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(PUCPR), Curitiba, Brazil

Abstract

Computer vision-based parking lot management methods have been extensively

researched upon owing to their flexibility and cost-effectiveness. To evalu-

ate such methods authors often employ publicly available parking lot image

datasets. In this study, we surveyed and compared robust publicly available

image datasets specifically crafted to test computer vision-based methods for

parking lot management approaches and consequently present a systematic and

comprehensive review of existing works that employ such datasets. The liter-

ature review identified relevant gaps that require further research, such as the

requirement of dataset-independent approaches and methods suitable for au-

tonomous detection of position of parking spaces. In addition, we have noticed

that several important factors such as the presence of the same cars across con-

secutive images, have been neglected in most studies, thereby rendering unrealis-

tic assessment protocols. Furthermore, the analysis of the datasets also revealed

that certain features that should be present when developing new benchmarks,

such as the availability of video sequences and images taken in more diverse

conditions, including nighttime and snow, have not been incorporated.
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1. Introduction

Over the last few years, many authors proposed computer vision-based ap-

proaches to address problems related to parking lot management. These prob-

lems focus on processing images from parking lots. They include different goals,

such as (i) the automatic detection of parking spaces positions, e.g., defining for

each parking space the bounding box that delimits the object, (ii) the individual

parking space classification, determining whether a specific parking spot is oc-

cupied by a vehicle or not, and (iii) detecting and counting vehicles in images.

The tasks mentioned above are often the core components of Smart Parking

solutions. They aim at providing, among others, automated parking lot man-

agement, e.g., dynamic pricing according to the number of cars in the parking

lot; and parking guidance for drivers, e.g., a route to the nearest parking space

available. Smart Parking solutions are essential as a system that accurately

guides the driver to the nearest parking spot available can save both time and

fuel (Polycarpou et al., 2013; Paidi et al., 2018).

In this study, publicly available parking lot image datasets were surveyed.

In addition, the computer vision-based works that have employed such datasets

to address parking lot management problems were evaluated. The scope of this

study was limited to computer vision-based approaches as they are advanta-

geous over individual sensors. For example, in contrast to magnetometers and

ultrasonic sensors, a single camera can monitor a wide parking area eliminating

the need of requiring a sensor per parking spot. Furthermore, cameras reduce

installation and maintenance costs and can aid in additional tasks, such as ab-

normal behavior and theft detection (Paidi et al., 2018; Li et al., 2019; Varghese

& Sreelekha, 2020).

To the best of our knowledge, this work is the first dataset-centered review

of computer vision-based approaches to address problems related to parking lot
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management. It is relevant to mention that sensors other than cameras may be

used for automatic parking lot management. Such sensors are beyond the scope

of this work. Recent comprehensive reviews of different sensors and approaches

for managing parking lots can be found in (Polycarpou et al., 2013; Fraifer &

Fernström, 2016; Paidi et al., 2018; Barriga et al., 2019).

Reproducibility is among the most important guidelines to be followed in

any research. Thus, this review focused on works that utilize at least one ro-

bust and publicly available parking lot image dataset, thereby increasing the

reproducibility of experiments performed. Moreover, we also propose a crite-

rion that the parking lot image datasets must encompass real-world challenges,

avoiding trivial and unrealistic problems. Owing to this filtering process, the

selected datasets that fulfilled the this criterion were further described and com-

pared. We expect this review to aid researchers in (i) the development of new

computer vision-based parking lot management methods, and (ii) with the pro-

posal of novel robust datasets that can be employed to validate such methods.

Furthermore, we reviewed the existing vision-based approaches, which use at

least one of the surveyed datasets, addressing the following problems:

• Classification of individual parking spaces;

• Automatic detection of parking spaces positions;

• Vehicles counting or detection;

As the reviewed approaches use publicly available datasets, these are easier

to compare and verify. Moreover, the surveyed approaches were also catego-

rized and compared in this work. Consequently, the results obtained were used

to identify well-studied solutions for problems such as the individual parking

slots classification. In addition, research gaps that researchers could further

investigate, for example, the automatic detection of parking spaces and prob-

lems generated by camera angle changes, were also identified. The complete

contributions of this work are as follows:

• We propose certain criteria to define a parking lot image dataset as robust;
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• We bring forward a review of existing robust parking lot image datasets;

• We review, categorize and compare the results of state-of-the-art works

that use the surveyed datasets;

• After analyzing the state-of-the-art methods and results, we identify the

research gaps that researchers should address in the future.

This paper is divided as follows. Section 2 brings forward a discussion on

existing surveys and their main shortcomings, which are used as guidance for

determining our research method. The research procedure used in this work,

including the criteria established to select the public parking lot images stud-

ies and datasets, is brought forward in Section 3. Details about the selected

datasets (PKLot, CNRPark-EXT, and PLds) are given in Section 4. By fol-

lowing the research method presented in Section 3, we found 66 works that use

the datasets mentioned above. These works are presented in Section 5, where

the approaches are categorized according to the following tasks: individual park-

ing spot classification, automatic parking space detection, and car detection and

counting. In Section 6, we summarize and discuss the datasets and the reviewed

works. Furthermore, we also present our findings, such as that most authors

focus on the classification of individual parking spaces. Finally, the conclusions

and envisioned future works are presented in Section 7.

2. Motivation

In this section, we outline the research method used. To justify this research

method and the scope of our work, we first highlight and discuss nine surveys and

reviews that cite the datasets analyzed in this work (Meduri & Estebanez, 2018;

Mahmud et al., 2020; Paidi et al., 2018; Enŕıquez et al., 2017; Kawade et al.,

2020; Barriga et al., 2019; Chen et al., 2019; Zantalis et al., 2019; Diaz Ogás

et al., 2020). In Meduri & Estebanez (2018), a brief review of Deep Learning

(DL) based approaches for parking lots is given. Nevertheless, the authors

considered only six works. They stated how questionable the generalization of
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these works is since the samples’ conditions, e.g., weather, lightning, occlusions,

and car size, are reasonably similar. The authors also point out that no solution

detected the parking spaces automatically. Mahmud et al. (2020) surveyed

some works related to the individual parking spaces classification problem and,

similarly to Meduri & Estebanez (2018), concluded that generalization issues

and automatic parking spot detection are open problems.

Most reviews focus on discussing the different sensors available for individual

parking space monitoring and user software, e.g., smartphone applications, de-

veloped to manage the parking lots or guide drivers to the parking spaces (Paidi

et al., 2018; Enŕıquez et al., 2017; Kawade et al., 2020; Barriga et al., 2019).

The sensors often surveyed in these works include ultrasonic, Radio-Frequency

Identification (RFID), magnetometers, microwave radars, and camera sensors.

The authors in Paidi et al. (2018) claim that individual parking spaces mon-

itoring in open areas is still an open problem in the literature. In Enŕıquez

et al. (2017) is presented a survey about infrastructure-based, vision-based, and

crowd-sensing-based solutions for on- and off-street solutions. They argued that

vision-based systems have problems with illumination, occlusions, and general-

ization capabilities. On the other hand, infrastructure-based solutions have

higher costs. In contrast, crow-sensing solutions require many contributors,

which are not always available.

In Kawade et al. (2020), a survey is presented, including hardware, i.e., ul-

trasonic and infrared sensors, and computer vision-based works. However, only

a limited number of papers were analyzed. They stated that installation and

maintenance were problems found in sensor-based works, as occlusion was in

computer vision-based ones. DL-based approaches for smart cities’ problems

were surveyed in Chen et al. (2019). These problems include human mobility,

traffic flow, traffic surveillance, and parking lot management. The authors con-

clude that, besides its importance, DL-based solutions suffer from problems such

as high computational cost and the lack of training datasets. Likewise, Zantalis

et al. (2019) surveyed different techniques for smart city problems, including

Smart Parking. In Diaz Ogás et al. (2020), the authors present a systematic re-
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view of different types of Smart Parking systems, such as guidance, reservation,

and crowdsourcing.

The works of Enŕıquez et al. (2017); Paidi et al. (2018); Barriga et al. (2019);

Chen et al. (2019); Zantalis et al. (2019); Diaz Ogás et al. (2020); Kawade et al.

(2020) offer a broader vision of the parking lot management systems, including

different sensors and user-level software. However, these works do not present

an in-depth discussion about vision-based parking lot management approaches.

In addition, they did not discuss publicly available datasets developed to verify

these approaches. The only surveys that have focused on vision-based park-

ing lot management problems are Meduri & Estebanez (2018); Mahmud et al.

(2020). Nevertheless, these works are not systematic reviews and considered

only a few works in the analysis. Therefore, the systematic mapping of vision-

based solutions that can be reproduced using public datasets proposed here has

its relevance justified.

3. Research Procedure

In this section, we bring forward the research procedure adopted to conduct

a systematic literature review on computer vision-based parking lot manage-

ment systems and public datasets. First, we have defined the following research

questions (RQs) to guide the identification and assessment of relevant works:

• RQ1: Which are the primary parking lot management problems dealt with

by computer vision-based state-of-the-art solutions?

• RQ2: What are the primary computer vision-based techniques employed

in the state-of-the-art to solve parking lot management problems?

• RQ3: What are the open problems in computer vision-based techniques

not covered by the state-of-the-art or that still require more research?

With the scope defined, we discuss the planning and conduction of the re-

view. We first find the publicly available image parking lot datasets and then
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collect related works. We applied three keywords in the well-known Scopus1

and Web of Science (WoS)2 peer-reviewed citation database search engines to

accomplish this. The keywords are parking lot dataset, parking lot images, and

parking lot database. We refined the search to include only the works that pro-

pose datasets containing parking lot images. Finally, we reviewed only robust

datasets, which must fulfill the following criteria.

First, the datasets’ publicity is the most critical restriction considered in

this work. Public data enable researchers to reproduce experiments, results and

create their experiments without collecting and labeling novel datasets. The

cameras must be installed at fixed points since this is an expected feature in the

real world (we do not consider, for instance, images collected via drone). The

datasets must contain images collected on different days of the week, periods,

and weather conditions to include the expected variability in a real scenario.

Images collected from different camera angles are necessary to test classifiers’

generalization power. For instance, a classifier is trained using images obtained

from a camera angle different from the test images. Finally, the ground truth is

imperative to check and compare the results when using the datasets. Although

restrictive, we consider the established criteria important for advancing the

research about vision-based parking lot management.

As a result, three datasets were selected: the PKLot (Almeida et al., 2013;

Almeida et al., 2015), the CNRPark-EXT (Amato et al., 2016, 2017), and the

Parking Lot dataset (PLds) (Mart́ın Nieto et al., 2019). Certain datasets despite

being interesting, do not meet these restrictions, including the QuickSpotDB

(Màrmol & Sevillano, 2016), CARPK (Li et al., 2019) and UAVDT (Du et al.,

2018) datasets.

