared to ARF TIME, thus highlighting the impact

of hyper-parameter tuning. It is also worth noting that DDCS

without any selection method (DDCS NO SEL) obtained

competitive results, appearing as the best-performing classifier

thrice.

Figure 1 displays the Friedman + Nemenyi statistical tests

results. DDCS with KNORA-E and KNORA-U are virtually

tied in the first position. They are followed by ARF ACC,

and even though their difference is not significant according

to the test, as previously stated, the gain provided by DDCS

is much greater than that provided by ARF ACC. DDCS with

no selection method outperformed traditional OzaBag. The

DYNSE methods were in the last positions, together with

ARF TIME, DYNSE with KNORA-E greatly outperformed

its other executions.

Figure 2 shows the Bayesian analysis plot of DDCS with

KNORA-E and KNORA-U against ARF ACC. This analysis

outputs the probability of the algorithm a being better than

the algorithm b, considering a rope value, which is a region

practical equivalence [34]. What can be inferred from the

plot is that DDCS with KNORA-E and KNORA-U has a

much greater probability of being better than ARF ACC.

With KNORA-E, for instance, its probability of outperforming

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:35:23 UTC from IEEE Xplore. Restrictions apply.

TABLE I
ACURRACY OF THE BASELINE METHODS AGAINST DDCS.

Dataset DYN KNE DYN KNU DYN NO SEL OZABAG DDCS KNE DDCS KNU DDCS NO SEL ARF ACC ARF TIME

Agr-1X Grad 83.53 73.77 78.95 89.97 90.89 90.95 91.03 84.76 69.51
Agr-1X Abr 83.13 74.45 79.07 90.62 91.05 91.15 91.76 84.59 68.81
Agr-2X Grad 80.19 71.29 72.88 86.25 89.86 89.20 89.36 81.96 70.32
Agr-2X Abr 80.55 71.50 71.32 87.98 90.11 90.23 90.35 82.17 69.78
Agr-3X Grad 80.74 73.38 73.30 83.88 90.16 88.81 88.51 84.15 72.74
Agr-3X Abr 81.18 74.36 72.75 87.34 90.51 89.39 89.44 84.92 72.40
Agr-No drift 86.67 78.56 85.79 93.72 92.60 93.03 93.31 88.51 68.56
An-1X Grad 92.73 91.42 85.57 93.71 93.54 93.78 93.58 93.48 91.46
An-1X Abr 92.74 91.14 85.59 93.70 93.43 93.48 93.51 93.27 91.47
An-2X Grad 92.52 91.07 79.92 93.44 93.66 93.58 93.39 93.35 91.29
An-2X Abr 92.47 90.56 79.70 93.49 93.41 93.46 93.32 93.29 91.27
An-3X Grad 92.03 90.42 78.86 92.62 93.58 93.32 93.07 93.19 91.19
An-3X Abr 91.71 90.20 78.64 92.75 92.84 92.95 92.92 92.81 90.88
An-No drift 92.99 92.63 92.85 94.00 93.61 93.80 93.76 93.47 91.66

SEA-1X Grad 88.44 87.48 87.23 87.47 88.22 87.95 87.55 89.18 88.53
SEA-1X Abr 88.39 87.49 87.21 87.52 88.18 88.05 87.55 89.15 88.53
SEA-2X Grad 88.25 87.08 86.52 86.93 88.06 87.76 87.16 88.96 88.04
SEA-2X Abr 88.22 87.03 86.54 86.89 88.05 87.77 87.15 88.97 88.11
SEA-3X Grad 88.10 86.86 86.09 86.15 87.96 87.74 87.12 88.67 88.02
SEA-3X Abr 88.23 86.96 86.13 86.21 88.05 87.74 87.13 88.72 88.08
SEA-No drift 88.53 88.14 87.93 88.02 88.39 88.34 87.84 89.35 88.77

Elec 76.69 76.91 78.71 76.25 78.11 79.09 79.35 78.90 61.71
Nomao 93.34 91.85 87.53 92.37 93.73 93.42 93.21 93.45 91.00

Spam Corpus 75.80 75.69 61.96 76.00 75.30 75.36 74.93 75.91 68.26
Avg. rank 4.79 7.29 8.21 4.71 3.12 3.12 3.83 3.33 6.58

ARF ACC (bottom left) is 68%, and for KNORA-U, this

value was 73%. The chance of the difference between them

lying into the rope (top) is 31% and 24% for KNORA-

E and KNORA-U respectively. The chance of ARF ACC

overcoming DDCS (bottom right) is close to zero.