Following the selection of datasets, we proceeded further by surveying works

that used these datasets to evaluate vision-based parking lot management ap-

proaches. Therefore, we used the Scopus and WoS search engines to identify

1Scopus Website: www.scopus.com (Accessed on Aug 23, 2021).
2WoS Website: www.webofknowledge.com (Accessed on Aug 23, 2021)
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cross-referenced works. Hence, we applied a snowballing approach (Wohlin,

2014), as the primary references of each dataset were used to find all the other

works that cited each of them. These references are referred to as the primary

references set. Further, the closure requirements, such as the objective, inclu-

sion, and exclusion criteria, are as follows:

• Objective Criteria (OC)

– Document type: Articles

– Availability: Any

• Inclusion Criteria (IC)

– IC1: Include works that proposed the surveyed datasets.

• Exclusion Criteria (EX)

– EX1: Remove non-English works;

– EX2: Remove works that only mention the datasets as related work

without using the datasets;

– EX3: Remove surveys or systematic reviews.

Based on the above rules, an initial number of 248 unique works were found.

The IC1 included 5 (Almeida et al., 2013; Almeida et al., 2015; Amato et al.,

2016, 2017; Mart́ın Nieto et al., 2019) works. The exclusion criteria EX1, EX2,

EX3 removed 10, 155, and 22 works, respectively. Thus, a total of 66 works

were identified for analysis.

4. Parking Lot Datasets

In this section, we bring forward an analysis on existing parking lot datasets

available in the literature, i.e., PKLot, CNRPark, CNRPark-EXT, and PLds.
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4.1. PKLot Dataset

The first version of the PKLot dataset, containing images of one parking

lot and one camera angle, was released in Almeida et al. (2013). The current

version of the dataset was proposed by Almeida et al. (2015), and contains 12,417

images collected from two different parking lots and three camera angles. The

images were collected using a camera installed on the fourth and fifth floors

of one building from the Federal University of Parana (UFPR) to generate the

UFPR04 and UFPR05 subsets. Both UFPR04 and UFPR05 subsets contain

images from the same parking lot yet collected under different camera angles

and different days. The third subset of parking lot images was taken from

the 10th floor of a building from the Pontifical Catholic University of Parana

(PUCPR) and present a different camera angle and parking lot.

(a) UFPR04: Rainy (b) UFPR05: Sunny (c) PUCPR: Cloudy

(d) UFPR05 with annotations (e) PUCPR with annotations

Figure 1: PKLot image examples. Figures (a), (b), and (c) show examples of different parking

lots and weather conditions. Figures (d) and (e) show examples of images with the location

and status (red for occupied and green for empty) of the parking spaces drawn.

The dataset contains 695,851 manually labeled individual parking spaces,

such that 337,780 (48.6%) are occupied, and 358,071 (51.4%) are empty. Cropped

images of the individual parking spaces are available altogether with the orig-
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inal dataset. All images are 1280 × 720 pixels in size and stored in the JPEG

format. An Extensible Markup Language (XML) file containing four points of

polygons representing each monitored parking space is available for each image.

Additionally, a rotated rectangle representing the same information but with

right angles (making it easier to crop the images) is available. Moreover, each

parking space’ status (empty/occupied) is also available in the XML files.

Most of the parking spaces available in UFPR04 and UFPR05 parking lots

are labeled in the dataset. In contrast, for the PUCPR, only 100 parking spaces

were manually labeled. In comparison, approximately 300 parking spaces are

visible to the human eye in such images. Images were collected under a 5 min

interval during the daytime and labeled according to sunny, rainy, and cloudy

weather. Figure 1 shows image examples from the PKLot dataset for different

parking lots and weather conditions.

4.2. CNRPark and CNRPark-EXT Datasets

The CNRPark dataset, proposed in Amato et al. (2016), contains images

collected from a single parking lot using two different camera angles. Images

were taken considering a 5 min interval during daytime in sunny conditions on

two different days for each camera angle. The dataset contains 12,584 parking

spaces, where 4,181 (33.2%) are free, and 8,403 (66.8%) are occupied. Only the

segmented parking spaces are publicly available, where all images were resized

to 150×150 pixels. In addition to certain parking spaces being angled relative to

the camera, the images were segmented using non-rotated squares, which may

have resulted in the inclusion of undesired areas or exclusion of certain regions

of the parking spaces or cars. Examples of the CNRPark dataset can be seen

in Figure 2.

(a) Camera A (b) Camera B

Figure 2: CNRPark image examples.
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The CNRPark was extended to create the CNRPark-EXT dataset in Am-

ato et al. (2017). The authors used nine cameras to capture images from a

single parking lot at different angles. Images were acquired at a 30 min inter-

val. The cameras are not synchronized with each other. Similar to the PKLot

dataset, the authors separated the images according to the weather. The im-

ages are 1000×750 pixels in size, with a total of 4,278 JPEG parking lot images

available. The dataset also encompasses Comma-separated Values (CSV) files

that indicate the monitored parking spaces’ coordinates, represented by non-

rotated squares (see Figures 3d and 3e). Cropped images of the individual

parking spaces are also available, where the images were resized to 150 × 150

pixels. When considering the images of the original CNRPark altogether with

the CNRPark-EXT datasets, there are 157,549 labeled parking spaces available,

where 69,839 (44,3%) are free, and 87,710 (55,7%) are occupied.

The CNRPark-EXT is considered an extension of the original CNRPark

dataset by the authors, and only Amato et al. (2016) used the CNRPark images

without the CNRPark-EXT dataset. Thus, we have considered CNRPark- EXT

concatenated with the original CNRPark as a single dataset. Figure 3 shows

certain examples of the images contained in the CNRPark-EXT dataset. They

were acquired from different camera angles and under different weather condi-

tions, and have been presented along with certain annotated image examples.

4.3. PLds Dataset

The Parking Lot dataset (PLds) was proposed in Mart́ın Nieto et al. (2019),

and contains 1280×960 pixel images collected from three different camera angles

at the Pittsburgh International Airport parking lot. Images were taken under

several time intervals, ranging from a few seconds to several minutes, i.e., 15 s

to 30 min3. Several climate conditions are available in the dataset, including

snow and rain. Light conditions also include nighttime images.

3We considered the time tag available in the top left corner of the images.
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(a) Camera 3: Rainy (b) Camera 5: Sunny (c) Camera 9: Overcast

(d) Camera 1 with annotations (e) Camera 2 with annotations

Figure 3: CNRPark-EXT image examples. Figures (a), (b), and (c) show examples of different

parking lots and weather conditions. Figures (d) and (e) show examples of images with the

location and status (red for occupied and green for empty) of the parking spaces drawn.

The images are stored in JPEG format and the annotations for each image

has been provided by the authors in XML files. In addition, non-rotated bound-

ing boxes for parked cars are provided (annotations for empty parking spots are

not available). An appealing feature of this dataset is that a subset of PLds

containing 100 images is synchronized between two different camera angles. Im-

age examples of the PLds dataset, including different weather conditions and

annotated images, are shown in Figure 4.

The dataset contains 8,340 images4. In the original dataset, the images

are not labeled according to the climate nor to luminosity conditions. As a

byproduct contribution of this review, we manually classified the images be-

tween day/night and climate conditions (see the summary of the images after

this classification in Section 6.1). We made the list of the images classified ac-

4We did not consider the sequence of images isshk 1955 to isshk 2146, and isshk 2598 to

isshk 2681 since the images seem to repeat.
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(a) Rainy (b) Sunny (c) Snow

(d) PLds image with annotations (e) PLds image with annotations

Figure 4: PLds image examples. Figures (a), (b), and (c) shows examples of different weather

conditions and camera angles. Figures (d) and (e) show examples of images with cars anno-

tations.

cording to climate and luminosity publicly available at github.com/paulorla/

datasets/tree/main/PLds.

5. State of the Art Review

In this section, we present the review of the works regarding computer

vision-based approaches for parking lot management. Specifically, we divide

our analysis and discussion based on the different approaches regarding parking

lot management. In practice, we first discuss methods for the individual park-

ing spaces classification (Section 5.1), followed by approaches for the automatic

parking space detection (Section 5.2), and finally, methods for car detection and

counting (Section 5.3).

5.1. Individual parking spaces classification

The individual parking spot classification task can be modeled as the binary

problem of classifying individual parking spaces based on whether occupied or
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vacant. This problem is exemplified in Figure 5. Each image containing a simple

parking spot is fed to a classifier to define its status as vacant, as exemplified in

Figure 5a, or occupied, as in Figure 5b. The methods were split into two major

groups: methods based on Feature Extraction (Section 5.1.1) and DL methods

(Section 5.1.2).

(a) Vacant (b) Occupied

Figure 5: Individual parking spaces classification example (images from CNRPark-EXT).

5.1.1. Feature Extraction-based Methods

The training phase of the methods based on feature extraction follows the

scheme depicted in Figure 6. As an input image, we consider the entire image of

the parking lot, acquired via a camera. The image pre-processing step is used

to segment the complete image in individual parking spaces. Some authors

may also use techniques to make the image more suitable for feature extrac-

tion during the image pre-processing step, such as image scaling and histogram

equalization. One or more feature vectors may be extracted from the images in

the feature extraction step, such as the Local Phase Quantization (LPQ) (Ojan-

sivu & Heikkilä, 2008), the Local Binary Patterns (LBP) (Ojala & Pietikäinen,

1999), or the Histogram of Oriented Gradients (HOG) (Dalal & Triggs, 2005).

A classifier, such as an Support Vector Machine (SVM) or Multilayer Per-

ceptron (MLP), is then used in the model training step. The feature vectors

extracted from the images, and the ground-truth of each image (indicating the

correct label of each parking space), are fed to train the classifier during this

step. Thus, this final step results in the creation of the trained model, which

can be used to classify unseen images.

The use of texture-based features, such as LBP, LPQ, and Quaternionic

Local Ranking Binary Pattern (QLRBP) (Lan et al., 2016), is common when
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parking lot

images

ground-

truth

image

pre-processing
feature

extraction

classifier

training
trained

model

fv0
fv1
fv2
. . .

Sample 0 label
Sample 1 label
Sample 2 label
. . .

Figure 6: Feature Extraction based methods high-level scheme. In the illustration, fvi refers

to the feature vector extracted from the sample (parking space image) i.

dealing with the individual parking spaces classification problem. In Almeida

et al. (2013) is proposed the use of LPQ and LBP textures as feature vectors

and SVMs as classifiers. In this work, the first version of the PKLot dataset was

introduced. The work and the dataset were extended in Almeida et al. (2015),

where the entire PKLot dataset was released. Ensembles of SVMs trained using

LPQ/LBP as features were used for classification.

Owing to the possible changes caused by luminosity, camera shifts, and

parking lot area changes, the authors in Almeida et al. (2018, 2020) considered

the individual parking spaces classification from the perspective of a concept

drift. Therefore, the authors in Almeida et al. (2018) considered their custom

framework for dealing with concept drifts (called Dynse) and employed LBP

features. For the experiments, the PKLot dataset was used. The parking lot

images are presented day by day in an ordered fashion. Therefore, all current-

day instances must be classified according to 100 randomly sampled instances

(images) from the previous day used for training. In Almeida et al. (2020), the

authors assessed several datasets, including the PKLot, to search for concept

drifts’ evidence. Using the same features and data split of Almeida et al. (2018),

the authors showed that a static or näıve classifier yielded results that are worse

than approaches tailored to address concept drifts in the PKLot dataset.

In Suwignyo et al. (2018) the QLRBP was employed as texture features from

the color images of the parking spaces. The authors use k-nearest neighbors

(k-NN) and SVMs as classifiers. For the tests, 6,000 individual parking spaces
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of the UFPR04 subset were used. Hammoudi et al. (2018a,b, 2019, 2020) also

proposed the use of LBP-based features to classify parking lot images. In these

four quite similar works, the authors used a k-NN classifier and small image

subsets (3,000 to 6,000 segmented images) of the PKLot for the tests. However,

the manner in which the authors grouped the images into subsets is not clear.

Further, the authors in Hammoudi et al. (2019) also included SVM classifiers

for the tests and tested the changes within parking lots employing a subset of

the PKLot and CNRPark-EXT to conduct the tests.

In Dizon et al. (2017) LBP and HOG were used as features descriptors for

a linear SVM classifier. The authors also employed a background subtraction

approach with Adaptive Median Filter (AMF). The results reported in this

study indicated that a classifier trained using only the HOG exhibited good

results in the UFPR04 subset from PKLot. Thike & Thein (2019) used Uniform

Local Binary Pattern (ULBP) in a complemented image combined with Mean

Squared Error (MSE), which is used to classify a parking space based on a

threshold applied to the MSE output. The authors tested 1,000 images from the

PKLot dataset from different weathers (it is unclear how images were selected).

In the work of Dornaika et al. (2019), SVM and k-NN classifiers are trained

with textural features extracted from different scales of the images. The authors

used subsets of the PKLot and CNRPark datasets. In addition, a custom-built

dataset, including images from the CNRPark and ImageNet (Deng et al., 2009)

was used in the tests. Irfan et al. (2020) proposed Gray-Level Co-Occurrence

Matrixes (GLCM) as texture features. The test images are classified as occupied

or empty according to their similarity to the train images. The authors used only

60 images from the PUCPR subset of the PKLot for the tests. A combination

of color and texture features is employed in Mago & Kumar (2020). In addition,

the authors put to the test Neural Networks, SVMs, k-NNs, and Näıve Bayes

classifiers. The authors employed the PKLot for the tests, but no details about

the testing procedure were given.

The use of the pixel values under different color spaces is another approach

commonly employed by authors, such as Baroffio et al. (2015); Ahrnbom et al.
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(2016); Hadi & George (2019). Baroffio et al. (2015) compute the histograms in

Hue, Saturation and Value (HSV) color space directly in smart cameras. The

histograms are sent to a central, which uses it as features for an SVM classifier

with a linear kernel (also seen in Bondi et al. (2015), from the same authors).

The PKLot dataset was used in the tests. The authors claim that energy and

bandwidth can be saved by pre-processing the images inside the cameras and

sending only the feature vectors or compressed images to a central. Ahrnbom

et al. (2016) tested SVM and Logistic Regression (LR) classifiers trained using

feature channels, i.e., the individual color channels of an image. Tests were

conducted using the PKLot dataset.

After pre-processing the images using Discrete Wavelet Transform (DWT),

grayscale conversion, and binary thresholding, the authors in Vı́tek & Melničuk

(2018) employed a simple image average as their feature descriptor. A threshold

is applied in the feature descriptor for classification. PKLot and CNRPark-EXT

datasets were used for the tests. In Hadi & George (2019), the chromatic gra-

dient analysis of the images is used to classify the individual parking spaces.

In addition, the authors proposed an adaptive weather analysis technique to

improve the results. Moreover, the classification of parking was based on a

threshold, and the PUCPR subset of the PKLot was used to conduct the tests.

However, details regarding the test procedure and quantitative results are ab-

sent.

Amato et al. (2019a) proposed an approach based on background modeling

and the Canny edge detector. The approach was developed to be deployed

on smart cameras. The CNRPark-EXT dataset was used during the tests.

Raj et al. (2019) also employed the Canny Edge detector but combined with a

transformation to the LUV color space to generate the features.A random forest

classifier is used for classification.

Bag of features representations of the features is employed in Varghese &

Sreelekha (2020) and Mora et al. (2018). Varghese & Sreelekha (2020) proposed

an approach that uses an SVM classifier and a bag of features representation.

This representation combines the Speeded Up Robust Features (SURF) (Bay
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et al., 2008) descriptor and color features to classify the individual parking

spaces of the PKLot and CNRPark-EXT datasets. Mora et al. (2018) also pro-

posed an approach using a bag of features for classifying the individual parking

spaces. The authors use the SIFT (Lowe, 1999) algorithm to extract the fea-

tures and use an SVM with a radial basis kernel as a classifier. The authors

evaluated their method with the PKLot, considering camera angle, climate, and

parking lot changes. The authors also propose a DL-based approach, further

described in Section 5.1.2.

The HOG descriptor’s used as features and the SVM classifier is explored by

Bohush et al. (2018) and by Vı́tek & Melničuk (2018). In Bohush et al. (2018),

a subset of the PKLot dataset containing 2,135 images is used for the tests.

However, the authors do not make clear how the images were selected. The

authors also propose a segmentation method based on classical image process-

ing methods, further described in Section 5.2. In Vı́tek & Melničuk (2018), a

lightweight approach developed to be deployed on Smart Cameras is proposed.

Information about the parking angle is concatenated with the HOG feature vec-

tor to improve the results. Tests were made using the PKLot and two private

datasets.

5.1.2. Deep Learning Based Methods

DL-based methods follow a workflow similar to feature-based approaches,

except with the feature extraction and classifier training parts being joined

together in a representation learning block. Here, feature engineering is not

employed since DL models aim to learn the representation of the parking spaces.

Also, the classifier is generally a part of the DL model. This workflow can be

seen in Figure 7.

The image-processing step follows the same concept described for feature-

based methods (Section 5.1.1). It may also include data augmentation ap-

proaches, aiming to increase the number of samples and their variability. The

representation learning in this problem can be divided into (i) transfer learning

of well-known convolutional networks for classification, such as LeNet (LeCun
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Figure 7: DL-based methods high level scheme.

et al., 1998) and AlexNet (Krizhevsky et al., 2012); (ii) the proposal of a custom

convolutional model, generally based on these well-known networks; and (iii) the

use of DL networks for object detection or segmentation, such as Faster-RCNN

(Ren et al., 2015) and Mask R-CNN (He et al., 2017). It is also noteworthy

that in (Acharya et al., 2018), authors used the SVM classifier to replace the

softmax function of neural networks.

Transfer learning (Yosinski et al., 2014), where a network is first trained in

a generic dataset and then fine-tuned in a parking lot dataset, is a common

approach. LeNet and AlexNet networks are popular due to their compactness.

Both are used in Nyambal & Klein (2017) to classify parking lots. The authors

use the PKLot and a private dataset, although it is unclear how the tests were

performed for the PKLot. The usage of AlexNet is also seen in Di Mauro et al.

(2016). It focuses on optimizing a model with only a few samples, either PKLot

or a private dataset.

The authors in Ding & Yang (2019) proposed to add residual blocks in

the Yolov3 (Redmon & Farhadi, 2018) to extract more granular features. The

modified network is used to classify the parking lot’s images. Vehicle images

from the PASCAL VOC (Everingham et al., 2010) and COCO (Lin et al., 2014)

datasets are used to train this network. Then, it is fine-tuned using some images

of the PUCPR subset of the PKLot. Images of PUCPR were also used during

the tests. The authors do not clarify how the images were split between the

training and testing sets.
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Many works proposed lightweight models based on well-known convolutional

networks, such as LeNet, AlexNet, and VGGNet (Simonyan & Zisserman, 2014).

These custom models are primarily convolutional networks similar to the original

networks but with fewer layers, i.e., shallow networks. These models are usually

developed for low-power and restricted processing capabilities devices, such as

smart cameras. Works such as Amato et al. (2016, 2017); Polprasert et al.

(2019); Valipour et al. (2016); Acharya et al. (2018); Bura et al. (2018); Merzoug

et al. (2019); Rahman et al. (2020); Manjur Kolhar (2021) can be grouped in

these lightweight versions, where most authors use the PKLot dataset for the

tests. Private datasets were included in Acharya et al. (2018); Polprasert et al.

(2019); Merzoug et al. (2019); Bura et al. (2018).

The authors in Amato et al. (2016) proposed the mAlexNet, based on the

AlexNet network, and executed experiments in CNRPark. Amato et al. (2017)

used the extended version of the dataset, the CNRPark-EXT. Their mAlexNet

can cope with the parking lot and camera angle variations with tiny accuracy

drops in many scenarios (the authors also included some tests in the PKLot).

Similarly, Amato et al. (2019a) employed the mAlexNet to classify the parking

spaces using smart-cameras and used the CNRPark-EXT dataset for the tests.

Rahman et al. (2020) also employed mAlexNet but changed the kernel size of the

first layer. No significant difference in the final results was found. Nguyen et al.

(2021) evaluated the mAlexNet, AlexNet, and MobileNet (Howard et al., 2017)

networks with a width multiplier of 0.5 (which presented better performance)

using Camera A of the CNRPark and a private dataset. They aimed an approach

for low-cost hardware, but the processing cost (and time) after image capture

was left unclear.

Bura et al. (2018) also proposed a lightweight version of the AlexNet network

in their work, wherein they used subsets of the PKLot, CNRPark-EXT, and a

private dataset to conduct the tests. Nevertheless, information regarding the

availability of the private dataset and the manner in which the images were

selected for the subsets is absent.

A lighter version of the AlexNet network is also proposed in Ali & Mohamed
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(2021). The authors removed one of the convolutional layers of the original

network, together with some minor modifications. The PKLot dataset was used

for the tests.

The authors in Valipour et al. (2016) trained a VGGNet-F (Simonyan &

Zisserman, 2014) model with the ImageNet (Deng et al., 2009) dataset and

fine-tuned it with PKLot images, which resulted in better generalization capa-

bilities (considering camera and parking lot changes) when compared with the

feature extraction methods used in Almeida et al. (2015). Acharya et al. (2018)

proposed an approach wherein a VGGNet-F model is trained for feature ex-

traction and inputs features to an SVM classifier. The authors employed 5-fold

cross-validation in the PKLot images during the test phase. Zhang et al. (2019)

proposed a modified version of the VGG16 network and a custom network to

classify whether the parking spaces are empty or occupied. The authors also

proposed applying image transformations to get a top view of the parking lots

and employed the PKlot dataset during the tests.