When focusing on accuracy, DDCS presents robust results

when compared to other methods. For instance, when com-

pared to the state-of-art ARF ACC, it outperformed DDCS

in a single synthetic experiment (SEA) and a real-world

dataset (Elec). In all other experiments, DDCS presented

superior results. Comparing it to DYNSE variants, although

DDCS was outperformed in the SEA generator, overall, unlike

DDCS, DYNSE did not present competitive results against

the state-of-art. When including memory consumption and

time processing, this advantage is vastly increased. Table II

shows the absolute and relative to ARF ACC processing time

and memory consumption of the algorithms tested. DDCS

with KNORA-E and KNORA-U used only 6.00% of the time

ARF ACC took to run and consumed only around 1.20% of

Fig. 2. Bayesian comparison of DDCS with KNORA-E (left) and KNORA-U
(right) against ARF ACC, with rope set to 0.5, and 50000 samples drawn.

its memory. Consequently, when accounting for the trade-off

between accuracy, processing time, and memory consumption,

we conclude that DDCS depicts competitive accuracy results

while being computationally light-weighted compared to ARF.

VI. CONCLUSION

This work presented DDCS, a method for applying dynamic

classifier selection in data stream mining environments. DDCS

builds an ensemble by treating the stream as chunks of data

and adding new classifiers when the chunks arrive. We have

assessed our proposal in both synthetic and real-world sce-

narios, thus comparing it against the state-of-the-art Adaptive

Random Forest (ARF) classifier.

Results show that our proposal is competitive against ARF

in terms of accuracy. Regarding processing time, and memory

usage, DDCS strongly outperformed ARF in the majority of

datasets. More specifically, according to the Bayesian analysis,

DDCS has around 70% chance of outperforming ARF. Regard-

ing processing time and memory consumption, the numbers

are even more impressive, as DDCS used only about 6.00%

of the time and 1.00% of the memory used by ARF.

As future works, we plan to make DDCS available in

scikit-dyn2sel “unpublished” [35], a tool for dynamic

classifier selection in data streams; as well as testing our

proposal in class imbalance and scarce label availability ap-

plications.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação

de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil

(CAPES) – Finance Code 001.

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:35:23 UTC from IEEE Xplore. Restrictions apply.

TABLE II
PROCESSING TIME AND MEMORY CONSUMPTION OF THE BASELINE METHODS AGAINST DDCS.

Method Time (s) Time fraction w.r.t. ARF ACC (%) Ram-Hours (GB) Memory fraction w.r.t. ARF ACC (%)
DYN NO SEL 3.83 0.61% 5.17×10−7 0.02%

DDCS NO SEL 17.22 2.73% 1.60×10−6 0.07%

DYN KNU 21.09 3.35% 1.42×10−5 0.62%

DYN KNE 22.50 3.57% 1.44×10−5 0.63%

DDCS KNU 38.03 6.04% 2.73×10−5 1.20%

DDCS KNE 42.18 6.70% 2.95×10−5 1.30%

OZABAG 72.64 11.54% 5.72×10−5 2.51%

ARF TIME 162.04 25.75% 2.51×10−4 11.04%

ARF ACC 629.40 100.00% 2.28×10−3 100.00%

REFERENCES

[1] Albert Bifet, Geoff Holmes, and Bernhard Pfahringer. Leveraging
bagging for evolving data streams. In Machine Learning and Knowledge
Discovery in Databases, pages 135–150. Springer Berlin Heidelberg,
2010.

[2] Geoffrey I. Webb, Loong Kuan Lee, Bart Goethals, and François
Petitjean. Analyzing concept drift and shift from sample data. Data
Min. Knowl. Discov., 32(5):1179–1199, September 2018.

[3] Heitor Murilo Gomes, Jean Paul Barddal, Fabrı́cio Enembreck, and Al-
bert Bifet. A survey on ensemble learning for data stream classification.
ACM Comput. Surv., 50(2), March 2017.

[4] Nikunj C. Oza. Online bagging and boosting. In SMC, pages 2340–
2345. IEEE, 2005.

[5] Heitor M. Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabrı́cio
Enembreck, Bernhard Pfharinger, Geoff Holmes, and Talel Abdessalem.
Adaptive random forests for evolving data stream classification. Machine
Learning, 106(9-10):1469–1495, June 2017.

[6] Alberto Cano and Bartosz Krawczyk. Kappa updated ensemble for drift-
ing data stream mining. Machine Learning, 109(1):175–218, October
2019.

[7] Alceu S. Britto, Robert Sabourin, and Luiz E.S. Oliveira. Dynamic
selection of classifiers—a comprehensive review. Pattern Recognition,
47(11):3665 – 3680, 2014.

[8] Jaka Demšar and Zoran Bosnić. Detecting concept drift in data streams
using model explanation. Expert Systems with Applications, 92:546 –
559, 2018.

[9] João Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learn-
ing with drift detection. In Ana L. C. Bazzan and Sofiane Labidi, editors,
Advances in Artificial Intelligence – SBIA 2004, pages 286–295, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[10] Albert Bifet and Ricard Gavaldà. Learning from Time-Changing Data
with Adaptive Windowing, pages 443–448.

[11] Thomas G. Dietterich. Ensemble methods in machine learning. In
Proceedings of the First International Workshop on Multiple Classifier
Systems, MCS ’00, page 1–15, Berlin, Heidelberg, 2000. Springer-
Verlag.

[12] L. Breiman. Bias, variance, and arcing classifiers. Technical Report
460, Statistics Department, University of California at Berkeley, 1996.