The original VGG16 network is used by Mora et al. (2018) and Dhuri et al.

(2021). Mora et al. (2018) employed the PKLot in the tests, considering camera

angles, climate conditions, and parking lot changes. The authors also propose

a method based on Bag of Features, discussed in Section 5.1.1. In Dhuri et al.

(2021) the PKLot and CNRPark-EXT datasets are used to test scenarios con-

taining parking lot changes. The authors used a small custom dataset containing

1,000 cropped images of individual parking spaces as well.

The MobileNetV2 (Sandler et al., 2018) was used to create a lightweight

network for parking spaces classification in Merzoug et al. (2019). The authors

employed the PKLot, CNRPark-EXT, and a private dataset during the tests.

However, the authors’ testing procedure is not clear. The results were reported

as the number of detected vehicles without any ground truth for comparison. A

shallower version of the ResNet50 (He et al., 2016) residual network is used to

classify the individual parking spaces in Gregor et al. (2019). The authors used

the PKLot and a private dataset for the tests. The training/testing instances

were split using stratified sampling. The original ResNet50 network is employed
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in Baktir & Bolat (2020). They employed small subsets of the PKLot and

CNRPark-EXT datasets for the tests.

In Chen et al. (2020), a lightweight version of the Yolov3 network that uses

the MobileNetV2 extraction layer is employed for classification. The authors

consider that the images may come from a video stream source. Thus the

parking spot is considered occupied if the bounding box of a car detected by

the network overlaps a parking space during a time window of n images. The

CNRPark-EXT and a private dataset were used during the tests.

Custom models were proposed by Di Mauro et al. (2016); Jensen et al.

(2017); Di Mauro et al. (2017); Thomas & Bhatt (2018); Nurullayev & Lee

(2019); Shah et al. (2020). A fine-tuned AlexNet network is used in Di Mauro

et al. (2016) and Di Mauro et al. (2017), using images from the same parking lot

and camera angle (from PKLot and a private dataset). A pseudo-label model for

semi-supervised learning is employed in Di Mauro et al. (2016) to compare with

AlexNet, beating the former accuracy. Jensen et al. (2017) proposed a model

with a fixed input size of 40x40 pixels in the PKLot dataset using the original

test protocol proposed for the PKLot. In Nurullayev & Lee (2019) is proposed a

Convolutional Neural Network (CNN)-based method using dilated convolutions

that achieved promising results, which skips pixels in the convolution kernel.

According to the authors, it increases the classifier’s ability to learn the global

context of the images. Thomas & Bhatt (2018) also used a custom model, but

they did not specify its structure or parameters.

The authors in Shah et al. (2020) proposed a custom network called Fully-

Multitask Convolutional Neural Network. The proposed approach depends on

the Mask R-CNN for the extraction of masked regions. The authors claim that

the proposed approach is capable of counting and automatically detecting the

parking spaces. However, no details about these features nor results are given

(thus, this work is not considered in Sections 5.2 and 5.3). For the individual

parking spaces classification, the authors report quantitative results only for the

training and validation phases in the PKLot dataset (results for the test phase

are given in a plot according to the training epoch, making its analysis difficult).
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DL models for detection and segmentation were employed in Mart́ın Nieto

et al. (2019) and Sairam et al. (2020) to aid vehicle detection. Mart́ın Nieto

et al. (2019) used Faster R-CNN (Ren et al., 2015) and multiple cameras from

their proposed PLds dataset. They applied a homographic transformation and

perspective correction to transform the plane of each camera to a common plane

and correct the positions of the detected cars, respectively. Thereafter, the cars

detected by the different cameras were fused to classify the parking spots. The

Faster R-CNN was also used in Khan et al. (2019), where the authors focused

on tests involving different camera angles and parking lot changes using the

PKLot dataset.

More recently, Sairam et al. (2020) proposed a method based on the Mask

R-CNN (He et al., 2017) network. It was used to extract individual vehicles

and to detect the proportion of the parking space the vehicles are occupying

to differentiate between cars and two-wheel vehicles. The Mask R-CNN is also

used in Agrawal & Urolagin (2020). The network is employed to detect the

individual parking spaces (details in Section 5.2) and classify the spots between

occupied and empty. The authors trained their model using the COCO (Lin

et al., 2014), and COWC datasets (Mundhenk et al., 2016), and tested using

the PKLot dataset.

In Mettupally & Menon (2019), the Mask R-CNN network is trained to clas-

sify the individual parking spaces. The authors included the images’ timestamps

and orientation to improve the classification results and used a custom subset

of the PKLot dataset containing 6,100 segmented images for the tests.

Generative Adversarial Networks (GANs) (Isola et al., 2017) are employed

in Li et al. (2017) to detect occupied automatically and vacant parking spaces

using a team of drones. The GAN is trained using the labeled images of the

PKLot dataset, wherein the division between and training and testing subsets

was carried out according to the original PKLot protocol. In the test phase, the

images rotated at a random angle between [−10,+10] degrees were included to

simulate the data obtained from the drones.
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5.2. Automatic Parking Space Detection

The automatic parking space detection task focuses on automatically de-

tecting the coordinates of each parking space, e.g., obtaining a bounding box,

regardless of its status (occupied or empty). This task is exemplified in Figure 8,

where the yellow polygons (that define each parking space) coordinates should

be automatically defined. It is a challenging task since parking spaces are simi-

lar to roads, i.e., how can a model discriminate between a parking space and a

road segment? The presence of cars may hinder correct detection, especially for

methods that rely on the painted demarcations in the parking lots that delimits

the parking spaces.

Figure 8: Parking spaces locations example(image from CNRPark-EXT).

An automatic approach for detecting parking spaces using classical image

processing methods is proposed in Bohush et al. (2018). The approach uses

perspective transformation in the entire input image. It makes the parking

spaces rectangular and parallel to the axes (the approach may not be suitable

for parking areas where the cars park in angled parking spaces). Otsu’s bi-

narization and morphological operations are used for parking space detection,

where painted lines must delimit the parking spaces. The authors did not make

clear the results achieved by their proposed method. Zhang et al. (2019) also

proposed an approach for automatic parking space detection using perspective

transformation and classical image processing approaches, such as the Canny

and Gaussian edge detectors. The authors did not present quantitative results.

Further, the authors in Vı́tek & Melničuk (2018) employed a grid-based

approach, where for each block of the grid, HOG features are extracted. There-
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after, a classifier is used to classify each block as a car or street. Blocks classified

as cars are merged into parking spaces according to their neighbor blocks. Ad-

jacent blocks are classified as cars that are considered as belonging to the same

parking spot. The method seems to detect cars and not necessarily parking

spaces, e.g., a car may be just passing by the parking lot. The authors only

report some images with qualitative results.

By assuming that the car park area is rectangular (forming a parking grid),

the authors in Mart́ın Nieto et al. (2019) can automatically define each parking

spot. Given an aerial image of the parking lot (computed using a homography

matrix and a regular image collected by a camera), the corners of the parking

grid, and the number of rows and columns, the method can automatically define

each parking space of the parking grid.

The GAN-based approach by Li et al. (2017) generates parking spaces from

the PKLot dataset using the manually-made masks to train the network. Al-

though parking spaces are segmented, only an evaluation of individual park-

ing spaces is made. Evaluation of the automatic detection was not executed.

Agrawal & Urolagin (2020) proposed using the Mask R-CNN to identify the po-

sitions where the cars stay parked. The authors use this information to extract

the parking space positions by assuming that areas where cars stay parked for

long periods, can be considered parking spaces. Unfortunately, the authors do

not describe the details of the parking space detection approach. Also, they do

not give quantitative results.

The authors in Padmasiri et al. (2020) used the ResNet (He et al., 2016)

and Faster-RCNN networks to detect the parking spaces in the PKLot dataset

automatically. The authors reported results using the Average Precision (AP)

metric. However, images from the same parking lot were used for both training

and testing, which may lead to biased results, as discussed in Section 6.3.

A two-step automatic parking space detection approach is proposed by (Patel

& Meduri, 2020). First, an object detector, Faster R-CNN (same work with this

detector is found in Kirtibhai Patel & Meduri (2020)) or YOLOv4(Bochkovskiy

et al., 2020), is employed for car detection (trained in the CARPK dataset (Hsieh
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et al., 2017)). Then, the bounding boxes detected are used for car tracking. For

car tracking, the idea is to find bounding boxes with a stationary car for some

time/frames. They evaluated the proposed two-step approach using only three

busy days from CNRPark-EXT for each weather condition, introducing bias in

the tests. A parking space is marked if a car is parked for at least one hour and

a half.

5.3. Car Detection and Counting

In this Section, methods that aim to detect and count individual cars in

the images are presented. For car detection, bounding boxes or segmentation

masks may be generated and evaluated for each car, as exemplified in Figure

9. In contrast, we have a regression problem for the car counting task. In this

case, we are only interested in the discrete final number of cars present in the

image (seven in the example in Figure 9). Like in the individual parking spaces

classification problem, an image from the parking lot is the input. Different

from it, no pre-processing to extract the individual parking spaces is applied.

Proposed works aim to achieve a high car detection precision and reduce the

difference between the prediction and the actual number of cars in the images.

Figure 9: Car Detection example. Image containing 7 cars (image from PKLot).

Common datasets used to evaluate methods that deal with this task include

the PUCPR+ (an extension of the PUCPR subset from the PKLot) (Hsieh

et al., 2017; Li et al., 2019; Gabzdyl, 2020), the original PUCPR subset of

the PKLot (Laradji et al., 2018), the complete PKLot dataset (Varghese &
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Sreelekha, 2020), the CARPK dataset (Hsieh et al., 2017; Gabzdyl, 2020), and

drone-acquired image datasets (Hsieh et al., 2017; Li et al., 2019).

Most authors use DL-based approaches for car detection. They also count

the number of detected instances (e.g., bounding boxes) to obtain the final

prediction for the number of cars in the images (Hsieh et al., 2017; Laradji

et al., 2018; Li et al., 2019; Amato et al., 2019a,b). The authors in Hsieh et al.

(2017) aimed to detect and count aerial images from drones but used 5-fold

cross-validation (which may overestimate the reported results). In contrast, Li

et al. (2019) generated the anchors for the training phase adaptively.

In Laradji et al. (2018) a new loss function with a convolutional model for car

detection and counting is proposed. They also used annotations that roughly

contain the objects of interest, which are, according to the authors, easier to

label manually. The Yolov3 was used in Amato et al. (2019b) to count the

number of cars in the images. The authors used the PUCPR+ and CARPK

datasets in the tests using the test protocols proposed by Hsieh et al. (2017).

Similarly, Amato et al. (2019a) (also in Ciampi et al. (2018)) used the Mask

R-CNN for counting by density in a CNRPark-EXT counting version called

Counting CNRPark-EXT. Since the original dataset does not have car masks,

they initially trained Mask R-CNN to correctly generate mask predictions of cars

(using about 10% of the training subset). Then, they retrained Mask R-CNN

with the generated masks (and some cases that were manually corrected).

The authors in Varghese & Sreelekha (2020) and Sharma & Pandey (2021)

proposed detection-only approaches. In the work of Varghese & Sreelekha (2020)

a background subtraction-based method is used for hypothesis generation of

the possible areas where cars park. A shadow model is employed to reduce

the amount of noise. Then a classifier is used to verify if the segmented areas

contain cars. A custom CNN is proposed in Sharma & Pandey (2021). The

authors claim that the custom network is lightweight and can be processed in a

regular CPU.

The approaches discussed in Gabzdyl (2020); Stahl et al. (2018); Dobeš et al.

(2020) count the number of objects in the images globally, without employing a
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car detection step. Gabzdyl (2020) proposed a tree-like CNN-based car counting

approach. The first ten layers from a VGG16 network are used for feature

extraction. The following convolutional layers are used to generate a density

prediction, then used to count cars. Point-wise and dilated convolutions were

employed in this part.

The authors in Stahl et al. (2018) proposed an approach where the image

is divided into several patches and fed to a modified R-FCN (Dai et al., 2016)

network. The method includes an inclusion-exclusion layer to detect objects

counted more than once since an object may appear in more than one patch. The

approach only needs the number of objects in the training images for the training

phase. It was evaluated under several object counting benchmarks, including

the PUCPR+ dataset. A modified version of the Stacked Hourglass Network

(Newell et al., 2016) is used in Dobeš et al. (2020). The modified network can

identify the best scale of the input images to count the cars. The network input

is a pyramid of gradually downsampled images and, for the training phase, the

network needs labels in the form of point annotations. The authors used the

PUCPR+ altogether with other car counting benchmarks.

6. Discussion

In this section, the datasets reviewed and works that used them are sum-

marized and discussed. Figure 10a shows that most works (73%) focus on the

individual parking spaces classification only. As one can observe in Figure 10b,

the PKLot dataset is the most popular dataset when considering the surveyed

works, being used in 88% (70% + 18%) of the works, while the CNRPark-EXT

and the PLDs datasets are used in 29% (11% + 18%) and 1% of the works,

respectively. The difference between the usage ratios can be partially explained

by the publication dates of these datasets, as PKLot, CNRPark-EXT, and PLds

datasets were released in 2015, 2017, and 2019, respectively.

In Figure 10b, it is also possible to notice that only 18% of the surveyed works

use more than one publicly available dataset for the tests. When comparing
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Parking spot classification (73%)

Car detection/counting (11%)

Parking space detection (4%)

Classification + parking space detection (9%)

Classification + car detection/counting (3%)

(a) Main tasks considered in the surveyed works.

PKLot (70%)

PKLot + CNRPark-EXT (18%)

CNRPark-EXT (11%)

PLds (1%)

(b) Overall datasets usage.

Feature extraction (35%)

Deep Learning (61%)

Feature extraction + DL (4%)

(c) Feature extraction and Deep Learning usage.

Figure 10: General findings considering all surveyed works.

the proportion of approaches based on Feature Extraction and Deep Learning

shown in Figure 10c, it is possible to check that DL-based approaches are more

prevalent in general.

An overview of our findings and recommendations regarding the surveyed

datasets and research gaps for the individual parking space classification, park-

ing space detection, and car detection/counting tasks are the following:

1. The current publicly available datasets lack some features. Future datasets

should be robust as defined in this work and may contain:

• Video sequences;

• Images in nighttime and snow conditions;

• Labels, other than the parking spaces, such as segmentation masks

for the objects (e.g., cars, obstacles, pedestrians).
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2. There is a lack of standard protocols for testing approaches:

• New protocols should include the data split procedure, evaluation

metrics, and specific challenges (e.g., generalization problems, auto-

matic parking space detection problems);

• The protocols should take into consideration realistic scenarios.

3. Many of the surveyed works are not reproducible:

• Authors should use publicly available datasets;

• Standard test protocols, as suggested in Item 2, should be used.

4. The individual parking spaces classification under camera or parking lot

change scenarios is an open problem:

• Authors should consider a multiple datasets perspective, for instance,

training in the PKLot dataset and testing the CNRPark-EXT.

5. The automatic parking space detection is an open problem:

• Quantitative metrics must be used to report the results;

• Standard test protocols should be created (as in Item 2);

• Authors should consider multiple datasets (as in Item 4).

These findings are discussed more deeply in Sections 6.1, 6.2, 6.3, and 6.4.

In Section 6.1, we summarize and discuss the surveyed datasets. In Sections

6.2, 6.3, and 6.4, we present, compare, and discuss the authors’ results in the

individual parking spaces classification, parking space detection, and car de-

tection/counting tasks, respectively. These discussions are used to provide a

thoughtful understanding of the vision-based parking lot management problems

that already have a factual basis for solutions and open problems that require

more research and attention from the scientific community.

6.1. Parking Lot Datasets

Table 1 shows the main features of the datasets discussed in this paper.

Images are classified according to the climate condition, regardless if they were
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acquired under day or nighttime. For the overcast climate condition during

nighttime, we considered the images right after rains when the floor is visibly

wet and may contain water puddles.

Table 1: Main features of the datasets

PKLot – 1280 × 720 pixels, 12,417 daytime images

Camera/

Park. Lot

# Of Days (# Of Images) spaces/

image

Labeled Parking Spaces

Clear Sky Overcast Rain Snow Occupied Empty Total

UFPR04 20 (2,098) 15 (1,408) 14 (285) - 28 46,125 (43.6%) 59,718 (56.4%) 105,843

UFPR05 25 (2,500) 19 (1,426) 8 (226) - 45 97,426 (58.8%) 68,359 (41.2%) 165,785

PUCPR 24 (2,315) 11 (1,328) 8 (831) - 100 194,229 (45.8%) 229,994 (54.2%) 424,223

Total 69 (6,913) 45 (4,162) 30 (1,342) - - 337,780 (48.6%) 358,071 (51.4%) 695,851

CNRPark-EXT – 1000 × 750 pixels, 4,278 daytime images

Camera A 2 ( - ) 0 ( - ) 0 ( - ) 3,621 (58.7%) 2,550 (41.3%) 6,171

Camera B 2 ( - ) 0 ( - ) 0 ( - ) 4,781 (74.6%) 1,632 (25.4%) 6,413

Camera 1 10 (198) 7 (137) 6 (124) - 35 9,308 (59.2%) 6,407 (40.8%) 15,715

Camera 2 10 (201) 7 (139) 6 (124) - 10 2,641 (64.5%) 1,454 (35.5%) 4,095

Camera 3 10 (198) 7 (138) 6 (124) - 22 5,370 (56.7%) 4,101 (43.3%) 9,471

Camera 4 10 (197) 7 (137) 6 (123) - 38 9,357 (56.4%) 7,219 (43.6%) 16,576

Camera 5 10 (204) 7 (143) 6 (127) - 47 11,256 (54.0%) 9,582 (46.0%) 20,838

Camera 6 10 (211) 7 (154) 6 (130) - 45 10,646 (52.9%) 9,462 (47.1%) 20,108

Camera 7 10 (211) 7 (154) 6 (130) - 47 10,519 (49.8%) 10,595 (50.2%) 21,114

Camera 8 10 (206) 7 (151) 6 (127) - 55 12,847 (53.3%) 11,237 (46.7%) 24,084

Camera 9 10 (205) 7 (154) 6 (131) - 29 7,363 (56.8%) 5,601 (43.2%) 12,964

Total1 12 (1,831) 7 (1,307) 6 (1,140) - - 87,709 (55.7%) 69,840 (44.3%) 157,549

PLds – 1280 × 960 pixels, 5,215 daytime images (62.5%), 3,125 (37.5%) nighttime images

isshk 45 (2,280) 22 (635) 21 (428) 8 (321) - 32,254 (100%) - 32,254

vxusd/vmlix246 (2,077) 37 (1,018) 27 (485) 2 (96) - 26,719 (100%) - 26,719

qridr 18 (435) 15 (513) 6 (52) - - - - -

Total1 69 (4,792) 47(2,166) 34 (965) 10 (417) - 58,973 (100%) - 58,973

1 Different cameras can collect images in the same days, thus the total number of days may not be equal to the

sum of the days for each camera; 2 We detected that the vxusd and vmlix refer to the same camera angle.

Table 1 indicates that the PKLot is the dataset with the most parking lot

images (12,417) and individual parking spaces samples available (695,851). An-

other interesting feature of the PKLot, unavailable in other surveyed bench-

marks, is having more than one parking lot (i.e., PUCPR and UFPR). Regard-

ing the CNRPark-EXT, one of the most appealing features is its vast number

of camera angles available, which can be used in camera angle change tests. In

Table 1, it is also possible to check that both the PKLot and CNRPark-EXT

datasets are reasonably well balanced between the occupied and empty classes.

When considering the PLds dataset, we observe that it is the only surveyed

dataset that contains images collected in snow and nighttime conditions. An-

other attractive feature of the PLds dataset is the presence of images synchro-
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nized between different cameras. However, only 100 synchronized images are

available. The main drawback of the PLds dataset is the absence of annotated

empty parking spaces.

Although all the datasets combined give 25,035 parking lot images and

912,373 individual parking spaces images, only 417 (1.7%) images represent

snow conditions, and 3,125 (12%) images were collected under nighttime. Both

snow and nighttime condition images are from the PLDs dataset and were col-

lected in a single parking lot. None of the surveyed datasets contained video

sequences. The only labels available were the climate condition, the positions of

the parking spaces and their statuses (for the PKLot and CNRPark-Ext), and

the parked cars bounding boxes (for the PLds).

These findings indicate that new datasets are needed, mainly containing

conditions such as nighttime and snow climate. These datasets may also contain

video sequences and labels regarding objects other than the parking spaces, such

as segmentation masks for the objects in the scene (e.g., vehicles, pedestrians,

obstacles). These datasets could help create more general methods for the tasks

described in this paper and other tasks, such as object tracking.