[13] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, October 2001.
[14] Pedro Domingos and Geoff Hulten. Mining high-speed data streams.

pages 71–80. ACM Press, 2000.
[15] Bartosz Krawczyk, Leandro L. Minku, João Gama, Jerzy Stefanowski,

and Michał Woźniak. Ensemble learning for data stream analysis: A
survey. Inf. Fusion, 37:132 – 156, 2017.

[16] Tin Kam Ho. The random subspace method for constructing decision
forests. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 20(8):832–844, 1998.

[17] David W Aha, Dennis Kibler, and Marc K Albert. Instance-based
learning algorithms. Machine learning, 6(1):37–66, 1991.

[18] K. Woods, W. P. Kegelmeyer, and K. Bowyer. Combination of multiple
classifiers using local accuracy estimates. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(4):405–410, April 1997.

[19] Albert H. R. Ko, Robert Sabourin, and Alceu Souza Britto, Jr. From
dynamic classifier selection to dynamic ensemble selection. Pattern
Recogn., 41(5):1718–1731, May 2008.

[20] Rafael Cruz, Robert Sabourin, George Cavalcanti, and Tsang Ing Ren.
Meta-des: A dynamic ensemble selection framework using meta-
learning. Pattern Recognition, 48, 05 2015.

[21] Rafael Cruz, Robert Sabourin, and George Cavalcanti. Dynamic clas-
sifier selection: Recent advances and perspectives. Information Fusion,
41, 05 2018.

[22] P. R. L. D. Almeida, L. S. Oliveira, A. D. S. Britto, and R. Sabourin.
Handling concept drifts using dynamic selection of classifiers. In 2016
IEEE 28th International Conference on Tools with Artificial Intelligence
(ICTAI), pages 989–995, Nov 2016.

[23] Paweł Zyblewski, Robert Sabourin, and Michał Woźniak. Preprocessed
dynamic classifier ensemble selection for highly imbalanced drifted data
streams. Information Fusion, 66:138 – 154, 2021.

[24] Paweł Zyblewski, Robert Sabourin, and Michał Woźniak. Data prepro-
cessing and dynamic ensemble selection for imbalanced data stream
classification. In Machine Learning and Knowledge Discovery in
Databases, pages 367–379. Springer, 2020.

[25] Jon Louis Bentley. Multidimensional binary search trees used for
associative searching. Commun. ACM, 18(9):509–517, September 1975.

[26] R. Agrawal, T. Imielinski, and A. Swami. Database mining: a per-
formance perspective. IEEE Transactions on Knowledge and Data
Engineering, 5(6):914–925, Dec 1993.

[27] Fabrı́cio Enembreck, Bráulio Ávila, Edson Scalabrin, and Jean-Paul
Barthès. Learning drifting negotiations. Applied Artificial Intelligence,
21:861–881, 10 2007.

[28] Jean Paul Barddal, Heitor Murilo Gomes, Fabrı́cio Enembreck, Bernhard
Pfahringer, and Albert Bifet. On dynamic feature weighting for feature
drifting data streams. In Machine Learning and Knowledge Discovery
in Databases - European Conference, ECML PKDD 2016, volume 9852
of Lecture Notes in Computer Science, pages 129–144. Springer, 2016.

[29] W. Nick Street and YongSeog Kim. A streaming ensemble algorithm
(sea) for large-scale classification. In Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’01, page 377–382, New York, NY, USA, 2001. ACM.

[30] P. P. Rodrigues, J. Gama, and J. Pedroso. Hierarchical clustering of time-
series data streams. IEEE Trans. on Knowledge and Data Engineering,
20(5):615–627, 2008.

[31] Laurent Candillier and Vincent Lemaire. Design and analysis of the
nomao challenge active learning in the real-world. pages 1–8, 08 2013.

[32] Ioannis Katakis, Grigorios Tsoumakas, and I. Vlahavas. Dynamic feature
space and incremental feature selection for the classiflcation of textual
data streams. Proceedings of ECML/PKDD-2006 Intl. Workshop on
Knowledge Discovery from Data Streams, 01 2006.

[33] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Philipp Kranen, Hardy
Kremer, Timm Jansen, and Thomas Seidl. Moa: Massive online analysis,
a framework for stream classification and clustering. volume 11 of
Proceedings of Machine Learning Research, pages 44–50, Cumberland
Lodge, Windsor, UK, 01–03 Sep 2010. PMLR.

[34] Alessio Benavoli, Giorgio Corani, Janez Demšar, and Marco Zaffalon.
Time for a change: a tutorial for comparing multiple classifiers through
bayesian analysis. Journal of Machine Learning Research, 18(77):1–36,
2017.

[35] Lucca Portes Cavalheiro, Jean Paul Barddal, Alceu de Souza Britto Jr,
and Laurent Heutte. scikit-dyn2sel – a dynamic selection framework for
data streams (arxiv:2008.08920v1), 2020.

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on November 22,2021 at 19:35:23 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

		2021-09-16T13:00:52-0400
	Certified PDF 2 Signature