When considering the test protocols, the authors of all discussed datasets

suggested that the same day’s images may belong to just one set - training or

test set. This rule avoids pictures related to the same car parked in the same

space for hours to appear in the training and the testing sets simultaneously,

creating trivial and unrealistic problems – See an example in Figure 11. Almeida

et al. (2015) suggest that the PKLot dataset must be split using 50% of the days

for training and the other 50% for tests. Amato et al. (2017) gives their train

and test images for the CNRPark-EXT dataset, containing 74.8% and 25.2% of

the images, respectively. The authors of the PLds dataset (Mart́ın Nieto et al.,

2019) also made available the images already partitioned between the train and

test sets, containing 76% and 24% of the images, respectively.

In Almeida et al. (2015) and Amato et al. (2017), the test protocols include

camera angle and parking lot changes that may represent more challenging and

realistic situations. The general ideas of the tests suggested by the authors of
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(a) 17:12 (b) 17:32 (c) 17:52 (d) 18:12 (e) 18:32

Figure 11: Car parked for several minutes in a parking space (PKLot).

the datasets are next described. These scenarios (single parking lot, camera

angle change, and parking lot change) are considered in Section 6.2. There, the

surveyed techniques regarding the individual parking spot classification problem

are compared.

• Single parking lot: images for both training and test sets come from the

same parking lot and are collected using the same camera angle;

• Camera angle change: images must be from the same parking lot, but

the train set must contain images collected using a different camera angle

from the test set’s images;

• Parking lot change: the test set must contain images from a parking lot

different from the train set.

6.2. Individual Parking Spot Classification

Table 2 shows a summary of the individual parking spot classification meth-

ods based on feature extraction approaches. As for DL-based methods, a sum-

mary can be seen in Table 3. Works that do not clearly describe the test details

are marked as not reproducible in these tables. This marking indicates that

not enough details are given for other researchers to reproduce the experiments.

Some of the main reasons encountered in the works that led us not to con-

sider the results reproducible include the use of images in private datasets, use

of not well-described subsets of the public datasets, and incomplete evaluation

protocols, e.g., the protocol used to split the dataset between train and test is

not given. Even though all surveyed methods use at least one public dataset,

surprisingly, 56% of them were deemed as not reproducible.
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Different authors may use distinct metrics to assess their methods, such

as accuracy, Area Under the ROC Curve (AUC-ROC), and Area Under the

Precision-Recall Curve (AUC-PR). This pattern imposed a challenge to sum-

marize the methods, and we chose to show all results in terms of accuracy rates.

The accuracy may not be the most suitable metric to assess the parking spaces

classification task, e.g., due to class imbalances in the test sets. Nevertheless,

we use it to show the results since most authors reported their results using

this metric. On the other hand, for specific scenarios in which accuracy was not

used, we report the results following the metric adopted in the original studies

depicted in Tables 2 and 3. Authors that did not present quantitative results

in their works are not discussed in this section.

The results in Tables 2 and 3 are reported according to the authors’ tests,

including scenarios where the images from the training and test subsets come

from the same parking lot and camera angle, scenarios containing camera angle

changes, and scenarios when the train and test parking lots are different – see

Section 6.1 for more details. For most works, we reported a range in the results

in the format x − y, where x is the worst result achieved in a given scenario,

and y is the best result. For instance, in the Single Parking lot test, if a method

achieved 88%, 97%, and 93% of accuracy when tested in the UFPR04, UFPR05,

and PUCPR PKLot’s subsets, respectively, the reported result is 88 − 97%. It

is worth mentioning that the results reported in Tables 2 and 3 are not directly

comparable since the authors may vary the datasets and experimental protocols.

Notice in Tables 2 and 3 that many authors, such as Almeida et al. (2013);

Di Mauro et al. (2016); Suwignyo et al. (2018); Dornaika et al. (2019); Vı́tek

& Melničuk (2018); Acharya et al. (2018); Polprasert et al. (2019); Farag et al.

(2020), may have used test protocols that led to biased results. Since a car may

remain parked in the same spot in a parking lot for long periods, it is expected

that the same car to appear in several consecutive images. Any test approach

that, for instance, randomly splits the data for training and testing may include

images of the same car in both sets (training and testing) acquired at different

times, leading to a trivial and unrealistic problem. Figure 11 shows an example
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Table 2: Feature extraction based individual parking spaces classification approaches overview.

Accuracy (%)

Authors, year Classifier and Features
Repro-

ducible

Single

Parking Lot

Angle

Change

Parking Lot

Change
Datasets Used

Almeida et al. (2013)
Ensembles of SVM and

LBP/LPQ
yes 99.8%1 - - PKLot (UFPR04)

Almeida et al. (2015)
Ensembles of SVM and

LBP/LPQ
yes 99.3 - 99.6% 85.8 - 88.3% 84.2 - 89.8% PKLot

Baroffio et al. (2015)
SVM and HSV

Histogram
yes 87.0 - 96.0% - - PKLot

Ahrnbom et al.

(2016)

SVM/LR and Feature

Channels
yes 0.999 - 1.030.978 - 0.99630.940 - 0.9883PKLot

Suwignyo et al.

(2018)

k-NN/SVM and

QLRBP
yes 99.2 - 99.4%1 - - PKLot

Dizon et al. (2017)

Background

subtraction with AMF

and linear SVM/LBP

with HOG

no 1.8%/21.0%4 - - PKLot (UFPR04)2

Almeida et al. (2018)
Dynse Framework and

LBP
yes 92.2% - - PKLot

Bohush et al. (2018) SVM and HOG no 99.7%1 - - PKLot (Subset)

Vı́tek & Melničuk

(2018)
SVM and HOG no 90.7 - 93.2%1 - 83 - 96% PKLot2

Hammoudi et al.

(2018a)

k-NN and LBP-based

features
no 98% - 98.6%1 - - PKLot(Subset)

Hammoudi et al.

(2018b)

k-NN and LBP-based

features
no 88.651 - - PKLot(Subset)

Mora et al. (2018)
SVM and SIFT (Bag of

Features)
yes 76.8 - 92.0%1 94.1 - 99.7% 90.4 - 97.3% PKLot

Amato et al. (2019a)
Background modeling

and Canny
yes 99.4% - - CNRPark-EXT

Dornaika et al.

(2019)

SVM/k-NN and

textural features
yes 88.7 - 99.6%1 - 63.0 - 87.8%

PKLot,

CNRPark-EXT

Raj et al. (2019)

Canny and color

features with Random

Forest

yes 98.31%1 - - PKLot

Hammoudi et al.

(2019)

k-NN/SVM and

LBP-based features
no 85.6%1 - 71.0 - 80.5%

PKLot,

CNRPark-EXT

(Subsets)

Thike & Thein (2019) Threshold and ULBP no 79%1 - - PKLot

Varghese & Sreelekha

(2020)
SVM and SURF yes 91.1 - 99.7% - 81.7%

PKLot,

CNRPark-EXT

Farag et al. (2020)
Threshold and color

average
no 79.0 - 90.0%1 - -

PKLot,

CNRPark-EXT

Irfan et al. (2020)
Euclidean Similarity

and GLCM
no 95.0% - - PKLot(PUCPR)2

Hammoudi et al.

(2020)

k-NN and LBP-based

features
no 87.0%1 - - PKLot(UFPR04)

Mago & Kumar

(2020)

Neural Networks,

k-NN, SVM, Näıve

Bayes, textures and

color features

no 99.7%1 - - PKLot

Almeida et al. (2020)
Approaches for concept

drift and LBP features
yes 86.7 - 90.4% - - PKLot

1 The test procedure may have led to biased results, or it is not clear. 2 Authors included private datasets in the

tests. 3 Results in AUC-ROC. 4 Results in False Negative Rate (FNR)/False Positive Rate (FPR).
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Table 3: Deep learning based individual parking spaces classification approaches overview.

Accuracy (%)

Authors, year Network
Repro-

ducible

Single

Parking Lot

Angle

Change

Parking Lot

Change
Datasets Used

Amato et al. (2016) mAlexNet yes 89.8 - 99.6% 86.3 - 90.7% 82.9 - 90.4%

PKLot,

CNRPark-EXT

(Cam. A and B)

Valipour et al. (2016) VGGNet-F yes 99.6 - 100% 85.5 - 98.2% 92.2 - 99.2% PKLot

Di Mauro et al.

(2016)
AlexNet no 99.2 - 99.8%1 - - PKLot2

Di Mauro et al.

(2017)
AlexNet no 99.9 - 100%1 - - PKLot2

Amato et al. (2017) mAlexNet yes 90.1 - 98.1% 93.3 - 93.7% 92.7 - 98.3%
PKLot,

CNRPark-EXT

Jensen et al. (2017) Custom CNN yes 99.7 - 99.9% 95.5 - 96.0% 96.7 - 98.7% PKLot

Nyambal & Klein

(2017)
AlexNet and LeNet no 98.0 - 99.0% - - PKLot2

Li et al. (2017) GAN yes 94.7 - 97.5%3 56 - 94%3 - PKLot

Acharya et al. (2018)
VGGNet-F(feat.

extr.)/SVM
no 99.7%1 - - PKLot2

Bura et al. (2018) Custom AlexNet no 99.5%1 - -

PKLot,

CNRPark-EXT

(Subsets)2

Thomas & Bhatt

(2018)
Custom CNN no 100%1 - - PKLot

Amato et al. (2019a) mAlexNet yes 99.6% - - CNRPark-EXT

Nurullayev & Lee

(2019)
CarNet yes 95.6 - 98.8% 95.2 - 97.6% 94.4 - 98.4%

PKLot,

CNRPark-EXT

Polprasert et al.

(2019)
mAlexNet no 88%1 - - PKLot2

Gregor et al. (2019) Custom ResNet no 99.9%1 - - PKLot2

Mart́ın Nieto et al.

(2019)
Faster R-CNN yes 0.9194 - - PLds

Zhang et al. (2019)
Custom VGG16 and

Custom CNN
no 99.1 - 99.9%1 - - PKLot

Ding & Yang (2019) Yolov3 no 93.3%3 - - PKLot

Khan et al. (2019) Faster R-CNN yes - 82.5 - 96.4% 90.5 - 99.9% PKLot

Mettupally & Menon

(2019)
Mask R-CNN no 91.9% 1 - - PKLot

Agrawal & Urolagin

(2020)
Mask R-CNN yes - 95% 95% PKLot

Baktir & Bolat

(2020)
ResNet50 no 99.5 - 99.8%1 - 97.4 - 99.3%

PKLot,

CNRPark-EXT

(Subsets)

Sairam et al. (2020) Mask R-CNN no 92%1 - - PKLot

Chen et al. (2020) Yolov3 no 99%1 - - CNRPark-EXT2

Rahman et al. (2020) CmAlexNet no 99.12%1 - - CNRPark1

Ali & Mohamed

(2021)
Custom AlexNet no 92.9 - 98.9%1 94.9 - 96.9% 96.0 - 99.0% PKLot

Dhuri et al. (2021) VGG16 yes 95.7 - 100% 97.1% 87.2% PKLot, CNRPark

Nguyen et al. (2021)
mAlexNet, AlexNet

and MobileNet
no 95.5 - 97.3%1 - - CNRPark2

Manjur Kolhar

(2021)
mAlexNet no 90.1 - 99.5%1 - -

PKLot,

CNRPark-EXT

1 The test procedure may have led to biased results or, it is not clear.

2 Authors included private datasets in the tests. 3 Results in Precision. 4 Results in AUC-PR.
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where the same car remained parked in the same spot for several minutes.

All consecutive images acquired from a parked car should be exclusively se-

lected as part of the training or testing sets in a more realistic scenario. The test

protocols originally suggested in the datasets discussed in Section 6.1 consider

this problem. Protocols that ignore the fact that a car can stay parked in the

same parking spot for a long time into consideration may have over-optimistic

results. We reported and highlighted results from these approaches in Tables 2

and 3.

In Table 4, the results reported by the different authors are averaged. Only

works deemed reproducible and not marked as possibly containing biased results

were considered for this average. As one can observe, on average, the accuracy

reported for the single parking lot tests is of 96.1%. Nevertheless, when consid-

ering the camera and parking lot change scenarios, the results are not as good,

on average, reaching accuracies of 92.7% and 91.8%, respectively. In Almeida

et al. (2015), where the PKLot is proposed, the authors recognized that the

classifiers should be less dependent on the training set and proposed test pro-

tocols for this type of scenario. Nevertheless, as one can observe in Figure 12a,

most authors focus only on classifying images without considering any change,

which is a more manageable problem.

Table 4: Averaged accuracy rates for the feature extraction and deep learning-based ap-

proaches. The numbers in parenthesis indicate the number of works considered in the aver-

ages.

Approach Single Park. Lot Angle Change Park. Lot Change

Feature extraction-based 94.4% (6) 87.0% (1) 84.4% (2)

Deep learning-based 97.6% (7) 93.4% (8) 93.7% (8)

Average 96.1%(13) 92.7%(9) 91.8%(10)

The datasets usage analysis presented in Figure 12b also shows that only

21% of the works employ more than one dataset in the testing procedure. Still

considering Figure 12b, it is possible to verify that the PKLot is the most

popular dataset, used in 90% of the works (69% + 21%). The CNRPark-EXT
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Single Park. Lot (65%)

Park./Camera Change (35%)

(a) Types of tests.

PKLot (69%)

PKLot + CNRPark (21%)

CNRPark-EXT (8%)

PLds (2%)

(b) Datasets usage.

Figure 12: Types of tests and datasets usage for the individual parking spaces classification

problem.

dataset is used in 29% of the works (8% + 21%). The PLds is used in 2%

of the works. PKLot and CNRPark-EXT, and PLds datasets were released in

2015, 2017, and 2019, respectively. As mentioned earlier, the high skew in the

datasets usage may be (in part) due to the year of publication of each dataset.

When comparing the average results for approaches based on feature extrac-

tion and deep learning in Table 4, the results favor the DL-based approaches.

However, the comparison made in Table 4 should be taken with care since only

a handful of works were used to compute the average. For example, only one

feature extraction-based work was considered for the camera angle change sce-

nario. When considering the number of works published, the results in Figure

13a show that the publications are almost evenly split between feature extrac-

tion and DL-based approaches.

Figure 13b shows that the most popular descriptor is the LBP and its vari-

ants when considering the feature extraction-based works. The most popular

classifier is the SVM, as one can observe in Figure 13c, and when considering the

DL-based approaches, the most used network is the AlexNet and the networks

derived from it, as shown in Figure 13d.
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(c) Number of approaches using each clas-
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(d) Number of approaches using each

network.

Figure 13: Individual Parking Spaces Classification Problem – Proportion and number of

works taking into consideration different approaches. Works that present multiple approaches

or use more than one feature/classifier may be computed more than once.

These findings suggest that research gaps exist for the individual parking

spaces classification problem. One research gap is the generalization prob-

lem. Future researchers may use multiple datasets to avoid biases, using differ-

ent datasets for training (e.g., PKLot) and testing (e.g., CNPark-Ext). Stan-

dard test protocols considering multiple datasets and standard metrics are also

needed to make the comparison between works easier and fairer.

6.3. Automatic Parking Space Detection

As one can observe in Section 5.2, only a few automatic parking space detec-

tion works were found. Most discussed approaches did not address the problem,

presenting it as an intermediary step for other problems. Except to Padmasiri

et al. (2020); Kirtibhai Patel & Meduri (2020); Patel & Meduri (2020), no
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author discussed in Section 5.2 made available quantitative results, making it

impossible to evaluate and compare the different works.

For the automatic parking space detection, the GAN-based approach pro-

posed in Li et al. (2017) may be highlighted. Although only reporting the in-

dividual parking spot classification precision, it generates parking space masks

that could be evaluated with appropriate metrics, such as Intersection over

Union (IoU) or AP (Everingham et al., 2010). Other works, such as Vı́tek &

Melničuk (2018); Mart́ın Nieto et al. (2019), tried to generate grid-segmentation

or fixed-size masks. Nevertheless, a qualitative analysis of the generated park-

ing masks shows that these approaches may be tied to specific parking image

properties, such as camera angles and distances.

In Padmasiri et al. (2020) the authors reported results ranging from 59.2

- 63.6 when considering the AP50 metric and 3.16 - 4.75 for the AP75. The

authors considered the parking spaces as right angle (90 degrees) bounding

boxes, which may not suit angled parking lots, such as the parking lots UFPR04

and UFPR05 of the PKLot dataset. The authors also used images from the same

parking lot for both the training and test, which may have led to biased results.

Kirtibhai Patel & Meduri (2020); Patel & Meduri (2020) reported auto-

matic parking space detection results using Faster RCNN and YOLOv4 for the

car detection step. Then, they detect parking spaces using a car tracking step.

Recall/accuracies of 74.5%/84.79% and 72.27%/76.62%, respectively, were ob-

tained in the CNRPark-EXT dataset. The authors detected right-angle bound-

ing boxes, which may not work in angled parking spaces. Experiments were

applied only on three busy days, which may present bias in the test scenario.

Also, CNRPark-EXT has only square ground-truths, which do not include the

entire parking spaces.

This analysis highlights that automatic parking space segmentation approaches

are still needed. It is also imperative that approaches developed for this task

present quantitative results. For the quantitative measurement of the results,

the authors could use well-known metrics, such as the F1-score, IoU, or AP

(Everingham et al., 2010). The metrics used must not rely on true negatives
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since the entire parking lot is a true negative, except the parking space poly-

gons. Metrics that require true negatives, such as accuracy, may lead to biased

results.

Standard test protocols are also necessary for this task. Robust test pro-

tocols should, for instance, use different datasets for the training and testing

phases. Using different datasets is necessary since approaches developed to au-

tomatically extract the parking spaces should perform without any fine-tuning

for the specific parking lot.

The human effort to label training samples from the parking lot is more

significant than manually marking each parking space. So how can we expect

to use labeled images from the test parking lot to train a method developed

for this task, as done in (Li et al., 2017; Bohush et al., 2018; Padmasiri et al.,

2020; Kirtibhai Patel & Meduri, 2020; Patel & Meduri, 2020)? With the same

reasoning, methods should not rely on camera parameters, such as the distance

from the lens to the parking lot, since these parameters are difficult to acquire

in the real world.

6.4. Car Detection and Counting

In this section, a discussion about car detection and counting is presented.

Only works that present quantitative results are considered. Overviews of car

detection, e.g., detect the bounding boxes of the cars; and counting, e.g., the

final number of cars in the images, are showed in Tables 5 and 6, respectively.

As done in Section 5.1, some results are reported in the x− y format, where x

is the worst result achieved in a given scenario, and y is the best result.

Some works employed both car detection and counting, appearing in both

tables. Since different metrics and datasets were employed when considering

different authors in Tables 5 and 6, a direct comparison of the works is unfeasible.

The average Mean Absolute Error (MAE) of the works presented in Table 6

(MAE is the most common metric in Table 6) is 7.3, which is a relatively small

error. However, this result should be considered with care as most of the works

employed small subsets of the datasets for the tests. For instance, the PUCPR+
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Table 5: Overview of car detection approaches

Authors Approach Metric
Reported

Results
Datasets Used

Hsieh et al.

(2017)
Custom CNN AR 57.5 - 62.5% PKLot (PUCPR+)

Laradji et al.

(2018)
LC-FCN8 F1-Score 99% PKLot (PUCPR)

Varghese &

Sreelekha (2020)
Bag of Features Precision / Recall 100% / 97.2% PKLot (single day)

Li et al. (2019) Custom CNN
AP@.5 and

AP@.7

70.3 - 92.9% /

44.9 - 61.4%
PKLot (PUCPR+)

Sharma &

Pandey (2021)
Custom CNN

Mean Average

Precision (mAP)
0.851 PKLot

1 The test procedure may have led to biased results or it is not clear.

Table 6: Overview of car counting approaches.

Authors Approach Metric
Reported

Results
Datasets Used

Hsieh et al.

(2017)
Custom CNN MAE / RMSE

22.8 - 23.8 /

34.5 - 36.81
PKLot (PUCPR+)

Laradji et al.

(2018)
LC-FCN8 MAE 0.2 PKLot (PUCPR)

Amato et al.

(2019a); Ciampi

et al. (2018)

Mask R-CNN MAE / RMSE 1.0 / 2.1 CNRPark-EXT

Stahl et al.

(2018)
R-FCN-based MAE 15.1 PKLot (PUCPR+)

Amato et al.

(2019b)
Custom CNN MAE / RMSE

1.8 - 3.7 / 2.7 -

5.1
PKLot (PUCPR+)

Li et al. (2019) Custom CNN MAE / RMSE
3.7 - 9.0 / 5.1 -

9.0
PKLot (PUCPR+)

Gabzdyl (2020)
VGG-encoder /

Custom CNN
MAE / RMSE 7.5 / 8.8 PKLot (PUCPR+)

Newell et al.

(2016)

Stacked

Hourglass (mod.)
MAE / RMSE 2.32 / 3.21 PKLot (PUCPR+)

1 The test procedure may have led to biased results or it is not clear.
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(Hsieh et al., 2017) subset of the PKLot dataset contains only one day of data.

When considering the datasets, the PUCPR subset of the PKLot dataset

and its extended version, PUCPR+ (Hsieh et al., 2017) is popular for the car

detection task. It was used in all but two of the reported works in Tables 5 and 6.

Many of the presented works, such as Hsieh et al. (2017); Amato et al. (2019b);

Gabzdyl (2020), also employed the CARPK (Hsieh et al., 2017), an interesting

dataset containing images captured by a drone. However, this dataset is beyond

the scope of this work.

62%

38%

Detection

Counting

(a) Detection vs. Counting.

2 4 6
Custom CNN

LC-FCN8
Bag of Feat.

Mask R-CNN
R-FCN

VGG
Stacked Hourg.

7
2

1
1
1
1
1

(b) Classifiers/Features usage.

Figure 14: Types of tasks and approaches used for the car detection and counting problem.

Works that deal with detection and counting tasks may be computed twice.

Figure 14a shows that 38% of the approaches may also be used to detect

cars. Once the cars are detected in the images, getting the final number of

cars becomes a trivial task. Figure 14b shows the number of works using each

strategy. As one can observe, the use of custom CNNs is the most popular

strategy for car detection and counting task.

Similar to the automatic parking space detection task, discussed in Section

6.3, there is a lack of common protocols and standard metrics for the car de-

tection and counting task. As discussed in Hsieh et al. (2017), another problem

in this task is that the datasets must contain a demarcation for all cars present

per image in its ground truth. These requirements are not met by any of the

datasets discussed in this work. Most authors thus use a subset (often con-

taining all cars manually labeled by the authors of each work) of the original

datasets to alleviate this problem. This approach is suboptimal since the sub-

sets are often small, e.g., one day of images, and may not represent the possible
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conditions encountered in the real world. It indicates that the datasets’ ground-

truth discussed in this work could be improved by adding all cars’ positions in

the ground-truth.

7. Conclusion and Future Works

This paper presented a systematic review of the vision-based approaches that

address parking lot management problems. To the best of our knowledge this

is the first such vision-centered review. First, considering the reproducibility of

results, the public datasets related to vision-based parking lot management were

analyzed. Criteria were established based on which the available datasets were

filtered to obtain those relevant to this problem. Three image-based datasets

passed the established criteria: PKLot, CNRPark-EXT, and PLds datasets.

When considering the reviewed works that use these datasets, we concluded

that the PKLot is the most popular dataset, used in 88% of the surveyed works.

This was followed by the CNRPark-EXT and PLDs datasets, employed by 28%

and 1% of the works, respectively.

Although we consider both image and video-based datasets relevant in this

work, we found that only the image-based datasets met our restrictions. Thus,

robust video-based parking lot datasets can be a future contribution to the

scientific community. Video-based datasets could be helpful in various ways, for

instance, tracking cars or to identify suspicious behavior. In addition, only a

few samples from the analyzed datasets were from night-time and or had snow

weather. Thus, datasets containing more of these and other scenarios may be a

contribution to future research. Further, datasets containing labels, for example,

bounding boxes, for all cars available in each image could also be interesting for

future developments, particularly for car counting.

When considering the works that used the surveyed datasets, we discovered

that the authors focused on three main tasks: the individual parking spaces

classification (between occupied and empty), the automatic parking spaces de-

tection, that is, automatically detect the parking space locations in the images,
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and the car detection and counting, for example, counting the number of vehicles

in the images.

Overall, 73% of the reviewed works proposed approaches exclusively to ad-

dress the individual parking spaces classification problem. However, this task

has been well-addressed considering that both the train and test images orig-

inate from the same parking lot and camera angle, reaching accuracy rates of

96.1% on average. However, we concluded that only 35% of the works that deal

with the individual parking spaces classification consider parking lot or camera

angle changes.

On average, the accuracy reached in the surveyed works in scenarios contain-

ing camera angle and parking lot changes was 92.7% and 91.8%, respectively.

Thus, with this in mind, future works should focus on camera and parking lot

changes, that is, scenarios where the training images originate from a parking

lot or camera angle different from the test images.

Further, only 13% of the surveyed works dealt with the automatic parking

spot detection problem, and only three authors made the quantitative results

available. This absence of quantitative results can act as an encouragement for

significant research efforts for this task. In addition, by reducing the human

labor in labeling the parking spaces positions in new parking lots (or when

the camera angle changes), automatic parking space detection approaches could

lead to more robust and easier to deploy vision-based systems crafted to monitor

parking spaces areas.

Of all the surveyed works, 14% considered the car detection and counting

task. Most of these works used the PUCPR subset of the PKLot dataset for

the tests. Many of these approaches prefer using image datasets from non-fixed

cameras, for instance, ones using drones, such as the CARPK (Li et al., 2019).

However, although interesting, these datasets are beyond the scope of this work.

There is a lack of standard protocols for testing approaches for all tasks

discussed in this work, rendering the comparison of works and reproduction

of the experiments a challenge. Future test protocols should consider which

evaluation metrics should be used, the manner in which the data should be
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split, which datasets exhibit which challenges, and so forth. The proposal and

usage of well-defined test protocols could provide better insights and lead to

more robust developments.

When comparing handcrafted feature descriptors and deep learning-based

approaches, 35% of the surveyed works employed the former, and 61% the latter

(4% of the methods used both). For the individual parking spaces classification

problem, the method suited to obtain results in not clear. However, on average,

deep learning methods tend to generate slightly better accuracies. Moreover, it

is crucial to notice that most works lack information about, for instance, the

computational cost of the proposed methods. High computational costs could

result in certain approaches being prohibitive for certain applications, such as

in embedded systems. For the car detection and counting task, all but one

of the surveyed approaches employed deep learning-based approaches, clearly

indicating that the authors prefer this technique.

Moreover, we also want to point out that many authors included small pri-

vate datasets in the tests, despite the availability of public datasets. Although

we recommend the development and usage of new datasets, the usage of small

datasets may lead to biased results. In addition, by making these datasets pri-

vate, authors are undermining the scientific community’s ability to reproduce

the results. Further, authors should also consider the specific properties of park-

ing lot image datasets, such as the occurrence of a specific car in several images,

to avoid trivial and unrealistic test protocols.

We hope that new research works and datasets can be developed based on

the points discussed in this work. As made evident in this work, new develop-

ments should consider making the train and test data publicly available. These

proposals would improve experiment reproducibility and contribute to the sci-

entific community with new datasets.
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(2020). Näıve approaches to deal with concept drifts. In 2020 IEEE Interna-

tional Conference on Systems, Man, and Cybernetics (SMC) (pp. 1052–1059).

doi:10.1109/SMC42975.2020.9283360.

Amato, G., Bolettieri, P., Moroni, D., Carrara, F., Ciampi, L., Pieri, G., Gen-

naro, C., Leone, G. R., & Vairo, C. (2019a). A wireless smart camera network

for parking monitoring. In 2018 IEEE Globecom Workshops (GC Wkshps)

(pp. 1–6). Institute of Electrical and Electronics Engineers Inc. volume 2019.

Amato, G., Carrara, F., Falchi, F., Gennaro, C., Meghini, C., & Vairo, C.

(2017). Deep learning for decentralized parking lot occupancy detection. Ex-

pert Systems with Applications, 72 , 327–334.

Amato, G., Carrara, F., Falchi, F., Gennaro, C., & Vairo, C. (2016). Car

parking occupancy detection using smart camera networks and deep learning.

In 2016 IEEE Symposium on Computers and Communication (ISCC) (pp.

1212–1217). Institute of Electrical and Electronics Engineers Inc. volume

2016-August.

Amato, G., Ciampi, L., Falchi, F., & Gennaro, C. (2019b). Counting vehicles

with deep learning in onboard uav imagery. In 2019 IEEE Symposium on

Computers and Communications (ISCC) (pp. 1–6). Institute of Electrical

and Electronics Engineers Inc. volume 2019-June.

Baktir, A. B., & Bolat, B. (2020). Determining the occupancy of vehicle park-

ing areas by deep learning. In 2020 International Conference on Electrical,

Communication, and Computer Engineering (ICECCE) (pp. 1–4). IEEE.

Baroffio, L., Bondi, L., Cesana, M., Redondi, A. E., & Tagliasacchi, M. (2015).

A visual sensor network for parking lot occupancy detection in smart cities. In

2015 IEEE 2nd World Forum on Internet of Things (WF-IoT) (pp. 745–750).

Institute of Electrical and Electronics Engineers Inc. volume 2015.

48



Barriga, J., Sulca, J., León, J., Ulloa, A., Portero, D., Andrade, R., & Yoo, S. G.

(2019). Smart parking: A literature review from the technological perspective.

Applied Sciences, 9 , 4569.

Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust

features (surf). Computer vision and image understanding , 110 , 346–359.

Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). Yolov4: Optimal speed

and accuracy of object detection. arXiv preprint arXiv:2004.10934 , .

Bohush, R., Yarashevich, P., Ablameyko, S., & Kalganova, T. (2018). Extraction

of image parking spaces in intelligent video surveillance systems. Machine

Graphics and Vision, 27 , 47–62.

Bondi, L., Baroffio, L., Cesana, M., Redondi, A., & Tagliasacchi, M. (2015).

Ez-vsn: an open-source and flexible framework for visual sensor networks.

IEEE Internet of Things Journal , 3 , 767–778.

Bura, H., Lin, N., Kumar, N., Malekar, S., Nagaraj, S., & Liu, K. (2018). An

edge based smart parking solution using camera networks and deep learning.

In 2018 IEEE International Conference on Cognitive Computing (ICCC) (pp.

17–24). Institute of Electrical and Electronics Engineers Inc. volume 2018.

Chen, L.-C., Sheu, R.-K., Peng, W.-Y., Wu, J.-H., & Tseng, C.-H. (2020).

Video-based parking occupancy detection for smart control system. Applied

Sciences, 10 , 1079.

Chen, Q., Wang, W., Wu, F., De, S., Wang, R., Zhang, B., & Huang, X. (2019).

A survey on an emerging area: Deep learning for smart city data. IEEE

Transactions on Emerging Topics in Computational Intelligence, 3 , 392–410.

Ciampi, L., Amato, G., Falchi, F., Gennaro, C., & Rabitti, F. (2018). Counting

vehicles with cameras. In D. N. T. Bergamaschi S., Maurino A. (Ed.), SEBD

(pp. 1–8). CEUR-WS volume 2161.

49



Dai, J., Li, Y., He, K., & Sun, J. (2016). R-FCN: object detection via region-

based fully convolutional networks.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human

detection. In 2005 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’05) (pp. 886–893 vol. 1). San Diego, CA,

USA: IEEE volume 1.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Ima-

genet: A large-scale hierarchical image database. In 2009 IEEE conference

on computer vision and pattern recognition (pp. 248–255). IEEE Miami, FL,

USA: IEEE.

Dhuri, V., Khan, A., Kamtekar, Y., Patel, D., & Jaiswal, I. (2021). Real-time

parking lot occupancy detection system with vgg16 deep neural network using

decentralized processing for public, private parking facilities. In 2021 Interna-

tional Conference on Advances in Electrical, Computing, Communication and

Sustainable Technologies (ICAECT) (pp. 1–8). doi:10.1109/ICAECT49130.

2021.9392506.
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